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Why Parallel Processing

increase speed: p computers jointly working on a problem solve it up to

p times faster. But, too many cooks spoil the broth. careful

coordination of processors

save energy: Two processors with half the clock frequency need less

power than one processor at full speed. (power≈ voltage · clock

frequency)

expand available memory by using aggregate memory of many

processors

less communication: when data is distributed it can also be

(pre)processed in a distributed way.
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Subject of the Lecture

Basic methods for parallel problem solving

� Parallelization of basic sequential techniques: sorting, data

structures, graph algorithms, . . .

� Basic communication patterns

� load balancing

� Emphasis on provable performance guarantees

� But applicability always in view
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Overview

� Models, simple examples

� Matrix multiplikation

� Broadcasting

� Sorting

� General data exchange

� Load balanciong I, II, III

� List ranking (conversion list → array)

� Hashing, priority queues

� Simple graph algorithms
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Literature

Script (in German)

+

Figures from the book marked as [Book].
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More Literature

[Kumar, Grama, Gupta und Karypis],

Introduction to Parallel Computing. Design and Analysis of Algorithms,

Benjamin/Cummings, 1994. mostly practical, programming oriented

[Leighton], Introduction to Parallel Algorithms and Architectures,

Morgan Kaufmann, 1992.

Theoretical algorithms on concrete interconnection networks

[JáJá], An Introduction to Parallel Algorithms, Addison Wesley, 1992.

PRAM

[Sanders, Worsch],

Parallele Programmierung mit MPI – ein Praktikum, Logos, 1997.
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Parallel Computing at ITI Sanders

� Massively parallel sorting, Michael Axtmann

� Massively parallel graph algorithms, Sebastian Lamm

� Fault tolerance, Lukas Hübner

� Shared-memory data structures, Tobias Maier

� (Hyper)graph partitioning,

Tobias Heuer & Daniel Seemaier

� Comm. eff. alg., Lorenz Hübschle-Schneider

� SAT-solving and planning, Markus Iser and Dominik Schreiber

� Geometric algorithms, Daniel Funke
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Role in the CS curriculum

� Elective or “Mastervorzug” Bachelor!

� Vertiefungsfach

– Algorithmentechnik

– Parallelverarbeitung

� Studienprofil daten-intensives Rechnen
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Related Courses

Parallel programming: Tichy, Karl, Streit

Modelle der Parallelverarbeitung: viel theoretischer,

Komplexitätstheorie,. . . Worsch

Algorithmen in Zellularautomaten: spezieller, radikaler, theoretischer

Worsch

Rechnerarchitektur: Karl

GPUs: Dachsbacher

+ other algorithms lectures
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RAM/von Neumann Model

ALU
O(1) registers

1 word = O(log n) bits

large memory
freely programmable

Analysis: count machine instructions —

load, store, arithmetics, branch,. . .

� simple

� very successful
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Algorithmenanalyse:

� Count cycles: T (I), for given problem instance I.

� Worst case depending on problem size: T (n) = max|I|=n T (I)

� Average case: Tavg(n) =
∑|I|=n T (I)

|{I : |I|= n}|
Example: Quicksort has average case complexity O(n logn)

� Randomized Algorithms: T (n) (worst case) is a random variable.

We are interested, e.g. in its expectation (later more).

Don’t mix up with average case.

Example: Quicksort with random pivot selection has expected

worst case cost E[T (n)] = O(n logn)
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Algorithm Analysis: More Conventions

� O(·) gets rid of cumbersome constants

� Secondary goal: memory

� Execution time can depend on several parameters:

Example: An efficient variant of Dijkstra’s Algorithm for shortest

paths needs time O(m+n logn) where n is the number of nodes

and m is the number of edges. (It always has to be clear what

parameters mean.)
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A Simple Parallele Model: PRAM

Idea: change RAM as little as possible.

� p PEs (Processing Elements); numbered 1..p (or 0..p−1).

Every PE knows p.

� One machine instruction per clock cycle and PE synchronous

� Shared global memory

PE 1 PEPE 2

...

p

shared memory
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Access Conflicts?

EREW: Exclusive Read Exclusive Write. Concurrent access is

forbidden

CREW: Concurrent Read Exclusive Write. Concurrent read OK.

Example: One PE writes, others read = „Broadcast“

CRCW: Concurrent Read Concurrent Write. avoid chaos:

common: All writers have to agree

Example: OR in constant time (AND?)

arbitrary: someone succeeds (6= random!)

priority: writer with smallest ID succeeds

combine: All values are combined, e.g., sum
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Example: Global Or

Input in x[1..p]

Initilize memory location Result= 0

Parallel on PE i = 1..p

if x[i] then Result := 1

Global And

Initilize memory location Result= 1

if not x[i] then Result := 0
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Example: Maximum on Common CRCW PRAM
[JáJá Algorithm 2.8]

Input: A[1..n] // distinct elements

Output: M[1..n] // M[i] = 1 iff A[i] = max j A[ j]

forall (i, j) ∈ {1..n}2 dopar B[i, j]:= A[i]≥ A[ j]

forall i ∈ {1..n} dopar

M[i]:=
n∧

j=1

B[i, j] // parallel subroutine

O(1) time

Θ
(
n2
)

PEs (!)
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i A B 1 2 3 4 5 <- j M

1 3 * 0 1 0 1 1

2 5 1 * 1 0 1 1

3 2 0 0 * 0 1 1

4 8 1 1 1 * 1 1

5 1 0 0 0 0 * 1

A 3 5 2 8 1

-------------------------------

i A B 1 2 3 4 5 <- j M

1 3 * 0 1 0 1 0

2 5 1 * 1 0 1 0

3 2 0 0 * 0 1 0

4 8 1 1 1 * 1 1->maxValue=8

5 1 0 0 0 0 * 0
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Describing Parallel Algorithms
� Pascal-like pseudocode

� Explicitly parallel loops [JáJá S. 72]

� Single Program Multiple Data principle. The PE-index is used to

break the symmetry. 6= SIMD !
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Analysis of Parallel Algorithms

In principle – just another parameter: p.

Find execution time T (I, p).

Problem: interpretation.

Work: W = pT (p) is a cost measure. (e.g. Max: W = Θ
(
n2
)

)

Span: T∞ = infp T (p) measures parallelizability.

(absolute) Speedup: S = Tseq/T (p).

Use the best known sequential algorithm.

Relative Speedup Srel = T (1)/T (p) is usually different!

(e.g. Maximum: S = Θ(n), Srel = Θ
(
n2
)
)

Efficiency: E = S/p. Goal: E ≈ 1 or, at least E = Θ(1). „Superlinear

speedup“: E > 1. (possible?). Example maximum: E = Θ(1/n).
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PRAM vs. Real Parallel Computers

Distributed Memory

PE 1 PEPE 2

memory
local 

memory
local 

memory
local 

p

...

network
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(Symmetric) Shared Memory

cache

network

0 1 ... p−1
processors

memory modules
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Problems

� Asynchronous design, analysis, implementation, and

debugging are much more difficult than for PRAM

� Contention for memory module / cache line

Example:

The Θ(1) PRAM Algorithm for global OR becomes Θ(p).

� local/cache-memory is (much) faster than global memory

� The network gets more complex with growing p

while latencies grow

� Contention in the network

� Maximum local memory consumption more important than total

memory consumption
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Realistic Shared-Memory Models

� asynchronous

� aCRQW: asynchronous concurrent read queued write. When x

PEs contend for the same memory cell, this costs time O(x).

� consistent write operations using atomic operations

� memory hierarchies

Why is concurrent read OK?
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Atomic Instuctions: Compare-And-Swap

General and widely available:

Function CAS(a,expected,desired) : {0,1}
BeginTransaction

if ∗a = expected then ∗a:= desired; return 1// success

else expected:= ∗a; return 0// failure

EndTransaction
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Further Operations for Consistent Memory

Access:

� Fetch-and-add

� Hardware transactions

Function fetchAndAdd(a,∆)

expected:= ∗a

repeat

desired:= expected+∆

until CAS(a,expected,desired)

return desired
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Parallel External Memory

M M M

PEM

...

B B B
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Models with Interconnection Networks

memory

RAMs

network

0 1 ...
processors

...

...

p−1

� PEs are RAMs

� asynchronous processing

� Interaction by message exchange

Important: cost model for data exchange



Sanders: Parallel Algorithms January 17, 2022 28

Real Maschines Today

Internet

SSD

disks
tape

main memory

L3

L2

cache

core

compute node

L1

SIMD

network

more compute nodes

threads

superscalar

pr
oc

es
so

r

[Book]



Sanders: Parallel Algorithms January 17, 2022 29

Handling Complex Hierarchies

Proposition: we get quite far with flat Models, in particular for shared

memory.

� Design distributed, implement hierarchy adapted

� Shared-memory subroutines on nodes
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Explicit „Store-and-Forward“

� We know the interconnection graph

(V = {1, . . . , p} ,E ⊆V ×V ). Variants:

– V = {1, . . . , p}∪R with additional

„dumb“ router nodes (perhaps with buffer memory).

– Buses → Hyperedges

� In each time step each edge can transport up to k′ data packets of

constant length (usually k′ = 1)

� On a k-port-machine, each node can simultaneously send or

receive k Packets gleichzeitig senden oder empfangen. k = 1 is

called single-ported.
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Discussion

+ simple formulation

− low level ⇒ „messy algorithms“

− Hardware router allow fast communication whenever an unloaded

communication path is found.
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Typical Interconnection Networks

3D−mesh hypercube

fat tree
root

mesh torus

[Book]
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Fully Connected Point-to-Point

� E =V ×V , single ported

� Tcomm(m) = α +mβ . (m = message length in machine words)

+ Realistic handling of message lengths

+ Many interconnection networks approximate fully connected

networks ⇒ sensible abstraction

+ No overloaded edges → OK for hardware router

+ „artificially“ increasing α , β

→ OK for „weak“ networks

+ Asynchronous model

− A bit of hand waving for real networks
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Fully Connected: Variants

What can PE I do in time Tcomm(m) = α +mβ?

message length m.

half duplex: 1×send or 1×receive (also called simplex)

Telephone: 1×send to PE j and 1×receive from PE j

(full)duplex: 1×send and 1×receive.

Arbitrary comunication partners

Effect on running time:

T duplex ≤ T Telefon ≤ T duplex/2 ≤ 3T duplex
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BSP Bulk Synchronous Parallel

[McColl LNCS Band 1000, S. 46]

Machine described by three parameters: p, L and g.

L: Startup overhead for one collective message exchange – involving

all PEs

g: gap≈ computation speed
communication bandwidth

Superstep: Work locally. Then collective global synchronized data

exchange with arbitrary messages.

w: max. local work (clock cycles)

h: max. number of machine words sent or received by a PE (h-relation)

Time: w+L+gh
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BSP versus Point-to-Point

By naive direct data delivery:

Let H = max #messages of a PEs.

Then T ≥ α(H + log p)+hβ .

Worst case H = h. Thus L ≥ α log p and g ≥ α?

By all-to-all and direct data delivery:

Then T ≥ α p+hβ .

Thus L ≥ α p and g ≈ β?

By all-to-all and indirect data delivery:

Then T = Ω(log p(α +hβ )).

Thus L = Ω(α log p) and g = Ω(β log p)?
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BSP∗

Truly efficient parallel algorithms: c-optimal multisearch for an

extension of the BSP model,

Armin Bäumker and Friedhelm Meyer auf der Heide, ESA 1995.

Redefinition of h to # blocks of size B, e.g. B = Θ(α/β ).

Let Mi be the set of messages sent or received by PE i.

Let h = maxi ∑m∈Mi
⌈|m|/B⌉.

Let g the gap between sending packets of size B.

Then, once more

w+L+gh

is the time for a super step.
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BSP∗ versus Point-to-Point

With naive direct data delivery:

L ≈ α log p

g ≈ Bβ
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BSP+

We augment BSP by collective operations

broadcast

(all-)reduce

prefix-sum

with message lengths h.

Stay tuned for algorithms which justify this.

BSP∗-algorithms are up to a factor Θ(log p) slower than

BSP+-algorithms.
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MapReduce

D =
⋃

c∈C

ρ(c)

C = {(k,X) : k ∈ K∧
X = {x : (k,x) ∈ B}∧X 6= /0}

A ⊆ I

B =
⋃

a∈A

µ(a)⊆ K ×V

...

1: map

2: shuffle

3: reduce
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MapReduce Example WordCount

(birthday, {1,1,1}) (to, {1,1}) (you, {1,1}) (dear, {1})
(Timmy, {1}) (happy, {1,1,1})

(to, 2) (you, 2)(birthday, 3)
(dear, 1) (Timmy, 1) (happy, 3)

happy birthday to you

(birthday,1)(happy,1) (birthday,1) (to,1) (you,1) (happy,1)(birthday,1)
(dear,1) (happy,1) (birthday,1) (to,1) (you,1)(Timmy,1)

happy birthday to you
happy birthday dear Timmy

D =
⋃

c∈C

ρ(c)

C = {(k,X) : k ∈ K∧

A ⊆ I

B =
⋃

a∈A

µ(a)⊆ K ×V

X = {x : (k,x) ∈ B}∧X 6= /0}

...

1: map

2: shuffle

3: reduce
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MapReduce Discussion

D =
⋃

c∈C

ρ(c)

C = {(k,X) : k ∈ K∧
X = {x : (k,x) ∈ B}∧X 6= /0}

A ⊆ I

B =
⋃

a∈A

µ(a)⊆ K ×V

...

1: map

2: shuffle

3: reduce

+ Abstracts away difficult issues

* parallelization

* load balancing

* fault tolerance

* memory hierarchies

* . . .

− Large overheads

− Limited functionality
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MapReduce – MRC Model

[Karloff Suri Vassilvitskii 2010]

D =
⋃

c∈C

ρ(c)

C = {(k,X) : k ∈ K∧

A ⊆ I

B =
⋃

a∈A

µ(a)⊆ K ×V

X = {x : (k,x) ∈ B∧
X 6= /0}

...

1: map

2: shuffle

3: reduce

A problem is in MRC iff for input of size n:

� solvable in O(polylog(n))

MapReduce steps

� µ and ρ evaluate in time O(poly(n))

� µ and ρ use space O
(
n1−ε

)

(“substantially sublinear”)

� overall space for B O
(
n2−ε

)

(“substantially subquadratic”)

Roughly: count steps,

very loose constraints on everything else
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MapReduce – MRC Model Criticism

A problem is in MRC iff for input of size n:

� solvable in O(polylog(n))

MapReduce steps

� µ and ρ evaluate in time O(poly(n)) n2? n42? “big” data?

� µ and ρ use space O
(
n1−ε

)

(“substantially sublinear”)

� overall space for B O
(
n2−ε

)

(“substantially subquadratic”) “big” data?

Roughly: count steps, speedup? efficiency?

very loose constraints on everything else
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MapReduce – MRC+ Model
[Sanders IEEE BigData 2020]

w Total work for µ , ρ

ŵ Maximal work for µ , ρ

m Total data volume for A∪B∪C∪D

m̂ Maximal object size in A∪B∪C∪D,

Theorem: Lower and upper bound for parallel execution:

Θ

(
w

p
+ ŵ+ log p

)

parallel time,

Θ

(
m

p
+ m̂+ log p

)

bottleneck communication volume.

D =
⋃

c∈C

ρ(c)

C = {(k,X) : k ∈ K∧

A ⊆ I

B =
⋃

a∈A

µ(a)⊆ K ×V

X = {x : (k,x) ∈ B∧
X 6= /0}

...

1: map

2: shuffle

3: reduce
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Implementing MapReduce on BSP

2 Supersteps:

1. Map local data.

Send (k,v) ∈ B to PE h(k) (hashing)

2. Receive elements of B.

Build elements of C.

Run reducer.

Send all but first result of a reducer to a random PE.
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MapReduce on BSP – Example

321PE: 4

work data dependence

m
ap

superstep 1
superstep 2

shuffle
reduce

27

15

2

21
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MapReduce on BSP – Analysis

Time

2L+O

(
w

p
+g

m

p

)

if

w = Ω(ŵp log p) and m = Ω(m̂p log p)
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Graph- und Circuit Representation of Algorithms

a a+b a+b+c a+b+c+d

a b c d

Many computations can be represented as a

directed acyclic graph

� Input nodes have indegree 0

and a fixed output

� Ouput nodes have outdegree 0

and indegree 1

� The indegree is bounded by

a small constant.

� Inner nodes compute a function, that can be computed in constant

time.
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Circuits

� Variant: When a constant number of bits rather than machine

words are processed, we get circuits.

� The depth d(S) of the computation-DAG is the number of inner

nodes on the longest path from an input to an output ∼ time

� One circuit for each input size (specified algorithmically) ⇒ circuit

family
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Example: Associative Operations (=Reduction)

Satz 1. Let ⊕ denote an associative operator that can be

computed in constant time. Then,

⊕

i<n

xi := (· · ·((x0 ⊕ x1)⊕ x2)⊕·· ·⊕ xn−1)

can be computed in time O(logn) on a PRAM and in time

O(α logn) on a linear array with hardware router

Example: +, ·, max, min, . . . (example for non-commutative?)
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Proof Outline for n = 2k (wlog?)

Induction hypothesis: ∃ circuit of depth k for
⊕

i<2k xi

k = 0: trivial

k k+1:

⊕

i<2k+1

xi =

depth k
︷ ︸︸ ︷
⊕

i<2k

xi⊕
depth k (IH)
︷ ︸︸ ︷
⊕

i<2k

xi+2k

︸ ︷︷ ︸

Tiefe k+1

k

k+12
1
0
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PRAM Code

PE index i ∈ {0, . . . ,n−1}
active := 1

for 0 ≤ k < ⌈logn⌉ do

if active then

if bit k of i then

active := 0

else if i+2k < n then

xi := xi ⊕ xi+2k

// result is in x0

Careful: much more complicated on a real asynchronous

shared-memory machine.

Speedup? Efficiency? logx here always log2 x

1 2 3 4 5 6 7 8 9 a b c d fe0
x
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Analysis

n PEs

Time O(logn)

Speedup O(n/ logn)

Efficiency O(1/ logn)
1 2 3 4 5 6 7 8 9 a b c d fe0

x
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Less is More (Brent’s Principle)

p PEs

Each PE adds

n/p elements sequentially.

Then parallel sum

for p subsums

Time Tseq(n/p)+Θ(log p)

Efficiency

Tseq(n)

p(Tseq(n/p)+Θ(log p))
=

1

1+Θ(p log(p))/n
= 1−Θ

(
p log p

n

)

if n ≫ p log p

p

n/p
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Distributed Memory Machine

PE index i ∈ {0, . . . ,n−1}
// Input xi located on PE i

active := 1

s := xi

for 0 ≤ k < ⌈logn⌉ do

if active then

if bit k of i then

sync-send s to PE i−2k

active := 0

else if i+2k < n then

receive s′ from PE i+2k

s := s⊕ s′

// result is in s on PE 0

1 2 3 4 5 6 7 8 9 a b c d fe0
x
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Analysis

fully connected: Θ((α +β ) log p)

linear array: Θ(p): step k needs time 2k.

linear array with router: Θ((α +β ) log p), since edge congestion is

one in every step

BSP Θ((l +g) log p) = Ω
(
log2 p

)

Arbitrary n > p: additional time Tseq(n/p)
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Discussion Reductions Operation

� Binary tree yields logarithmic running time

� Useful for most models

� Brent’s principle: inefficient algorithms get efficient by using less

PEs

� Later: reduction of complex objects, e.g., vectors, matrices
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Matrix Multiplikation

Given: Matrices A ∈ Rn×n, B ∈ Rn×n

with A = ((ai j)) und B = ((bi j))

R: semiring

C = ((ci j)) = A ·B well-known:

ci j =
n

∑
k=1

aik ·bk j

work: Θ
(
n3
)

arithmetical operations

(better algorithms if R allows subtraction)
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A first PRAM Algorithm

n3 PEs

for i:= 1 to n dopar

for j:= 1 to n dopar

ci j:=
n

∑
k=1

aik ·bk j // n PE parallel sum

One PE für each product cik j:= aikbk j

Time O(logn)

Efficiency O(1/ logn)
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Distributed Implementation I

p ≤ n2 PEs

for i:= 1 to n dopar

for j:= 1 to n dopar

ci j:=
n

∑
k=1

aik ·bk j

Assign n2/p of the ci j to each PE

− limited scalability

− high communication volume. Time Ω

(

β
n2

√
p

)

n/ p

n
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Distributed Implementation II-1
[Dekel Nassimi Sahni 81, KGGK Section 5.4.4]

Assume p = N3, n is a multiple of N

View A, B, C as N ×N matrices,

each element is a n/N ×n/N matrix

for i:= 1 to N dopar

for j:= 1 to N dopar

ci j:=
N

∑
k=1

aikbk j

One PE for each product cik j:= aikbk j

n

n/N

1 N...
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Distributed Implementation II-2

store aik in PE (i,k,1)

store bk j in PE (1,k, j)

PE (i,k,1) broadcasts aik to PEs (i,k, j) for j ∈ {1..N}
PE (1,k, j) broadcasts bk j to PEs (i,k, j) for i ∈ {1..N}
compute cik j:= aikbk j on PE (i,k, j) // local!

PEs (i,k, j) for k ∈ {1..N} compute ci j:=
N

∑
k=1

cik j to PE (i,1, j)

k

i

j

B

A

C
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Analysis, Fully Connected, etc.
store aik in PE (i,k,1) // free (or cheap)

store bk j in PE (1,k, j) // free (or cheap)

PE (i,k,1) broadcasts aik to PEs (i,k, j) for j ∈ {1..N}
PE (1,k, j) broadcasts bk j to PEs (i,k, j) for i ∈ {1..N}
compute cik j:= aikbk j on PE (i,k, j) // Tseq(n/N) = O

(
(n/N)3

)

PEs (i,k, j) for k ∈ {1..N} compute ci j:=
N

∑
k=1

cik j to PE (i,1, j)

Communication:

2Tbroadcast(

Obj. size
︷ ︸︸ ︷

(n/N)2,

PEs
︷︸︸︷

N )+Treduce((n/N)2,N)≈ 3Tbroadcast((n/N)2,N)

N=p1/3

 · · ·O
(

n3

p
+β

n2

p2/3
+α log p

)
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Discussion Matrix Multiplikation

� PRAM Alg. is a good starting point

� DNS algorithm saves communication but needs factor Θ
(

3
√

p
)

more space than other algorithms

 good for small matrices (for big ones communication is irrelevant)

� Pattern for dense linear algebra:

Local Ops on submatrices + Broadcast + Reduce

e.g. matrix-vector-product, solve lin. eq. syst.,. . .
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Broadcast and Reduction

Broadcast: One for all

One PE (e.g. 0) sends message of length n to all PEs

p−10 1 2

n

...

Reduction: One for all

One PE (e.g. 0) receives sum of p messages of length n

(vector addition6= local addition)
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Broadcast Reduction

� turn around direction of communication

� add corresponding parts

of arriving and own

messages

All the following

broadcast algorithms yield

reduction algorithms

for commutative and associative operations.

Most of them (except Johnsson/Ho and some network embeddings)

also work for noncommutative operations.

p−10 1 2

n

...



Sanders: Parallel Algorithms January 17, 2022 68

Modelling Assumptions

� fully connected

� fullduplex – parallel send and receive

Variants: halfduplex, i.e., send or receive, BSP, embedding into

concrete networks



Sanders: Parallel Algorithms January 17, 2022 69

Naive Broadcast [KGGK Section 3.2.1]

Procedure naiveBroadcast(m[1..n])

PE 0: for i := 1 to p−1 do send m to PE i

PE i > 0: receive m

Time: (p−1)(nβ +α)

nightmare for implementing a scalable algorithm

p−10 1 2

n

...

... p−1
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Binomial Tree Broadcast

Procedure binomialTreeBroadcast(m[1..n])

PE index i ∈ {0, . . . , p−1}
//Message m located on PE 0

if i > 0 then receive m

for k := min{⌈logn⌉ , trailingZeroes(i)}−1 downto 0 do

send m to PE i+2k // noop if receiver ≥ p

1 2 3 4 5 6 7 8 9 a b c d fe0
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Analysis

� Time: ⌈log p⌉(nβ +α)

� Optimal for n = 1

� Embeddable into linear array

n· f (p) n+ log p?

1 2 3 4 5 6 7 8 9 a b c d fe0
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Linear Pipeline

Procedure linearPipelineBroadcast(m[1..n],k)

PE index i ∈ {0, . . . , p−1}
//Message m located on PE 0

//assume k divides n

define piece j as m[( j−1)n
k
+1.. j n

k
]

for j := 1 to k+1 do

receive piece j from PE i−1 // noop if i = 0 or j = k+1

and, concurrently,

send piece j−1 to PE i+1 // noop if i = p−1 or j = 1

5

4

3

2

1

7

6
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Analysis

� Time n
k
β +α per step

(6= Iteration)

� p−1 steps until first packet arrives

� Then 1 step per further packet

T (n, p,k):
(n

k
β +α

)

(p+ k−2))

optimal k:

√

n(p−2)β

α

T ∗(n, p): ≈ nβ + pα +2
√

npαβ

5

4

3

2

1

7

6
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Discussion

� Linear pipelining is optimal for fixed p und n → ∞

� But for large p extremely large messages needed

α p α log p?
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Procedure binaryTreePipelinedBroadcast(m[1..n],k)

//Message m located on root, assume k divides n

define piece j as m[( j−1)n
k
+1.. j n

k
]

for j := 1 to k do

if parent exists then receive piece j

if left child ℓ exists then send piece j to ℓ

if right child r exists then send piece j to r

rightrecv left recv recv rightright left left recv right left right

11 12 138 9 10

recv left rightrecv left left recv right left recv right

61 2 3 4 5 7
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Example

rightrecv

left recv recv rightright left left recv right left right

11 12 138 9 10

recv left rightrecv left left recv right left recv right

61 2 3 4 5 7
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Analysis

� time n
k
β +α per step (6= iteration)

� 2 j steps until first packet reaches level j

� how many levels? d:= ⌊log p⌋

� then 3 steps for each further packet

Overall: T (n, p,k):= (2d +3(k−1))
(n

k
β +α

)

optimal k:

√

n(2d −3)β

3α



Sanders: Parallel Algorithms January 17, 2022 80

Analysis

� Time n
k
β +α per step (6= iteration)

� d:= ⌊log p⌋ levels

� Overall: T (n, p,k):= (2d +3(k−1))
(n

k
β +α

)

� optimal k:

√

n(2d −3)β

3α

substituted: T ∗(n, p) = 2dα +3nβ +O

(√

ndαβ
)
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Fibonacci-Trees

0
1
2
3
4

1 2 4 7 12

active connection passive connection
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Analysis

� Time n
k
β +α per step (6= iteration)

� j steps until first packet reaches level j

� How many PEs p j with level 0.. j?

p0 = 1, p1 = 2, p j = p j−2 + p j−1 +1 ask Maple,

rsolve(p(0)=1,p(1)=2,p(i)=p(i-2)+p(i-1)+1,p(i));

p j ≈
3
√

5+5

5(
√

5−1)
Φ j ≈ 1.89Φ j

with Φ = 1+
√

5
2

(golden ratio)

 d ≈ logΦ p levels

overall: T ∗(n, p) = dα +3nβ +O

(√

ndαβ
)
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Procedure fullDuplexBinaryTreePipelinedBroadcast(m[1..n],k)

//Message m located on root, assume k divides n

define piece j as m[( j−1)n
k
+1.. j n

k
]

for j := 1 to k+1 do

receive piece j from parent // noop for root or j = k+1

and, concurrently, send piece j−1 to right child

// noop if no such child or j = 1

send piece j to left child

// noop if no such child or j = k+1

even step odd step
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Analysis

� Time n
k
β +α per step

� j steps until first packet level j reaches

� d ≈ logΦ p levels

� Then 2 steps for each further packet

Overall: T ∗(n, p) = dα +2nβ +O

(√

ndαβ
)
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Discussion

Fibonacci trees are a good compromise for all n, p.

General p:

use next larger tree. Then drop a subtree
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H-Trees
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H-Trees
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Disadvantages of Tree-based Broadcasts

� Leaves only receive their data. Otherwise they are unproductive

� Inner nodes send more than they receive

 full-duplex communication not fully exploited
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23-Broadcast: Two T(h)rees for the Price of One

� Binary-Tree-Broadcasts using two trees A und B at once

� Inner nodes of A are

leaves of B

and vice versa

� Per double step:

One packet received as a leaf +

one packet received and forwarded

as inner node

i.e., 2 packets sent and received

0
0

0

0
00

1
1

1
1

1 01

1 1 0 0 01 1
0 0 11

10

131211109876543210 14

0

1



Sanders: Parallel Algorithms January 17, 2022 92

Root Process

for j := 1 to k step 2 do

send piece j+0 along edge labelled 0

send piece j+1 along edge labelled 1

0
0

0

0
00

1
1

1
1

1 01

1 1 0 0 01 1
0 0 11

10

131211109876543210 14

0

1



Sanders: Parallel Algorithms January 17, 2022 93

Other Processes,

Wait for first piece to arrive

if it comes from the upper tree over an edge labelled b then

∆:= 2· distance of the node from the bottom in the upper tree

for j := 1 to k+∆ step 2 do

along b-edges: receive piece j and send piece j−2

along 1−b-edges: receive piece j+1−∆ and send piece j

0
0

0

0
00

1
1

1
1

1 01

1 1 0 0 01 1
0 0 11

10

121086420 14

0

1

1 1375 9 113
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Arbitrary Number of Processors

0
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Arbitrary Number of Processors
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Arbitrary Number of Processors
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Arbitrary Number of Processors
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Arbitrary Number of Processors

765432106543210

9876543210 876543210
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Constructing the Trees

Case p = 2h −1: Upper tree + lower tree + root

Upper tree: complete binary tree of height h−1, − right leaf

Lower tree: complete binary tree of height h−1, − left leaf

Lower tree ≈ Upper tree shifted by one.

Inner nodes upper tree = leaves of lower tree.

Inner nodes lower tree = leaves of upper tree.
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Building Smaller Trees (without root)

invariant : last node has outdegree 1 in tree x

invariant : last node has outdegree 0 in tree x̄

p p−1:

Remove last node:

right node in x now has degree 0

right node in x̄ now has degree 1

0

1

1211109876543210
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Coloring Edges

Consider bipartite graph:

B = (
{

s0, . . . ,sp−1

}
∪
{

r0, . . . ,rp−2

}
,E).

si: Sender role of PE i.

ri: Receiver role of PE i.

2× degree 1. all other degree 2.

⇒ B is a path plus even circles.

color edges alternatingly with 0 and 1.

14

13

13

1211109876543210

s

r
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Open Question: Parallel Coloring ?

� In Time Polylog(p) using list ranking.

(unfortunately impractical for small inputs)

� Fast explicit calculation color(i, p) without communication ?

Mirror layout:
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Jochen Speck’s Solution

//Compute color of edge entering node i in the upper tree.

//h is a lower bound on the height of node i.

Function inEdgeColor(p, i,h)

if i is the root of T1 then return 1

while ibitand2h = 0 do h++ // compute height

i′:=







i−2h if 2h+1 bitand i = 1∨ i+2h > p

i+2h else
// compute parent of i

return inEdgeColor(p, i′,h)xor(p/2 mod 2)xor [i′ > i]
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Analysis

� Time n
k
β +α pro step

� 2 j steps until all PEs in level j are reached

� d = ⌈log(p+1)⌉ levels

� Then 2 steps for 2 further packets

T (n, p,k)≈
(n

k
β +α

)

(2d + k−1)), with d ≈ log p

optimal k:

√

n(2d −1)β

α

T ∗(n, p): ≈ nβ +α ·2log p+
√

2n log pαβ
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Implementation in the Simplex-Model

2 steps duplex 4 steps simplex.

1 PE duplex 1 simplex couple = sender + receiver.

0 1

0 1

0 2

0 2

1 3
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23-Reduktion

Numbering is an inorder-numbering for both trees !

root<root >root
n n

otherwise:

131211876543210 14131211109876543210 14 9 10

commutative or root=0 or root=p−1:



Sanders: Parallel Algorithms January 17, 2022 109

Another optimal Algorithm

[Johnsson Ho 85: Optimal Broadcasting and Personalized

Communication in Hypercube, IEEE Transactions on Computers, vol.

38, no.9, pp. 1249-1268.]

Model: full-duplex limited to a single edge per PE (telephone model)

Adaptation half-duplex: everything ×2
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Hypercube Hd

� p = 2d PEs

� nodes V = {0,1}d
, i.e., write node number in binary

� edges in dimension i: Ei =
{
(u,v) : u⊕ v = 2i

}

� E = E0 ∪ ·· ·∪Ed−1

0 1 2 3 4d
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ESBT-Broadcasting

� In step i communication along dimension i mod d

� Decompose Hd into d Edge-disjoint Spanning Binomial Trees

� 0d cyclically distributes packet to roots of the ESBTs

� ESBT-roots perform binomial tree broadcasting

(except missing smallest subtree 0d)

step 0 mod 3 step 1 mod 3 step 2 mod 3

100 101

110

111

101011

001

010 100 111

011110

010

100 001 111

110101

001 010
110 101 011

100

000

111

010

000 001

011
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Analysis, Telephone model

� k packets, k divides n

� k steps until last packet left PE 0

� d steps until it has reached the last leaf

� Overall d + k steps

T (n, p,k) =
(n

k
β +α

)

(k+d)

optimal k:

√

ndβ

α

T ∗(n, p): = nβ +dα +
√

ndαβ
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Discussion

n

n

binomial
tree

p

linear
pipeline

small large

binary tree p=2^d

EBST NY
23−Broadcast

spcecial alg.
depending on
network?
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Reality Check

� Libraries (z.B. MPI) often do not have a pipelined implementation

of collective operations your own broadcast may be significantly

faster than a library routine

� choosing k is more complicated: only piece-wise linear cost

function for point-to-point communication, rounding

� Hypercube gets slow when communication latencies have large

variance

� perhaps modify Fibonacci-tree etc. in case of asynchronous

communication (Sender finishes before receiver). Data should

reach all leaves about at the same time.
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Broadcast for Library Authors

� One Implementation? 23-Broadcast

� Few, simple Variants? {binomial tree,23-Broadcast} or

{binomial tree,23-Broadcast, linear pipeline}
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Beyond Broadcast

� Pipelining is important technique for handling large data sets

� hyper-cube algorithms are often elegant and efficient. (and often

simpler than ESBT)

� Parameter tuning (e.g. for. k) is often important.
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Sorting

� Fast inefficient ranking

� Quicksort

� Sample Sort

� Multiway Mergesort

� Selection

� More on sorting
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Fast Inefficient Ranking

n Elements, n2 processors:

Input: A[1..n] // distinct elements

Output: M[1..m] // M[i] =rank of A[i]

forall (i, j) ∈ {1..n}2 dopar B[i, j]:= A[i]≥ A[ j]

forall i ∈ {1..n} dopar

M[i]:=
n

∑
j=1

B[i, j] // parallel subroutine

Running time: ≈ Tbroadcast(1)+Treduce(1) = O(α log p)
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i A B 1 2 3 4 5 <- j M

1 3 1 0 1 0 1 1

2 5 1 1 1 0 1 1

3 2 0 0 1 0 1 1

4 8 1 1 1 1 1 1

5 1 0 0 0 0 1 1

A 3 5 2 8 1

-------------------------------

i A B 1 2 3 4 5 <- j M

1 3 1 0 1 0 1 3

2 5 1 1 1 0 1 4

3 2 0 0 1 0 1 2

4 8 1 1 1 1 1 5

5 1 0 0 0 0 1 1
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Sorting Larger Data Sets

� n input elements. Initially n/p per PE

� Perhaps more general initial state

� Output is globally sorted

d0,0, . . . ,d0,n/p−1 , . . . , dp−1,0, . . . ,dp−1,n/p−1

⇓ π

s0,0 ≤ ·· · ≤ s0,n1−1≤ ·· · ≤ sp−1,0 ≤ ·· · ≤ sp−1,np−1−1

� Comparison based model

� Tseq = Tcomprn logn+O(n)

Careful: different notation in Skript n ↔ n/p
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Back to Fast Ranking

//Assume p = a×b PEs, PE index is (i, j)

Procedure matrixRank(s)

sort(s) // locally

r:= all-gather-by-rows(s,merge)

c:= all-gather-by-cols(s,merge)

ranks:= 〈|{x ∈ c : x ≤ y}| : y ∈ r〉 // merge

reduce-by-rows(ranks)

Time

O

(

α log p+β n√
p
+ n

p
log n

p

)

. (1)
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Example

a be
jk

gh d

i c

l
m
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a be
jk

gh d

i c

l
m

dghl dghl dghl dghl
abem abem abem abem
cijk cijk cijk cijk

row all−gather−merge
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a be
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More Accurate Analysis

local sorting: n
p

log n
p
Tcompr

2× all-gather: 2

(

βn/
√

p+
1

2
α log p

)

local ranking: 2Tcomprn/
√

p

reduce EDSBT-Algorithm:

βn/
√

p+
1

2
α log p+

√

αβn/
√

p
1

2
log p

Overall:

3

2
log pα +3βn/

√
p+
√

αβ0.5n/
√

p log p+
n

p
log

n

p
Tcompr
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Numerical Example:

p = 1024, α = 10−5s, β = 10−8s, Tcompr = 10−8s, n/p = 32.

3

2
log pα +3n

√
pβ +

√

0.5n
√

p log pαβ +n lognTcompr

Time≈ 0.200ms.

In comparison: efficient Gather+seq. sort:

2 ·32000 ·10−8 +10 ·10−5 +32000 ·15 ·10−8 ≈ 5.6ms

even larger difference with naive gather
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Mearements Axtmann Sanders ALENEX 2017
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Quicksort

Sequential

Procedure qSort(d[],n)

if n = 1 then return

select a pivot v

reorder the elements in d such that

d0 · · ·dk−1 ≤ v < dk · · ·dn−1

qSort([d0, . . . ,dk−1], k)

qSort([dk+1, . . . ,dn−1], n− k−1)



Sanders: Parallel Algorithms January 17, 2022 131

Parallelization for Beginners

Parallelization of recursive calls.

Tpar = Ω(n)

� Very limited speedup

� Bad for distributed memory
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Parallelization for Theoreticians

For simplicity: n = p.

Idea: Also parallelize partitioning

1. One PE provides the pivot (e.g. random choice).

2. Broadcast

3. Local comparison

4. Enumerate „small“ elements (prefix-sum)

5. Redistribute data

6. Split PEs

7. Parallel recursion
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Parallelization for Theoreticians

//Let i ∈ 0..p−1 and p denote the ‘local’ PE index and partition size

Procedure theoQSort(d, i, p)

if p = 1 then return

j:= random element from 0..p−1// same value in entire partition

v:= d@ j // broadcast pivot

f := d ≤ v

j:= ∑i
k=0 f @k // prefix sum

p′:= j@(p−1) // broadcast

if f then send d to PE j

else send d to PE p′+ i− j // i− j = ∑i
k=0 d@k > v

receive d

if i < p′ then join left partition; qsort(d, i, p′)

else join right partition; qsort(d, i− p′, p− p′)
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Example

pivot v = 44

PE Nummer 0 1 2 3 4 5 6 7

Nr. d. Elemente � Pivot 0 1 2 3 4

Nr. d. Elemente > Pivot 0 1 2

Wert vorher 44 77 11 55 00 33 66 22

Wert nachher 44 11 00 33 22 77 55 66

PE Nummer 0+0 0+1 0+2 0+3 0+4 5+0 5+1 5+2
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int pQuickSort(int item, MPI_Comm comm)

{ int iP, nP, small, allSmall, pivot;

MPI_Comm newComm; MPI_Status status;

MPI_Comm_rank(comm, &iP); MPI_Comm_size(comm, &nP);

if (nP == 1) { return item; }

else {

pivot = getPivot(item, comm, nP);

count(item < pivot, &small, &allSmall, comm, nP);

if (item < pivot) {

MPI_Bsend(&item,1,MPI_INT, small - 1 ,8,comm);

} else {

MPI_Bsend(&item,1,MPI_INT,allSmall+iP-small,8,comm);

}

MPI_Recv(&item,1,MPI_INT,MPI_ANY_SOURCE,8,comm,&status);

MPI_Comm_split(comm, iP < allSmall, 0, &newComm);

return pQuickSort(item, newComm);}}
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/* determine a pivot */

int getPivot(int item, MPI_Comm comm, int nP)

{ int pivot = item;

int pivotPE = globalRandInt(nP);/* from random PE */

/* overwrite pivot by that one from pivotPE */

MPI_Bcast(&pivot, 1, MPI_INT, pivotPE, comm);

return pivot;

}

/* determine prefix-sum and overall sum over value */

void

count(int value,int *sum,int *allSum,MPI_Comm comm,int nP)

{ MPI_Scan(&value, sum, 1, MPI_INT, MPI_SUM, comm);

*allSum = *sum;

MPI_Bcast(allSum, 1, MPI_INT, nP - 1, comm);

}
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Analysis

� Per recursion level:

– 2× Broadcast

– 1× Prefix sum (→later)

 Time O(α log p)

� Expected recursion depth: O(log p)

(→ lecture randomized algorithms)

Expected overall time: O
(
α log2 p

)
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Generalization for n ≫ p by Standard Procedure?

� Each PE has, in general, „large“ und „small“ Elements.

� These numbers are not multiples of n/p

� Prefix sums remain useful

� On PRAMs we get a O

(
n logn

p
+ log2 p

)

algorithm

� For distributed memory its bad that many elements get moved

Ω(log p) times.

 · · · Time O

(
n
p
(logn+β log p)+α log2 p

)
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Distributed memory parallel quicksort

Function parQuickSort(s : Sequence of Element, i, j : N) : Sequence of Element

p′:= j− i+1

if p′ = 1 then quickSort(s) ; return s // sort locally

v:= pickPivot(s, i, j)

a:= 〈e ∈ s : e ≤ v〉; b:= 〈e ∈ s : e > v〉
na:= ∑i≤k≤ j |a|@k; nb:= ∑i≤k≤ j |b|@k

k′:= na
na+nb

p′

choose k ∈ {⌊k′⌋ ,⌈k′⌉} such that max
{⌈

na
k

⌉
,⌈ nb

p′−k
⌉
}

is minimized

send the a-s to PEs i..i+ k−1 (≤
⌈

na
k

⌉
per PE)

send the b-s to PEs i+ k.. j (≤
⌈

nb
p′−k

⌉

per PE)

receive data sent to PE iPE into s

if iPE < i+ k then parQuickSort(s, i, i+ k−1) else parQuickSort(s, i+ k, j)
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partition

quickSort quickSort

5 4 8 7 9 6

4 5 6 7 8 9

partition

PE 1 PE 2 PE 3
7 3 9 68 502 4 1

v
2 0 5 1 4 78 3 9 6

a b a a b

8 5 4 7 9 6

b

quickSort

2 0 1 3

0 1 2 3

v

69785 4

a bb a

i = 1

i = 2 j = 3

j = 3

na=4

na=2

nb=6

nb=4

i = j = 1

i = j = 2 i = j = 3

k′= 4
4+6 ·3= 6

5

k′= 2
2+4 ·2= 2

3

k=1

k=1

p′ = 3

p′ = 2
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Load Balance

Simplified scenario: splitting always with ratio 1:2

larger subproblem gets one PE-load too much.

Imbalance-factor:

k

∏
i=1

1+
1

p
(

2
3

)i
= e

∑k
i=1 ln

(

1+ 1

p( 2
3)

i

)

≤ e
∑k

i=1
1

p( 2
3)

i

= e
1
p ∑k

i=0(
3
2)

i

geom. sum

= e

1
p

( 3
2)

k+1−1

3
2
−1 ≤ e

1
p 3( 3

2)
k

= e3 ≈ 20.1 .
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The good News:

Time O

(
n

p
log

n

p
+ log2 p

)
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Better Balance?

� Janus-quicksort? Axtmann, Wiebigke, Sanders, IPDPS 2018

� for small p′ choose pivot carefully

� for small p′ (Θ(log p)) switch to sample sort?

Alternative: always halve PEs, randomizaztion, careful choice of pivot

Axtmann, Sanders, ALENEX 2017
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Results Axtmann Sanders ALENEX 2017
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Multi-Pivot Methods

Simplifying assumption: perfect splitters are available for free

//Für 0 < k < p let vk the element with rank k ·n/p

//Set v0 =−∞ and vp = ∞.

initialize p empty messages Nk, (0 ≤ k < p)

for i := 0 to n/p−1 do

determine k, such that vk < di ≤ vk+1

put di into message Nk

send Ni to PE i and // All-to-all

receive p messages // personalized communication

sort received data
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Analysis

Tpar =

distribution
︷ ︸︸ ︷

O

(
n

p
log p

)

+

local sorting
︷ ︸︸ ︷

Tseq(n/p)+

data exchange
︷ ︸︸ ︷

Tall−to−all(p,n/p)

≈ Tseq(n)

p
+2

n

p
β + pα

Idealizing assumption is realistic for permutation.
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Sample Sort

choose a total of ap random elements sk, (a per PE) (1 ≤ k ≤ ap)

sort [s1, . . . ,sap] // or only

for i := 1 to p−1 do vi:= sai // multiple selection

v0:= −∞; vP:= ∞
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PE 1 PE 2 PE 3

c js2=

[Book]
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Lemma 2. a = O

(
logn

ε2

)

suffices such that with probability

≥ 1− 1
n

no PE gets more than (1+ ε)n/p elements.



Sanders: Parallel Algorithms January 17, 2022 150

Lemma:

a = O

(
logn

ε2

)

suffices such that with probability ≥ 1− 1
n

no PE gets

more than (1+ ε)n/p elements.

Proof idea: We analyze and algorithm that choses global samples with

replacement.

Let 〈e1, . . . ,en〉 denote the input in sorted order.

fail: Some PE gets more than (1+ ε)n/p elements

→∃ j :≤ a samples from 〈e j, . . . ,e j+(1+ε)n/p〉 (event E j)

→ P [fail]≤ nP
[
E j

]
, j fixed.

Let Xi:=







1 if si ∈ 〈e j, . . . ,e j+(1+ε)n/p〉
0 else

, X := ∑i Xi

P
[
E j

]
= P [X < a] = P [X < 1/(1+ ε)E[X ]]≈ P [X < (1− ε)E[X ]]

E[Xi] = P [Xi = 1] = 1+ε
p
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Chernoff-Bound

Lemma 3. Let X = ∑i Xi denote the sum of independent 0-1

random variables.

P [X < (1− ε)E[X ]]≤ exp

(

−ε2
E[X ]

2

)

.

Applied to our problem:

P [X < a]≤ exp

(

−ε2(1+ ε)a

2

)

≤ exp

(

−ε2a

2

)
!
≤ 1

n2

⇔ a ≥ 4

ε2
lnn
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Analysis of Sample Sort

TsampleSort(p,n) =

small if n ≫ p2 log p
︷ ︸︸ ︷

sort sample
︷ ︸︸ ︷

Tfastsort(p,O

(
p logn

ε2

)

)+

collect/distribute splitters
︷ ︸︸ ︷

Tallgather(p)

+O

(
n

p
log p

)

︸ ︷︷ ︸

partition

+Tseq((1+ ε)
n

p
)

︸ ︷︷ ︸

local sorting

+Tall−to−all(p,(1+ ε)
n

p
)

︸ ︷︷ ︸

data exchange
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Sorting Samples

� Using gather/gossiping

� Using gather–merge

� Fast ranking

� Parallel quicksort

� Recursively using sample sort
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Sorting Samples efficient if n ≫

� Using gather/gossiping
p2 log pTcompr

ε2

� Using gather–merge
p2β

ε2Tcompr

� Fast ranking
p2β

log pTcompr

� Parallel quicksort
p2β

log pTcompr

� Recursively using sample sort



Sanders: Parallel Algorithms January 17, 2022 155

MPI Sample Sort – Init and Local Sample

Many thanks to Michael Axtmann

1template<class Element>

2void parallelSort(MPI_Comm comm, vector<Element>& data,

3MPI_Datatype mpiType, int p, int myRank)

4{ random_device rd;

5mt19937 rndEngine(rd());

6uniform_int_distribution<size_t> dataGen(0, data.size() − 1);

7vector<Element> locS; // local sample of elements from input <data>

8const int a = (int)(16∗log(p)/log(2.)); // oversampling ratio

9for (size_t i=0; i < (size_t)(a+1); ++i)

10locS.push_back(data[dataGen(rndEngine)]);
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Find Splitters

1vector<Element> s(locS.size() ∗ p); // global samples

2MPI_Allgather(locS.data(), locS.size(), mpiType,

3s.data(), locS.size(), mpiType, comm);

5sort(s.begin(), s.end()); // sort global sample

6for (size_t i=0; i < p−1; ++i) s[i] = s[(a+1) ∗ (i+1)]; //select splitters

7s.resize(p−1);
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Partition Locally

1vector<vector<Element>> buckets(p); // partition data

2for(auto& bucket : buckets) bucket.reserve((data.size() / p) ∗ 2);

3for( auto& el : data) {

4const auto bound = upper_bound(s.begin(), s.end(), el);

5buckets[bound − s.begin()].push_back(el);

6}

7data.clear();
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Find Message Sizes

1// exchange bucket sizes and calculate send/recv information

2vector<int> sCounts, sDispls, rCounts(p), rDispls(p + 1);

3sDispls.push_back(0);

4for (auto& bucket : buckets) {

5data.insert(data.end(), bucket.begin(), bucket.end());

6sCounts.push_back(bucket.size());

7sDispls.push_back(bucket.size() + sDispls.back());

8}

9MPI_Alltoall(sCounts.data(),1,MPI_INT,rCounts.data(),1,MPI_INT,comm);

10// exclusive prefix sum of recv displacements

11rDispls[0] = 0;

12for(int i = 1; i <= p; i++) rDispls[i] = rCounts[i−1]+rDispls[i−1];
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Data Exchange and Local Sorting

1vector<Element> rData(rDispls.back()); // data exchange

2MPI_Alltoallv(data.data(), sCounts.data(), sDispls.data(), mpiType,

3rData.data(), rCounts.data(), rDispls.data(), mpiType, comm);

5sort(rData.begin(), rData.end());

6rData.swap(data);

7}
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Experiments Speedup on 4× Intel E7-8890 v3
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Sorting by multiway merging

Function mmSort(d,n, p) // shared memory not SPMD

PE i sorts d[in/p..(i+1)n/p]; barrier synchronization

PE i finds vi with rank in/p in d; barrier synchronization

PE i merges p subsequences with vk ≤ d j < vk+1
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Multisequence Selection

Idea: each PE determines a splitter with appropriate global Rank

(shared memory)

Comparison based lower bound: Ω
(

p log n
p

)

We present an algorithmus with O

(

p logn log n
p

)
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Splitter Selection

Processor i selects the element with global rank k =
in

p
.

Simple algorithm: quickSelect exploiting sortedness of the sequences.

v

v

v

v

k ?
yes

no
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Idea:

Ordinary select but p× binary search instead of partitioning

Function msSelect(S : Array of Sequence of Element; k : N) : Array of N

for i := 1 to |S| do (ℓi,ri):= (0, |Si|)
invariant ∀i : ℓi..ri contains the splitting position of Si

invariant ∀i, j : ∀a ≤ ℓi,b > r j : Si[a]≤ S j[b]

while ∃i : ℓi < ri do

v:= pickPivot(S, ℓ,r)

for i := 1 to |S| do mi:= binarySearch(v,Si[ℓi..ri])

if ∑i mi ≥ k then r:= m else ℓ:= m

return ℓ
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Analysis of p-way mergesort

TpMergeSort(p,n) =O







n

p
log

n

p
︸ ︷︷ ︸

local sort

+ p logn log
n

p
︸ ︷︷ ︸

ms-selection

+
n

p
log p

︸ ︷︷ ︸

merging







� efficient if n ≫ p2 log p

� deterministic (almost)

� perfect load balance

� somewhat worse constant factors than sample sort
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Distributed Multisequence Selection

Owner computes paradigm

O(logn) global levels of recursion.

Gather + Broadcast for finding pivot / distribution (vector length p−1).

p−1 local searches everywhere.

Reduction for finding partition sizes (Vector length p−1).

Expected time

O

(

logn
(

p(log n
p
+β )+ log pα

))
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Distributed Multisequence Selection

Function dmSelect(s : Seq of Elem; k : Array[1..p] of N) : Array[1..p] of N

ℓ,r,m,v,σ : Array [1..p] of N

for i := 1 to p do (ℓi,ri):= (0, |s|) // initial search ranges

while ∃i, j : ℓi@ j 6= ri@ j do // or-reduction

v:= pickPivotVector(s, ℓ,r)// reduction, prefix sum, broadcast

for i := 1 to p do mi:= binarySearch(vi,s[ℓi..ri])

σ := ∑i m@i // vector valued reduction

for i := 1 to p do if σi ≥ ki then ri:= mi else ℓi:= mi

return ℓ
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CRCW Sorting in logarithmic time

Consider case n = p.

� sample of size
√

p

� k = Θ
(√

p/ log p
)

splitters

� Buckets have size ≤ cp/k elements whp

� Allocate buckets of size 2cp/k

� Write elements to random free positions within their bucket

� Compactify using prefix sums

� Recursion
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Example

012 5 7896 bcde ghij lmnopq stu wxyz43 a f k r v

a r
0 1 234 5 7 698 ab cdef gh i j klm no pq rs t uvw xy z

a r3 fk v

4053817269boamefdqhilcpnj gk wysvrtzxu

q e5 t2 u9i yx b4 m d jhg l8 17 0z po c6 sw 3 a f kr v

move to buckets

sample & sort

sort sort

compact

sort
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More on Sorting I

Cole’s merge sort: [JáJá Section 4.3.2]

Time O

(
n
p
+ log p

)

deterministic, EREW PRAM (CREW in

[JáJá]). Idea: Pipelined parallel merge sort. Use (deterministic)

sampling to predict where data comes from.

Sorting Networks: nodes sort 2 elements. Simple networks have

O
(
log2 n

)
depth (e.g. bitonic sort). They yield reasonable

deterministic sorting algorithms (2 elements merge-and-split of

two subsequences). Very complicated ones with depth O(logn).
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More on Sorting II

Integer Sorting: (Close to) linear work. Very fast algorithms on CRCW

PRAM.

Multi-Pass-Sample/Merge-Sort: more general compromise between

latency and communication volume, e.g. AMS-Sort Axtmann,

Bingmann, Schulz, Sanders SPAA 2015
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Measurements Axtmann Sanders ALENEX 2017
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Slowdown wrt Fastest Algorithm
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Collective Communication

� Broadcast

� Reduction

� Prefix sum

� Not here hier: gather / scatter

� Gossiping (= all-gather = gather + broadcast)

� All-to-all personalized communication

– equal message lengths

– arbitrary message lengths, = h-relation
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Prefix sums

[Leighton 1.2.2] Compute

x@i:=
⊗

i′≤i

m@i′

(on PE i, m may be a vector with n bytes length.)

n

...
exclusive

inclusive
p−1 p−2 p−3 0
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Plain Pipeline

As in broadcast

9

8

7

6

5

4

3

2

1
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Hypercube Algorithm

//view PE index i as a

//d-bit bit array

Function hcPrefix(m)

x:= σ := m

for k := 0 to d −1 do

invariant σ =⊗i[k..d−1]1k

j=i[k..d−1]0km@j

invariant x =⊗i
j=i[k..d−1]0k m@j

y:= σ@(i⊕2k) // sendRecv

σ := σ ⊗ y

if i[k] = 1 then x:= y⊗ x

return x

i
sum
x

001
b−b
b−b

000
a−a
a−a

100
e−e
e−e

111
h−h
h−h

110
g−g
g−g

010
c−c
c−c

011
d−d
d−d

101
f−f
f−f 000

a−b
a−a

100
e−f
e−e

101
e−f
e−f

111
g−h
g−h

110
g−h
g−g

010
c−d
c−c

011
c−d
c−d

001
a−b
a−b

000
a−d
a−a

100
e−h
e−e

101
e−h
e−f

111
e−h
e−h

110
e−h
e−g

010
a−d
a−c

011
a−d
a−d

001
a−d
a−b

000
a−h
a−a

100
a−h
a−e

101
a−h
a−f

111
a−h
a−h

110
a−h
a−g

010
a−h
a−c

011
a−h
a−d

001
a−h
a−b
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Analysis

Telephone model:

Tprefix = (α +nβ ) log p

Pipelining does not work since all PEs are busy.
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Pipelined Binary Tree Prefix Sums

Inorder numbering of the nodes

Upward phase: as with reduction but

PE i stores

i

∑
j=i′

x@ j

Downward phase: PE i receives

i′−1

∑
j=1

x@ j

(root: = 0 !)

and forwards this to the left.

right subtree gets

i

∑
j=1

x@ j

Each PE only active once per phase. → pipelining OK

i’ i−1 i+1 i’’

2

1

3

4

5

6

7

8

9

10

11

12

1..i
i

i’..i

i’..i’’

1..i’−1

i’..i−1 i+1..i’’
51 2 6

3 4
PE

i
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Pseudocode

Function InOrderTree::prefixSum(m)

//upward phase:

x:= 0; receive(leftChild,x)

z:= 0; receive(rightChild,z)

send(parent,x+m+ z)

//downward phase:

ℓ:= 0; receive(parent, ℓ)

send(leftChild, ℓ)

send(rightChild, ℓ+ x+m)

return ℓ+ x+m

x+m+ z
iPE

iPE

ℓ

ℓ ℓ+ x+m

x z
m

m
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23-Prefix Sums

Numbering is inorder-numbering for both trees!

i’ i−1 i+1 i’’

0
0

0

0
00

1
1

1
1

1 01

1 1 0 0 01 1
0 0 11

10

131211109876543210 14

odd packets

even packets

1..i
i

i’..i

i’..i’’

1..i’−1

i’..i−1 i+1..i’’

PE
i
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Analysis

Tprefix ≈ Treduce +Tbroadcast ≈ 2Tbroadcast =

2nβ +α ·4log p+
√

8n log pαβ
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Generalization:

� Applies to any algorithm based on inorder numbered trees

 ESBT does not work?
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Gossiping

Each PE has a message m of length n.

At the end, each PE should know all messages.

Hypercube Algorithm

Let ‘·’ denote the concatenation operation; p = 2d

PE i

y := m

for 0 ≤ j < d do

y′ := the y from PE i⊕2 j

y := y · y′
return y
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Example

e f

a b

c d

g gh

ef

abab

cd

gh

cd abcd

abcd

efgh

efghefgh

efgh

abcd abcdefgh abcdefgh

abcdefgh

abcdefgh

abcdefgh abcdefgh

abcdefgh

abcdefgh

h

ef
abcd
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Analysis

Telephone model, p = 2d PEs, n byte per PE:

Tgossip(n, p)≈
d−1

∑
j=0

α +n ·2 jβ = log pα +(p−1)nβ

All-Reduce

Reduction instead of concatenation.

Advantage: Factor two less startups than reduction plus broadcast

Disadvantage: p log p messages.

This a disadvantage for congenstion-prone networks.
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All-to-all Personalized Communication

Each PE has p−1 messages of length n. One for each other PE.

m[i]@i is for PE i itself

Hypercube Algorithm

PE i

for j := d−1 downto 0 do

Get from PE i⊕2 j all its messages

destined for my j-D subcube

Move to PE i⊕2 j all my messages

destined for its j-D subcube
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Analysis, Telephone model:

Tall−to−all(p,n)≈ log p(
p

2
nβ +α)

Fully Connected:

When n is large, rather send messages individually

(Factor log p less communication volume)
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1-Factor-Algorithm

[König 1936]

p odd, i is PE-index:

for r := 0 to p−1 do

k:= 2r mod p

j:= (k− i) mod p′

send( j,mi j)|| recv( j,m ji)

pairwise communication (telephone model):

The partner of the partners of j in round i is

i− (i− j)≡ j mod p

Time: p(nβ +α) optimal for n → ∞

1

20

3

i=0

4

2

3

2

3

2

3

2

3

1

0

4

1

1

1

i=1

0

4

i=2

0

4

i=3

0

4

i=4
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1-Factor Algorithm

p even:

//PE index j ∈ {0, . . . , p−1}
for i := 0 to p−2 do

idle:=
p

2
i mod (p−1)

if j = p−1 then exchange data with PE idle

else

if j = idle then

exchange data with PE p−1

else

exchange data with PE (i− j) mod (p−1)

Time: (p−1)(nβ +α) optimal für n → ∞

1

20

3

i=0

4

2

3

2

3

2

3

2

3

1

0

4

1

1

1

i=1

0

4

i=2

0

4

i=3

0

4

i=4

5

5

5

5

5
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Data exchange with

irregular message lengths

� Particularly interesting with all-to-all → sorting

� similar problems in inhomogeneous interconnection networks or

competition by other jobs.



Sanders: Parallel Algorithms January 17, 2022 192

The “Ostrich”-Algorithm

Push all messages using asynchronous send operations.

Receive what comes in.

Ostrich-Analysis:

BSP-Model: Time L+gh

But what is L and g in our single-ported models?
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h-Relation

hin(i):= # packets received by PE i

hout(i):= # packets sent by PE i

simplex: h:=
p

max
i=1

hin(i)+hout(i)

duplex: h:=
p

max
i=1

max(hin(i),hout(i))

Lower bound for packet-wise delivery:

h steps, i.e.,

Time h(α+|packet|β )
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Offline h-Relations in the Duplex Model

[König 1916]

Consider the bipartite multigraph

G = (
{

s1, . . . ,sp

}
∪
{

r1, . . . ,rp

}
,E) with

|
{
(si,r j) ∈ E

}
|= # packets from PE i to PE j.

Theorem: ∃ edge coloring φ : E →{1..h}, i.e.,

no two equal-colored edges are incident to any node.

for j := 1 to h do

send messages with color j

optimal when postulating packet-wise delivery

Empf.Sender

2

3

4

1

1 3

4

2
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Offline h-Relations in the Duplex Model

Problems:

� Computing edge colorings online

is complicated and expensive

� Shredding messages into packets increases # startups

Empf.Sender

2

3

4

1

1 3

4

2
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Offline h-Relations in the Simplex-Model

[Petersen 1891? Shannon 1949?]

Consider the multigraph G = ({1, . . . , p} ,E)
with |{{i, j} ∈ E}|= # packets between PE i and PE j (both

directions).

Theorem: ∃ edge coloring φ : E →{1..3⌊h/2⌋+h mod 2}

for j := 1 to h do

Send messages of color j

optimal???
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How Helper Hasten h-Relations

[Sanders Solis-Oba 2000]

Satz 4. For h-relations in the simplex model,

#steps =







6
5
(h+1) if p even

(6
5
+ 2

p
)(h+1) if p odd .

On the other hand, there is a lower bound

#steps ≥







6
5
h if p even

(6
5
+ 18

25p
)h if p odd
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A Very Simple Case

0 0

1 2

a d

a a
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Two Triangles

a0

a2a1

b0

b2b1

a0a1a2 b0 b1 b2

4

round
1

2

3

5

6

7

8

9

10

11

12
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Reduction h-Relation 
⌈

h
2

⌉

2-Relations

� Ignore direction of communications for now

� Connect nodes with odd degree

 all nodes have even degree

� Eulertour-technique: decompose the graph into edge disjoint

cycles

� Direct cycles in clockwise direction

 indegree and outdegree ≤ ⌈h/2⌉
� Build bipartite graph (as before)

� Color bipartite graph

� Color classes in bipartite graph edge disjoint simple cycles in

the input graph (2-relations)

� Reinstate orginal communication direction
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Routing 2-Relations for Even p

Pair odd cycles.

1-cycles have nothing to do most simple case
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Two odd cycles with ≥ 3 nodes

Split packets into 5 subpackets

Cycle A

|A|−2|A|−1 0 1 2 3 |B|−2|B|−3 |B|−1

Cycle Bround

......

0123|A|−3

......

......

......

......

...2

3

4

5

6

1

...

Then turn this around
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Odd p

Idea: Delete one edge in each 2-factor

Do that “always somewhere else”

Collect Θ(p) removed edges into a matching

 one additional step every Θ(p) 2-factors.
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Open Problems

� Get rid of splitting into 5 subpackages?

� Conjecture:

One h-Relation with ≤ 3

8
hp packets can be delivered in ≈ h

steps.

� Explicitly account for startup overheads

� Explicitly account for interconnection network?

� Distributed scheduling
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A Simple Distributed Algorithm —

The Two-Phase-Algorithm

Idea: Irreg. All-to-all→ 2× regular All-to-all

Simplifying assumptions:

� All message lengths are divisible by p

(in doubt round up)

� communication “with oneself” is accounted for

� All PEs send and receive exactly h bytes

(In doubt “pad” the messages)
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//n[i] is length of message m[i]

Procedure alltoall2phase(m[1..p],n[1..p], p)

for i := 1 to p do a[i]:= 〈〉
for j := 1 to p do a[i]:= a[i]⊙m[ j][(i−1)n[ j]

p
+1..in[ j]

p
]

b:= regularAllToAll(a,h, p)

δ := 〈1, . . . ,1〉
for i := 1 to p do c[i]:= 〈〉

for j := 1 to p do

c[i]:= c[i]⊙b[ j][δ [ j]..δ [ j]+ n[i]@ j
p

−1] // Use All-

δ [ j]:= δ [ j]+ n[i]@ j
p

// gather to implement ‘@’

d:= regularAllToAll(c,h, p)

permute d to obtain the desired output format
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i=
1

2
3

4
i=

1
2

3
4

i=
1

2
3

4
i=

2
3

4
1

1
2

3
4

pr
oc

m a b c d
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More on the Two-Phase-Algorithm

� Large p, small messages 

split local data into O(p log p) pieces (not p2) and disperse

randomly.

� Split the problems into regular and irregular part two-phase

protocol only applied to a part of the data.

 open problem: how to split?
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A Non-Preemptive Offline Algorithm

(simplex)

[Sanders Solis-Oba 99, unpublished]

Goal: deliver all messages directly, as a whole.

Let k:= max. # messages one PE is involved in.

Time for executing the schedule kα +2hβ .

Here h is measured in bytes!
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Abstract Description

s:= empty schedule

M:= set of messages to be scheduled

while M 6= /0 do

t:= min{t : ∃m ∈ M : m’s src and dest are idle at time t}
s:= s∪ “start sending m at time t”

M:= M \{m}

Can be implemented such that per message, the time for O(1)

priority-queue operationen and one p-bit bit-vector operation is used.

 practicable for message lengths ≫ p and moderate p.
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Open Problems for Non-Preemptive Offline

Algorithms

� implement, measure, use, e.g. sorting, construction of suffix-arrays

� Better approximation algorithms?

� Parallel scheduling algorithms
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Summary: All-to-All

Ostrich: Delegate to online, asynchronous routing.

Good when that is implemented well.

Regular+2Phase: more robust. But, factor 2 is troubling. A lot of

copying overhead.

Non-preemptive: Minimizes startups and communication volume. Faktor

2 (worst case). Centralized Scheduling is troubling.

Good for repeated identical problems.

Coloring-based algorithms: Almost optimal for large packets. Complex.

Distributed Implementation? Splitting into packets is troubling.

Comparison of approaches?
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Parallel Priority Queues

Manage a set M of elements. n = |M|. Initially empty

Binary Heaps (sequential)

Procedure insert(e) M:= M∪{e} // O(logn)

Function deleteMin e:= minM; M:= M \{e}; return e// O(logn)
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Parallel Priority Queues, Goal

insert*: Each PE inserts a constant number of elements,

time O(logn+ log p)?

deleteMin*: delete the p smallest elements,

time O(logn+ log p)?

Asynchronous Variant (later): Each PE can insert or delete at any time.

Semantics: ∃ temporal ordering of the operations consistent with

sequential execution.
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Applications

� Priority-driven scheduling

� Best first branch-and-bound:

Find best solution in a large, implicitly defined tree. (later more)

� Discrete event simulation
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Naive Implementation

PE 0 manages a sequential PQ

All others send requests

insert: Ω(p(α + logn))

deleteMin: Ω(p(α + logn))
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Branch-and-Bound

H : tree (V,E) with bounded node degree

c(v): node costs — growing when descending a path

v∗: leaf with minimal costs

Ṽ : {v ∈V : v ≤ v∗}

m: |Ṽ | Simplification: Ω(p log p)

h: Depth of H̃ (subgraph of H induced by Ṽ ).

Tx: Time for generating the successors of a node

Tcoll: Upper bound for broadcast, min-reduction, prefix-sum, routing

one element from/to random partner.

O(α log p) on many networks.
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Sequential Branch-and-Bound

Q = {root node} : PriorityQueue // frontier set

c∗ = ∞ // best solution so far

while Q 6= /0 do

v:= Q.deleteMin

if c(v)< c∗ then

if v is a leaf node then process new solution; c∗ := c(v)

else insert successors of v into Q

Tseq = m(Tx +O(logm))
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Parallel Branch-and-Bound

Q = {root node} : ParallelPriorityQueue

c∗ = ∞ // best solution so far

while Q 6= /0 do

v:= Q.deleteMin∗ // SPMD!

if c(v)< c∗ then

if v is a leaf node then

process new solution

update c∗ // Reduction

else insert successors of v into Q
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Analysis

Theorem: Tpar = (m
p
+h)(Tx +O

(
TqueueOp

)
)

Case 1:

(at most m/p Iterations):

All processed nodes are in Ṽ

Case 2:

(at most h Iterations):

Some nodes outside Ṽ

are processed

→ maximal path length

from a node in Q

to the optimal solutions

is being reduced.

V
~

H
v*
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The Karp–Zhang Algorithm

Q = {root node} : PriorityQueue // local!

c∗ = ∞ // best solution so far

while ∃i : Q@i 6= /0 do

v:= Q.deleteMin // local!

if c(v)< c∗ then

if v is a leaf node then

process new solution

c∗ := mini c(v)@i // Reduction

else for each successor v′ of v do

insert v into Q@i for random i

Satz: Expected time is asymptotically optimal
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Our Approach

New Nodes

Filter p best

B&B Processes

Random
Placement

Assign to PEs

Local Queues

PE: 3 421

Top−Nodes
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Parallel Priority Queues: Approach

� The queue is the union of local queues

� insert sends new elements to random local queues

Intuition: each PE gets a representative view on the data

� deleteMin* finds the globally smallest elements

(act locally think globally)

distributes them to the PEs

Filter p best

Assign to PEs

PE: 1 2 3 4
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Simple Probabilistic Properties

With high probability (whp):

here ≥ 1− p−c for a constant c we can choose

� whp only O

(
log p

log log p

)

elements per local queue during insertion

� whp, the O(log p) smallest elements of each local queue together

contain the p globally best elements

� whp no local queue contains more then O(n/p+ log p) elements

Proof: Chernoff-bounds again-and-again.

(standard setting, balls-into-bins)
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Parallel Implementation I

Insert

Sending: Tcoll

Local insertions: O

(
log p

log log p
· log

n

p

)

.

(Better with “advanced” local queues Careful: amortized bounds

are not sufficient.)
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Parallel Implementation I

deleteMin*

Procedure deleteMin*(Q1, p)

Q0:= the O(log p) smallest elements of Q1

M:= select(Q0, p) // later

enumerate M =
{

e1, . . . ,ep

}

assign ei to PE i // use prefix sums

if maxi ei > min j Q1@ j then expensive special case treatment

empty Q0 back into Q1
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Analysis

Remove locally: O

(

log p log n
p

)

Selection: O(Tcoll) whp todo

Enumerate M: O(Tcoll)

Deliver results: O(Tcoll) (random sources)

Verify: O(Tcoll)+

(sth polynomial in p)·(a polynomially small probability)

Insert locally: O

(

log p log n
p

)
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Parallel Implementation II

Idea: Avoid ping-pong of the O(logn) smallest elements.

Split the queue into Q0 and Q1.

Invariant: whp |Q0|= O(log p)

Q
0

Q1

PE: 1 2 3 4

Filter n best

Assign to PEs
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Parallel Implementation II

Insert

Send: Tcoll

Insert locally: merge Q0 and new elements

O(log p) whp.

Cleanup: Empty Q0 every log p iterations.

 cost O

(

log p log n
p

)

per log p iterations

 average costs O

(

log n
p

)
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Parallel Implementation II

deleteMin*

Procedure deleteMin*(Q0,Q1, p)

while |{e ∈ Q̆0 : e < min Q̆1}|< p do

Q0 := Q0 ∪{deleteMin(Q1)}
M:= select(Q0, p) // later

enumerate M =
{

e1, . . . ,ep

}

assign ei to PE i // use prefix sums
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Analysis

Remove locally: O(1) expected iterations O

(

Tcoll+ log n
p

)

Selection: O(Tcoll) whp todo

Enumerate M: O(Tcoll)

Deliver results: O(Tcoll) (random sources)
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Result

insert*: expected O

(

Tcoll + log n
p

)

deleteMin*: expected O

(

Tcoll + log n
p

)
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Randomized Selection [Blum et al. 1972]

Given n (randomly allocated) elements Q, find the k smallest ones.

� choose a sample s

� u:= element with rank k
n
|s|+∆ in s.

ℓ:= element with rank k
n
|s|−∆ in s

� Partition Q into

Q<:= {q ∈ Q : q < ℓ},

Q>:= {q ∈ Q : q > u},

Q′:= Q\Q< \Q>

� If |Q<|< k and |Q<|+ |Q′| ≥ k, output Q< and find the

k−|Q<| smallest elements of Q′

� All other cases are unlikely if |s|, ∆ are sufficiently large.
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Randomized Selection [Blum et al. 1972]

�
�
�
�

�
�
�
�

known unknown
smallest elements

other elements

sample

unknown position of k−th smallest value

"Guess" interval based on samples

iterate
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Parallel Implementation

� |s|=√
p sample can be sorted in time O(Tcoll).

� ∆ = Θ
(

p1/4+ε
)

for a small constant ε .

This makes difficult cases unlikely.

� No elements are redistributed. Random initial distribution

guarantees good load balance whp.

� Whp a constant number of iterations suffices until only
√

p

elements are left. Then sort directly.

Overall expected time O

(
n
p
+Tcoll

)
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Parallel Priority Queues – Refinements

Procedure deleteMin*(Q0,Q1, p)

while |{e ∈ Q̆0 : e < min Q̆1}|< p do

Q0 := Q0 ∪{deleteMin(Q1)} // select immediately

M:= select(Q0, p) // later

enumerate M =
{

e1, . . . ,ep

}

assign ei to PE i // use prefix sums

Or just use sufficiently many locally smallest elements and check later
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Parallel Priority Queues – Refinements

� Mergable priority queues?

� Bulk delete after flush?

� Larger samples

� Remove larger batches?

� Only a subset of the PEs work as PQ-server?

Selection by pruned merging:

A reduction with vector length O
(√

p log p
)
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Asynchronous Variant

Accept insertions but do not immediately insert.

Batched deleteMin in a buffer.

Access buffer using an asynchronous FIFO.

Sometimes:

Invalidate FIFO,

commit inserted elements

refill buffer
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Implementation on IBM SP-2, m = 224

0

1

2

3

4

5

6

2 4 8 16 24 32 40 48 56 64

T
 [m

s]

n

parallel
centralized

0.093*n
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Implementation on Cray T3D, m = 224

p = 256

insert 256 elements and a deleteMin*:

centralized: > 28.16ms

parallel: 3.73ms

break-even at 34 PEs
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More on parallel Priority Queues – History

Different approach starts with a binary heap:

nodes with p sorted Elements.

Invariant: All elements > all elements in parent node

Compare-and-swap merge-and-split

Elegant but expensive

Parallelization of a single access constant time with logn PEs.
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Communication Efficient Priority Queues

Each PE stores a search tree augmented with subtree sizes. 

� local insert – O(logn) time.

� find k smallest elements in time O
(
log2 n

)

(similar to multi-sequence selection for mergesort)

� find Θ(k) smallest elements in time O(logn)

Communication Efficient Algorithms for Top-k Selection Problems, with

Lorenz Hübschle-Schneider, IPDPS 2016
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MultiQueues: Simple Relaxed Concurrent

Priority Queues

With Roman Dementiev and Hamza Rihani, Marvin Williams

SPAA 2015, ESA 2021

� cp local queues Q[1], . . . ,Q[cp], constant c > 1, e.g., c = 2

� Insert into random local queues (“wait-free” locking)

� Delete smallest elements from c randomly chosen queues

� Improve locality using insertion/deletion buffers

� Optional: Stickyness – stick to the same set of queues for s

consecutive operations
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Throughput
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Rank Error

Average rank of deleted elements
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Delay

Average number of larger elements deleted before a removed element
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List Ranking

Motivation:

With arrays a[1..n] we can do many things in parallel

� PE i processes a[(i−1) n
p
+1..i n

p
]

� Prefix sums

� . . .

Can we do the same with linked lists?

Yes! For example, convert into an array



Sanders: Parallel Algorithms January 17, 2022 248

List Ranking

L: List

n: Elements

S(i): Successor of element i

(unordered)

S(i) = i: at end of list

P(i): Predecessor of element i

Exercise: compute in constant time for n PE PRAM

R(i): Rank. Initially 1, 0 for last element.

Output: R(i) = distance to the end (when following the chain).

Array-Conversion: store item i in a(n−R(i))

01 1 1 1 1 1 1 1

04 3 5 8 7 2 6 1

R

1 2 3 4 5 6 7 8 9i
n

S
L

P
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Motivation II

Lists are very simple graphs

 warmup for graph algorithms

 long paths are a main obstacle for parallelization.

I.e., solutions might help for more general graphs also (at least trees)?
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Pointer Chasing

find i such that S(i) = i // parallelizable

for r := 0 to n−1 do

R(i):= r

i:= P(i) // inherently sequential?

� Work O(n)

� Time Θ(n)
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Doubling using CREW PRAM, n = p

Q(i):= S(i) // SPMD. PE index i

invariant ∑ j∈Qi
R( j) = rank of item i

Qi is the positions given by

chasing Q-pointers from pos i

while R(Q(i)) 6= 0 do

R(i):= R(i)+R(Q(i))

Q(i):= Q(Q(i))

01 1 1 1 1 1 1 1R

Q

R 02 2 2 2 2 2 2 1

Q

1 2 3 4 5 6 7 8 9i
n

S,Q

R 04 3 4 4 4 4 12

04 3 5 8 7 2 6 1R

Q
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Analysis

Induction Hypothesis: After k iterations

� R(i) = 2k or

� R(i) = final result

Proof: True for k = 0.

k k+1:

Case R(i)< 2k: already final value (IH)

Case R(i) = 2k, R(Q(i))< 2k: now final value (Invariant, IH)

Case R(i) = R(Q(i)) = 2k: Now 2k+1

� Work Θ(n logn)

� Time Θ(logn)
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Independent Set Removal

//Compute the sum of the R(i)-values when following the S(i) pointers

Procedure independentSetRemovalRank(n,S,P,R)

if p ≥ n then use doubling; return

find I ⊆ 1..n such that ∀i ∈ I : S(i) 6∈ I ∧P(i) 6∈ I

find a bijective mapping f : {1..n}\ I → 1..n−|I|
foreach i 6∈ I dopar // remove independent set I

S′( f (i)):= if S(i) ∈ I then f (S(S(i))) else f (S(i))

P′( f (i)):= if P(i) ∈ I then f (P(P(i))) else f (P(i))

R′( f (i)):= if S(i) ∈ I then R(i)+R(S(i)) else R(i)

independentSetRemovalRank(n−|I|,S′,P′,R′)

foreach i 6∈ I dopar R(i):= R′( f (i))

foreach i ∈ I dopar R(i):= R(i)+R′( f (S(i)))
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R 01 1 1 11 11 1

S

1 4 6 7 9i 2 53 8

1 2 3 4 5f(i)

R’ 02 2 2 2

04 3 5 8 7 2 6 1

S’

P’

recurse
R’ 04 8 2 6
R

n

P

I={2,3,5,8}
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Finding Independent Sets

“Throw a coin” c(i) ∈ {0,1} for each i ∈ 1..n

i ∈ I if c(i) = 1∧ c(S(i)) = 0

Expected size |I| ≈ n

4

1 4 6 7 9i

S

2 3 5 8
c(i) 0 1 1 0 0 1 10 0

I={3,8}

Monte Carlo algorithm Las Vegas algorithm:

repeat until |I|> n

5
.

Expected time: O(n/p)

Neither start nor end of list are in I.
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Finding a Bijective Mapping

Prefix sum over the indicator function of {1..n}\ I:

f (i) = ∑
j≤i

[ j 6∈ I]
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Analysis

� T (n) = O

(
n

p
+ log p

)

+T

(
4

5
n

)

in expectation

� O

(

log
n

p

)

levels of recursion

� Sum: O

(
n

p
+ log

n

p
log p

)

geometric sum

� Linear work, time O(logn log logn) with
n

logn log logn
PEs

...
log n/p

n

*4/5

*4/5
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More on List Ranking

� Simple algorithm with expected time O(logn)

� Complicated algorithm with worst case Time O(logn)

� Many “applications” in PRAM algorithms

� Implementation on distributed-memory parallel computers [Sibeyn

97]: p = 100, n = 108, speedup 30.

� Generalization for segmented lists, trees

� Generalization for general graphs:

contract nodes or edges

� Example for multilevel algorithms
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Newer Implementation Results

� Cut the list at s random places

� Sequential algorithm for each sublist

� Recursive solution on instance of size s

Speedup ≈ 10 on 8-core CPU (???) [Wei JaJa 2010]
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Parallel Graph Algorithms

The „canonical“ „easy“ graph algorithms:

Main interest, sparse, polylog. execution time, efficient

− DFS

− BFS

− Shortest paths

(nonnegative SSSP O(n) par. time. interesting for m = Ω(np) )

(what about APSP?)

− Topological sorting

+ Connected components (but not strongly connected)

+ Minimal spanning trees

+ Graph partitioning
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Minimum Spanning Trees

Undirected graph G = (V,E)

Nodes V , n = |V |, e.g., V = {1, . . . ,n}
Edges e ∈ E , m = |E|, two-element subsets of V

Edge weight c(e), c(e) ∈ R+ wlog all different

G is connected, i.e., ∃ path between any two nodes.
4

2

3

1

79
2

5

Find a tree (V,T ) with minimum weight ∑e∈T c(e) that connects all

nodes.
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Selecting and Discarding MST Edges

The Cut Property

For any S ⊂V consider the cut edges

C = {{u,v} ∈ E : u ∈ S,v ∈V \S}
The lightest edge in C can be used in an MST. 4

2

3

1

7
2

5
9

The Cycle Property

The heaviest edge on a cycle is not needed for an MST
4

2

3

1

79
2

5
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The Jarník-Prim Algorithm

[Jarník 1930, Prim 1957]

Idea: grow a tree

T := /0

S:= {s} for arbitrary start node s

repeat n−1 times

find (u,v) fulfilling the cut property for S

S:= S∪{v}
T := T ∪{(u,v)}

4

2

3

1

79
2

5
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Graph Representation for Jarník-Prim

Adjacency Array

We need node → incident edges

4

2

3

1

79
2

5

m 8=m+1

V

E

1 3 5 7 9
1 n 5=n+1

4 1 3 2 4 1 3
c 9 5 7 7 2 2 95

2

1
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Analysis

� O(m+n) time outside priority queue

� n deleteMin (time O(n logn))

� O(m) decreaseKey (time O(1) amortized)

 O(m+n logn) using Fibonacci Heaps

Problem: inherently sequential.

Best bet: use logn procs to support O(1) time PQ access.
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Kruskal’s Algorithm [1956]

T := /0 // subforest of the MST

foreach (u,v) ∈ E in ascending order of weight do

if u and v are in different subtrees of T then

T := T ∪{(u,v)} // Join two subtrees

return T



Sanders: Parallel Algorithms January 17, 2022 267

Analysis

O(sort(m)+mα(m,n)) = O(m logm) where α is the inverse

Ackermann function

Problem: still sequential

Best bet: parallelize sorting

Idea: grow tree more aggressively



Sanders: Parallel Algorithms January 17, 2022 268

Edge Contraction

Let {u,v} denote an MST edge.

Eliminate v:

forall (w,v) ∈ E do

E := E \ (w,v)∪{(w,u)} // but remember orignal terminals

4

1

4 3

1

79
2

5
9

2

7 (was {2,3})2

3
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Boruvka’s Algorithm

[Boruvka 26, Sollin 65]

For each node find the lightest incident edge.

Include them into the MST (cut property)

contract these edges,

Time O(m) per iteration

At least halves the number of remaining nodes

3

1

79
2

5 2

4
3

5
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Analysis (Sequential)

O(m logn) time

asymptotics is OK for sparse graphs

Goal: O(m logn) work O(Polylog(m)) time parallelization
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Finding lightest incident edges

Assume the input is given in adjacency array representation

forall v ∈V dopar

allocate |Γ(v)| p
2m

processors to node v // prefix sum

find w such that c(v,w) is minimized among Γ(v) // reduction

output original edge corresponding to (v,w)

pred(v):= w

Time O

(
m
p
+ log p

)

3

1

79
2

5 2

4
3

5
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Structure of Resulting Components

Consider a component C of the graph (V,{(v,pred(v)) : v ∈V})

� out-degree 1

� |C| edges

� pseudotree,

i.e. a tree plus one edge

� one two-cycle at the

lightest edge (u,w)

� remaining edges lead to u or w
3

1

79
2

5 2

4
3

5
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Pseudotrees → Rooted Trees

forall v ∈V dopar

w:= pred(v)

if v < w∧ pred(w) = v then pred(v):= v

Time O

(
n
p

)

3

1

79
2

5 2

4
3

5 3

1

5

79
2

5 2

4
3



Sanders: Parallel Algorithms January 17, 2022 274

Rooted Trees → Rooted Stars by Doubling

while ∃v ∈V : pred(pred(v)) 6= pred(v) do

forall v ∈V dopar pred(v):= pred(pred(v))

Time O

(
n
p

logn
)

3

1

5

79
2

5 2

4
3

3

1

5

79
2

5 2

4
3
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Contraction

k:= #components

V ′ = 1..k

find a bijective mapping f : star-roots→ 1..k // prefix sum

E ′:= {( f (pred(u)), f (pred(v)),c,eold) :

(u,v,c,eold) ∈ E ∧ pred(u) 6= pred(v)}

Time O

(
m
p
+ log p

)

3 5

1 2

2

1

79
2

5

4
3

79
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Recursion

convert G′ = (V ′,E ′) into adjacency array representation// integer sorting

optional: remove parallel edges // retain lightest one

recurse on G′

Expected sorting time O

(
m
p
+ log p

)

CRCW PRAM

[Rajasekaran and Reif 1989]

practical algorithms for m ≫ p
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Analysis

Satz 5. On a CRCW-PRAM, parallel Borůvka can be

implemented to run in expected time

O

(
m

p
logn+ log2 n

)

.

� ≤ logn iterations

� Sum costs determined above

� For root finding:

∑
i

n

2i
log

n

2i
≤ n logn∑

i

2−i = O(n logn)
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Randomized Linear Time Algorithm

1. Factor 8 node reduction (3× Boruvka or sweep algorithm)

O(m+n).

2. R ⇐ m/2 random edges. O(m+n).

3. F ⇐ MST (R) [Recursively].

4. Find light edges L (edge reduction). O(m+n)

E[|L|]≤ mn/8

m/2
= n/4.

5. T ⇐ MST (L∪F) [Recursively].

T (n,m)≤ T (n/8,m/2)+T (n/8,n/4)+ c(n+m)

T (n,m)≤ 2c(n+m) fulfills this recurrence.
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Parallel Filter Kruskal

Procedure filterKruskal(E,T : Sequence of Edge,P : UnionFind)

if m ≤ kruskalThreshold(n,m, |T |) then

kruskal(E,T,P) // parallel sort

else

pick a pivot p ∈ E

E≤:= 〈e ∈ E : e ≤ p〉 // parallel

E>:= 〈e ∈ E : e > p〉 // partitioning

filterKruskal(E≤,T,P)

if |T |= n−1 then exit

E>:= filter(E>,P) // parallel removeIf

filterKruskal(E>,T,P)



Sanders: Parallel Algorithms January 17, 2022 280

Running Time: Random graph with 216 nodes

 100

 1000

 1  2  4  8  16

tim
e 

/ m
 [n

s]

number of edges m / number of nodes n

Kruskal
qKruskal
Kruskal8
filterKruskal+
filterKruskal
filterKruskal8
qJP
pJP
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More on Parallel MST

[Pettie Ramachandran 02] O(m) work, O(logn) expected time

randomized EREW PRAM algorithm.

[Masterarbeit Wei Zhou 17:] Parallel Borůvka + filtering.

Use edge list representation, union-find.

Speedup up to 20 on 72 cores.

Master thesis topic: communication-efficient distributed-memory MST
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Load Balancing

[Sanders Worsch 97]

Given

� Work to be done

� PEs

Load balancing = assigning work → PEs

Goal: minimize parallel execution time
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What we Already saw

� Estimating load using sampling sample sort

� Assign approx. equal sized pieces sample sort

� Multi sequence selection balances multiway merging

� Dynamic load balancing for quicksort and doall

� Prefix sums

quicksort, parPQ, list ranking, MSTs,. . .

� Parallel priority queues branch-and-bound
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Measuring Cost

� Maximal Load:
p

max
i=1

∑
j∈jobs @ PE i

T ( j, i,...)

� Time for finding the assignment

� Executing the assignment

� Cost for redistribution

� communication between jobs? (volume, locality?)
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What is Known About the Jobs?

� Exact size

� Approximate size

� (Almost) nothing

� Further subdivisible?

Similar for communication costs



Sanders: Parallel Algorithms January 17, 2022 286

What is Kown About the Processors?

� All equal?

� Different?

� Fluctuating external load

� Tolerate faults?

Similar for communication resources



Sanders: Parallel Algorithms January 17, 2022 287

In this Lecture

� Independent jobs

– Sizes exactly kown — fully parallel implementation

– Sizes unknown or inaccurate — random assignment,

master-worker-scheme, random polling
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A very simple modell

� n jobs, O(n/p) per PE, independent, splittable, description with

size O(1)

� Size ℓi exactly known
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Sequential Next Fit [McNaughton 59]

C:= ∑ j≤n
ℓi
p

// work per PE

i:= 0 // current PE

f := C // free room on PE i

j:= 1 // current Job

ℓ:= ℓ1 // remaining piece of job j

while j ≤ n do

c:= min( f , ℓ) // largest fitting piece

assign a piece of size c of job j to PE i

f := f − c

ℓ:= ℓ− c

if f = 0 then i++ ; f := C // next PE

if ℓ= 0 then j++ ; ℓ:= ℓ j // next job
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Sequential Next Fit [McNaughton 59]

...
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Parallelization of Next Fit (Sketch)

//Assume PE i holds jobs ji.. j
′
i

C:= ∑ j≤n
ℓi
p

forall j ≤ n dopar

pos:= ∑k<i ℓk // prefix sums

assign job j to PEs
⌊

pos

C

⌋
..

⌊
pos+ℓ j

C

⌋

// segmented broadcast

piece size at PE i =
⌊

pos

C

⌋
: (i+1)C− pos

piece size at PE i =
⌊

pos+ℓ j

C

⌋

: pos+ ℓ j − iC

Time C+O

(
n
p
+ log p

)

if jobs are initially distributed randomly.
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Parallelization of Next Fit: Example

0 2 5 9 23 2513 15 20

3 4 4 3
5

2322

0 7 14 21
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Atomic Jobs

Assign job j to PE
⌊

pos

C

⌋

Maximum load ≤C+max j ℓ j ≤ 2opt

Better sequential approximation:

Assign largest jobs first

(shortest queue, first fit, best fit) in time O(n logn)

probably not parallelizable

Parallel
11

9
· opt

[Anderson, Mayr, Warmuth 89]
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Atomic Jobs: Example

0 7 14 21

2 22 33 5434

0 2 5 9 23 2513 15 20

3 4 4 3
5

2322

optimal:
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Example Mandelbrot Set

zc(m) : N→ C

zc(0) := 0, zc(m+1) := zc(m)2 + c

M := {c ∈ C : zc(m) is bounded} .
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Approximate Computation

� Computation only for a quadratic subset of the complex plane

� Computation only for a discrete grid of points

� zc unbounded if |zc(k)| ≥ 2

� Stop after mmax iterations

Where is the load balancing problem?

0a

0a

0z

Realteil(c)

7

16

0

56

158

1

9

2

23

63

Im
ag

in
är

te
il(

c)
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Code

int iterate(int pos, int resolution, double step)

{ int iter;

complex c =

z0+complex((double)(pos % resolution) * step,

(double)(pos / resolution) * step);

complex z = c;

for (iter = 1;

iter < maxiter && abs(z) <= LARGE;

iter++) {

z = z*z + c;

}

return iter; }
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Static Apple Distribution

Since there is little communication, we are very flexible

� Split into strips

– Why attractive?

– Why rather not?

� Cyclic. Good. But provable??

� Random

=PE 0 =PE 1 =PE 2 =PE 3Bearbeitet von:
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Parallelize Assignment Phase

� If the jobs are arbitrarily distributed over the PEs: Random

permutation via all-to-all. (see also sample sort)

� Implicit generation of jobs

– Jobs can be generated based on a number 1 . . .n.

– Problem: Parallel generation of a (pseudo) random permutation
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Pseudorandom Permutations π : 0..n−1 → 0..n−1

Wlog (?) let n be a square.

� Interpret numbers from 0..n−1 as pairs from {0..
√

n−1}2
.

� f : 0..
√

n−1 → 0..
√

n−1 (pseudo)random function

� Feistel permutation: π f ((a,b)) = (b,a+ f (b) mod
√

n)

(π−1
f (b,x) = (x− f (b) mod

√
n,b))

� Chain several Feistel permutations

� π(x) = π f (πg(πh(πl(x)))) is even safe in some cryptographical

sense
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Random Assignment

� Given: n jobs of size ℓ1,. . . , ℓn

� Let L := ∑
i≤n

ℓi

� Let lmax := max
i≤n

ℓi

� Assign the jobs to random PEs

Theorem: If L ≥2(β +1)plmax
ln p

ε2
+O(1/ε3))

then the maximum Load is at most (1+ ε)
L

p

with probability at least 1− p−β . Proof: . . . Chernoff-Bounds. . .
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Discussion

+ Job sizes need not been known at all

+ It is irrelevant where the jobs come from

(distributed generation possible)

− Inacceptable with big lmax

− Very good load balance only with large L/lmax

(quadratic in 1/ε , logarithmic in p).
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Application Example: Airline Crew Scheduling

A single random assignment solves k simultaneous load balancing

problems. (Deterministically, this is probably a difficult problem.)

randomly permuted columns

sparse matrix

one iteration
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The Master-Worker-Scheme

� Initially all jobs are on a master-PE

� Job sizes can be

estimated but is not

exactly known

� Once a job is assigned,

they cannot be further subdivided

(nonpreemptive)

master

requests tasks

worker worker worker worker
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Discussion

+ Simple

+ Natural input-output scheme (but perhaps a separate disk slave)

+ Suggests itself when the job generator is not parallelized

+ Easy to debug

− Communication bottleneck ⇒ tradeoff communication cost versus

imbalance

− How to split?

− Multi-level schemes are complicated and of limited help



Sanders: Parallel Algorithms January 17, 2022 306

Size of the jobs

� Deal out jobs that are as large as possible as long as balance is

not in danger. Why?

� Conservative criterion: upper bound for the size of the delivered

jobs ≤
1/P-th part of lower bound

for system load.

− Where to get size estimate?

� More aggressive approaches make sense

Worker Worker Worker Worker

TeilproblemeAnfragen / Antworten

Master
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Work Stealing

� (Almost) arbitrarily subdivisible load

� Initially all the work on PE 0

� Almost nothing is known on job sizes

� Preemption is allowed. (Successive splitting)
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Example: The 15-Puzzle

6 7

8 10 11

12 13 14 15

4

5 9 4 5 6 7

8 9 10 11

12 13 14 15

1 2 3 1 2 3

Korf 85: Iterative deepening depth first search with ≈ 109 tree nodes.
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Example: Firing Squad Synchronization Problem

#G.#G..#G...#G....#G.....#G......#G.......#
#GG#GX.#GX..#GX...#GX....#GX.....#GX......#
#FF#XXX#XXG.#XXG..#XXG...#XXG....#XXG.....#

#GGG#GX.G#GX.X.#GX.X..#GX.X...#GX.X....#
#FFF#XXXX#XXG.X#XXG.G.#XXG.G..#XXG.G...#

#GGGG#GX.GX#GX.XXG#GX.XXX.#GX.XXX..#
#FFFF#XXXXX#XXG.XX#XXG.G.X#XXG.G.G.#

#GGGGG#GX.G.G#GX.XXGX#GX.XXXXG#
#FFFFF#XXXXXX#XXG.XGX#XXG.GGXX#

#GGGGGG#GX.G.GX#GX.XXGXG#
#FFFFFF#XXXXXXX#XXG.XGXX#

#GGGGGGG#GX.G.GXG#
#FFFFFFF#XXXXXXXX#

#GGGGGGGG#
#FFFFFFFF#
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Backtracking over Transition Functions
:Neue Regel

#G.#
#.G#
#??#

:Fehlerpunkt

#G..#
#GG.#
#F??#
#???#
#???#

#G..#
#G..#
#G..#
#G..#
#G??#

#G..#
#.G.#

#???#
#???#

#F??#

#G..#
#...#
#???#
#???#
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Goal for the analysis

Tpar ≤ (1+ ε)
Tseq

p
+ lower order terms
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An Abstract Model:

Tree Shaped Computations

atomic

empty

split

l

subproblem work
sequentially

send
Proc. 1022
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Tree Shaped Computations:

Parameters

Tatomic: max. time for finishing up an atomic subproblem

Tsplit: max. time needed for splitting

h: max. generation gen(P) of a nonatomic subproblem P

ℓ: max size of a subproblem description

p: no. of processors

Trout: time needed for communicating a subproblem (α + ℓβ )

Tcoll: time for a reduction



Sanders: Parallel Algorithms January 17, 2022 314

Relation to Depth First Search

let stack consist of root node only

while stack is not empty do

remove a node N from the stack

if N is a leaf then

evaluate leaf N

else

put successors of N on the stack

fi
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Splitting Stacks
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Other Problem Categories

� Loop Scheduling

� Higher Dimensional Interval Subdivision

� Particle Physics Simulation

� Generalization: Multithreaded computations. h T∞
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An Application List
� Discrete Mathematics (Toys?):

– Golomb Rulers

– Cellular Automata, Trellis Automata

– 15-Puzzle, n-Queens, Pentominoes . . .

� NP-complete Problems (nondeterminism branching)

– 0/1 Knapsack Problem (fast!)

– Quadratic Assignment Problem

– SAT

� Functional, Logical Programming Languages

� Constraint Satisfaction, Planning, . . .

� Numerical: Adaptive Integration, Nonlinear Optimization by Interval

Arithmetics, Eigenvalues of Tridiagonal Matrices
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Limits of the Model

� Quicksort and similar divide-and-conquer algorithms (shared

memory OK Cilk, MCSTL, Intel TBB, OpenMP 3.0?)

� Finding the first Solution (often OK)

� Branch-and-bound

– Verifying bounds OK

– Depth-first often OK

� Subtree dependent pruning

– FSSP OK

– Game tree search tough (load balancing OK)



Sanders: Parallel Algorithms January 17, 2022 319

Receiver Initiated Load Balancing

active

receive new

reject
request

send one part

request rejected

send request

waiting

subproblem
gets empty

idle

subproblem

split

request
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Random Polling

...

Aufspaltung

Anfrage

...
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Õ(·) Calculus

X ∈ Õ( f (n)) – iff ∀β > 0 :

∃c > 0,n0 > 0 : ∀n ≥ n0 : P [X > c f (n)]≤ n−β

Advantage: simple rules for sum and maximum.
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Termination Detection

not here



Sanders: Parallel Algorithms January 17, 2022 323

Synchronous Random Polling

P, P′ : Subproblem

P := if iPE = 0 then Proot else P/0

loop P := work(P,∆t)

m′ := |{i : T (P@i) = 0}|
if m′ = p then exit loop

else if m′ ≥ m then

if T (P) = 0 then send a request to a random PE

if there is an incoming request then

(P,P′) := split(P)

send P′ to one of the requestors

send empty subproblems the rest

if T (P) = 0 then receive P
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Analysis

Theorem:

For all ε > 0 there is a choice of ∆t and m such that

Tpar �(1+ ε)
Tseq

p
+

Õ
(
Tatomic +h(Trout(l)+Tcoll +Tsplit)

)
.

sequential work time

p

active PEs

splits
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Bounding Idleness

Lemma 6.

Let m < p with m ∈ Ω(p).

Then Õ(h) iterations

with at least

m empty subproblems

suffice to ensure

∀P : gen(P)≥ h .
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Busy phases

Lemma 7. There are at most
Tseq

(p−m)∆t
iterations with ≤ m idle

PEs at their end.
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A Simplified Algorithm

P, P′ : Subproblem

P := if iPE = 0 then Proot else P/0

while not finished

P := work(P,∆t)

select a global value 0 ≤ s < n uniformly at random

if T (P@iPE − s mod p) = 0 then

(P,P@iPE − s mod p) := split(P)

Satz 8. For all ε > 0 there is a choice of ∆t and m such that

Tpar � (1+ ε)
Tseq

p
+ Õ

(
Tatomic +h(Trout(l)+Tsplit)

)
.
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Asynchronous Random Polling

P, P′ : Subproblem

P := if iPE = 0 then Proot else P/0

while no global termination yet do

if T (P) = 0 then send a request to a random PE

else P := work(P,∆t)

if there is an incoming message M then

if M is a request from PE j then

(P,P′) := split(P)

send P′ to PE j

else

P := M



Sanders: Parallel Algorithms January 17, 2022 329

Analysis

Satz 9.

ETpar ≤(1+ ε)
Tseq

p
+

O

(

Tatomic +h

(
1

ε
+Trout +Tsplit

))

for an appropriate choice of ∆t.
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A Trivial Lower Bound

Satz 10. For all tree shaped computations

Tpar ∈ Ω

(
Tseq

p
+Tatomic +Tcoll +Tsplit log p

)

.

if efficiency in Ω(1) shall be achieved.
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Many Consecutive Splits

Tatomic

Tseq

...

log 

h

...

complete binary tree

empty subproblem

atomic subproblem

Additional

h− log
Tseq

Tatomic

term.
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Many Splits Overall

...

...

...
...

...

...

...
pTatomic

2Tseqlog

...

...

21 ... p/2p/2−1

h

log p − 1

complete bin. treeatomic subproblemempty subproblem
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Satz 11. Some problems need at least

p

2

(

h− log
Tseq

Tatomic

)

splits for efficiency ≥ 1
2
.

Korollar 12. Receiver initiated algorithms need a

corresponding number of communications.

Satz 13 (Wu and Kung 1991). A similar bound holds for all

deterministic load balancers.
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Golomb-Rulers

� Total length m

� find n marks {m1, . . .mn} ⊆ N0

� m1 = 0, mn = m

� |{m j −mi : 1 ≤ i < j ≤ n}|= n(n−1)/2

Applications: Radar astronomy, codes, . . .

1m nm

4
9

8

10 13
7

16
17

11
12

0 4 1712101

1 3 6 2 5
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Many Processors

� Parsytec GCel-3/1024 with COSY (PB)

� Verification search

128

256

384

512

640

768

896

1024

1 64 256 576 1024

sp
ee

du
p

PEs

12 marks: 0.88s par. time
13 marks: 12.07s par. time

perfect speedup
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LAN

2

4

6

8

10

12

2 4 6 8 10 12

B
es

ch
le

un
ig

un
g

PEs

12 Marken:  12.4s par. Zeit
13 Marken: 202.5s par. Zeit

Effizienz 1

� Differing PE-Speeds (even dynamically) are unproblematic.

� Even complete suspension OK as long as requests are answered.
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The 0/1-Knapsack Problem

� m items

� Maximum knapsack weight M

� Item weights wi

� Item profits pi

� Find xi ∈ {0,1} such that

– ∑wixi ≤ M

– ∑ pixi is maximized
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Best known approach for large m:

� Depth-first branch-and-bound

� Bounding function based on a the relaxation xi ∈ [0,1]. (Can be

computed in O(logm) steps.)
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Superlinear Speedup

� Parsytec GCel-3/1024 under COSY (PB)

� 1024 processors

� 2000 items

� Splitting on all levels

� 256 random instances at the border between simple and difficult

� Overall 1410× faster than seq. computation!
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256
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16384

65536

1 10 100 1000 10000 100000
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p

sequential execution time [s]
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Fast Initialization
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Static vs Dynamic LB
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Beyond Global Polling

� Randomized Initialization

� Asynchronously increase polling range (exponentially)

0
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zuf. Anfragen + Init.

exp. Anfragen + Init.
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Scalability Comparison Independ. Jobs

t =average job size

t̂ =maximum job size

T =required total work for parallel execution time (1+ ε) total work
p

Algorithm T = Ω(· · ·) Remarks

prefix sum
p

ε
(t̂ +α log p) known task sizes

master-worker
p

ε
· α p

ε
· t̂

t
bundle size

√
mα

t̂

randomized static
p

ε
· log p

ε
· t̂ randomized

work stealing
p

ε
(t̂ +α log p) randomized
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Game Tree Search

� Naive Parallelization yields only Speedup O(
√

n).

� Young Brother Wait Concept (Feldmann et al.)

� Tradeoff between Speculativity and Sequentialization

� Propagate window updates

� Combine with global transposition table
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MapReduce in 10 Minutes

[Google, DeanGhemawat OSDI 2004] see Wikipedia

Framework for processing multisets of (key,value) Pairs.
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//M ⊆ K ×V

//MapF : K ×V → K′×V ′

//ReduceF : K′×2V ′ →V ′′

Function mapReduce(M,MapF,ReduceF) : V ′′

M′:= {MapF((k,v)) : (k,v) ∈ M} // easy (load balancing?)

sort(M′) // basic toolbox

forall k′ with ∃(k′,v′) ∈ M′ dopar // easy

s:= {v′ : (k′,v′) ∈ M′}
S:= S∪ (k′,s)

return {reduceF(k′,s) : (k′,s) ∈ S} // easy (load balancing?)
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Refinements

� Fault Tolerance

� Load Balancing using hashing (default) und Master-Worker

� Associative commutative reduce functions
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Examples

� Grep

� URL access frequencies

� build inverted index

� Build reverse graph adjacency array
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Graph Partitioning

Contraction

while |V |> c · k do

find a matching M ⊆ E

contract M // similar to MST algorithm (more simple)

save each generated level
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Finding a Matching

Find approximate max. weight matching wrt edge rating

expansion({u,v}):= ω({u,v})
c(u)+ c(v)

expansion∗({u,v}):= ω({u,v})
c(u)c(v)

expansion∗2({u,v}):= ω({u,v})2

c(u)c(v)

innerOuter({u,v}):= ω({u,v})
Out(v)+Out(u)−2ω(u,v)
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Approx. max. weighted Matching

todo
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Graph Partitioning Future Work

� Understand edge ratings

� Scalable parallel weighted Matching code

� Hypergraph partitioning

� Handling exact balance

� Max. Flow. based techniques

� Parallel external, e.g., partitioning THE web graph


