
Roman Dementiev

Algorithm Engineering
for Large Data Sets

S
A

R
A V I E N

S
I

S

U
N

I V
E R S I T

A
S

Dissertation zur Erlangung des Grades

des Doktors der Ingenieurwissenschaften (Dr.-Ing.)
der Naturwissenschaftlich-Technischen Fakultäten

der Universität des Saarlandes

Saarbrücken, 2006

II

Tag des Kolloqiums/
Day of the colloquium: 1. Dez 2006 / 1 Dec 2006

Dekan/Dean: Prof. Dr. Thorsten Herfet

Gutachter/Reviewers: Prof. Dr. rer. nat. Peter Sanders
Prof. Dr.-Ing. Gerhard Weikum

Prüfungsausschuss/
Board of examiners: Prof. Dr. rer. nat. Peter Sanders

Prof. Dr.-Ing. Gerhard Weikum
Prof. Dr. Kurt Mehlhorn

Dr.-Ing. Ulrich Carsten Meyer

III

Short Abstract

In recent years, the development of theoretically I/O-efficient algorithms and
data structures has received considerable attention. However, much less has
been done to evaluate their performance, in particular with parallel disks or
when running on large inputs with sizes that really require external mem-
ory. This thesis presents the software library Stxxl that enables practice-
oriented experimentation with huge data sets. Stxxl is an implementation
of the C++ standard template library STL for external memory computa-
tions. It supports parallel disks, overlapping between I/O and computation
and it is the first external memory algorithm library that supports the pipelin-
ing technique that can save more than half of the I/Os. We engineer practical
I/O-efficient algorithms and their Stxxl implementations for the following
problems: (minimum) spanning forests, connected components, breadth-first
search decompositions, suffix array construction, computation of social net-
work analysis metrics and graph coloring. The performance of the Stxxl

and its applications is evaluated on many synthetic and real-world inputs.

Kurze Zusammenfassung

In den vergangenen Jahren wurde der Entwicklung von theoretisch I/O-
effizienten Algorithmen und Datenstrukturen viel Aufmerksamkeit gewid-
met. Im Gegensatz dazu wurde viel weniger dafür getan, ihre Leistung in
der Praxis auszuwerten, vor allem in Bezug auf parallele Festplatten oder
die Verarbeitung großer Datenmengen, die externen Speicher wirklich ver-
langen. Aus diesem Grunde ermöglicht die im Rahmen dieser Doktorar-
beit entwickelte Software-Bibliothek Stxxl nun das praxisorientierte Ex-
perimentieren mit großen Datensätzen. Stxxl ist eine Implementierung
der C++ Standard Template Library (STL) für Rechenvorgänge im exter-
nen Speicher. Sie überlagert I/O und Berechnung und unterstützt parallele
Festplatten. Auch ist sie die erste Algorithmen-Bibliothek für externe Spei-
cher, die das Pipelining-Verfahren unterstützt, welches mehr als die Hälfte
der I/Os einsparen kann. Praktische I/O-effiziente Algorithmen und ihre
Stxxl-Implementierungen wurden für die folgenden Problemstellungen ent-
wickelt: (minimale) spannende Bäume, Zusammenhangskomponenten, Brei-
tensuche, Konstruktion von Suffix-Tabellen, Berechnung von Metriken für
soziale Netzwerk-Analyse und Graphfärbung. Zur Leistungsüberprüfung sind
Stxxl und ihre Applikationen mit vielen synthetischen, aber auch realen
Eingaben getestet worden.

IV

Abstract

Massive data sets arise naturally in many domains: geographic information
systems, computer graphics, database systems, telecommunication billing
systems [Hum02], network analysis [DLL+06], and scientific computing
[Moo00]. Applications working in those domains have to process terabytes
of data. However, the internal memories of computers can only keep a small
fraction of these huge data sets. During the processing the applications need
to access the external storage (e.g. hard disks). One such access can be
about 106 times slower than a main memory access. For any such access
to the hard disk, accesses to the next elements in the external memory are
much cheaper. In order to amortize the high cost of a random access one
can read or write contiguous chunks of size B. The I/O becomes the main
bottleneck for applications dealing with large data sets, therefore one tries to
minimize the number of I/O operations performed. In order to increase I/O
bandwidth, applications use multiple disks in parallel. In each I/O step the
algorithms try to transfer D blocks between the main memory and disks (one
block from each disk). This model has been formalized by Vitter and Shriver
as the Parallel Disk Model (PDM) [VS94] and it is the standard theoretical
model for designing and analyzing I/O-efficient algorithms.

Theoretically, I/O-efficient algorithms and data structures have been devel-
oped for many problem domains: graph algorithms, string processing, com-
putational geometry, etc. Some of them have been implemented: sorting,
matrix multiplication [VV96], search trees [Chi95, PAAV, AHVV99, AAG03],
priority queues [BCFM00], text processing [CF02]. However, there is an ever
increasing gap between theoretical achievements of external memory algo-
rithms and their practical usage. Several external memory software library
projects (LEDA-SM [CM99] and TPIE [ABH+03]) have been started to re-
duce this gap. They offer frameworks which aim to speed up the process of
implementing I/O-efficient algorithms, abstracting away the details of how
I/O is performed.

The TPIE and LEDA-SM projects are excellent proofs of the concepts of
the external memory paradigm, but they do not implement many practice-
relevant features which speed up I/O-efficient algorithms (parallel disks,
pipelining, explicit overlapping between I/O and computation). This led
us to start the development of a performance–oriented library of external
memory algorithms and data structures Stxxl 1, which tries to avoid those
obstacles. The Stxxl library is one of the main results of this thesis.

In the framework of this thesis we build cost-effective multidisk experimen-

1http://stxxl.sourceforge.net

http://stxxl.sourceforge.net

V

tal computer systems with excellent I/O bandwidth characteristics. Further-
more, this work is intended to provide research experience and support for
designing other systems.

In the main part of this thesis we design the Stxxl library and show how
high-performance features are supported: disk parallelism, explicit overlap-
ping of I/O and computation, external memory algorithm pipelining to save
I/Os, improved utilization of CPU resources. The high-level algorithms and
data structures of our library implement interfaces of the well known C++
Standard Template Library (STL) [SL94]. This allows to elegantly reuse
the STL code such that it works I/O-efficiently without any change, and
to shorten the development times for the people who already know STL.
Our STL-compatible I/O-efficient implementations include the following data
structures and algorithms: unbounded array (vector), stacks, queue, deque,
priority queue, search tree, sorting, etc. They are all well-engineered and
have robust interfaces allowing a high degree of flexibility. Sorting is the
core tool of almost all I/O-efficient algorithms, defining at a large extent the
overall performance. We develop a fast parallel disk sorter, whose I/O cost
approaches the lower bound and can guarantee almost perfect overlapping
of I/O and computation. In this thesis we provide the results of numer-
ous benchmarks proving that our library (at least) competes with the best
practical implementations.

In the second part of this thesis we show which impact the Stxxl library
has on engineering I/O-efficient algorithms for graphs and text processing:
minimum spanning forests, spanning forests, connected components, breadth
first search, listing all triangles in graphs and suffix array construction prob-
lems are studied. We overview the algorithmic aspects and present the most
important computational results achieved with Stxxl. To evaluate the per-
formance of the Stxxl implementations many real-world and synthetic in-
puts have been used. It is shown that external memory computation for
these problems is practically feasible now.

Then, we study external memory algorithms for coloring graphs. The main
contributions are simple and fast heuristics for general graphs. One of these
heuristics — Batched Smallest-Degree-Last — turns out to be a 7-coloring
algorithm for planar graphs having the I/O complexity of sorting only: It
needs O(sort(m)) I/Os, where m is the number of edges in the input graph.
This work is the first experimental study of algorithms that can color huge
graphs exceeding the size of the main memory. We run our implementations
on several architectures and on various random and real-world data sets.

Finally, it is explained how to port some parallel and internal memory algo-

VI

rithms for graphs to external memory, making them I/O-efficient.

VII

Zusammenfassung

Gewaltige Datenmengen treten in vielen Bereichen auf, u. a. bei geo-
graphischen Informationssystemen, Computergrafikanwendungen, Daten-
banksystemen, Telekommunikationsrechnungssystemen [Hum02], wis-
senschaftlichen Anwendungen [Moo00] und der Netzwerkanalyse [DLL+06].
Applikationen, die in diesen Bereichen angewendet werden, müssen Ter-
abytes an Daten verarbeiten. Aber die internen Speicher von Computern
können nur einen kleinen Teil dieser großen Datenmengen bewältigen.
Während der Datenverarbeitung müssen die Anwendungen auf den externen
Speicher zugreifen (z. B. auf die Festplatte). Ein solcher Zugriff kann
106-mal langsamer sein als der Zugriff auf den Hauptspeicher. Immer
wenn auf die Festplatte zugegriffen wird, ist der Zugriff auf die nächsten
Elemente im externen Speicher weniger kostenaufwendig. Um den hohen
Aufwand wahlfreier Zugriffe zu vermeiden, kann man benachbarte Einheiten
der Größe B lesen und schreiben lassen. Die I/O wird zum Nadelöhr für
Anwendungen mit großen Datenmengen, daher versucht man die Anzahl der
I/O-Operationen zu minimieren. Um die Bandbreite der I/O zu erhöhen,
benutzen die Anwendungen mehrere Festplatten parallel. Bei jedem
I/O-Schritt versuchen die Algorithmen D Blöcke zwischen Hauptspeicher
und Festplatte zu übertragen (ein Block pro Festplatte). Dieses Model ist
von Vitter und Shriver als Parallel Disk Model (PDM) [VS94] formalisiert
worden und ist das Standard-Modell zum Entwerfen und Analysieren von
I/O-effizienten Algorithmen.

Auf theoretischer Ebene sind I/O-effiziente Algorithmen und Datenstruk-
turen für viele Problemfelder entwickelt worden: Graphenalgorithmen, Zei-
chenkettenverarbeitung, algorithmische Geometrie usw. Einiges davon ist
implementiert worden: Sortieren, Matrixmultiplikation [VV96], Suchbäume
[Chi95, PAAV, AHVV99, AAG03], Prioritätschlangen [BCFM00] und
Textverarbeitung [CF02]. Dennoch gibt es eine ständig wachsende Kluft
zwischen den theoretischen Errungenschaften bei externen Algorithmen und
ihrer Umsetzung in die praktische Nutzung. Mehrere Projekte, Softwarebib-
liotheken für externe Speicher zu erstellen (LEDA–SM [CM99] und TPIE
[ABH+03]), sind begonnen worden, um diese Lücke zu schließen. Sie bieten
Hilfsmittel dafür an, den Prozess der Implementierung von I/O-Algorithmen
zu beschleunigen, indem sie von Details der Externspeicherzugriffe ab-
strahieren.

TPIE und LEDA-SM sind sehr gut geeignet, die Konzepte des
Externspeicher-Paradigmas zu demonstrieren, jedoch wenden sie viele
praxis–relevante Funktionen, welche die I/O-effizienten Algorithmen be-
schleunigen könnten (parallele Festplatten, Pipelining, explizites Überlagern

VIII

von I/O und Berechnung), nicht an. Aus diesem Grund widmet sich diese
Doktorarbeit der Aufgabe, eine leistungsorientierte Bibliothek für Extern-
speicheralgorithmen zu entwickeln: Das Ergebnis ist die Stxxl 2, die ver-
sucht, diese Probleme zu vermeiden. Eines der Hauptanliegen dieser Dok-
torarbeit ist also die Entwicklung der Stxxl-Softwarebibliothek.

Vor diesem Hintergrund werden experimentelle, kosten-effektive Com-
putersysteme mit mehreren Festplatten und exzellenten I/O-Bandbreite-
Eigenschaften erstellt. Die bei dieser Arbeit gewonnenen Erfahrungen
können bei der Entwicklung anderer Systeme hilfreich sein.

Im Hauptteil dieser Doktorarbeit wird die Stxxl-Bibliothek entworfen und
deutlich gemacht, wie Hochleistungsfunktionen unterstützt werden können:
durch Festplatten-Parallelismus, explizite Überlagerung von I/O und Berech-
nung, Pipelining der Externspeicheralgorithmen, um I/Os einzusparen, und
verbesserte Ausnutzung von CPU-Ressourcen. Die High-Level-Algorithmen
und -Datenstrukturen dieser neuen Bibliothek verwenden die Schnittstellen
der sehr bekannten C++ Standard Template Library (STL) [SL94]. Dies er-
laubt die elegante Weiterverwendung von STL-Code, ohne dass er verändert
werden muss und ermöglicht denjenigen Entwicklungszeit zu sparen, die
schon mit STL vertraut sind. Die STL-kompatiblen, I/O-effizienten Imple-
mentierungen schließen die folgenden Datenstrukturen und Algorithmen ein:
unbeschränktes Array (Vektor), Stapel, Schlange, Doppelschlange, Priori-
tätsschlange, Suchbaum, Sortieren usw. Sie sind alle zweckmäßig konst-
ruiert und haben robuste Schnittstellen, die einen hohen Grad von Flexi-
bilität offen halten. Sortieren ist das zentrale Werkzeug von fast allen I/O-
effizienten Algorithmen und bestimmt zu einem großen Teil die gesamte
Leistungsfähigkeit. Deshalb ist es zweckmäßig, einen schnellen Sortierer
zu entwickeln, der parallele Festplatten verwendet, eine (fast) perfekte
Überlagerung von I/O und Berechnung garantiert und dessen I/O-Aufwand
sich der unteren Grenze annähert. In dieser Doktorarbeit werden die Ergeb-
nisse von mehreren Benchmark-Tests dargelegt, die den Nachweis erbringen,
dass diese neu entwickelte Bibliothek sich (mindestens) mit den besten prak-
tischen Implementierungen messen kann.

Der zweite Teil dieser Doktorarbeit illustriert, welchen Effekt die Stxxl-
Bibliothek auf das Engineering von I/O-effizienten Algorithmen für Graphen
und Textverarbeitung hat: Minimale spannende Bäume, spannende Bäume,
zusammenhängende Komponenten, Breitensuche, Auflistung aller Dreiecke
in Graphen und Suffix-Tabellenkonstruktionsprobleme werden behandelt. Es
wird eine Übersicht über die algorithmischen Aspekte und die wichtigsten

2http://stxxl.sourceforge.net

http://stxxl.sourceforge.net

IX

Rechenergebnisse der Stxxl-Implementierungen gegeben. Um die Leistung
von Stxxl-Implementierungen auszuwerten, sind viele synthetische und der
Realität entstammende Eingaben benutzt worden. Es wird demonstriert,
dass nun Externspeicherberechnungen für die Bewältigung der behandelten
Problemstellungen herangezogen werden können.

Daraufhin geht es um externen Algorithmen für die Färbung von Graphen.
Der geleistete Beitrag konzentriert sich auf einfache und schnelle Heuris-
tiken für allgemeine Graphen. Eine Heuristik-Variante — Batched Smallest-
Degree-Last — stellt sich als 7-Färbung-Algorithmus für planare Graphen,
die nur die I/O-Komplexität des Sortierens hat, heraus: Er erfordert
O(sort(m)) I/Os, wobei m für die Anzahl der Kanten des Eingabegraphen
steht. Diese Arbeit ist die erste experimentelle Studie über Algorithmen, die
Graphen einfärben können, welche die Größe des Hauptspeichers übersteigen.
Deren Implementierungen werden auf verschiedenen Architekturen und mit
einer Vielzahl von zufälligen und realitätsbezogenen Eingabedatensätzen
evaluiert.

Abschließend wird gezeigt, wie einige parallele und interne Graphalgorithmen
für den externen Speicher angepasst werden können, indem man sie I/O-
effizient macht.

X

Contents

1 Introduction 1

1.1 I/O-Efficient Algorithms and Models 3

1.2 Disk Parallelism in Storage Technologies 4

1.3 Memory Hierarchies . 6

1.4 Algorithm Engineering for Large Data Sets 9

1.5 C++ Standard Template Library 9

1.6 The Goals of Stxxl . 10

1.7 Software Facts . 11

1.8 Stxxl Users . 12

1.9 Related Work . 13

1.10 Outline . 15

2 Building Experimental Parallel Disk Systems 19

2.1 Hardware Disk Interfaces . 21

2.2 Busses, Controllers, Chipsets 22

2.3 Our First System . 24

2.4 Other Systems . 26

2.5 File System Issues . 26

3 The Stxxl Library 29

3.1 Stxxl Design . 29

3.2 AIO Layer . 32

3.2.1 AIO Layer Implementations 33

XI

XII CONTENTS

3.3 BM Layer . 36

3.4 Stl -User Layer . 39

3.4.1 Vector . 39

3.4.2 Stack . 39

3.4.3 Queue . 44

3.4.4 Deque . 44

3.4.5 Priority Queue . 45

3.4.6 Map . 51

3.4.7 General Issues Concerning Stxxl Containers 58

3.4.8 Algorithms . 60

3.5 Parallel Disk Sorting . 62

3.5.1 Multi-way Merge Sort with Overlapped I/Os 65

3.5.2 Implementation Details 69

3.5.3 Experiments . 70

3.5.4 Discussion . 78

3.6 Algorithm Pipelining . 79

3.7 Streaming Layer . 79

4 Engineering Algorithms for Large Graphs 85

4.1 Overview . 85

4.2 Maximal Independent Set . 87

4.3 Minimum Spanning Trees . 92

4.3.1 Definitions . 92

4.3.2 Related Work and Motivation 92

4.3.3 Semi-External Algorithm 93

4.3.4 Node Reduction . 93

4.3.5 Experiments . 98

4.3.6 Conclusions . 100

4.4 Connected Components and Spanning Trees 101

4.4.1 Introduction . 101

4.4.2 Spanning Forest . 101

CONTENTS XIII

4.4.3 Connected Components 102

4.4.4 Experiments . 103

4.5 Breadth First Search . 105

4.5.1 Introduction . 105

4.5.2 Internal Memory BFS 105

4.5.3 MR-BFS . 106

4.5.4 MM-BFS . 107

4.5.5 Experiments . 110

4.6 Listing All Triangles in Huge Graphs 113

4.6.1 I/O-Efficient Node-Iterator Algorithm 113

4.6.2 Pipelined Implementation 114

4.6.3 Experiments . 116

4.7 Graph Coloring . 117

4.7.1 Introduction . 117

4.7.2 Greedy Coloring . 119

4.7.3 Highest-Degree-First Heuristic 120

4.7.4 Batched Smallest-Degree-Last Heuristic 121

4.7.5 7-Coloring of Planar Graphs 124

4.7.6 6-Coloring of Planar Graphs 127

4.7.7 2-Coloring . 133

4.7.8 Experiments . 133

4.7.9 Conclusion and Future Work 141

5 Engineering Large Suffix Array Construction 143

5.1 Introduction . 143

5.1.1 Basic Concepts . 144

5.1.2 Overview . 144

5.2 Doubling Algorithm . 145

5.3 Discarding . 147

5.4 From Doubling to a-Tupling 150

5.5 I/O-Optimal Pipelined DC3 Algorithm 151

XIV CONTENTS

5.6 Generalized Difference Cover Algorithm 154

5.7 Checker . 156

5.8 Experiments . 157

5.8.1 The Checker . 163

5.9 An Oracle PL/SQL Implementation 164

5.10 Conclusion . 165

6 Porting Algorithms to External Memory 167

6.1 5-Coloring Planar Graphs . 167

6.2 1/2-Approximation of Maximum Weighted Matching 168

6.2.1 Definitions . 168

6.2.2 The Algorithm . 168

6.3 Perfect Matchings in Bipartite Multigraphs 169

6.3.1 Definitions . 169

6.3.2 Introduction . 169

6.3.3 Euler Partition Algorithm 170

6.3.4 I/O-Efficient Perfect Matching Algorithm 171

7 Conclusions 173

A Notation 193

CONTENTS XV

Acknowledgments

First of all, I would like to thank my supervisor Peter Sanders for giving me
an opportunity to work on this thesis. I would like to gratefully acknowledge
the time and the attention he always has been giving to me.

I thank Lutz Kettner for the consulting and the collaboration on the design
of Stxxl. He has revealed the full power of C++ to me. I would like to
thank Gerhard Weikum for encouraging comments and his commitment to
become a referee of this dissertation.

I have been very lucky to work in the wonderful environment of the Max-
Planck-Institut für Informatik (MPII) in Saarbrücken. Most of the work
presented in this thesis has been done in the MPII.

I would like to thank my master and bachelor students Dominik Schultes,
Jens Mehnert and Deepak Ajwani for the fruitful collaboration. They have
given a valuable feedback on the very first versions of Stxxl. Their contri-
bution to the evaluation of Stxxl, which is the second part of this thesis, is
enormous. Thanks to all my co-authors who made this thesis possible.

The last two years I have worked at the chair of Peter Sanders at University
of Karlsruhe. I acknowledge the excellent working atmosphere there and all
my colleagues for the enjoyable lunches.

I thank Anton Myagotin for the interesting (scientific) conversations which I
greatly appreciated.

I wish to thank Johannes Singler and Anja Blancani for accurately and dili-
gently proof-reading my thesis.

During my graduate studies I have been financially supported by the Inter-
national Max Planck Research School for Computer Science, and the Future
and Emerging Technologies programme of the EU under the contract number
IST-1999-14186 (ALCOM-FT).

Finally, I thank my mother, my brother and my wife for their love and
support.

XVI CONTENTS

Chapter 1

Introduction

Massive data sets arise naturally in many domains. Spatial data bases of
geographic information systems like GoogleEarth and NASA’s World Wind
store terabytes of geographically-referenced information that includes the
whole Earth. In computer graphics one has to visualize huge scenes using
only a conventional workstation with limited memory [FS01]. Billing systems
of telecommunication companies evaluate terabytes of phone call log files
[Hum02]. One is interested in analyzing huge network instances like a web
graph [DLL+06] or a phone call graph. Search engines like Google and Yahoo
provide fast text search in their data bases indexing billions of web pages. A
precise simulation of the Earth’s climate needs to manipulate with petabytes
of data [Moo00]. These examples are only a sample of numerous applications
which have to process huge amount of data.

The internal memories 1 of computers can keep only a small fraction of
these large data sets. During the processing the applications need to access
the external memory 2 (e. g. hard disks) very frequently. One such access
can be about 106 times slower than a main memory access. Therefore, the
disk accesses (I/Os) become the main bottleneck.

The reason for this high latency is the mechanical nature of the disk access.
Figure 1.1 shows the schematic construction of a hard disk. The data is
stored on a rotating magnetic disk surface. The rotational speed of modern

1The internal memory, or primary memory/storage, is a computer memory that is
accessible to the CPU without the use of the computer’s input/output (I/O) channels.

2The external memory, or secondary memory/storage, is a computer memory that
is not directly accessible to the CPU, requiring the use of the computer’s input/output
channels. In computer achitecture and storage research the term of “external storage” is
used more frequently. However, in the field of theoretical algorithm research the term of
“external memory” is more established.

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: Hard disk mechanics.

hard disks varies from 4,200 to 15,000 rotations per minute (RPMs). The
information is modified by applying a magnetic field from a read/write head
that flies very closely to the surface following a concentric trajectory called
disk track. In order to read or write the certain position on the disk, the disk
controller horizontally moves the read/write arm such that the track with the
desired data is under the head. After that, one has to wait until the needed
track segment is rotated under the head (rotational latency). Only from this
moment reading or writing is possible. The total time needed for finding the
data position on the disk is called seek time or (seek) latency and averages
to about 3–10 ms for modern disks. The seek time depends on the surface
data density and the rotational speed and can hardly be reduced because of
the mechanical nature of hard disk technology, which still remains the best
way to store massive amounts of data. Note that after finding the required
position on the surface, the data can be transferred at a higher speed which
is limited only by the surface data density and the bandwidth of the interface
connecting CPU and hard disk. This speed is called sustained throughput
and achieves up to 80 MByte/s nowadays.

In order to amortize the high seek latency one reads or writes the data
in chunks (blocks). The block size is balanced when the seek latency is
a fraction of the sustained transfer time for the block. Good results show
blocks containing a full track. For older low density disks of the early 90’s the
track capacities were about 16-64 KB. Nowadays, disk tracks have a capacity
of several megabytes.

Operating systems implement the so called virtual memory mechanism that
provides an additional working space for an application, mapping an exter-
nal memory file (page file) to virtual main memory addresses. This idea
supports the Random Access Machine model [Neu45] in which a program
has an infinitely large main memory with uniform random access cost. This

1.1. I/O-EFFICIENT ALGORITHMS AND MODELS 3

model has served as the most important basis of computer architecture and
programming language development.

Since the memory view is unified in operating systems supporting virtual
memory, the application does not know where its working space and program
code are located: in the main memory or (partially) swapped out to the page
file. This kind of abstraction does not have large running time penalties for
applications with a simple sequential data access pattern. The operating
system is even able to predict scanning patterns and to load the data in
ahead. For more complicated patterns these remedies are not useful and even
counterproductive: the swap file is accessed very frequently; the data code
can be swapped out in favor of data blocks; the swap file is highly fragmented
and thus many random input/output operations (I/Os) are needed even for
scanning.

1.1 I/O-Efficient Algorithms and Models

The operating system cannot adapt to complicated access patterns of appli-
cations dealing with massive data sets. Therefore, there is a need of explicit
handling of external memory accesses. The applications and their underly-
ing algorithms and data structures should care about the pattern and the
number of external memory accesses (I/Os) which they cause.

Several simple models have been introduced for designing I/O-efficient al-
gorithms and data structures (also called external memory algorithms and
data structures). The most popular and realistic model is the Parallel Disk
Model (PDM) of Vitter and Shriver [VS94]. In this model, I/Os are han-
dled explicitly by the application. An I/O operation transfers a block of B
consecutive bytes from/to a disk to amortize the latency. The application
tries to transfer D blocks between the main memory of size M bytes and D
independent disks in one I/O step to improve bandwidth. The input size is
N bytes which is (much) larger than M . The main complexity metrics of an
I/O-efficient algorithm in this model are:

• I/O complexity: the number of I/O steps should be minimized (the
main metric),

• CPU work complexity: the number of operations executed by the CPU
should be minimized as well.

The PDM model has become the standard theoretical model for designing
and analyzing I/O-efficient algorithms.

4 CHAPTER 1. INTRODUCTION

1 ...

CPU

M

2 D

DB

Figure 1.2: Parallel disk model.

For this model the following matching upper and lower bounds for I/O com-
plexity are known:

• Scanning a sequence of N items takes scan(n) = Θ(N/(DB)) I/Os.

• Sorting a sequence of N items takes sort(N) = Θ(N
DB

logM/B(N/M))
I/Os.

• Online search among N items takes search(N) = Θ(logDB(N)) I/Os.

1.2 Disk Parallelism in Storage Technologies

Parallel disks have been used to achieve high I/O bandwidth and fault tol-
erance already in 1980s [PGK88]. Patterson et al. [PGK88] and Chen et al.
[CLG+94] propose “Redundant Arrays of Inexpensive Disks” (RAID) with
seven methods (levels) of organization. The basic RAID-0 level stripes the
data blocks over all D disks in a round–robin fashion (see Chapter 2 for
more details). Reading and writing is sped up by the factor D in the best
case. The data is stored without redundancy: If one disk fails, all the data
in the array is lost. At the RAID-1 level (mirroring), the data stored on all
D disks is identical: even if D − 1 disks fail, the remaining disk contains
all information. This level provides high reliability and the read bandwidth
that linearly scales with D. However, this comes at the price of D-fold data
capacity reduction. The RAID-2 level uses a Hamming code for error cor-
rection trying to improve the space usage. The method is not viable, since

1.2. DISK PARALLELISM IN STORAGE TECHNOLOGIES 5

for a modern computer environment it requires 39 hard disks to be realized.
The RAID levels 3–6 are more practical and require only a small amount of
parity information to guarantee a high fault tolerance. They differ in how
and where the parity data is stored. The best (parallel) performance have
the levels 5 and 6 because they distribute the parity data blocks across all D
disks, such that there is no bottleneck.

All RAID levels can be realized in software in the framework of the Par-
allel Disk Model (see for instance the software RAID in Linux). Since the
RAID disk parallelism can (partially) mitigate the I/O-bottleneck problem
and is very easy to use (a RAID array looks like a single disk for the user),
the RAID solutions became standard and are implemented in many hard-
ware disk controllers to off-load the CPU. In addition to the standard levels,
the (hardware) implementations offer nested RAID levels that combine the
properties of several levels: A RAID-50 (RAID-5+0) is a RAID-0 striped
across superdisks realized as RAID-5 arrays. Other popular combinations
are: RAID-01, RAID-10, RAID-30 and RAID-100.

A network-attached storage (NAS) is a data storage technology that can
be connected to a computer network to provide centralized data storage for
clients [MT03]. NAS can be realized as a dedicated server running a minimal-
functionality operating system with support of a file-based protocol like NFS
or CIFS to export the data to the clients. NAS has several advantages
over the direct attached storage (e. g. local hard disks). Since NAS servers
execute only file-serving functions, they are more reliable (going down less
frequently) and faster, if the network bandwidth is high. To exploit disk
parallelism, NAS servers can use local RAID arrays to store the data.

A storage area network (SAN) is a network designed to attach storage el-
ements (e. g. hard disks, RAID controllers, tapes) to servers [MT03]. In
contrast to NAS, the protocols used in a SAN are block-oriented, similar to
the protocols used in hardware interfaces like ATA and SCSI. A SAN consists
of a communication infrastructure, which provides physical connections, and
a management layer, which organizes the connections, storage elements, and
computer systems so that data transfer is secure and robust. The data stored
in SANs can be striped across hundreds of disks to provide high bandwidth to
access to the same files. SAN technology has excellent performance, however,
the cost of the SAN equipment (disks, network) is relatively high.

The goal of distributed and parallel file systems (e. g. AFS [HKM+88],
Google FS [GGL03], xFS [ADN+96], Swift [CL91], GPFS [SH02], see also ref-
erences in [MSS03, Chapter 13] and [GGL03]) is to provide high-performance
and reliable storage of user files. The file data is split into chunks and a num-

6 CHAPTER 1. INTRODUCTION

1

CPU

...

M

2 D

DB

L2

B

B

CPU

L1

R
1

R
2

R
3 ...

2

1

3

Figure 1.3: Memory hierarchy.

ber of chunk replicas are stored at several computers (storage nodes). This
allows to achieve a high fault tolerance: If a disk at the node or the node it-
self is broken, then the remaining chunk replicas are copied to another nodes
to restore the data redundancy. The I/O bandwidth and response time can
be improved as well: The chunks of the requested file can be read in parallel
from several nodes and the closest replica is requested from the available
ones.

1.3 Memory Hierarchies

The PDM models the transfers between the main memory and the hard
disks, however, in modern architectures, the CPU does not access the main
memory directly. There are a few levels of faster memory caches in-between
(Figure 1.3).

Most processor commands operate on the content of CPU registers: during
one processor cycle, a few commands can be executed which read and write

1.3. MEMORY HIERARCHIES 7

the registers in parallel. When the data is to be loaded from the main
memory into the registers, the level one the (L1) cache is checked first to see
whether it already contains the content of the needed memory cell (cache
hit). Otherwise it must be loaded from the next cache level (cache miss).
If a register value is to be stored in memory, it is buffered in the L1 cache.
This value will be flushed only if the cache is full and a place for new data
is needed. The L1 cache is a small (a few KBytes) and fast memory which
allows up to two (or few) accesses per CPU cycle. If the data is not cached
in L1, the larger (up to several MBytes with the current technology) level
two (L2) cache is accessed. The access time of the L2 cache is about 10
cycles. The transfers between the L1 and L2 caches use block sizes about 16-
32 bytes. Both L1 and L2 caches lie on the same chip as the main processor.
Some modern processors also have off-the-chip L3 caches, however, they are
rather expensive. The transfer block of the main memory and the L2/L3
cache is 128-256 Bytes (i.e. for the Pentium 4).

The main memory is cheaper and slower than the caches. Cheap dynamic
random access memory, used in the majority of computer systems, has an
access latency up to 60 ns. However, for a blocked access a high bandwidth
of several GByte/s can be achieved.

The translation lookaside buffer (TLB) is another caching mechanism in pro-
cessors. TLBs cache some parts of large tables which store the logical to
physical address region mappings. The caching speeds up the virtual memory
mechanism of operating systems. TLB misses might be the main bottleneck
for algorithms: a TLB miss could be quite expensive (up to 100 CPU cycles);
the cache itself is small (32-128 entries) 3.

The memory hierarchy in computer systems is a natural phenomenon: a fast
huge memory with uniform memory access cannot exist because the access
time is correlated with the speed of light. Therefore the faster memories
(caches) are placed closer to the processor. Another reason is cost efficiency:
Prices for a byte for L1 caches and hard disks differ in many orders of mag-
nitude. One can only afford to keep a small, most frequently used fraction
of the data in fast memory. The number of memory hierarchy levels having
different access latencies and speed is growing: in 1986, Intel’s 386 processor
had a single off-chip cache, nowadays the IBM Power 5 series already has a
144 MByte L3 cache off-chip shared among several processors.

The discrepancy between the speed of CPUs and the latency of the lower
hierarchy levels grows very quickly: the speed of processors is improved by

3The Calibrator tool http://monetdb.cwi.nl/Calibrator/ reports a TLB miss-
latency of 54 CPU cycles on our 3.0 GHz Pentium 4 processor with only 32 TLB entries.

http://monetdb.cwi.nl/Calibrator/

8 CHAPTER 1. INTRODUCTION

about 55 % yearly, the hard disk access latency only by 9 % [Pat04]. There-
fore, the algorithms which are aware of the memory hierarchy will continue to
benefit in the future and the development of such algorithms is an important
trend in computer science.

The PDM model only describes a single level in the hierarchy. An algo-
rithm tuned to make a minimum number of I/Os between two particular
levels could be I/O-inefficient on other levels. The cache-oblivious model
in [FLPR99] avoids this problem by not providing the knowledge of the
block size B and main memory size M to the algorithm. The benefit of
such an algorithm is that it will be I/O-efficient on all levels of the memory
hierarchy across many systems without fine tuning for any particular real
machine parameters. Many basic algorithms and data structures have been
designed for this model: sorting [FLPR99], matrix transposition and multipli-
cation [FLPR99], priority queues [ABD+02], dictionaries [BDIW02], breadth-
first-search [ABD+02, BFMZ04], depth-first-search [ABD+02], shortest paths
[BFMZ04], minimum spanning trees [ABD+02], A drawback of cache-
oblivious algorithms playing a role in practice is that they are only asymp-
totically I/O-optimal. The constants hidden in the O() notation of their
I/O-complexity are significantly larger than the constants of the correspond-
ing I/O-efficient PDM algorithms (on a particular memory hierarchy level).
For instance, a tuned cache-oblivious funnel sort implementation [Chr05] is
2.6–4.0 times slower than our I/O-efficient sorter from Stxxl (Section 3.5)
for out-of-memory inputs [Osi06, AMO07]. A similar funnel sort implemen-
tation is up to two times slower than the I/O-efficient sorter from TPIE
library (Section 1.9) for large inputs [BFV04]. The reason for this is that
these I/O-efficient sorters are highly optimized to minimize the number of
transfers between the main memory and the hard disks where the imbalance
in the access latency is the largest (up to 106 times). Cache-oblivious imple-
mentations lose on the inputs, exceeding the main memory size, because (up
to a constant factor) they do more I/Os at the last level of memory hierarchy.

In this thesis we concentrate on extremely large out-of-memory inputs, there-
fore we will design and implement algorithms and data structures efficient in
the PDM.

1.4. ALGORITHM ENGINEERING FOR LARGE DATA SETS 9

1.4 Algorithm Engineering for Large Data

Sets

Theoretically, I/O-efficient algorithms and data structures have been devel-
oped for many problem domains: graph algorithms, string processing, com-
putational geometry, etc. (see the surveys [MSS03, Vit01]). Some of them
have been implemented: sorting, matrix multiplication [VV96], search trees
[Chi95, PAAV, AHVV99, AAG03], priority queues [BCFM00], text process-
ing [CF02]. However only few of the existing I/O-efficient algorithms have
been studied experimentally. As new algorithmic results rely on previous
ones, researchers, which would like to engineer practical implementations of
their ideas and show the feasibility of external memory computation for the
solved problem, need to invest much time in the careful design of unimple-
mented underlying external algorithms and data structures. Additionally,
since I/O-efficient algorithms deal with hard disks, a good knowledge of low-
level operating system issues is required when implementing details of I/O
accesses and file system management. This delays the transfer of theoretical
results into practical applications, which will have a tangible impact for in-
dustry. Therefore one of the primary goals of algorithm engineering for large
data sets is to create software frameworks and libraries which handle both
the low-level I/O details efficiently and in an abstract way, and provide well-
engineered and robust implementations of basic external memory algorithms
and data structures.

1.5 C++ Standard Template Library

The Standard Template Library (STL) [SL94] is a C++ library which is in-
cluded in every C++ compiler distribution. It provides basic data structures
(called containers) and algorithms.

STL containers are generic and can store any built-in or user data type
that supports some elementary operations (e.g. copying and assignment).
STL algorithms are not bound to a particular container: an algorithm can
be applied to any container that supports the operations required for this
algorithm (e.g. random access to its elements). This flexibility significantly
reduces the complexity of the library.

STL is based on the C++ template mechanism. The flexibility is supported
using compile-time polymorphism rather than the object oriented run-time
polymorphism. The run-time polymorphism is implemented in languages

10 CHAPTER 1. INTRODUCTION

like C++ with the help of virtual functions that usually cannot be inlined by
C++ compilers. This results in a high per-element penalty of calling a vir-
tual function. In contrast, modern C++ compilers minimize the abstraction
penalty of STL being able to inline many functions.

STL containers include: std::vector (an unbounded array),
std::list, std::priority queue, std::stack, std::deque, std::set,
std::multiset (allows duplicate elements), std::map (allows mapping
from one data item (a key) to another (a value)), std::multimap (allows du-
plicate keys), Containers based on hashing (hash set, hash multiset,
hash map and hash multimap) are not yet standardized and distributed as
an STL extension.

Iterators are an important part of the STL library. An iterator is a kind
of handle used to access items stored in data structures. Iterators allow
to perform the following operations: read/write the value pointed by the
iterator, move to the next/previous element in the container, move by some
number of elements forward/backward (random access).

STL provides a large number of algorithms performing scanning, searching
and sorting. The implementations accept iterators that posses a certain
set of operations described above. Thus, the STL algorithms will work on
any container with iterators obeying to required capabilities. To achieve
flexibility, STL algorithms are parameterized with objects, overloading the
function operator (operator()). Such objects are called functors. A functor
can, for instance, define the sorting order for the STL sorting algorithm or
keep the state information in functions passed to other functions. Since the
type of the functor is a template parameter of an STL algorithm, the function
operator does not need to be virtual and can easily be inlined by the compiler,
thus avoiding the function call costs.

The STL library is well accepted, its generic approach and principles are
followed in other famous C++ libraries like Boost [Kar05] and CGAL
[FGK+00].

1.6 The Goals of Stxxl

Several external memory software library projects (LEDA-SM [CM99] and
TPIE [ABH+03]) were started to reduce the gap between theory and practice
in external memory computing. They offer frameworks which aim to speed
up the process of implementing I/O-efficient algorithms, abstracting away

1.7. SOFTWARE FACTS 11

the details of how I/O is performed. See Section 1.9 for an overview of these
libraries.

The TPIE and LEDA-SM projects are excellent proofs of the concepts of the
external memory paradigm, but they miss some practice-relevant features
which are important for applications. This led us to start the development
of a performance–oriented library of external memory algorithms and data
structures, namely Stxxl, which tries to avoid those obstacles. The Stxxl

library is the main contribution of this thesis.

The following here are some key features of Stxxl:

• Transparent support of parallel disks. The library provides implemen-
tations of basic parallel disk algorithms. Stxxl is the only external
memory algorithm library supporting parallel disks. Such a feature was
announced for TPIE in [Ven94, ABH+03].

• The library is able to handle problems of a very large size (up to dozens
of terabytes).

• Improved utilization of computer resources. Stxxl explicitly supports
overlapping between I/O and computation. Stxxl implementations
of external memory algorithms and data structures benefit from the
overlapping of I/O and computation.

• Small constant factors in I/O volume. A unique library feature “pipelin-
ing” can save more than half the number of I/Os performed by many
algorithms.

• Shorter development times due to well known STL-compatible inter-
faces for external memory algorithms and data structures. STL al-
gorithms can be directly applied to Stxxl containers (code reuse);
moreover, the I/O complexity of the algorithms remains optimal in
most cases.

1.7 Software Facts

Stxxl is distributed under the Boost Software License4 which is
an open source license allowing free commercial use. The source
code, installation instructions and documentations are available under

4http://www.boost.org/more/license_info.html

http://www.boost.org/more/license_info.html

12 CHAPTER 1. INTRODUCTION

http://stxxl.sourceforge.net/. According to the well known SLOC-
Count 5 tool of David A. Wheeler, the release branch of the Stxxl project
not including applications has about 25,000 physical source lines of code
(SLOC).

1.8 Stxxl Users

Here is a list of active Stxxl users we know about:

• University of Karlsruhe, Germany (text processing, graph algorithms,
practical courses)

• Max-Planck-Institut für Informatik, Germany (graph algorithms)

• University of Rome “La Sapienza”, Italy (connected components)

• University of Texas at Austin, USA (gaussian elimination)

• Bitplane AG, Switzerland (visualization and analysis of 3D and 4D
microscopic images)

• Philips Research, The Netherlands (differential cryptographic analysis)

• Dalhousie University, Canada (N -gram extraction)

• Florida State University, USA (construction of Voronoi diagrams)

• Montefiore Institute, Belgium (big sparse matrices)

• University of British Columbia, Canada (topology analysis of large net-
works)

• Bayes Forecast, Spain (statistics and time series analysis)

• Indian Institute of Science in Bangalore, India (suffix array construc-
tion)

• Rensselaer Polytechnic University, USA (suffix array construction)

• Institut français du pèrole, France (analysis of seismic files)

• Northumbria University, UK (search trees)

5http://www.dwheeler.com/sloccount/

http://stxxl.sourceforge.net/
http://www.dwheeler.com/sloccount/

1.9. RELATED WORK 13

• University of Trento, Italy (text compression)

• Norwegian University of Science and Technology in Trondheim, Norway
(suffix array construction)

1.9 Related Work

TPIE [Ven94, APV02] was the first large software project implementing I/O-
efficient algorithms and data structures. The library provides implementa-
tions of I/O efficient sorting, merging, matrix operations, many (geometric)
search data structures (B+-tree, persistent B+-tree, R-tree, K-D-B-tree, KD-
tree, Bkd-tree) and the logarithmic method. The work on the TPIE project
is in progress.

LEDA-SM [CM99] external memory library was designed as an extension
to the LEDA library [MN99] for handling large data sets. The library of-
fers implementations of I/O-efficient sorting, external memory stack, queue,
radix heap, array heap, buffer tree, array, B+-tree, string, suffix array, ma-
trices, static graph, and some simple graph algorithms. However, the data
structures and algorithms cannot handle more than 231 elements. The de-
velopment of LEDA-SM has been stopped. LEDA releases later than the
version 4.2 are not supported by the last LEDA-SM version 1.3. The latest
compiler, LEDA-SM 1.3 can be compiled with, is the g++ version 2.95.

LEDA-SM and TPIE libraries currently only offer single disk external mem-
ory algorithms and data structures. They are not designed to explicitly sup-
port an overlapping between I/O and computation. The overlapping largely
relies on the operating system that caches and prefetches data according to a
general purpose policy, which cannot be as efficient as the explicit approach.
Furthermore, on most of the operating systems, the overlapping based on the
system cache requires additional copies of the data, which leads to compu-
tational and internal memory overhead.

The list of algorithms and data structures available in TPIE, LEDA-SM and
Stxxl libraries is shown in Table 1.1.

Database engines use I/O-efficient search trees and sorting to execute SQL
queries, evaluating huge sets of table records. The idea of pipelined execution
of the algorithms which process large data sets not fitting into the main
memory is well known in relational database management systems [SKS01].
The pipelined execution strategy allows to execute a database query with
a minimum number of external memory accesses, to save memory space to
store intermediate results, and to obtain the first result as soon as possible.

14 CHAPTER 1. INTRODUCTION

Table 1.1: Algorithms and data structures of the external memory libraries.

Function TPIE LEDA-SM Stxxl

sorting
√ √ √

stack
√ √ √

queue
√ √ √

deque — —
√

array/vector —
√ √

matrix operations
√ √

—
suffix array —

√ √
(extension)

search trees B+-tree, K-D-B-tree B+-tree B+-tree
persist. B+-tree buffer tree
R-tree, KD-tree

Bkd-tree
priority queue — array heap sequence heap

radix heap
pipelined algorithms — —

√

The design framework FG [DC05] is a programming environment for parallel
programs running on clusters. In this framework, parallel programs are split
into series of asynchronous stages which are executed in the pipelined fashion
with the help of multithreading. The pipelined execution allows to mitigate
disk latency of external data accesses and communication network latency
of remote data accesses. I/O and communication could be automatically
overlapped with computation stages by the scheduler of FG environment.

Berkeley DB [OBS00] is recognized as the best open source external memory
B+-tree implementation. It has a dual license and is not free for industry.
Berkeley DB has very large user base, among those are amazon.com, Google
and Motorola. Many free open source programs use Berkeley DB as their
data storage backend (e.g. MySQL data base system).

There are several libraries for advanced models of computation which fol-
low the interface of STL. The Standard Template Adaptive Parallel Library
(STAPL) is a parallel library designed as a superset of the STL. It is sequen-
tially consistent for functions with the same name and performs on uni- or
multi-processor systems that utilize shared or distributed memory [AJR+01].

MCSTL (Multi-Core Standard Template Library) project [Sin06] has been
started in 2006 at the University of Karlsruhe. The library is an implemen-
tation of the STL which uses multiple processors and multiple cores of a

1.10. OUTLINE 15

processor with shared memory. It already has implementations of parallel
sorting, merging, random permutation, searching, scanning. MCSTL is cur-
rently being used to parallelize the internal work of Stxxl external memory
sorting.

There is a number of libraries which provide persistent containers [Unia,
Unib, GND99, Nel98, Kni, SKW92]. Persistent STL-compatible containers
are implemented in [Ste98, Gsc01]. These containers can keep (some of)
the elements in external memory transparently to the user. In contrast to
Stxxl, these libraries do not guarantee the I/O-efficiency of the containers,
e. g. the PSTL [Gsc01] library implements search trees as I/O-inefficient
red-black trees.

The content of this thesis is partially based on our contributions which have
been already published in a number of refereed conference and journal pa-
pers. The design rational of Stxxl has been investigated in [DKS05a]. The
extended version of this paper has appeared as a technical report [DKS05b].
The results on engineering algorithms for large graphs have been published in
[DSSS04] (minimum spanning forests) and in [ADM06] (breadth first search).
I/O-efficient algorithms for construction of suffix arrays are the subject of the
paper [DMKS05]. An extended version will appear as a journal publication
[DKMS06].

1.10 Outline

This thesis is organized as follows.

Chapter 2 considers hardware architectures for experimenting with parallel
disk algorithms. We overview the possible bandwidth bottlenecks in systems
with a large number of disks. We build a very cheap system which supports
the full bandwidth of eight hard disks (375 MByte/s). The experience, ob-
tained during the construction of this machine has helped us to build and
configure other more powerful systems for our experiments, mentioned in
Chapter 2. We believe that this knowledge will find further application.

The main contribution of the thesis, the Stxxl library, is presented in Chap-
ter 3. We introduce the library design including its layers, explaining design
decisions taken in the development. We show how portability is provided
by moving the operating system issues to a separate layer and explain how
the PDM model is emulated using files on independent parallel disks. The
design of external memory data structures implementing the STL interface

16 CHAPTER 1. INTRODUCTION

is discussed. We compare the performance of our containers with the perfor-
mance of data structures of LEDA-SM, TPIE and Berkeley DB using various
benchmarks. Examples of the compatibility and combined usage of STL al-
gorithms and Stxxl containers will be demonstrated. In Section 3.5, we
engineer a parallel disk sorting that has almost perfect overlap of I/O and
computation and has an I/O cost approaching the lower bound. Previous
algorithms have either a suboptimal I/O volume or cannot guarantee that
I/O and computation can always be overlapped. We compare its perfor-
mance with the performance of LEDA-SM and TPIE sorters. Furthermore,
we introduce the idea of external algorithm pipelining in the context of an
external memory software library and show how pipelining is implemented
in the Stxxl Streaming layer via objects with an iterator-like interface. A
small example demonstrates the I/O savings gained by the use of pipelining.

Stxxl has been successfully applied in implementation projects that studied
various I/O-efficient algorithms from the practical point of view (Chapters 4
and 5). The fast algorithmic components of the Stxxl library gave the
implementations an opportunity to solve problems of very large sizes on a
low-cost hardware in record time.

The chapter starts with a small benchmark (maximal independent set com-
putation), which we implement using TPIE, LEDA-SM and Stxxl. We run
these implementations to compare the performance of some components of
the library on a real graph application.

Furthermore, we investigate the feasibility of minimal spanning forest com-
putation in external memory. Due to the Stxxl, our external memory MSF
implementation is only 2–5 times slower than a good internal algorithm with
sufficient memory space. We modify the minimum spanning forest algorithm
to derive a fast I/O-efficient algorithm for computing connected components
and/or spanning forests.

The next study, investigating the feasibility of external memory breadth-
first search (BFS), is surveyed in Section 4.5. The study compares two
implementations of the external memory BFS algorithms [MR99, MM02].
The implementations heavily use Stxxl pipelining and can compute BFS
decompositions for very large real and synthetic graphs within hours on a
modest PC.

In Section 4.6 we design a practical algorithm that lists and counts all tri-
angles in huge graphs. The triangle information is used to analyze the prop-
erties of (social) networks, like “clusterness” and transitivity. With the help
of Stxxl we find all triangles of a huge web crawl graph in a few hours.

The last graph application we have designed in this thesis is coloring (Sec-

1.10. OUTLINE 17

tion 4.7). External memory coloring can be used to compute a schedule for
executing a huge number of parallel jobs using only a single computer. Our
main contributions are simple and fast heuristics for general graphs. One
of these heuristics — Batched Smallest-Degree-Last — turns out to be a 7-
coloring algorithm for planar graphs performing only O(sort(n)) I/Os, where
n is the number of nodes in the graph. Our work is the first experimental
study of algorithms that can color huge graphs exceeding the size of the
main memory. We run our implementations on several architectures and on
various random and real-world data sets.

In Chapter 5 we present Stxxl-pipelined implementations of suffix array
construction algorithms. We compare the performance of numerous algo-
rithms and their variants on many huge random and real-world text instances.
We precisely compute the I/O costs of the implemented algorithms using
pipelined data flow graphs. We also analyze the I/O volume of a generalized
difference cover algorithm. An implementation of doubling algorithm, which
uses the Oracle XE data base engine, has been investigated and compared
with an Stxxl implementation. The bottom line of the experiments is that
we can construct suffix arrays for 4 billion characters overnight on a low cost
PC. This achievement is partially due to the high performance of the Stxxl.

Chapter 6 ports some graph-related algorithms designed originally for inter-
nal memory and parallel computers to external memory. We make them run
I/O-efficiently exchanging their underlying subprocedures by our own and
already existing I/O-efficient versions.

The common notations used in the thesis are summarized in Appendix A.

18 CHAPTER 1. INTRODUCTION

Chapter 2

Building Experimental Parallel
Disk Systems

Experiments with single disk external memory algorithms do not require
a special hardware to be run on. All off-the-shelf desktop computers are
equipped with at least one hard disk which stores an operating system and
keeps the working space of applications. Such systems are readily fit for
experimenting with I/O-efficient algorithms designed for a single disk.

The I/O bandwidth of a modern hard disk is limited to 70–80 MB/s, the
bandwidth of transfers between memory and CPU is much higher: several
gigabytes per second. The relatively low disk bandwidth can be the bottle-
neck of an external memory algorithm. This bottleneck can be mitigated or
even eliminated when by using a RAID.

The RAID (redundant array of independent disks; originally redundant array
of inexpensive disks) array level 0 (RAID-0 for short) is a way of storing data
distributed over multiple disks [CLG+94]. Usually, all disks of a RAID are
identical. A RAID acts as a single logical disk to the operating system.
RAID-0 employs the technique of striping, which involves partitioning each
drive’s storage space into units of size c bytes (usually a power of two, ranging
from 4 KBytes to 128 KBytes). Each chunk of size s = D × c of the RAID
logical space is called stripe, where D is the number of disks in the RAID.
Stripes are mapped in an interleaved fashion to the disks: logical RAID disk
position x is mapped to position c⌊x

s
⌋ + (x mod c) on disk ⌊x mod s

c
⌋ (see

Figure 2.1). This mapping can be performed by a special device controller,
called RAID-controller, or via software by the RAID emulation driver (e.g.
the Linux software RAID driver). If an application reads a block from RAID-
0 or writes a block to RAID-0 and the size of the block is a (big) multiple of

19

20 CHAPTER 2. BUILDING EXPERIMENTAL PARALLEL DISK SYSTEMS

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

s

c

Logical RAID−0 space

Disk 0

Disk 1

Disk 2

Disk 3

position x

43210

stripe 0 stripe 1 stripe 2 stripe 3 stripe 5

Figure 2.1: RAID-0 on four disks with five stripes

the stripe size s, then the bandwidth of this transfer should (theoretically)
approach D × BW bytes per second, where BW is the maximal bandwidth
of the single disk. However, in practice, the real bandwidth can be less than
D×BW because of the overheads and inefficiencies of hardware RAID boards
and software RAID drivers.

Despite that, the bandwidth-bound single disk I/O-efficient algorithms can
benefit from the increase of the bandwidth. For example, adding the second
disk can almost halve the total running time of an application. This signifi-
cantly improves the performance/cost ratio of the system, since the price of
a fast modern disk is much less than the total price of the system.

Many parallel disk external memory algorithms need independent access to
the disks to be optimal [DS03]. In some situations, running such algorithms
on a RAID-0 would require the reduction of the physical block size by fac-
tor D, which increases the number of I/Os by a constant factor, and thus
increases the seek time. In general, the simple RAID-0 striping cannot guar-
antee speed-up D when using D disks for external memory parallel disk al-
gorithms. The speedup can only be achieved using the disks independently.
Building such a system which enables independent access to many disks with
high speed was one of the goals of this thesis. This system would enable real
experimentation with the parallel disk I/O-efficient algorithms.

The practical performance of algorithms designed for PDM (Section 1.1) on
real systems with many disks has been studied for the first time in this thesis,
to the best of the authors’s knowledge. All previous studies have simulated

2.1. HARDWARE DISK INTERFACES 21

the parallel disks in software.

2.1 Hardware Disk Interfaces

Currently, there are two types of hardware interfaces which connect hard
disks with computers: IDE (Integrated Drive Electronics) and SCSI (Small
Computer Systems Interface). Several versions of the IDE interface were
standardized under the name ATA (Advanced Technology Attachment). The
original ATA hard disks use 40 or 80 wire cables (parallel ATA). A newer
version of the ATA standard enables transferring the information over a cable
with the same speed or faster using only a few wires (serial ATA = SATA).
The parallel ATA (PATA) permits to assign two disks to the same channel,
which can result in less than expected parallel disk performance, even if the
ATA bus rate is higher than the total maximum bandwidth of the two disks.
The reason is that the original IDE/ATA interface protocol was not designed
for concurrent access to the disks, the disks “must take turns”. A parallel
ATA channel permits transfer rates up to 133 MByte/s.

Serial ATA has some crucial differences to parallel ATA that improve perfor-
mance. Since the cost of an additional channel controller on a circuit is small,
and a little space is required for cables and cable headers, SATA specifies only
a single device per channel to be used. Another feature is the hardware sup-
port of disk request queuing (native command queuing): A hard disk can
receive more than one I/O request at a time and decide on its own in which
order the requests will be served. This allows a lot of optimizations, pro-
vided the knowledge about the seek times and rotational position. A SATA
channel can sustain a bandwidth up to 150 or 300 MByte/s depending on
the used standard.

Low-cost or middle range PCs have an on-board controller with at least
two ATA or four SATA channels. They can theoretically support two/four
disks at full speed (the maximum sustained transfer rate of modern disks is
60–80 MB/s). The logic of an IDE controller is kept simple to reduce the
price of hardware, therefore many low level details of the ATA protocol are
implemented in software and executed by the main CPU.

SCSI standard has been initially developed to support many disks which can
be accessed concurrently at high speed. One Ultra320 SCSI (U320) channel
can connect up to 15 disks and has a bandwidth of 320 MB/s. The SCSI bus
controller is capable of controlling the hard disk drives without any work by
the CPU. Native support of command queuing already existed in very early

22 CHAPTER 2. BUILDING EXPERIMENTAL PARALLEL DISK SYSTEMS

versions of the SCSI standard. Also, all drives on a SCSI channel are able
to operate at the same time due to the advanced protocol logic, implemented
in hardware. Therefore one U320 channel can support up to four modern
disks at almost full speed (60–80 MByte/s).

The SCSI interface has apparent advantages over IDE/ATA one, however,
the price of SCSI hardware (controllers and hard disk drives) is 3–8 times
higher than the price of comparable IDE/ATA equipment. We have tried to
find out whether it is possible to build an affordable high performance multi
disk system using IDE/ATA technology.

2.2 Busses, Controllers, Chipsets

As above mentioned, an ordinary PC can already support four hard disks
connected to the on-board PATA controller. However, in order to avoid
bottlenecks and channel contention, it is better to have only one disk per
IDE channel. Thus, only two ATA drives can be supported at full speed.

In order to support more disks one has to use more controllers, which are
installed in a PCI bus slot of the PC. There are several variants of PCI
busses, the older version of the bus protocol can transfer 32 bits in a cycle
and has a cycle frequency of 33 MHz, giving the maximum transfer rate of
133 MByte/s. Theoretically, this would be enough for only two disks with a
transfer rate of 66 MByte/s (we take 66 MByte/s as the bandwidth of one
disk in calculations), but in practice, due to the bus control overhead, the
sustained bandwidth could be less. Cheap desktop systems usually have only
one 32bit/33MHz bus. The chipset schema of such a system is presented in
Figure 2.2. This system can support four (S)ATA disks at most at full speed:
two disks connect to the onboard Serial ATA controller, the other two require
a PCI bus (S)ATA controller. The Intel hub connection between the memory
controller hub (MCH) and the I/O controller hub (ICH) chips is fast enough
to sustain the bandwidth of four disks.

Some chipsets/mainboards do include an additional hardware RAID con-
troller with two (S)ATA channels. The Intel 875P chipset has such an option
(see Figure 2.2). The RAID controller could be configured for independent
access to the disks, i.e. RAID is switched off. This means that this cheap
system can already support up to six (S)ATA disks without bottlenecks in
the busses.

Newer PCI standards allow larger bus widths of 64 bits and/or higher cycle
frequencies 66, 100 or 133 MHz. A 64bit/133MHz PCI controller can transfer

2.2. BUSSES, CONTROLLERS, CHIPSETS 23

Figure 2.2: The schema of Intel 875P chipset [Int].

24 CHAPTER 2. BUILDING EXPERIMENTAL PARALLEL DISK SYSTEMS

at a speed of 533 MB/s, this bandwidth is enough for eight hard disk drives
with a bandwidth of 66 MB/s. SATA controllers with many ports have been
released recently : The Promise SATAII150 SX8 has eight SATA ports, each
operating at a speed up to 150 MB/s. The manufacturer reports more than
500 MB/s sustained throughput for sequential access for the controller.

Another approach would be to connect conventional two-port ATA controllers
to several independent PCI busses. This was the only alternative for us,
since multiport serial ATA controllers appeared only in 2003. An example of
the chipset that has many PCI busses is the Intel E7500 chipset, as shown
in Figure 2.3. This chipset is the basis of the SUPER P4DP6 dual Xeon
processor motherboard. The chipset has two 133 MHz 64-bit PCI busses,
one 100 MHz 64-bit PCI bus, and one 66 MHz 64-bit PCI bus. The PCI
busses 1, 2 and 3 have only one slot each for a controller, bus 4 has three
slots. Affordable ATA controllers are 32-bit ones and work at a 66 MHz bus
frequency (for example the Promise Ultra133 TX2). This means that the PCI
busses have to work in 32-bit 66 MHz mode also. This mode can achieve at
most 266 MB/s, which is equivalent to four disk drives with a maximum
bandwidth of 66 MB/s. In total, a P4DP6 motherboard can support up to
12 hard disks (bandwidth 66 MB/s): two disks are connected to the onboard
ATA controller, three ATA controllers are inserted into the PCI busses 1–
3, two controllers are inserted into PCI bus 4, each controller supports two
disks. The total maximum rate of disks at PCI bus 3 and 4 can be at
most 66 · 6 = 400 MB/s which is less than the bandwidth of the connection
between the memory controller hub (MCH) and the PCI 64-bit hub (1 GB/s).
The total maximum bandwidth of all 12 disks is about 800 MB/s, which is
less than the throughput of the 3.2 GB/s memory channel. The bandwidth
constraints in all bus connections are satisfied, this means that at least from
a hardware point of view, the 12 hard disks can work at full speed.

2.3 Our First System

We built an experimental parallel disk system on the basis of the SUPER
P4DP6 mainboard in summer 2002. The system had nine IBM disks (120
GXP series), one system disk and eight disks for external memory experi-
ments. The maximum bandwidth of one disk is 48 MB/s. The maximum
measured sustained throughput of the eight disks was 375 MB/s in sequential
reading. When building the machine, we had to solve another engineering
problem: the cabling. The original parallel ATA cables are about 6 cm wide,
it is impossible to have 12 cables connecting 12 disks, in the cramped space

2.3. OUR FIRST SYSTEM 25

MCHMCHICH3−S

SM BUS

SUPER IO

ATA 100
ports

USB
ports

ATI

ICH3−S
ICH3−S

Graphics

DDR SDRAM
2−Channel

Processor 1Processor 0

P64H2
PCI Bus 3 (100 Mhz)

PCI Bus 4 (66 Mhz)

200 Mhz Memory Bus

400 Mhz Sytem Bus

P64H2
PCI Bus 2 (133 Mhz)

PCI Bus 1 (133 Mhz)1 GB/s

1 GB/s

3.2 GB/s

266 MB/s

Figure 2.3: The schema of the Intel E7500 chipset [Int].

of a PC case. Instead, we used round cables which are much more robust
and only 1 cm in diameter. The usage of this type of cable also improved the
airflow and thus the temperature conditions inside the case. If such a system
would be set up today we would choose the serial ATA standard since it has
much thinner cables.

This high performance system cost only about 3000 Euro in 2002. The
list with detailed information about the system components is presented in
Table 2.1. The photograph of the computer is shown in Figure 2.4.

Table 2.1: Hardware components of our experimental computer.

Item # Euro/Item
Motherboard SUPER P4DP6 1 400
Xeon 2.0 GHz processor 2 400
IBM IC35L080AVVA07 80 GB disk 9 100
Promise Ultra133 TX2 parallel ATA controller 5 35
512 MB DDR2 memory 2 200
Case/chassis 1 400

26 CHAPTER 2. BUILDING EXPERIMENTAL PARALLEL DISK SYSTEMS

Figure 2.4: Our multidisk experimental computer.

2.4 Other Systems

Guided by the experience gathered while constructing the Xeon machine
in Section 2.3, we have recently built new multidisk machines, using mod-
ern hardware components. These machines are specified in Table 2.2 as
SCSIOpteron and SATAOpteron. MPIXeon is the system from Section 2.3.
We will refer to these systems in experimental sections throughout this thesis.

2.5 File System Issues

In order to achieve the best I/O-performance one should carefully choose the
file system to use. One of the oldest and most favorite Linux file systems is
ext2. Its extension ext3 has added the support of file operation journaling.

The ext2/ext3 file systems use linear bitmap structures for tracking free
and allocated blocks. Finding regions of contiguous space in such bitmaps
in large files is not efficient. For external memory algorithms this might
become a significant bottleneck in the performance. The XFS file system
solves this problem using a B+−tree to index disk regions. Besides that, XFS
preallocates the free space needed for a file to avoid file system fragmentation.
Performance is increased as the contents of a file are not distributed all over
the file system.

2.5. FILE SYSTEM ISSUES 27

Table 2.2: Specifications of our multidisk disk systems.

Code name MPIXeon SCSIOpteron SATAOpteron

Processor 2×Xeon 2.0GHz 4×Opteron
1.8GHz

Dual-Core
Opteron 2.0GHz

Main memory 1 GByte 8 GBytes 4 GBytes
Exp. disks 8 10 4
Disk interface PATA SCSI SATA
Number of con-
trollers

6 3 1

Disk manufac-
turer

IBM Seagate Seagate

Disk RPM 7200 15000 7200
Single disk ca-
pacity

80 GBytes 70 GBytes 250 GBytes

Measured max.
bandwidth of a
disk

48 MByte/s 75 MByte/s 79 MByte/s

Total max.
bandwidth
achieved

375 MByte/s 640 MByte/s 214 MB/s

Approx. price
(year)

3000 EURO
(2002)

15000 EURO
(2005)

3500 EURO
(2006)

In most of our experiments we have used the XFS file system because of its
good performance and scalability.

28 CHAPTER 2. BUILDING EXPERIMENTAL PARALLEL DISK SYSTEMS

Chapter 3

The Stxxl Library

The material covered in this chapter has been published partially in [DKS05a,
DKS05b, DS03].

3.1 Stxxl Design

Stxxl is a layered library consisting of three layers (see Figure 3.1). The
lowest layer, the Asynchronous I/O primitives layer (AIO layer), abstracts
away the details of how asynchronous I/O is performed on a particular oper-
ating system. Other existing external memory algorithm libraries only rely
on synchronous I/O APIs [CM99] or allow reading ahead sequences stored
in a file using the POSIX asynchronous I/O API [ABH+03]. These libraries
also rely on uncontrolled operating system I/O caching and buffering in or-
der to overlap I/O and computation in some way. However, this approach
has significant performance penalties for accesses without locality. Unfortu-
nately, the asynchronous I/O APIs are very different for different operating
systems (e.g. POSIX AIO and Win32 Overlapped I/O). Therefore, we have
introduced the AIO layer to make porting Stxxl easy. Porting the whole
library to a different platform requires only reimplementing the AIO layer
using native file access methods and/or native multithreading mechanisms.

Stxxl already has several implementations of the AIO layer which use dif-
ferent file access methods under POSIX/UNIX and Windows systems (see
Table 3.1). Porting Stxxl to Windows took only a few days. The main
efforts were spent for writing the AIO layer using the native Windows calls.
Rewriting the thread-related code was easy provided the Boost thread li-
brary; its interfaces are similar to POSIX threads. There were little header

29

30 CHAPTER 3. THE STXXL LIBRARY

�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������

�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������

������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������

������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������

������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������

������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������

�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������

T
X

X
L

S

files, I/O requests, disk queues,

block prefetcher, buffered block writer

completion handlers

Block management (BM) layer
typed block, block manager, buffered streams,

Containers:

STL−user layer
vector, stack, set

priority_queue, map
sort, for_each, merge

Pipelined sorting,
zero−I/O scanning

Streaming layer

Algorithms:

Operating System

Applications

Asynchronous I/O primitives (AIO) layer

Figure 3.1: Structure of Stxxl

file and compiler-specific incompatibilities; those were solved by conditional
compilation using the C++ preprocessor. The POSIX version of Stxxl

had run immediately on the all listed operating systems after changing some
Linux-specific header file includes to more common POSIX headers.

The Block Management layer (BM layer) provides a programming interface
emulating the parallel disk model. The BM layer provides an abstraction for
a fundamental concept in the external memory algorithm design — a block
of elements. The block manager implements block allocation/deallocation,
allowing several block-to-disk assignment strategies: striping, randomized
striping, randomized cycling, etc. The block management layer provides an
implementation of parallel disk buffered writing [HSV01], optimal prefetching

Table 3.1: Supported operating systems.

Stxxl version POSIX MS Visual C++

OS Linux, Cygwin,
SunOS, Solaris,
FreeBSD, NetBSD,
MacOS

Windows 2000,
Windows XP

Compiler g++ 3.3+ MS VC++ 7.1+
Dependencies Posix Threads Boost library

3.1. STXXL DESIGN 31

[HSV01], and block caching. The implementations are fully asynchronous
and designed to explicitly support overlapping between I/O and computation.

The top of Stxxl consists of two modules. The STL-user layer provides
external memory sorting, external memory stack, external memory priority
queue, etc. which have (almost) the same interfaces (including syntax and
semantics) as their STL counterparts. The Streaming layer provides efficient
support for pipelining external memory algorithms. Many external memory
algorithms, implemented using this layer, can save a factor of 2–3 in I/Os.
For example, the algorithms for external memory suffix array construction
implemented with this module [DMKS05] require only 1/3 of the number
of I/Os which must be performed by implementations that use conventional
data structures and algorithms (either from Stxxl STL-user layer, LEDA-
SM, or TPIE). The win is due to an efficient interface that couples the input
and the output of the algorithm–components (scans, sorts, etc.). The output
from an algorithm is directly fed into another algorithm as input, without
needing to store it on the disk in-between. This generic pipelining interface
is the first of this kind for external memory algorithms.

32 CHAPTER 3. THE STXXL LIBRARY

3.2 AIO Layer

The purpose of the AIO layer is to provide a unified approach to asynchronous
I/O. The layer hides details of native asynchronous I/O interfaces of an
operating system. Studying the patterns of I/O accesses of external memory
algorithms and data structures, we have identified the following functionality
that should be provided by the AIO layer:

• To issue read and write requests without having to wait for them to be
completed.

• To wait for the completion of a subset of issued I/O requests.

• To wait for the completion of at least one request from a subset of
issued I/O requests.

• To poll the completion status of any I/O request.

• To assign a callback function to an I/O request which is called upon
I/O completion (asynchronous notification of completion status), with
the ability to co-relate callback events with the issued I/O requests.

The AIO layer exposes two user objects: file and request ptr. Together
with the I/O waiting functions wait all, wait any, and poll any they
provide the functionality mentioned above. Using a file object, the user
can submit asynchronous read and asynchronous write requests (methods
file::aread and file::awrite). These methods return a request ptr

object which is used to track the status of the issued request. The AIO
layer functions wait all, wait any, and poll any facilitate tracking a set
of request ptrs. The last parameter of the methods file::aread and
file::awrite is a reference to a callback function object (callback func-
tor). The functor’s operator()(request ptr) method is called when the
I/O request is completed.

As a part of the AIO layer, the Stxxl library provides various I/O perfor-
mance counters (stats class). The class counts the number and the duration
of the performed I/O operations as well as the transferred volume. Read and
write operations are counted separately. Stxxl also measures the time spent
by the processing thread(s) waiting for the completions of I/Os (I/O wait
time). This metric helps to evaluate the degree and the impact of overlapping
between I/O and computation in an application.

Listing 3.1 shows a simple example of how to use AIO objects to perform
asynchronous I/O. All Stxxl library objects are defined in the namespace

3.2. AIO LAYER 33

stxxl. For convenience, in Line 1 we bring all names from the Stxxl

namespace to the local scope. In Line 9 a file object myfile is constructed.
syscall file is an implementation of the Stxxl file interface which uses
UNIX/POSIX read and write system calls to perform I/O. The file named
"storage" in the current directory is opened in read-only mode. In Line 11
an asynchronous read of the 1 MB region of the file starting at position 0 is
issued. The data will be read into the array mybuffer. When the read oper-
ation is completed, my handler::operator() will be called with a pointer to
the completed request. The execution stops at Line 13 waiting for the com-
pletion of the issued read operation. Note that the work done in the function
do something1() is overlapped with reading. When the I/O is finished, one
can process the read buffer (Line 14) and free it (Line 15).

Listing 3.1: Example of how to program with the AIO layer.

1 us ing namespace stxxl ;
2 s t r u c t my_handler { // I /O complet ion handler
3 void operator () (request_ptr ptr) {
4 std : : cout << "Request ’"<< ∗ptr <<"’ completed."

5 <<std : : endl ;
6 }
7 } ;
8 char ∗ mybuffer = new char [1 0 2 4∗ 1 0 2 4] ; // a l l o c a t e 1MB bu f f e r
9 syscall_file myfile ("./storage" , file : : RDONLY) ;

10 request_ptr myreq = myfile . aread (mybuffer , 0 ,
11 1024∗1024 , my_handler ()) ;
12 do_something1 () ; // do something1 () i s over lapped with read ing
13 myreq−>wait () ; //wait f o r read complet ion
14 do_something2(mybuffer) ; // pro ce s s the read bu f f e r
15 de l e t e [] mybuffer ; // f r e e the bu f f e r

3.2.1 AIO Layer Implementations

There are several implementation strategies for the Stxxl AIO layer. Some
asynchronous I/O related APIs (and underlying libraries implementing them)
already exist. The most well known framework is POSIX AIO, which has an
implementation on almost every UNIX/POSIX system. Its disadvantage is
that it has only limited support for I/O completion event mechanism 1. The
Linux AIO kernel side implementation 2 of POSIX AIO does not have this
deficit, but is not portable since it works under Linux only.

1The Linux glibc implementation of POSIX AIO also has a performance drawback.
It launches one user thread for each I/O operation. Stxxl starts one thread for each disk
during the library initialization, avoiding the thread start-up overhead for each I/O.

2http://freshmeat.net/projects/linux-aio/

http://freshmeat.net/projects/linux-aio/

34 CHAPTER 3. THE STXXL LIBRARY

The Stxxl AIO layer follows a different approach. It does not rely on any
asynchronous I/O API. Instead we use synchronous I/O calls running asyn-
chronously in separate threads. For each file there is one read and one write
request queue and one thread. The main thread posts requests (invoking
file::aread and file::awrite methods) to the file queues. The thread
associated with the file executes the requests in FIFO order. This approach
is very flexible and it does not suffer from limitations of native asynchronous
APIs.

Our POSIX implementation of the AIO layer is based on POSIX threads
and supports several Unix file access methods: the syscall method uses
read and write system calls, the mmap method uses memory mapping (mmap
and munmap calls), the sim disk method simulates I/O timings of a hard
disk provided a big internal memory. To avoid superfluous copying of data
between the user and kernel buffer memory, the syscall method has the
option to use unbuffered file system access. These file access methods can
also be used for raw disk I/O, bypassing the file system. In this case, instead
of files, raw device handles are open. The read/write calls using direct
access (O DIRECT option) have shown the best performance under Linux.
The disadvantage of the mmap call is that programs using this method have
less control over I/O: In most operating systems 4 KBytes data pages of a
mmaped file region are brought to the main memory “lazily”, only when they
are accessed for the first time. This means if one mmaps a 100 KBytes block
and touches only the first and the last element of the block then two I/Os
are issued by the operating system. This will slow down many I/O-efficient
algorithms, since for modern disks the seek time is much longer than the
reading of 100 KBytes of contiguous data.

The POSIX implementation does not need to be ported to other UNIX com-
patible systems, since POSIX threads is the standard threading API on all
POSIX-compatible operating systems.

Our Windows implementation is based on Boost threads, whose interfaces
are very similar to POSIX threads.

AIO file and request implementation classes are derived from the generic
file and request interface classes with C++ pure virtual functions. These
functions are specialized for each access method in implementation classes
to define the read, write, wait for I/O completion and other operations. The
desired access method implementation for a file is chosen dynamically at run-
ning time. One can add the support of an additional access method (e.g. for
a DAFS distributed filesystem) just providing classes implementing the file
and request interfaces. We have decided to use the virtual function mech-

3.2. AIO LAYER 35

anism in the AIO layer because this mechanism is very flexible and will not
sacrifice the performance of the library, since the virtual functions of the AIO
layer need to be called only once per large chunk of data (i.e. B bytes). The
inefficiencies of C++ virtual functions are explained in Section 1.5. Similar
to STL, the higher layers of Stxxl do not rely on the running time poly-
morphism with virtual functions to avoid the high per–element penalties.

36 CHAPTER 3. THE STXXL LIBRARY

3.3 BM Layer

As already mentioned above, the BM layer provides an implementation of
the central concept in I/O efficient algorithms and data structures: a block of
elements (typed block object). Besides, it includes a toolbox for allocating,
deallocating, buffered writing, prefetching, and caching of blocks. The ex-
ternal memory manager (object block manager) is responsible for allocating
and deallocating external memory space on disks. The manager supports
four parallel disk allocation strategies: simple striping, fully randomized,
simple randomized [BGV97], and randomized cycling [VH01].

The BM layer also delivers a set of helper classes that efficiently implement
frequently used sequential patterns of interaction with the (parallel disk)
external memory. The optimal parallel disk queued writing [HSV01] is im-
plemented in the buffered writer class. The class operates on blocks. The
buf ostream class is build on top of buffered writer and has a high level
interface, similar to the interface of STL output iterators. Analogously, the
classes block prefetcher and buf istream contain an implementation of
an optimal parallel disk prefetching algorithm [HSV01]. The helper objects
of the BM layer support overlapping between I/O and computation, which
means that they are able to perform I/O in the background, while the user
thread is doing useful computations.

The BM layer views external memory as a set of large AIO files — one for each
disk. We will refer to these files as disks. The other approach would be to map
a related subset of blocks (e. g. those belonging to the same data structure) to
a separate file. This approach has some performance problems. One of them
is that since those (numerous) files are created dynamically, during the run of
the program, the file system allocates the disk space on demand, that might
in turn introduce severe uncontrolled disk space fragmentation. Therefore
we have chosen the “one-large-file-per-disk” approach as our major scheme.
However, the design of our library does not forbid data structures to store
their content in separate user data files (e.g., as an option, stxxl::vector
can be mapped to a user file, see Section 3.4).

The external memory manager (object block manager) is responsible for
allocating and deallocating external memory space on the disks. The
block manager reads information about available disks from the Stxxl con-
figuration file. This file contains the location of each disk file, the sizes of
the disks, and the file access methods for each disk. When allocating a
bunch of blocks, a programmer can specify how the blocks will be assigned
to disks, passing an allocation strategy function object. The block manager

implements the “first-fit” allocation heuristic [BS03]. When an application

3.3. BM LAYER 37

requests several blocks from a disk, the manager tries to allocate the blocks
contiguously. This reduces the bulk access time. On allocation requests, the
block manager returns BID objects – Block IDentifiers. An object of the
type BID describes the physical location of an allocated block, including the
disk and offset of a region of storage on disk. One can load or store the data
that resides at the location given by the BID using asynchronous read and
write methods of a typed block object.

The full signature of the Stxxl “block of elements” class is
typed block<RawSize,T,NRef,InfoType>. The C++ template parameter
RawSize defines the total size of the block in bytes. Since block size is not a
single global constant in Stxxl, a programmer can simultaneously operate
with several block types having different blocks sizes. Such flexibility is often
required for good performance. For example, B+-tree leaves might have a size
different from the size of the internal nodes. We have made the block size
a template parameter and not a member variable for the sake of efficiency.
The values of the template parameters are known to the compiler, therefore
for the power of two values (a very common choice) it can replace many arith-
metic operations, like divisions and multiplications, by more efficient binary
shifts. A critical requirement for many external memory data structures is
that a block must be able to store links to other blocks. An Stxxl block can
store NRef objects of type BID. Additionally, one can equip a block with a
field of the type InfoType, that can hold some per-block information. Block
elements of type T can easily be accessed by the array operator [] and via
random access iterators. The maximum number of elements available a block
depends on the number of links and the sizes of T, InfoType and BID types.
contains a This number is accessible as typed block<...>::size.

In Listing 3.2, we give an example of how to program block I/O using objects
of the BM layer. In Line 2 we define the type of block: its size is one megabyte
and the type of elements is double. The pointer to the only instance of the
singleton object block manager is obtained in Line 5. Line 7 asks the block
manager to allocate 32 blocks in external memory. The new blocks call
writes the allocated BIDs to the output iterator, given by the last parame-
ter. The std::back inserter iterator adapter will insert the output BIDs
at the end of the array bids. The manager assigns blocks to disks in a round-
robin fashion as the striping() strategy suggests. Line 8 allocates 32 inter-
nal memory blocks. The internal memory allocator new alloc<block type>

of Stxxl allocates blocks on a virtual memory page boundary, which is
a requirement for unbuffered file access. Along lines 9–11 the elements of
blocks are filled with some values. Then, the blocks are submitted for writ-
ing (lines 12–13). The request objects are stored in an std::vector for

38 CHAPTER 3. THE STXXL LIBRARY

Listing 3.2: Example of how to program using the BM layer.

1 us ing namespace stxxl ;
2 typede f typed_block<1024∗1024 ,double> block_type ;
3 std : : vector<block_type : : bid_type> bids ; //empty ar ray o f BIDs
4 std : : vector<request_ptr> requests ;
5 block_manager ∗ bm = block_manager : : get_instance () ;
6 bm−>new_blocks<block_type>(32 ,striping () ,
7 std : : back_inserter(bids)) ;
8 std : : vector<block_type , new_alloc<block_type> > blocks (3 2) ;
9 f o r (i n t ii = 0 ; ii < 32 ; ii++)

10 f o r (i n t jj=0; jj < block_type : : size ; jj++)
11 blocks [ii] [jj] = some_value(ii , jj) ;
12 f o r (i n t i = 0 ; i < 32 ; i++)
13 requests . push_back(blocks [i] . write (bids [i])) ;
14 do_something () ; // do something () i s over lapped with wr i t ing
15 //wait un t i l a l l I /Os f i n i s h
16 wait_all(requests . begin () , requests . end ()) ;
17 do_something1(bids . begin () , bids . end ()) ;
18 // d e a l l o c a t e e x t e r na l memory
19 bm−>delete_blocks(bids . begin () , bids . end ()) ;

the further status tracking. As in the AIO example, I/O is overlapped with
computations in the function do something(). After the completion of all
write requests (Line 16) we perform some useful processing with the writ-
ten data (function do something1()). Finally we free the external memory
space occupied by the 32 blocks (Line 19).

3.4. STL -USER LAYER 39

3.4 Stl -User Layer

When we started to develop the library we decided to equip our imple-
mentations of external memory data structures and algorithms with well
known generic interfaces of the Standard Template Library, which is a part
of the C++ standard. This choice would shorten the application develop-
ment times, since the time to learn new interfaces is saved. Porting an
internal memory code that relies on STL would also be easy, since interfaces
of STL-user layer data structures (containers in the STL terminology) and
algorithms have the same syntax and semantics.

We go over the containers currently available in Stxxl.

3.4.1 Vector

The most universal Stxxl container is stxxl::vector. Vector is an array
whose size can vary dynamically. The implementation of stxxl::vector is
similar to the LEDA-SM array [CM99]. The content of a vector is striped
block-wise over the disks, using an assignment strategy given as a template
parameter. Some of the blocks are cached in a vector cache of fixed size (also
a parameter). The replacement of cache blocks is controlled by a specified
page-replacement strategy. Stxxl has implementations of LRU and random
replacement strategies. The user can provide his/her own strategy as well.
The Stxxl vector has STL-compatible Random Access Iterators. One
random access costs O(1) I/Os in the worst case. Sequential scanning of the
vector costs O(1/DB) amortized I/Os per vector element.

3.4.2 Stack

An I/O efficient stack is perhaps the simplest external memory data struc-
ture. Four different implementations of a stack are available in Stxxl. Some
of the implementations (e.g. stxxl::grow shrink stack2) are optimized to
prefetch data ahead and to queue writing, efficiently overlapping I/O and
computation. The amortized I/O complexity for push and pop stack opera-
tions is O(1/DB).

We compare the performance of Stxxl stack with performance of LEDA-
SM and TPIE stacks in a simple test: we insert records to the stacks and
afterwards delete them all. We try 4- and 32-byte records to evaluate different
CPU processing overheads. The used experimental system had a 3.00 GHz
Pentium 4 processor, 1 GB of main memory and a SATA disk dedicated to the

40 CHAPTER 3. THE STXXL LIBRARY

experiments. The measured maximum I/O bandwidth of the hard disk was
72 MB/s for writing and 65 MByte/s for reading. Before the insertion, we
allocated a 768 MByte array and filled it with zeros to prevent this memory
to be used for file system buffering, which would distort the measurements.
This also simulates the memory consumption of other algorithms and data
structures used in a real application. The rest of the memory was used for
buffer blocks for stacks in the libraries and for operating system buffers in the
case of LEDA-SM and TPIE. Stxxl has used its own buffer and prefetching
mechanism. The block size was set to two MBytes. Preliminary experiments
have shown that larger blocks did not help any of the libraries. The LEDA-
SM implementation could only be compiled with the g++ compiler version
2.95. Stxxl and TPIE implementations have been compiled with g++ 3.3.
The compiler optimization level was set to -O3 for both codes.

Figures 3.2–3.5 show the bandwidth achieved in the experiments, which was
computed as n · sizeof(T)/t, where n is the number of elements to in-
sert/delete, T is the data type and t is the time to insert/delete all n ele-
ments. The experiments were conducted on input volumes of 1-8 GBytes.
Since we have only registered insignificant variations, the average bandwidths
are presented. We considered the following stack implementations (from left
to right in Figures 3.2–3.5):

• Stxxl grow shrink stack2 (GS2) using block pools for asynchronous
prefetching and buffering. The name of this stack stems from the ac-
cess pattern it supports with the best efficiency: An empty stack is first
filled with elements up to the maximum number of elements and then
all elements are removed one after another. In the first step the imple-
mentation is operating in the “grow” mode, using a pool of blocks for
buffering the incoming elements. In the second step it is operating in
the “shrink” mode, reading ahead some number of blocks (user-defined
value) using a prefetch block pool. This type of access (or similar) is fre-
quently used in applications, see e.g. Section 4.3. grow shrink stack2

and grow shrink stack1 implementations differ in the usage mode of
the block pools: the former uses pools, shared between (possibly) sev-
eral Stxxl data structures, the latter has an exclusive access to its
own pools.

• Stxxl normal stack is a classical implementation with synchronous
reading and writing,

• LEDA-SM stack implementation,

• TPIE stack implementation using the mmap function for disk access,

3.4. STL -USER LAYER 41

• TPIE stack implementation using standard Unix calls for disk access.

TPIE stack operations on 4-byte elements are CPU-bound as seen in Fig-
ures 3.2 and 3.3. Stxxl stacks have the best bandwidths and achieve 57
MB/s even for this small record size. GS2 stacks perform better than Stxxl

normal stacks because of the better overlapping of I/O and computation.
The LEDA-SM stack performs significantly better than the TPIE stack as
it is probably less CPU-bound, but still its performance is worse than the
performance of the Stxxl stacks, since it does not use direct I/O and relies
on system buffering which incurs superfluous data block copying.

0

5

10

15

20

25

30

35

40

45

50

55

60

STXXL gs2 4 insert

STXXL n 4 insert

LEDA-SM 4 insert

TPIE mmap 4 insert

TPIE ufs 4 insert

M
B

yt
e

/s

Figure 3.2: Inserting 4-byte elements into the stacks.

Experiments with a larger record size (32 bytes) decrease the per-record CPU
overhead (Figures 3.4 and 3.5). This helps TPIE to improve the bandwidth:
almost 37 MByte/s could be achieved for writing. This again indicates that
the TPIE stack is highly CPU-bound. Note that for our system the mmap

access method was not the best for TPIE implementations (but the ufs access
method that is similar to the Stxxl syscall). The TPIE stack achieves the
performance of normal Stxxl in inserting. Stxxl could write the record at
67 MB/s which is 93 % of maximum disk bandwidth.

Figures 3.6 and 3.7 show the results of the above described tests on the
SATAOpteron system (Section 2.4) with one GByte of main memory. The
measured maximum single disk bandwidths were 79 and 59 MByte/s for
writing and reading respectively. We see that almost perfect speedups could

42 CHAPTER 3. THE STXXL LIBRARY

0

5

10

15

20

25

30

35

40

45

50

55

STXXL gs2 4 delete

STXXL n 4 delete

LEDA-SM 4 delete

TPIE mmap 4 delete

TPIE ufs 4 deleteM
B

yt
e
/s

Figure 3.3: Deleting 4-byte elements from the stacks.

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

STXXL gs2 32 insert

STXXL n 32 insert

LEDA-SM 32 insert

TPIE mmap 32 insert

TPIE ufs 32 insert

M
B

yt
e
/s

Figure 3.4: Inserting 32-byte elements into the stacks.

be obtained. Only for the deletions running on four disks the speedup was
about 3.7.

The stack benchmarks underline the advantages of the Stxxl library, which
contribute to the leadership in the performance:

• low CPU overhead,

3.4. STL -USER LAYER 43

0

5

10

15

20

25

30

35

40

45

50

55

STXXL gs2 32 delete

STXXL n 32 delete

LEDA-SM 32 delete

TPIE mmap 32 delete

TPIE ufs 32 delete

M
B

yt
e
/s

Figure 3.5: Deleting 32-byte elements from the stacks.

0

25

50

75

100

125

150

175

200

225

250

275

D=1 gs2 4 insert

D=1 gs2 32 insert

D=2 gs2 4 insert

D=2 gs2 32 insert

D=4 gs2 4 insert

D=4 gs2 32 insert

M
B

yt
e
/s

Figure 3.6: Inserting elements into GS2 stacks (multiple disks).

• use of direct I/O to avoid unneeded data copying,

• use of own prefetching/buffering mechanisms for overlapping I/O and
computation,

• support of parallel disks.

44 CHAPTER 3. THE STXXL LIBRARY

0

10

20

30

40

50

� �70

80

90

100

110

120

130

140

150

160

170

D=1 gs2 4 delete

D=1 gs2 32 delete

D=2 gs2 4 delete

D=2 gs2 32 delete

D=4 gs2 4 delete

D=4 gs2 32 delete

M
B

yt
e
/s

Figure 3.7: Deleting elements from GS2 stacks (multiple disks).

The source code of all stack tests described above is distributed with the
Stxxl library.

3.4.3 Queue

Stxxl also has an implementation of external memory FIFO queue. Its de-
sign is similar to stxxl::grow shrink stack2. The implementation holds
the head and the tail blocks in the main memory. Prefetch and write block
pools might be used to overlap I/O and computation during queue opera-
tions.

3.4.4 Deque

The Stxxl implementation of external memory deque is an adaptor of an
(external memory) vector. This implementation wraps the elements around
the end of the vector circularly. It provides the pop/push operations from/to
the both ends of the deque in O(1/DB) amortized I/Os if parameterized with
a properly configured stxxl::vector.

3.4. STL -USER LAYER 45

3.4.5 Priority Queue

External memory priority queues are the central data structures for many I/O
efficient graph algorithms [Zeh02, CGG+95, MSS03]. The main technique in
these algorithms is time-forward processing [CGG+95, Arg95], easily realiz-
able by an I/O efficient priority queue. I/O efficient priority queues also find
application in large-scale discrete event simulation and online sorting. The
Stxxl implementation of priority queues is based on [San00]. An operation
of this priority queue, called sequence heap, takes O

(

1
B

logM/B(I/B)
)

amor-
tized I/Os, where I is the total number of insertions into the priority queue.
This queue needs less than a third of I/Os used by other similar cache (I/O)
efficient priority queues (e.g. [BCFM00, FJKT97]).

A sequence heap maintains R merge groups G1,. . ., GR where Gi holds up
to k sorted sequences of size up to mki−1, m << M , see Figure 3.8. When
group Gi overflows, all its sequences are merged, and the resulting sequence
is put into group Gi+1. Each group is equipped with a group buffer of size m
to allow batched deletion from the sequences. The smallest elements of these
buffers are deleted in small batches and stored in the deletion buffer. The
elements are first inserted into the insertion priority queue. On deletion, one
checks the minimum elements stored in the insertion priority queue and the
deletion buffer.

The difference of our implementation to [San00] is that a number of larger
merge groups are explicitly kept in external memory. The sorted sequences
in those groups only hold their first blocks in the main memory. The imple-
mentation supports parallel disks and overlaps I/O and computation. As in
[San00], the internal merging is based on loser trees [Knu98]. However, our
implementation does not use sentinel elements.

In the following we compare the performance of the Stxxl priority
queue with the general-purpose array heap implementation of LEDA-SM
[BCFM00]. TPIE does not provide an I/O-efficient priority queue in the
distributed library version. We run the implementation on synthetic inputs
following [BCFM00]. The comparison of the data structures in a real graph
algorithm is presented in Section 4.2, where we implement an I/O-efficient
maximal independent set algorithm.

The first test performs n insertions, followed by n delete-min operations. The
elements inserted are pairs of key data 4-byte integers drawn randomly from
the range [0, 231 − 1]. Figure 3.9 shows the running time of this experiment
running on a system with a 3.00 GHz Pentium 4 processor, 1 GB of main
memory and a SATA disk dedicated to the experiments. The priority queues

46 CHAPTER 3. THE STXXL LIBRARY

Figure 3.8: The structure of Stxxl priority queue.

were given 512 MB of main memory at their disposal, the rest was used by the
Linux operating system for buffering in the case of LEDA-SM and for prefetch
and write pools in the case of Stxxl . The LEDA-SM implementation could
only be compiled with the g++ compiler version 2.95. Stxxl implementation
was compiled with g++ 3.3. The compiler optimization level was set to -O3

for both codes. We have tuned the external memory block size (256 KB) for
LEDA-SM to obtain the best running times for the array heap. However, the
differences in running times with different block sizes were negligible, which is
a symptom of its CPU-boundness. The Stxxl priority queue used 2 MByte
blocks. Note the drop of the LEDA-SM delete curve after n = 223 is not an
artifact of the measurements; it has been also reported in the original study
[BCFM00]. However, we do not devote much attention to the results with
n ≤ 224 since those inputs fit in the internal memory. LEDA-SM containers
cannot hold more than 231 −1 items, therefore we have stopped at input size
n = 2000 · 220, which corresponds to about 16 GByte of data. This input is

3.4. STL -USER LAYER 47

 0

 500

 1000

 1500

 2000

 2500

 3000

232230228226224222220

ns
 p

er
 o

pe
ra

tio
n

n

LEDA-SM insert
LEDA-SM delete

Stxxl insert
Stxxl delete

Figure 3.9: The running time of the insert-all-delete-all test for priority
queues.

 0

 10

 20

 30

 40

 50

 60

232230228226224222220

by
te

s
pe

r
op

er
at

io
n

n

LEDA-SM insert
LEDA-SM delete

Stxxl insert
Stxxl delete

Figure 3.10: The I/O volume of the insert-all-delete-all test for priority
queues.

48 CHAPTER 3. THE STXXL LIBRARY

32 times larger than the main memory size and it is reasonable to be handled
in external memory. The Stxxl priority queue is up to 2.7 times and 3.7
times faster for insertions and deletions respectively. This can be explained
by more expensive CPU work taking place in the LEDA-SM implementation
and also better explicit overlapping of I/O and computation of Stxxl. Note
that LEDA-SM relies on (general purpose) operating system caching and
buffering. The insertion and deletion phases for the Stxxl priority queue
need almost the same number of I/Os for n ≤ 231. The insertion phase has
also the advantage that writing is faster than reading, nonetheless it is almost
two times slower than the deletion phase. This is explained by the higher
CPU work needed for merging and filling the buffers during insertions. The
insertion phase is highly CPU-bound which is confirmed by the I/O-wait
time counter, whose value was close to zero. According to the I/O-wait time
counter, the deletion phase is less CPU-bound. For n ≥ 232 the insertion
phase needs to merge and insert external sequences, which implies more
I/O operations and results in the observed running time escalation. This is
confirmed by Figure 3.10, which also shows that the I/O volume of Stxxl

priority queue is 2–5.5 times smaller than the I/O volume of the LEDA-SM
array heap. This difference has been predicted in the original paper [San00].

Figure 3.11 presents the running times of another synthetic test: we insert n
random elements into the priority queues and then measure the running time
of n operations: We insert a random pair with probability 1

3
and delete the

minimum with probability 2
3
. The behavior of the LEDA-SM curve is similar

to the deletions. The Stxxl curve has two steps: The first step occurs when
the internal sequences have to be merged and put into the external memory
for the first time (n = 225), the next step happens at n = 231 when sequences
from the first external merger have to be merged and put into a sequence
of the second external merger for the first time (see Figure 3.12). These
steps are hardly seen in Figure 3.9 (insertions) because of the different access
pattern and amortization (n versus 4n

3
insertions).

Figures 3.13, 3.14 and 3.15 show the results of the above described tests on a
system with a 2.0 GHz Opteron Dual-Core Processor and one GByte of main
memory and four IDE hard disks (SATAOpteron system from Section 2.4).
We could not run LEDA-SM since it compiles only with the old g++ 2.95

compiler, available only for 32-bit architectures. One can see that insertions
are highly CPU-bound till n = 231 and cannot benefit from disk parallelism
(we ran the implementation on 1,2 and 4 identical independent disks). Also,
for larger inputs, where large external sequences have to be merged more
frequently, we could not achieve a speedup larger than 1.4 for four disks,
because of the CPU-boundness. The delete operation is less CPU-expensive,

3.4. STL -USER LAYER 49

 0

 500

 1000

 1500

 2000

 2500

232230228226224222220

ns
 p

er
 o

pe
ra

tio
n

n

LEDA-SM
Stxxl

Figure 3.11: The running times of intermixed insertions with deletions (pri-
ority queues).

 0

 10

 20

 30

 40

 50

232230228226224222220

by
te

s
pe

r
op

er
at

io
n

n

LEDA-SM
Stxxl

Figure 3.12: The I/O volume of intermixed insertions with deletions (priority
queues).

50 CHAPTER 3. THE STXXL LIBRARY

therefore we can already see a small speedup for n ≥ 227 (Figure 3.14). The
steps in the running time in Figure 3.15 are more prominent compared to
Figure 3.11 because the I/O plays a greater role on the faster 64-bit Opteron
CPU.

 0

 100

 200

 300

 400

 500

 600

 700

234232230228226224222220

ns
 p

er
 o

pe
ra

tio
n

n

Stxxl insert D=1
Stxxl insert D=2
Stxxl insert D=4

Figure 3.13: Insertions (priority queue with multiple disks).

 0

 50

 100

 150

 200

 250

234232230228226224222220

ns
 p

er
 o

pe
ra

tio
n

n

Stxxl delete D=1
Stxxl delete D=2
Stxxl delete D=4

Figure 3.14: Deletions (priority queue with multiple disks).

3.4. STL -USER LAYER 51

 0

 100

 200

 300

 400

 500

234232230228226224222220

ns
 p

er
 o

pe
ra

tio
n

n

Stxxl intermixed D=1
Stxxl intermixed D=2
Stxxl intermixed D=4

Figure 3.15: Intermixed insertions and deletions (priority queue with multiple
disks).

3.4.6 Map

map is an STL interface for search trees with unique keys. Our implementa-
tion of map is a variant of a B+-tree data structure [BM72] supporting the
operations insert, erase, find, lower bound and upper bound in optimal
O(logB(n)) I/Os. Operations of map use iterators to refer to the elements
stored in the container, e.g. find and insert return an iterator pointing to
the data. Iterators are used for range queries: an iterator pointing to the
smallest element in the range is returned by lower bound, the element which
is next to the maximum element in the range is returned by upper bound.
Scanning through the elements of the query can be done by using operator++

or operator-- of the obtained iterators in O(R/B) I/Os, where R is the
number of elements in the result. Our current implementation does not ex-
ploit disk parallelism. The flexibility of the iterator-based access has some
circumstances for an external memory implementation: iterators must re-
turn correct data after reorganizations in the data structure even when the
pointed data is moved to a different external memory block.

The way how iterators are used for accessing a map is similar to the use
of database cursors [OBS99]. Stxxl is the first C++ template library
that provides an I/O-efficient search tree implementation with iterator-based
access.

52 CHAPTER 3. THE STXXL LIBRARY

In the following we briefly describe the architecture of the Stxxl B+-tree
implementation. A simplified UML class diagram of the implementation is
depicted in Figure 3.16. Our design allows to use different implementations
for leaves and (internal) nodes. For example, leaves could be represented
internally as sparse arrays [BDIW02] (currently, only the classic sorted array
implementation is available). Leaves and nodes can have different external
memory block sizes. Each leaf has links to the predecessor and successor
leaves to speed up scanning. Our B+-tree is able to prefetch the neighbor
leaves when scanning, obtaining a higher bandwidth by overlapping I/O and
computation. The root node is always kept in the main memory and im-
plemented as an std::map. To save I/Os, the most frequently used nodes
and leaves are cached in corresponding node and leaf caches that are im-
plemented in a single template class. An iterator keeps the block identifier
(BID) of the external block where the pointed data element is contained,
the offset of the data element in the block and a pointer to the B+-tree. In
case of reorganizations of the data in external memory blocks (rebalancing,
splitting, fusing blocks), all iterators pointing to the moved data have to be
updated. For this purpose, the addresses of all instantiated iterators are kept
in the iterator map object. The iterator map facilitates fast accounting of
iterators, mapping BID and block offsets of iterators to its main memory
addresses using an internal memory search tree. Therefore, the number of
“alive” B+-tree iterators must be kept reasonably small. The parent pointers
in leaves and nodes can be useful for finger search 3 and insertions using a
finger, however, that would require to store the whole B-tree path in the
iterator data structure. This might make the iterator accounting very slow,
therefore we do not maintain the parent links. The implementation can save
I/Os when const iterators are used: no flushing of supposedly changed
data is needed (e. g. when scanning or doing other read-only operations).
Our implementation of B+-tree supports bulk bottom-up construction from
the presorted data given by an iterator range in O(n/B) I/Os.

We have compared the performance of our B+-tree implementation with the
performance of the Berkeley DB B+-tree (BDB) implementation version 4.4
[OBS00], which is a commercial product. This implementation is known
to be one of the fastest implementations available. We also measured the
performance of the TPIE 4 B+-tree implementation, but not the LEDA-
SM implementation because it does not support predecessor/successor and
range queries. For the experiments we used the SATAOpteron machine (Sec-

3The program can help the search tree finding an element by giving some “position
close by” which was determined by an earlier search.

4Version from 19.09.2005

3.
4.

S
T

L
-U

S
E
R

L
A
Y

E
R

5
3 B T r e e� h e i g h t : i n t+ i n s e r t (v : V a l u e) : I t e r a t o r+ e r a s e (k : K e y) : i n t+ f i n d (k : K e y) : I t e r a t o r+ l o w e r _ b o u n d (k : K e y) : I t e r a t o r

N o d e� m e : B I D� s i z e : i n t+ f i n d (k : K e y , h : i n t) : I t e r a t o r+ l o w e r _ b o u n d (k : K e y , h : i n t) : I t e r a t o r+ i n s e r t (v : V a l u e , h : i n t , o u t s : S p l i t t e r) : I t e r a t o r+ e r a s e (k : K e y , h : i n t)

L e a f� m e : B I D� p r e d : B I D� s u c c : B I D� s i z e : i n t+ f i n d (k : K e y) : I t e r a t o r+ i n c r e m e n t (i n o u t i : I t e r a t o r)+ d e c r e m e n t (i n o u t i : I t e r a t o r)+ l o w e r _ b o u n d (k : K e y) : I t e r a t o r+ i n s e r t (v : V a l u e , o u t s : S p l i t t e r) : I t e r a t o r+ e r a s e (k : K e y)

N o d e C a c h e� n o d e s : A r r a y� B I D 2 i n t : M a p� p a g e r : P a g e r� f r e e N o d e s : L i s t+ g e t N o d e (b : B I D) : N o d e+ g e t N e w N o d e (o u t b : B I D) : L e a f+ d e l e t e L e a f (b : B I D)+ f i x N o d e (b : B I D)+ u n f i x N o d e (b : B I D)

L e a f C a c h e+ g e t L e a f (b : B I D) : L e a f+ p r e f e t c h (b : B I D)+ g e t N e w L e a f (o u t b : B I D) : L e a f+ d e l e t e L e a f (b : B I D)

R o o t N o d e+ i n s e r t (k : K e y , b : B I D)+ e r a s e (k : K e y)+ f i n d (k : K e y) : B I DI t e r a t o r M a p+ r e g i s t e r (i : I t e r a t o r)+ u n r e g i s t e r (i : I t e r a t o r)+ f i n d (b : B I D , p o s : i n t) : I t e r a t o r
I t e r a t o r+ I t e r a t o r ()# I t e r a t o r (i m : I t e r a t o r M a p , b : B I D , o : i n t)

S p l i t t e r� k : K e y� b : B I D

Figure 3.16: The simplified UML class diagram of the B+-tree implementation.

54 CHAPTER 3. THE STXXL LIBRARY

tion 2.4) using one GByte of main memory. Each implementation used a
separate hard disk for storing its external memory back file. Stxxl map
and TPIE have used a cache of 750 MBytes and BDB’s cache was slightly
less because it has used more memory than the given cache size 5. The block
size was set to 32 KBytes for all implementations.

The B+-trees indexed records with eight character random keys (letters ’a’-
’z’) and 32 bytes data field. First, B+-trees have been constructed from a
sorted set of n records. To make the comparison fair we configured BDB to
store records with unique keys, since the map interface does keep multiple
records with equal keys. Stxxl map supports the bottom up bulk con-
struction from a sorted range of iterators. TPIE B+-tree supports the bulk
construction from a pre-sorted TPIE stream of data which must reside on a
hard disk (AMI STREAM). According to the Berkeley DB support team, BDB
lacks the bulk load capability, therefore we had to insert the records one by
one in ascending order. This insertion pattern leads to nearly 100 % cache
hits and produces a BDB B+-tree with a fill factor of about 100 % in the
leaves. The stxxl::map and the TPIE bulk construction were configured to
achieve the 100 % fill factor, too. Figure 3.17 shows the construction time
without the pre-sorting. In this test, Stxxl map is about three times faster
than BDB. The obvious reason for this is that BDB has to do many searches
in the leaves and nodes to find an appropriate place to insert, and thus is
highly CPU bound. Stxxl map bulk construction performs only a small
constant number of operations per input element. The TPIE bulk construc-
tion was up to 70 % slower than the construction of the stxxl::map, because,
in fact, it repeatedly inserts all input elements into the leaves doing a binary
search of the place to insert them into the last leaf over and over from the
scratch. This inefficiency makes the construction more CPU-bound.

After the construction of the base element set index we generated 100,000
random records and inserted them. The running times of this experiment
are shown in Figure 3.18. For large inputs one has to load up to two leaves
and flush up to three leaves per insertion since the leaves are full after the
construction and they need to be split. Note that the links between the
leaves must be updated, too. This can explain the long 25 ms of the Stxxl

and TPIE B+-trees since a random access to this hard disk takes up to 8 ms
on average according to its specifications paper. BDB is about 30% faster
for large inputs; this advantage could to some extent be due to the adap-
tive compression of sequences of keys with the same prefix, an optimization
exploited in the recent versions of BDB. Another reason would be a highly

5The BDB process has been killed by an out-of-memory exception when run with 750
MByte cache. Therefore we had to reduce the cache size.

3.4. STL -USER LAYER 55

 0

 1

 2

 3

 4

 5

229228227226225224223

µs
 p

er
 in

pu
t r

ec
or

d

n

BDB btree
TPIE btree
stxxl::map

Figure 3.17: The running times of B+-tree construction.

tuned node/leaf splitting strategy of BDB [OBS00].

 0

 5000

 10000

 15000

 20000

 25000

 30000

229228227226225224223

µs
 p

er
 in

se
rt

io
n

n

BDB btree
TPIE btree
stxxl::map

Figure 3.18: The running times of B+-tree insertions.

The next test (Figure 3.19) is run after the insertions and performs 100,000
random locate queries of the smallest record that is not smaller than the
given key. For large inputs, in almost every locate query, a random leaf has
to be loaded. This is the reason of the observed latency of 10–13 ms. BDB
is faster again, but the advantage is smaller here (below 20 %). The Stxxl

B+-tree is slightly faster than the TPIE B+-tree.

56 CHAPTER 3. THE STXXL LIBRARY

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

229228227226225224223

µs
 p

er
 lo

ca
te

n

BDB btree
TPIE btree
stxxl::map

Figure 3.19: The running times of B+-tree locates.

Figure 3.20 (left) shows the running time of random range queries with scan-
ning. We sample the possible ranges uniformly at random and scan the
obtained ranges until about n records are scanned after all queries. This way
only 3–5 queries suffice. In order to explain the trends in the running times
we have drawn Figure 3.20 (right) that shows the leaf space overuse factor
computed as number of leaves·B

(n+a)·size of record
before this test, where B = 32 KBytes is the

block size and a = 100, 000 is the number of the additional records inserted.
This metric shows how inefficiently the leaves are filled with data. After the
bulk construction the overuse factor is very close to 1 for the Stxxl and
BDB implementations. We could not generate such statistic for the TPIE
B+-tree since it does not offer the required counters. Adding the 100,000 ran-
dom elements to small inputs worsens the overuse factor: For stxxl::map,
it almost reaches 2, and for BDB it is larger than 2.5. This difference plays
a big role in the ratio of the records that can be kept in the memory for
n = 223. Stxxl can keep almost the whole data set, and thus the scanning
time is very small. For larger inputs n ≥ 224 only a small fraction of the in-
put can reside in the main memory for the implementations. This increases
the scanning time significantly, because many leaves have to be loaded and
flushed from/to the hard disk. However, the overuse factor of Stxxl is still
considerably smaller for n = 224. This contributes to a speedup about 2 over
the BDB. In the middle region, all data structures are equally fast and the
overuse factor is about the same. For the largest inputs, the Stxxl map
has again a small advantage of about 20 % in scanning speed due to the
better leaf fill factor and perhaps due to the better overlapping of I/O and

3.4. STL -USER LAYER 57

 0

 2

 4

 6

 8

 10

 12

 14

229228227226225224223

µs
 p

er
 s

ca
nn

ed
 r

ec
or

d

n

BDB btree
TPIE btree
stxxl::map

 0

 0.5

 1

 1.5

 2

 2.5

 3

229228227226225224223

ov
er

us
e

fa
ct

or

n

BDB btree
stxxl::map

Figure 3.20: The running times of B+-tree range queries with scanning (left).
The space overuse factor in leaves of B+-tree (right).

computation. The latter might also be the reason of the small advantage of
the Stxxl B+-tree over the TPIE B+-tree for n ≥ 226.

After the tests described above we delete the 100,000 records inserted after
the bulk construction from the B+-trees. Here, we need to load and store
one leaf for almost every delete operation. Fusing and rebalancing of leaves
and nodes should not occur frequently. Again, the BDB is faster by about
18 % for large inputs (Figure 3.21). For n ≥ 226 the delete time of the TPIE
B+-tree goes down and approaches the time of the BDB B+-tree. This trend
remains unexplained.

The source code of all B+-tree tests described above is distributed with the
Stxxl library.

 0

 5000

 10000

 15000

 20000

 25000

229228227226225224223

µs
 p

er
 d

el
et

io
n

n

BDB btree
TPIE btree
stxxl::map

Figure 3.21: The running times of B+-tree deletions.

58 CHAPTER 3. THE STXXL LIBRARY

Listing 3.3: Locates with the Berkeley DB.

1 s t r u c t my_key { char keybuf [KEY_SIZE] ; } ;
2 s t r u c t my_data { char databuf [DATA_SIZE] ; } ;
3
4 Dbc ∗cursorp ; // data base cur so r
5 // db i s the BDB B−t r e e ob j e c t
6 db . cursor (NULL , &cursorp , 0) ; // i n i t i a l i z e cur so r
7
8 f o r (int64 i = 0 ; i < n_locates ; ++i)
9 {

10 rand_key(key_storage) ; // generate random key
11 // i n i t i a l i z e BDB key ob je c t f o r s t o r i n g the r e s u l t key
12 Dbt keyx (key_storage . keybuf , KEY_SIZE) ;
13 // i n i t i a l i z e BDB key ob je c t f o r s t o r i n g the r e s u l t data
14 Dbt datax (data_storage . databuf , DATA_SIZE) ;
15 cursorp−>get(&keyx , &datax , DB_SET_RANGE) ; // perform l o c a t e
16 }

Discussion: The tests have shown that the Stxxl map is somewhat slower
than the BDB in insert, locate and delete operations. These operations
have been highly tuned in commercial BDB implementations over the last
15 years of development [OBS00]. However, an advantage of Stxxl is that
it can do fast bulk construction, which is not available in BDB. The speed of
scanning of the records in a range is competitive with the BDB. Just looking
at the code of the benchmark above, one sees an advantage of the Stxxl

map that has little to do with the execution speed, but is very important in
the software development: the expressiveness and compactness of the STL
interface. The BDB has been implemented in C, and the C++ interface of
the BDB is very similar to the original C interface: BDB methods operate on
pointers to user allocated data buffers, there is no use of advanced features of
C++ like templates. Pieces of code testing random locates are presented in
Listings 3.3 and 3.4 to demonstrate the difference in interfaces. The complete
code of the Stxxl map test is about two times shorter than the equivalent
BDB test code.

3.4.7 General Issues Concerning Stxxl Containers

Similar to other external memory algorithm libraries [CM99, ABH+03],
Stxxl has the restriction that the data types stored in the containers can-
not have C/C++ pointers or references to other elements of external memory
containers. The reason is that these pointers and references get invalidated

3.4. STL -USER LAYER 59

Listing 3.4: Locates with the Stxxl map.

1 s t r u c t my_key { char keybuf [KEY_SIZE] ; } ;
2 s t r u c t my_data { char databuf [DATA_SIZE] ; } ;
3
4 std : : pair<my_key , my_data> element ; // key−data pa i r
5
6 f o r (i = 0 ; i < n_locates ; ++i)
7 {
8 rand_key(i , element . first) ; // generate random key
9 // CMap i s a constant r e f e r e n c e to a map ob je c t

10 map_type : : const_iterator result = // perform l o c a t e
11 CMap . lower_bound(element . first) ;
12 }

when the blocks containing the elements they point/refer to are written to
disk. To get around this problem, the links can be kept in the form of ex-
ternal memory iterators (e.g. stxxl::vector::iterator). The iterators
remain valid while storing to and loading from the external memory. When
dereferencing an external memory iterator, the pointed object is loaded from
external memory by the library on demand (if the object is not in the cache
of the data structure already).

Stxxl containers differ from STL containers in treating allocation and dis-
tinguishing between uninitialized and initialized memory. Stxxl containers
assume that the data types they store are plain old data types (POD) 6. The
constructors and destructors of the contained data types are not called when a
container changes its size. The support of constructors and destructors would
imply a significant I/O cost penalty, e.g. on the deallocation of a non-empty
container, one has to load all contained objects and call their destructors.
This restriction sounds more severe than it is, since external memory data
structures cannot cope with custom dynamic memory management anyway,
which is the common use of custom constructors/destructors. However, we
plan to implement special versions of Stxxl containers which will support
not only PODs, and handle construction/destruction appropriately.

6Plain old data structures (PODs) are data structures represented only as passive
collections of field values, without using aggregation of variable-size objects (as references
or pointers), polymorphism, virtual calls or other object-oriented features. Most naturally
they are represented as C/C++ structs.

60 CHAPTER 3. THE STXXL LIBRARY

3.4.8 Algorithms

The algorithms of the STL can be divided into two groups by their memory
access pattern: scanning algorithms and random access algorithms.

Scanning Algorithms

Scanning algorithms work with Input, Output, Forward, and Bidirectional it-
erators only. Since random access operations are not allowed with these kinds
of iterators, the algorithms inherently exhibit a strong spatial locality of ref-
erence. efficient. Stxxl containers and their iterators are STL-compatible,
therefore one can directly apply STL scanning algorithms to them, and they
will run I/O-efficiently (see the use of std::generate and std::unique al-
gorithms in the Listing 3.6). Scanning algorithms are the majority of the
STL algorithms (62 out of 71). Stxxl also offers specialized implemen-
tations of some scanning algorithms (stxxl::for each, stxxl::generate,
etc.), which perform better in terms of constant factors in the I/O volume
and internal CPU work. These implementations benefit from accessing lower
level interfaces of the BM layer instead of using iterator interfaces, resulting
in a smaller CPU overhead. Being aware of the sequential access pattern of
the applied algorithm, the Stxxl implementations can do prefetching and
use queued writing, thereby leading to the overlapping of I/O with compu-
tation.

Random Access Algorithms

Random access algorithms require random access iterators, hence may per-
form (many) random I/Os 7. For such algorithms, Stxxl provides special-
ized I/O efficient implementations that work with STL-user layer external
memory containers. Currently, the library provides two implementations of
sorting: an std::sort-like sorting routine – stxxl::sort, and a sorter that
exploits integer keys – stxxl::ksort. Both sorters are implementations of
parallel disk algorithms described in Section 3.5.

Listing 3.6 shows how to program using the STL-user layer and how Stxxl

containers can be used together with both Stxxl algorithms and STL algo-
rithms. The definitions of the classes edge, random edge and edge cmp are
in Listing 3.5. The purpose of our example is to generate a huge random

7 The std::nth element algorithm is an exception. It needs O(scan(n)) I/Os on
average.

3.4. STL -USER LAYER 61

Listing 3.5: Definitions of classes.

1 s t r u c t edge { // edge c l a s s
2 i n t src , dst ; // nodes
3 edge () {}
4 edge (i n t src_ , i n t dst_) : src (src_) , dst (dst_) {}
5 bool operator == (const edge & b) const {
6 return src == b . src && dst == b . dst ;
7 }
8 } ;
9 s t r u c t random_edge { // random edge gene ra to r func to r

10 edge operator () () const {
11 edge Edge (random ()−1 ,random () −1);
12 whi l e (Edge . dst == Edge . src)
13 Edge . dst = random () − 1 ; //no s e l f −l o ops
14 return Edge ;
15 }
16 } ;
17 s t r u c t edge_cmp { // edge comparison func to r
18 edge min_value () const {
19 return edge (std : : numeric_limits<int > : :min () , 0) ; } ;
20 edge max_value () const {
21 return edge (std : : numeric_limits<int > : :max () , 0) ; } ;
22 bool operator () (const edge & a ,
23 const edge & b) const {
24 return a . src < b . src | |
25 (a . src == b . src && a . dst < b . dst) ;
26 }
27 } ;

62 CHAPTER 3. THE STXXL LIBRARY

Listing 3.6: Generating a random graph using the STL-user layer.

1 stxxl : : vector<edge> ExtEdgeVec(10000000000ULL) ;
2 std : : generate(ExtEdgeVec . begin () , ExtEdgeVec . end () ,
3 random_edge ()) ;
4 stxxl : : sort (ExtEdgeVec . begin () , ExtEdgeVec . end () , edge_cmp () ,
5 512∗1024∗1024) ;
6 stxxl : : vector<edge> : : iterator NewEnd =
7 std : : unique (ExtEdgeVec . begin () , ExtEdgeVec . end ()) ;
8 ExtEdgeVec . resize (NewEnd − ExtEdgeVec . begin ()) ;

directed graph in a sorted edge array representation, i. e. the edges in the
edge array must be sorted lexicographically. A straightforward procedure to
do this is to: 1) generate a sequence of random edges, 2) sort the sequence,
3) remove duplicate edges from it. If we ignore definitions of helper classes
the STL/Stxxl code of the algorithm implementation is only five lines long:
Line 1 creates an Stxxl external memory vector with 10 billion edges. Line 3
fills the vector with random edges (generate from the STL is used). In the
next line the Stxxl external memory sorter sorts randomly generated edges
using 512 megabytes of internal memory. The lexicographical order is defined
by functor my cmp, stxxl::sort also requires the comparison functor to pro-
vide upper and lower bounds for the elements being sorted. Line 7 deletes
duplicate edges in the external memory vector with the help of the STL
unique algorithm. The NewEnd vector iterator points to the right boundary
of the range without duplicates. Finally (in Line 8), we chop the vector at
the NewEnd boundary. Now we count the number of I/Os performed by this
example: external vector construction takes no I/Os; filling with random val-
ues requires a scan — N/DB I/Os; sorting will take 4N/DB I/Os; duplicate
removal needs no more than 2N/DB I/Os; chopping a vector is I/O-free.
The total number of I/Os is 7N/DB.

3.5 Parallel Disk Sorting

The development of Stxxl has been started with sorting, because it is the
fundamental tool for I/O-efficient processing of large data sets. Chapters 4
and 5 contain numerous examples for this fact. Therefore, an efficient imple-
mentation of sorting largely defines the performance of an external memory
software library as a whole. To achieve the best performance our implementa-
tion [DS03] uses parallel disks, has an optimal I/O volume O

(

N
DB

logM/B
N
B

)

(that matches the lower bound), and guarantees almost perfect overlap be-

3.5. PARALLEL DISK SORTING 63

tween I/O and computation.

No previous implementation has all these properties, which are needed for a
good practical sorting. LEDA-SM [CM99] and TPIE [APV02] concentrate
on single disk implementations. For the overlapping of I/O and computation
they rely on prefetching and caching provided by the operating system, which
is suboptimal since the system knows little about the application’s access
pattern.

Barve and Vitter implemented a parallel disk algorithm [BGV97] that can be
viewed as the immediate ancestor of our algorithm. Innovations with respect
to our sorting are: A different allocation strategy that enables better theoret-
ical I/O bounds [HSV01, KV01]; a prefetching algorithm that optimizes the
number of I/O steps and never evicts data previously fetched; overlapping of
I/O and computation; a completely asynchronous implementation that re-
acts flexibly to fluctuations in disk speeds; and an implementation that sorts
many GBytes and does not have to limit internal memory size artificially to
obtain a nontrivial number of runs. Additionally, our implementation is not
a prototype, it has a generic interface and is a part of the software library
Stxxl.

Algorithms in [Raj98, CC02, CCW01] have the theoretical advantage of being
deterministic. However, they need three passes over data even for not too
large inputs.

Prefetch buffers for disk load balancing and overlapping of I/O and com-
putation have been intensively studied for external memory merge sort
[PV92, CFKL96, AGL98, HSV01, KV01, KK00]. But we have not seen re-
sults that guarantee overlapping of I/O and computation during the parallel
disk merging of arbitrary runs.

There are many good practical implementations of sorting (e.g. [NBC+94,
Aga96, NKG00, Wyl99]) that address parallel disks, overlapping of I/O and
computation, and have a low internal overhead. However, we are not aware of
fast implementations that give theoretical performance guarantees on achiev-
ing asymptotically optimal I/O. Most practical implementations use a form
of striping that requires Ω(N

DB
logΘ(M

DB
)

N
B

) I/Os rather than the optimal

Θ(N
DB

logΘ(M/B)
N
B

). This difference is usually considered insignificant for
practical purposes. However, already on our experimental system we have
to go somewhat below the block sizes that give the best performance in Fig-
ure 3.31 if the input size is 128 GBytes. Another reduction of the block size
by a factor of eight (we have eight disks) could increase the run time sig-
nificantly. We are also not aware of high performance implementations that

64 CHAPTER 3. THE STXXL LIBRARY

guarantee overlap of I/O and computation during merging for inputs such as
the one described in Section 3.5.1.

On the other hand, many of the practical merits of our implementation are
at least comparable with the best current implementations: We are close to
the peak performance of our system.

The Sort Benchmark competition [Gra] is held yearly and includes several
categories; some of them define restrictions on the cost of the hardware used
for sorting. In the “Terabyte” category, the goal is to sort quickly a terabyte
of data. As this benchmark type is not limited by the hardware costs, dis-
tributed memory sorting algorithms running on expensive clusters with SAN
disks win. Distributed memory sorters also lead in the “Minute” category
which asks to sort as much data as possible in a minute. In the “Penny” cate-
gory the cost of the hardware is spread over three years. Then, it is measured
how much data can be sorted in an interval of time that costs one US-cent.
Competition participants are responsible for the choice of their hardware.
Each category has two subcategories: Daytona (for general-purpose sorting)
and Indy (sort 100-byte records with 10-byte random keys).

The most interesting category for us is the “Penny” category because it ad-
dresses the cost-efficiency aspect of sorting, and it turns out that the cheapest
way to sort is to use an I/O-efficient sorting. All winners in this category
since the announcement in 1998 were external memory sorters. We overview
the past “Penny sort” winners [Gra]. The NTSort (won Indy in 1998) is a
command line sorting utility of Windows NT implementing multi-way merge
sort. The implementation adopted for the competition relied on direct un-
buffered I/O, but used no overlapping between I/O and computation. Post-
manSort (Daytona winner in 1998 and 2005) is a commercial sorting utility;
it is a variant of the bucket sort. The recent version utilizes asynchronous
I/O of Windows to overlap I/O and computation. HMSort (winner in 1999
and 2000) also exploits overlapping of I/O and computation, however, other
details about the algorithm are not published. DMSort (Indy 2002) is based
on the most-significant byte radix sort. The implementation works with two
disks: The input data elements are read from the first disk and distributed
to the bins on the second disk, explicitly overlapping I/O and computa-
tion. The second phase reads the bins from the second disk, sorts them, and
writes the sorted result to the first disk in an overlapped fashion. Only few
algorithmic details of THSort (Daytona 2004), Sheenksort (Indy 2004, 2005)
and Byte-Split-Index Sort (Daytona 2006) are published. The authors of
the THSort, SheenkSort and Byte-Split-Index have used systems with four
disks. The GpuTeraSort (Indy 2006) [GGKM05] uses a graphic processing
unit (GPU) for internal sorting, mapping a bitonic sorting network to GPU

3.5. PARALLEL DISK SORTING 65

rasterization operations and using the GPUs programmable hardware and
high bandwidth memory interface. The implementation accesses the files
directly and explictly overlaps I/O and computation. To achieve a higher
I/O-bandwidth, a RAID-0 has been used.

We have participated in the “Penny” sort competition in 2003 with an earlier
variant of the implementation presented below. We took the second place,
sorting 25 GBytes in our time budget. We would have been be very close to
the winner’s value of 40 GBytes if we had been more lucky with the choice of
hardware: Our more expensive system ran with errors at the full speed, we
also have overlooked the fast (and cheap) hard disks used by our opponents,
because the manufacturer did not bother to specify their characteristics. The
“Penny sort” external sorters mentioned above are very impressive pieces of
engineering. However, these algorithms and implementations do not give
theoretical guarantees of the performance, including the overlapping of I/O
and computation and the optimal use of parallel disks.

3.5.1 Multi-way Merge Sort with Overlapped I/Os

Perhaps the most widely used external memory sorting algorithm is k-way
merge sort: During run formation, chunks of Θ(M) elements are read, sorted
internally, and written back to the disk as sorted runs. The runs are then
merged into larger runs until only a single run is left. k = O(M/B) runs
can be sorted in a single pass by keeping up to B of the smallest elements of
each run in internal memory. Using randomization, prediction of the order in
which blocks are accessed, a prefetch buffer of O(D) blocks, and an optimal
prefetching strategy, it is possible to implement k-way merging using D disks
in a load balanced way [HSV01]. However, the rate at which new blocks are
requested is more difficult to predict so that this algorithm does not guarantee
overlapping of I/O and computation. In this section, we derive a parallel disk
algorithm that compensates these fluctuations in the block request rate by a
FIFO buffer of k + Θ(D) blocks.

Run Formation

There are many ways to overlap I/O and run formation. We start with a
very simple method that treats internal sorting as a black box and therefore
can use the fastest available internal sorters. Two threads cooperate to build
k runs of size M/2:

66 CHAPTER 3. THE STXXL LIBRARY

post a read request for runs 1 and 2

thread A: | thread B:

for r:=1 to k do | for r:=1 to k-2 do

wait until | wait until

run r is read | run r is written

sort run r | post a read for run r+2

post a write for run r |

Figure 3.22 illustrates how I/O and computation is overlapped by this al-
gorithm. Formalizing this figure, we can prove that using this approach an
input of size N can be transformed into sorted runs of size M/2−O(DB) in
time max(2Tsort(M/2)N/M, 2LN

DB
) +O

(

LM
DB

)

, where Tsort(x) denotes the time
for sorting x elements internally and where L is the time needed for a parallel
I/O step.

In [DS03] one can find an algorithm which generates longer runs of average
length 2M and overlaps I/O and computation.

Multi-way Merging

We want to merge k sorted sequences comprising N ′ elements stored in N ′/B
blocks (In practical situations, where a single merging phase suffices, we will
have N ′ = N). In each iteration, the merging thread chooses the smallest
remaining element from the k sequences and hands it over to the I/O thread.
Prediction of read operations is based on the observation that the merging
thread does not need to access a block until its smallest element becomes

sort

read

write

1 2

2

2

1

1

3

3

3

4

4

4

k−1

k−1

k−1

k

k

k

...

...

...

compute
bound
case

I/O
bound
case

time

control flow in thread A

sort

read

write

1

1

1

2

2

3

2

3

3

4

4

4

...

...

...

k−1

k−1

k−1

k

k

k

control flow in thread B

Figure 3.22: Overlapping I/O and computation during run formation.

3.5. PARALLEL DISK SORTING 67

the smallest unread element. We therefore record the smallest keys of each
block during run formation. By merging the resulting k sequences of smallest
elements, we can produce a sequence σ of block identifiers that indicates the
exact order in which blocks are logically read by the merging thread. The
overhead for producing and storing the prediction data structure is negligible
because its size is a factor at least B smaller than the input.

The prediction sequence σ is used as follows. The merging thread maintains
the invariant that it always buffers the k first blocks in σ that contain uns-
elected elements, i.e., initially, the first k blocks from σ are read into these
merge buffers. When the last element of a merge buffer block is selected, the
now empty buffer frame is returned to the I/O thread and the next block in
σ is read.

The keys of the smallest elements in each buffer block are kept in a tourna-
ment tree data structure [Knu98] so that the currently smallest element can
be selected in time O(log k). Hence, the total internal work for merging is
O(N ′ log k).

We have now defined multi-way merging from the point of view of the sort-
ing algorithm. Our approach to merging slightly deviates from previous
approaches that keep track of the run numbers of the merge blocks and
pre-assign each merge block to the corresponding input sequence. In these
approaches also the last key in the previous block decides about the position
of a block in σ. The correctness of our approach is shown in [DS03]. With
respect to performance, both approaches should be similar. Our approach is
somewhat simpler, however — note that the merging thread does not need
to know anything about the k input runs and how they are allocated. Its
only input is the prediction sequence σ. In a sense, we are merging individual
blocks and the order in σ makes sure that the overall effect is that the input
runs are merged. A conceptual advantage is that data within a block decides
about when a block is read.

Overlapping I/O and Merging

Although we can predict the order in which blocks are read, we cannot easily
predict how much internal work is done between two reads. For example,
consider k identical runs storing the sequence 1B−12 3B−14 5B−16 · · · . After
initializing the merge buffers, the merging thread will consume k(B−1) values
‘1’ before it posts another read. Then it will post one read after selecting each
of the next k values (2). Then there will be a pause of another k(B−1) steps
and another k reads are following each other quickly, etc. We explain how to

68 CHAPTER 3. THE STXXL LIBRARY

.

.

..

read buffers

.

.

..

k+O(D)
overlap buffers

merging

−ping disk scheduling

1

k

m
erge

2D
 w

rite buffers

D blocks

m
erge buffers

overlap−

elements

O
(D

) prefetch buffers
Figure 3.23: Data flow through the different kinds of buffers for overlapped
parallel disk multi-way merging. Data is moved in units of blocks except
between the merger and the write buffer.

overlap I/O and computation despite this irregularity using the I/O model of
Aggarwal and Vitter [AV88] that allows access to D arbitrary blocks within
one I/O step. To model overlapping of I/O and computation, we assume
that an I/O step takes time L and can be done in parallel with internal
computations. We maintain an overlap buffer that stores up to k+3D blocks
in a FIFO manner (see Figure 3.23). Whenever the overlap buffer is non-
empty, a read can be served from it without blocking. Writing is implemented
using a write buffer FIFO with 2DB elements capacity. An I/O thread inputs
or outputs D blocks in time L using the following strategy: Whenever no
I/O is active and at least DB elements are present in the write buffer, an
output step is started. When no I/O is active, less than D output blocks are
available, and at least D overlap buffers are unused, then the next D blocks
from σ are fetched into the overlap buffer. This strategy guarantees that
merging k sorted sequences with a total of N ′ elements can be implemented
to run in time max

(

2LN ′

DB
, ℓN ′

)

+O
(

L
⌈

k
D

⌉)

where ℓ is the time needed by the
merging thread to produce one element of output and L is the time needed
to input or output D arbitrary blocks [DS03].

Disk Scheduling

The I/Os for the run formation and for the output of merging are perfectly
balanced over all disks if all sequences are striped over the disks, i.e., se-

3.5. PARALLEL DISK SORTING 69

quences are stored in blocks of B elements each and the blocks numbered
i,. . . ,i + D − 1 in a sequence are stored on different disks for all i. In partic-
ular, the original input and the final output of sorting can use any kind of
striping.

The merging algorithm presented above is optimal for the unrealistic model
of Aggarwal and Vitter [AV88] which allows to access any D blocks in an I/O
step. This facilitates good performance for fetching very irregularly placed
input blocks. However, this model can be simulated using D independent
disks using randomized striping allocation [VH01] and a prefetch buffer of
size m = Θ(D) blocks: In almost every input step, (1 − O(D/m))D blocks
from prefetch sequence σ can be fetched [DS03].

Figure 3.23 illustrates the data flow between the components of our parallel
disk multi-way merging.

3.5.2 Implementation Details

Run Formation. We build runs of a size close to M/2 but there are
some differences to the simple algorithm from Section 3.5.1. Overlapping of
I/O and computation is achieved using the call-back mechanism supported
by the I/O layer. Thus, the sorter remains portable over different operating
systems with different interfaces to threading.

We have two implementations with respect to the internal work:
stxxl::sort is a comparison based sorting using std::sort from STL to
sort the runs internally; stxxl::ksort exploits integer keys and has smaller
internal memory bandwidth requirements for large elements with small key
fields. After reading elements using DMA (i.e. the Stxxl direct access), we
extract pairs (key, pointerToElement), sort these pairs, and only then move
elements in sorted order to write buffers from where they are output using
DMA.

Furthermore, we exploit random keys. We use two passes of MSD (most
significant digit) radix sort of the key-pointer pairs. The first pass uses the
m most significant bits where m is a tuning parameter depending on the
size of the processor caches and of the TLB (translation look-aside buffer).
This pass consists of a counting phase that determines bucket sizes and a
distribution phase that moves pairs. The counting phase is fused into a single
loop with pair extraction. The second pass of radix sort uses a number of
bits that brings us closest to an expected bucket size of two. This two-pass

70 CHAPTER 3. THE STXXL LIBRARY

algorithm is much more cache efficient than a one-pass radix sort.8 The
remaining buckets are sorted using a comparison based algorithm: Optimal
straight line code for n ≤ 4, insertion sort for n ∈ {5..16}, and quicksort for
n > 16.

Multi-way Merging. We have adapted the tuned multi-way merger from
[San00], i.e. a tournament tree stores pointers to the current elements of each
merge buffer.

Overlapping I/O and Computation. We integrate the prefetch buffer
and the overlap buffer to a read buffer. We distribute the buffer space be-
tween the two purposes of minimizing disk idle time and overlapping I/O
and computation indirectly by computing an optimal prefetch sequence for
a smaller buffer space.

Asynchronous I/O. I/O is performed without any synchronization be-
tween the disks. The prefetcher computes a sequence σ′ of blocks indicating
the order in which blocks should be fetched. As soon as a buffer block be-
comes available for prefetching, it is used to generate an asynchronous read
request for the next block in σ′. The I/O layer of Stxxl queues this re-
quest at the disk storing the block to be fetched. The thread for this disk
serves the queued request in FIFO manner. All I/O is implemented without
superfluous copying. Stxxl opens files with the option O DIRECT so that
blocks are directly moved by DMA (direct memory access) to user memory.
A fetched block then travels to the prefetch/overlap buffer and from there
to a merge buffer simply by passing a pointer. Similarly, when an element
is merged, it is directly moved from the merge buffer to the write buffer and
a block of the write buffer is passed to the output queue of a disk simply
by passing a pointer to the the I/O layer of Stxxl that then uses write to
output the data using DMA.

3.5.3 Experiments

Hardware. For the experiments we have used the system with two 2GHz
Xeon processors, one GByte of RAM and eight IDE disks (described in Sec-
tion 2.4). The maximum parallel disk bandwidth from the outermost (fastest)
zones was about 375 MB/s.

8On our system we get a factor of 3.8 speedup over the one pass radix sort and a factor
of 1.6 over STL’s sort which in turn is faster than a hand tuned quicksort (for sorting 221

pairs storing a random four byte key and a pointer).

3.5. PARALLEL DISK SORTING 71

Software. The system ran the Debian Linux distribution with kernel 2.4.20
and the ext2 file system. All programs were compiled with g++ version 3.2
and the optimization level -O3.

If not otherwise mentioned, we use random 32 bit integer keys to keep internal
work limited. Runs of size 256 MByte9 are built using key sorting with an
initial iteration of 10 bit MSD radix sort. We choose block sizes in such a way
that a single merging phase using 512 MBytes for all buffers suffices. Input
sizes are powers of two between 2 GByte and 128 GByte with a default of 16
GByte10. When not otherwise stated, we use eight disks, 2 MByte blocks,
and the input is stored on the fastest zones.

To compare our code with previous implementations, we have to run them
on the same machine because technological development in recent years has
been very fast. Unfortunately, the implementations we could obtain, LEDA-
SM [CM00] and TPIE [vdBDS00], are limited to inputs of size 2 GByte
which, for our machine, is a rather small input. Figure 3.24 compares the
single disk performance of the three libraries using the best block size for
each library. The flat curves for TPIE and Stxxl indicate that both codes
are I/O bound even for small element sizes. This is even true for the fully
comparison based version of Stxxl. Still, Stxxl is significantly faster than
TPIE. This could be due to better overlapping of I/O and computation or
due to the higher bandwidth of the file system calls we use. Stxxl sustains
an I/O bandwidth of 45.4 MByte/s, which is 95 % of the 48 MByte/s peak
bandwidth of the disk at their outermost zone. LEDA-SM is compute-bound
for small keys and has the same performance as TPIE for large keys.

To get some kind of comparison for parallel disks, we ran the other codes
using Linux Software-RAID 0.9 and 8 × 128KBytes stripes (larger stripes
did not improve performance). Here, Stxxl is between two and three times
faster than TPIE and sustains an I/O bandwidth of 315 MByte/s for large
elements. Much of this advantage is lost when Stxxl also runs on the
Software-RAID. Although we view it as likely that the Software-RAID driver
can be improved, this performance difference might also be an indication that
treating disks as independent devices is better than striping (as predicted by
theory).

Figure 3.26 shows the dependence of the performance on the element size in
more detail. For element sizes ≥ 64, the merging phase starts to wait for I/Os

9This leaves space for two runs build in an overlapped way, buffers, operating system,
code, and, for large inputs, the fact that the implementation of the ext2 file system needed
1 byte of internal memory for each KBytes of disk space accessed via O DIRECT.

10We have a few measurements with 256 GBytes but the problem with ext2 mentioned
above starts to distort the results for this input size.

72 CHAPTER 3. THE STXXL LIBRARY

0

100

200

300

400

500

600

700

800

16 32 64 128 256 512 1024

so
rt

 ti
m

e
[s

]

element size [byte]

LEDA-SM
TPIE
<stxxl> comparison based

Figure 3.24: Comparison of the single disk performance of Stxxl, LEDA-
SM, and TPIE.

 0

 50

 100

 150

 200

 16 32 64 128 256 512 1024

so
rt

 ti
m

e
[s

]

element size [byte]

LEDA-SM Soft-RAID
TPIE Soft-RAID
<stxxl> Soft-RAID
<stxxl>

Figure 3.25: Comparison of of Stxxl, LEDA-SM, and TPIE for eight disks.

3.5. PARALLEL DISK SORTING 73

and hence is I/O-bound. The run formation phase only becomes I/O-bound
for element sizes above 128. This indicates areas for further optimization.
For small elements, it should be better to replace key sorting by sorters that
always (or more often) move the entire elements. For example, we have
observed that the very simple loop that moves elements to the write buffer
when the key-pointer pairs are already sorted can take up to 45 % of the
CPU time of the run formation. For small keys it also looks promising to use
parallelism. Already our cheap machine supports four parallel threads.

We now turn to a more detailed analysis of prefetching and overlapping of
I/O and computation. We first focus on the read buffers and hence fix the
write buffer size to 4D blocks in Figures 3.27–3.29. Figure 3.27 compares
the I/O time of the naive algorithm that tries to fetch blocks in the order
specified by σ with optimal prefetching. It varies the fraction of the read
buffer devoted to prefetching. The rest read buffers are used for overlapping.
As one would expect from the theoretical analysis in [HSV01], the I/O time
decreases as this fraction grows. However, Figure 3.28 indicates that the
overall time needed for merging is best if most of the read buffer is dedicated
to overlapping I/O and computation. Only for very small read buffers there is
a significant difference between the naive algorithm and optimal prefetching.

In Figure 3.29 we compare the overall merging time for the naive algorithm
and the following heuristics for choosing the prefetch buffer size w as a func-
tion of the read buffer size r: w = 2D + 3

10
(r − 2D). We have not shown the

empirically optimal choice because it is very close to this heuristics.

Based on this heuristics for the read buffer, Figure 3.30 explores the tradeoff
between read buffer size and write buffer size given a total buffer size of
188 blocks. Although we see the asymmetry between read buffer size and
write buffer size predicted by the theoretical analysis, it turns out that write
buffers much larger than 2D blocks can be profitable. A likely reason is that
a write buffer of size w = aD blocks leads to an effective output block size
of (a− 1)B, thereby reducing seek times and perhaps also rotational delays.
Based on this observation, we use the following heuristics for the write buffer
size in the subsequent figures: w = max(t/4, 2D) where the total number of
buffer blocks available for read and write buffers is t. The total number of
blocks available in our measurements is t = (M − kB)/B where M = 512
MByte and k = ⌈2N/M⌉ is the number of runs.

Figure 3.31 shows the dependence of the execution time on the block size.
We see that block sizes of several MBytes are needed for good performance.
The main reason is the well known observation that blocks should consist
of several disk tracks to amortize seeks and rotational delays over a large

74 CHAPTER 3. THE STXXL LIBRARY

0

50

100

150

200

250

300

350

400

16 32 64 128 256 512 1024

tim
e

[s
]

element size [byte]

run formation
merging
I/O wait in merge phase
I/O wait in run formation phase

Figure 3.26: Dependence execution time and I/O wait time on the element
size.

-7

-6

-5

-4

-3

-2

-1

0

0 20 40 60 80 100

di
ffe

re
nc

e
to

 n
ai

ve
 p

re
fe

tc
hi

ng
 [%

]

fraction of prefetch buffers

48 read buffers
112 read buffers
176 read buffers

Figure 3.27: Change in input time due to optimal prefetching.

3.5. PARALLEL DISK SORTING 75

 1

 0

-1

-2

-3
 0 10 20 30 40 50 60 70 80 90 100

di
ffe

re
nc

e
to

 n
ai

ve
 p

re
fe

tc
hi

ng
 [%

]

fraction of prefetch buffers [%]

176 read buffers
112 read buffers
48 read buffers

Figure 3.28: Change in total merge time due to “optimal” prefetching.

115

120

125

130

135

140

145

150

16 32 48 64 80 96 112 128 144 160 172

m
er

gi
ng

 ti
m

e
[s

]

number of read buffers

no prefetch buffer
heuristic schedule

Figure 3.29: Impact of prefetch and overlap buffers on merging time.

76 CHAPTER 3. THE STXXL LIBRARY

110

115

120

125

130

135

140

145

0 50 100 150 200

m
er

ge
 ti

m
e

[s
]

number of read buffers

Figure 3.30: Tradeoff: write buffer size versus read buffer size.

12

14

16

18

20

22

24

26

128 256 512 1024 2048 4096 8192

so
rt

 ti
m

e
[n

s/
by

te
]

block size [KByte]

128 GBytes 1x merge
128 GBytes 2x merge

16 GBytes

Figure 3.31: Dependence of sorting time on the block size.

3.5. PARALLEL DISK SORTING 77

consecutive data transfer. This value is much larger than the block sizes
used in older studies because the data density on hard disks has dramatically
increased in the last years. This effect is further amplified in comparison to
the SCSI disks used in most other studies because modern IDE disks have
even higher data densities but larger rotational delays and less opportunities
for seek time optimization.

Nevertheless, the largest possible block size is not optimal because it leaves
too little room for read and write buffers. Hence, in most measurements we
use the heuristics to choose half the largest possible block size that is a power
of two.

For very large inputs, Figure 3.31 shows that we already have to go below the
“really good” block sizes because of the lack of buffer space. Still, it is not
a good idea to switch to two merge passes because the overall time increases
even if we are able to stick to large block sizes with more passes. The large
optimal block sizes are an indicator that “asymptotically efficient” can also
translate into “practically relevant” because simpler suboptimal parallel disk
algorithms often use logical blocks striped over the disks. On our system,
this leads to a further reduction of the possible block size by a factor of about
eight.

0

5

10

15

20

16 32 64 128

so
rt

 ti
m

e
[n

s/
by

te
]

input size [GByte]

128-byte elements
512-byte elements

4N/DB bulk I/Os

Figure 3.32: Dependence of sorting time on the input size.

Finally, Figure 3.32 shows the overall performance for different input sizes
using all the heuristics introduced above. Although we can stick to two

78 CHAPTER 3. THE STXXL LIBRARY

passes, the execution time per element goes up because we need to employ
increasingly slow zones, because the block sizes go down, and because the
seek times go during merging up.

3.5.4 Discussion

We have engineered a sorting algorithm that combines a very high perfor-
mance on state of the art hardware with theoretical performance guarantees.
This algorithm is compute-bound although we use small random keys and a
tuned linear time algorithm for the run formation. Similar observations ap-
ply to other external memory algorithms that exhibit a good spatial locality,
i.e. those dominated by scanning, sorting, and similar operations (see e.g.
Chapters 4 and 5). This indicates that bandwidth is no longer a limiting
factor for external memory algorithms if parallel disks are used.

On the other hand, the fact that it is challenging to sustain a peak band-
width for eight disks on a dual processor system implies that using even more
disks requires a more aggressive use of parallel processing. Using the MCSTL
[Sin06] library we have parallelized the internal work in the run formation
and merge phases of our implementation. On the SCSIOpteron system (Sec-
tion 2.4) with eight fast SCSI disks we have sorted small 8-byte records with
a speedup close to two using four processors. The compute bound could be
raised by dividing the load onto many processors [Sin06].

Algorithmically, several promising improvements remain, even for small
cheap machines: There are several ways to speed up the run formation for
small elements. During merging, it would be good to reduce seek times for
large inputs, either by some clever compromise between seek minimization
and prefetching, or by switching to the distribution sort [VH01] that can be
implemented to have an inherently low seek overhead.

3.6. ALGORITHM PIPELINING 79

3.6 Algorithm Pipelining

The pipelined processing technique is very well known in the database world
[SKS01].

Usually, the interface of an external memory algorithm assumes that it reads
the input from (an) external memory container(s) and writes output into
(an) external memory container(s). The idea of pipelining is to equip the
external memory algorithms with a new interface that allows them to feed
the output as a data stream directly to the algorithm that consumes the
output, rather than writing it to the external memory first. Logically, the
input of an external memory algorithm does not have to reside in the external
memory, rather, it could be a data stream produced by another external
memory algorithm.

Many external memory algorithms can be viewed as a data flow through
a directed acyclic graph G with node set V = F ∪ S ∪ R and edge set
E. The file nodes F represent physical data sources and data sinks, which
are stored on disks (e.g. in the external memory containers of the STL-user
layer). A file node writes or/and reads one stream of elements. The streaming
nodes S read zero, one or several streams and output zero, one or several
new streams. Streaming nodes are equivalent to scan operations in non-
pipelined external memory algorithms. The difference is that non-pipelined
conventional scanning needs a linear number of I/Os, whereas streaming
nodes usually do not perform any I/O, unless a node needs to access external
memory data structures (stacks, priority queues, etc.). The sorting nodes R
read a stream and output it in a sorted order. Edges E in the graph G
denote the directions of data flow between nodes. The question “When is a
pipelined execution of the computations in a data flow graph G possible in
an I/O-efficient way?” is analyzed in [DMKS05].

3.7 Streaming Layer

The streaming layer provides a framework for the pipelined processing of large
sequences. Many external memory algorithms implemented with the Stxxl

streaming layer save a factor of at least two in I/Os. To the best of our
knowledge we are the first who apply the pipelining method systematically
in the domain of external memory algorithms. We introduce it in the context
of an external memory software library.

80 CHAPTER 3. THE STXXL LIBRARY

In Stxxl, all data flow node implementations have an Stxxl stream in-
terface which is similar to the STL Input iterators11. As an input iterator,
an Stxxl stream object may be dereferenced to refer to some object and
may be incremented to proceed to the next object in the stream. The refer-
ence obtained by dereferencing is read-only and must be convertible to the
value type of the Stxxl stream. The concept of the Stxxl stream also
defines a boolean member function empty() which returns true iff the end
of the stream is reached.

Now we tabulate the valid expressions and the expression semantics of the
Stxxl stream concept in the style of the STL documentation.

Notation

X, X1, . . ., Xn A type that is a model of the Stxxl stream
T The value type of X
s, s1, . . ., sn Object of type X, X1, . . ., Xn
t Object of type T

Valid expressions

Name Expression Type requirements Return
type

Constructor X s(s1,...,sn) s1, . . ., sn are con-
vertible to X1&, . . .,
Xn&

Dereference *s Convertible
to T

Member access s->m T is a type for
which t.m is de-
fined

Preincrement ++s X&

End of stream check (*s).empty() bool

11 Not be confused with the stream interface of the C++ iostream library.

3.7. STREAMING LAYER 81

Expression semantics

Name Expression Precondition Semantics Postcondition

Constructor X s(s1,...,sn) s1, . . .,
sn are the
n input
streams of
s

Dereference *s s is incre-
mentable

Member
access

s->m s is incre-
mentable

Equivalent
to (*s).m

Preincrement ++s s is incre-
mentable

s is incre-
mentable or
past-the-end

The binding of a Stxxl stream object to its input streams (incoming edges
in a data flow graph G) happens at compile time, i.e. statically. The other
approach would be to allow binding at running time using the C++ vir-
tual function mechanism. However this would result in a severe perfor-
mance penalty because most C++ compilers are not able to inline vir-
tual functions. To avoid this disadvantage, we follow the static binding
approach using C++ templates. For example, assuming that streams s1,
. . ., sn are already constructed, construction of stream s with constructor
X::X(X1& s1,..., Xn& sn) will bind s to its inputs s1, . . ., sn.

After creating all node objects, the computation starts in a “lazy” fashion,
first trying to evaluate the result of the topologically latest node. The node
reads its intermediate input nodes, element by element, using the dereference
and increment operator of the Stxxl stream interface. The input nodes
proceed in the same way, invoking the inputs needed to produce an output
element. This process terminates when the result of the topologically latest
node is computed. This style of pipelined execution scheduling is I/O effi-
cient, it allows to keep the intermediate results in-memory without needing
to store them in external memory.

The Streaming layer of the Stxxl library offers generic classes which imple-
ment the functionality of sorting, file, and streaming nodes:

• File nodes: Function streamify serves as an adaptor that converts a
range of ForwardIterators into a compatible Stxxl stream. Since it-
erators of stxxl::vector are RandomAccessIterators, streamify can

82 CHAPTER 3. THE STXXL LIBRARY

be used to read external memory. The set of (overloaded) materialize
functions implement data sink nodes, they flush the content of a Stxxl

stream object to an output iterator. The library also offers specializa-
tions of streamify and materialize for stxxl::vector, which are
more efficient than the generic implementations due to the support of
overlapping between I/O and computation.

• Sort nodes: The Stream layer stream::sort class is a generic pipelined
sorter which has the interface of an Stxxl stream. The input of the
sorter may be an object complying to the Stxxl stream interface.
As the STL-user layer sorter, the pipelined sorter is an implementa-
tion of parallel disk merge sort [DS03] that overlaps I/O and com-
putation. The implementation of stream::sort relies on two classes
that encapsulate the two phases of the algorithm: sorted run formation
(class runs creator) and run merging (runs merger). The separate
use of these classes breaks the pipelined data flow: the runs creator

must read the entire input to compute the sorted runs. This facili-
tates an efficient implementation of loops and recursions: the input for
the next iteration or recursion can be the sorted runs stored on disks
[Meh04, DMKS05]. The templated class runs creator has several
specializations which have input interfaces different from the Stxxl

stream interface: a specialization where elements to be sorted are
push back’ed into the runs creator object and a specialization that
accepts a set of presorted sequences. All specializations are compatible
with the runs merger.

• Streaming nodes: In general, most of the implementation effort for al-
gorithms with the streaming layer goes to the streaming nodes. The
Stxxl library exposes generic classes that help to accelerate coding
the streaming node classes. For example stream::transform is sim-
ilar to the std::transform algorithm: it reads n input streams s1,
. . ., sn and returns the result of a user-given n-ary function object
functor(*s1,...,*sn) as the next element of the output stream until
one of the input streams gets empty.

As mentioned above, Stxxl allows streaming nodes to have more than one
output. In this case, only one output of a streaming node can have the Stxxl

stream interface (it is an iterator). The other outputs can be passed to other
nodes using a “push-item” interface. Such an interface have file nodes (e.g.
the method push back of stxxl::vector) and sorting nodes (push back-
specializations). Streaming nodes do not have such methods by definition,

3.7. STREAMING LAYER 83

ra
nd

om
_e

dg
e_

st
re

am

st
re

am
::u

ni
qu

e streaming node

sorting node

file node

Figure 3.33: Data flow graph for the example in Listing 3.7.

however, it is always possible to reimplement all streaming nodes between
sorting and/or file nodes as a single streaming node that will push back the
output elements to the corresponding sorting/file nodes.

Now we “pipeline” the random graph generation example shown in the previ-
ous chapter. The data flow graph of the algorithm is presented in Figure 3.33
in the appendix. Listing 3.7 shows the pipelined code of the algorithm, the
definitions of edge, random edge, and edge cmp are in Listing 3.5. Since
the sorter of the streaming layer accepts an Stxxl stream input, we do
not need to output the random edges. Rather, we generate them on the
fly. The random edge stream object (model of Stxxl stream) constructed
in Line 19 supplies the sorter with a stream of random edges. In Line 21,
we define the type of the sorter node; it is parameterized by the type of
the input stream and the type of the comparison function object. Line 23
creates a SortedStream object attaching its input to the RandomStream.
The internal memory consumption of the sorter stream object is limited to
512 MB. The UniqueStream object filters the duplicates in its input edge
stream (Line 25). The generic stream::unique stream class stems from the
Stxxl library. Line 28 records the content of the UniqueStream into the
external memory vector. As in the Listing 3.6 (Line 29), we cut the vector
at the NewEnd boundary. Let us count the number of I/Os the program per-
forms: random edge generation by RandomStream costs no I/O; sorting in
SortedStream needs to store the sorted runs and read them again to merge
— 2N/DB I/Os; UniqueStream deletes duplicates on the fly, it does not
need any I/O; and materializing the final output can cost up to N/DB I/Os.
All in all, the program only incurs 3N/DB I/Os, compared to 7N/DB for
the nonpipelined code in Section 3.4.

84 CHAPTER 3. THE STXXL LIBRARY

Listing 3.7: Generating a random graph using the Streaming layer.

1 us ing namespace stxxl ;
2 c l a s s random_edge_stream {
3 int64 counter ;
4 edge current ;
5 random_edge_stream () ;
6 pub l i c :
7 typede f edge value_type ;
8 random_edge_stream(int64 elements) :
9 counter (elements) , current (random_edge () ()) { }

10 const edge & operator ∗ () const { r e turn current ; }
11 const edge ∗ operator −>() const { r e turn ¤t ; }
12 random_edge_stream & operator ++ () {
13 −−counter ;
14 current = random_edge () () ;
15 return ∗ t h i s ;
16 }
17 bool empty () const { r e turn counter==0; }
18 } ;
19 random_edge_stream RandomStream(10000000000ULL) ;
20 typede f stream : : sort<random_edge_stream , edge_cmp>
21 sorted_stream ;
22 sorted_stream SortedStream(RandomStream , edge_cmp () ,
23 512∗1024∗1024) ;
24 typede f stream : : unique<sorted_stream> unique_stream_type ;
25 unique_stream_type UniqueStream(SortedStream) ;
26 stxxl : : vector<edge> ExtEdgeVec(10000000000ULL) ;
27 stxxl : : vector<edge> : : iterator NewEnd =
28 stream : : materialize(UniqueStream , ExtEdgeVec . begin ()) ;
29 ExtEdgeVec . resize (NewEnd − ExtEdgeVec . begin ()) ;

Chapter 4

Engineering Algorithms for
Large Graphs

This chapter is devoted to engineering practical algorithms for large graphs
not fitting into the main memory. We implement the algorithms using Stxxl

and show how its features, like pipelining, help to improve the performance of
the implementations. The performance characteristics of the implementation
are tested on several architectures and on various random and real-world data
sets.

4.1 Overview

We start from the simple introductory example in Section 4.2 that computes
a maximal independent set of a graph. We also implement the algorithm
using the LEDA-SM library to make some conclusions about the perfor-
mance. In this example the usefulness of pipelining is shown. Section 4.3
engineers a practical I/O-efficient algorithm for computing minimum span-
ning forests (MSF). Its performance is excellent: It is only 2–5 times slower
than the best internal memory algorithms. The algorithm is modified in Sec-
tion 4.4 to compute spanning forests (SF) and connected components (CC).
The SF/CC implementation turns out to be 1.4–7.1 times faster than the
MSF implementation. In Section 4.5 we compare Stxxl-implementations
of two I/O-efficient breadth first search algorithms. A simpler algorithm
of Munagala and Ranade [MR99] produced bad results on difficult graphs
with a large diameter. An implementation of a more involved algorithm of
Mehlhorn and Meyer [MM02] has provided a better running time and I/O
guarantees for these inputs. In Section 4.6 we implement an I/O-efficient

85

86 CHAPTER 4. ENGINEERING ALGORITHMS FOR LARGE GRAPHS

algorithm for finding, counting and listing all triangles in a graph. We show
the practicality of the implementation running it on a real huge web graph.
I/O-efficient algorithms for coloring graphs are studied in Section 4.7. We in-
vestigate existing heuristics and develop a new fast heuristic that can 7-color
planar graphs in O(sort(n)) I/Os.

4.2. MAXIMAL INDEPENDENT SET 87

4.2 Maximal Independent Set

We demonstrate some performance characteristics of Stxxl using the exter-
nal memory maximal independent set (MIS) 1 algorithm from [Zeh02] as an
example. The MIS problem is used, for example, for scheduling dependent
parallel jobs. The algorithm [Zeh02] is based on the time-forward processing
technique. As input for the MIS algorithm we use the random graph com-
puted by the examples in the previous Sections (Listings 3.6 and 3.7). Our
benchmark also includes the running time of the input generation.

Now we describe the MIS algorithm implementation in Listing 4.1 which is
only nine lines long not including typedef declarations. The algorithm visits
the graph nodes scanning lexicographically sorted input edges. When a node
is visited, we add it to the maximal independent set if none of its visited
neighbors is already in the MIS. The neighbor nodes of the MIS nodes are
stored as events in a priority queue. In Lines 7-9, the template metaprogram
[CE00] PRIORITY QUEUE GENERATOR computes the type of priority queue that
will store events. The metaprogram finds the optimal values for numerous
tuning parameters (the number and the maximum arity of external/internal
mergers, the size of merge buffers, the external memory block size, etc.) under
the constraint that the total size of the priority queue internal buffers must
be limited by PQ MEM bytes. The node greater comparison functor defines
the order of nodes of the type node type and the minimum value that a
node object can have, such that the top() method will return the smallest
contained element. The last template parameter assures that the priority
queue cannot contain more than the INPUT SIZE elements (in 1024 units).
Line 11 creates the priority queue depend having a prefetch buffer pool of size
PQ PPOOL MEM bytes and a buffered write memory pool of size PQ WPOOL MEM

bytes. The external vector MIS stores the nodes belonging to the maximal
independent set. Ordered input edges come in the form of an Stxxl stream
called edges. If the current node edges->src is not a neighbor of a MIS
node (the comparison with the current event depend.top(), Line 16), then
it is included in MIS (if it was not there before, Line 18). All neighbor
nodes edges->dst of a node in MIS edges->src are inserted in the event
priority queue depend (Line 19). Lines 14-15 remove the events already
passed through from the priority queue.

To make a comparison with other external memory libraries, we have im-

1 An independent set I is a set of nodes on a (multi)graph G such that no edge in
G joins two nodes in I, i.e. the nodes in I are not neighbors. A maximal independent
set is an independent set such that adding any other node would cause the set not to be
independent anymore.

88 CHAPTER 4. ENGINEERING ALGORITHMS FOR LARGE GRAPHS

Listing 4.1: Computing a Maximal Independent Set using Stxxl.

1 s t r u c t node_greater : pub l i c std : : greater<node_type> {
2 node_type min_value () const {
3 return std : : numeric_limits<node_type> : : max () ;
4 }
5 } ;
6 typede f
7 stxxl : : PRIORITY_QUEUE_GENERATOR<node_type ,
8 node_greater , PQ_MEM , INPUT_SIZE/1024 > : :result pq_type ;
9

10 // keeps ”not in MIS” events
11 pq_type depend (PQ_PPOOL_MEM , PQ_WPOOL_MEM) ;
12 stxxl : : vector<node_type> MIS ; // output
13 f o r (; ! edges . empty();++edges) {
14 whi le (! depend . empty () && edges−>src > depend . top ())
15 depend . pop () ; // d e l e t e o ld events
16 i f (depend . empty () | | edges−>src != depend . top ()) {
17 i f (MIS . empty () | | MIS . back () != edges−>src)
18 MIS . push_back(edges−>src) ;
19 depend . push (edges−>dst) ;
20 }
21 }

plemented the graph generation algorithm using the TPIE and LEDA-SM
libraries. The MIS algorithm was implemented in LEDA-SM using its array
heap data structure as a priority queue. The I/O efficient implementation
of the MIS algorithm was not possible in TPIE, since it does not have an
I/O efficient priority queue implementation. For TPIE, we only report the
running time of the graph generation 2.

To make the benchmark closer to real applications, we have added two 32-
bit integer fields to the edge data structure, which can store some additional
information associated with the edge. The implementations of a priority
queue of LEDA-SM always store a pair <key,info>. The info field takes at
least four bytes. Therefore, to make a fair comparison with Stxxl, we have
changed the event data type stored in the priority queue (Listing 4.1) such
that it also has a 4-byte dummy info field.

The experiments were run on the MPIXeon system described in Section 2.4
with swapping switched off. The OS was Debian with Linux kernel 2.4.20.
The computer had four hard disks formatted with the XFS file system and
dedicated solely for the experiments. We used the LEDA-SM version 1.3 with

2The source code of all our implementations is available under
http://i10www.ira.uka.de/dementiev/stxxl/paper/index.shtml.

http://i10www.ira.uka.de/dementiev/stxxl/paper/index.shtml

4.2. MAXIMAL INDEPENDENT SET 89

the LEDA version 4.2.13 and TPIE of January 21, 2005. For the compilation
of the Stxxl and TPIE sources the g++ compiler version 3.3 was used.
LEDA-SM and LEDA were compiled with the g++ compiler version 2.95,
because they could not be compiled by later g++ versions. The compiler
optimization level was set to -O3. For sorting we used library sorters that
use C++ comparison operators to compare elements. All programs have been
tuned to achieve their maximum performance. We have tried all available file
access methods and disk block sizes. In order to tune the TPIE benchmark
implementation, we followed the performance tuning Section of [ABH+03].
The input size (the length of the random edge sequence, see Listing 3.6) for
all tests was 2000 MB4. The benchmark programs were limited to use only
512 MB of main memory. The remaining 512 MB were given to the operating
system kernel, daemons, shared libraries and the file system buffer cache,
from which TPIE and LEDA-SM might benefit. The Stxxl implementations
do not use the file system cache.

Table 4.1: Running time (in seconds)/I/O bandwidth (in MB/s) of the MIS
benchmark running on single disk. For TPIE, only the graph generation is
shown (marked with *). The running time of the input graph generation is
split into the three phases: filling, sorting and duplicate removal.

LEDA-SM Stxxl-STL Stxxl-Pipel. TPIE

Filling 51/41 89/24 40/52
Sorting 371/23 188/45

100/20
307/28

Dup. removal 160/26 104/40 109/39
MIS computation 513/6 153/21

128/26
–N/A–

Total 1095/16 534/33 228/24 456*/32*

Table 4.1 compares the MIS benchmark performance of the LEDA-SM im-
plementation with the array heap priority queue, the Stxxl implementation
based on the STL-user level, a pipelined Stxxl implementation, and a TPIE
implementation with only input graph generation. The running times, aver-
aged over three runs, and average I/O bandwidths are given for each stage of
the benchmark. The running time of the different stages of the pipelined im-
plementation cannot be measured separately. However, we show the values
of time and I/O counters from the beginning of the execution till the time
when the sorted runs are written to the disk(s) in the run formation phase
of sorting, and from this point to the end of the MIS computation. The

3Later versions of the LEDA are not supported by the last LEDA-SM version 1.3.
4Algorithms and data structures of LEDA-SM are limited to inputs of size 2 GB.

90 CHAPTER 4. ENGINEERING ALGORITHMS FOR LARGE GRAPHS

total running time numbers show that the pipelined Stxxl implementation
is significantly faster than the other implementations. It is 2.4 times faster
than the second leading implementation (Stxxl-STL). The win is due to
the reduced I/O volume: the Stxxl-STL implementation transfers 17 GB,
the pipelined implementation only needs 5.2 GB. However, the 3.25 fold I/O
volume reduction does not imply equal reduction of the running time because
the run formation fused with the filling/generating phase becomes compute-
bound. This is indicated by the almost zero value of the Stxxl I/O wait
counter, which measures the time the processing thread waited for the com-
pletion of an I/O. The second reason is that the fusion of merging, duplicate
removal and CPU intensive priority queue operations in the MIS computa-
tion is almost compute-bound. Comparing the running times of the total
input graph generation, we conclude that the Stxxl-STL implementation is
about 20 % faster than TPIE and 53 % faster than LEDA-SM. This could be
due to better (explicit) overlapping between I/O and computation. Another
possible reason could be that TPIE uses a more expensive way of reporting
run-time errors, such as I/O errors5. The running time of the the filling stage
of the Stxxl-STL implementation is much higher than that of TPIE and
LEDA-SM. This is due to the fact that those libraries rely on the operating
system cache. The filled blocks do not go to the disk(s) immediately but re-
main in the main memory until other data needs to be cached by the system.
An indication for this is the very high bandwidth of 52 MB/s for the TPIE
implementation, which is even higher than the maximum physical disk band-
width (48 MB/s) at its outermost zone. However, the cached blocks need to
be flushed in the sorting stage and then the TPIE implementation pays the
remaining due. The unsatisfactory bandwidth of 24 MB/s of the Stxxl-STL
filling phase could be improved by replacing the call std::generate by the
native stxxl::generate call that efficiently overlaps I/O and computation.
With a single disk it fills the vector in 60 seconds with a bandwidth of 33
MB/s. The Stxxl STL-user sorter sustains an I/O bandwidth of about 45
MB/s which is 95 % of the disk’s peak bandwidth. The high CPU load in
the priority queue and the less then perfect overlapping between I/O and
computation explain the low bandwidth of the MIS computation stage in all
three implementations. We also run the graph generation test on 16 GByte
inputs. All implementations scale with the input size almost linearly: the

5TPIE uses function return types for error codes and diagnostics, which can become
quite expensive at the level of single-item interfaces (e.g. read item and write item) that
are predominantly used in TPIEs algorithms. Instead, Stxxl checks (I/O) errors on a
per-block basis. We will use C++ exceptions to propagate errors to the user layer without
any disadvantage for the library users. First experiments indicate that this will have an
negligible impact on runtime.

4.2. MAXIMAL INDEPENDENT SET 91

TPIE implementation finishes in 1h 3min, the Stxxl-STL in 49min, and the
Stxxl-Pipelined in 28min.

The MIS computation of Stxxl, which is dominated by PQ operations, is
3.35 times faster than LEDA-SM. The main reason for this big speedup is
likely to be the more efficient priority queue algorithm from [San00].

Table 4.2: Running time (in seconds)/I/O bandwidth (in MB/s) of the MIS
benchmark running on multiple disk.

Stxxl-STL Stxxl-Pipelined
Disks 2 4 2 4

Input Filling 72/28 64/31
graph Sorting 104/77 80/100

98/20 98/20

generation Dup. removal 58/69 34/118
MIS computation 127/25 114/28

112/30 110/31

Total 360/50 291/61 210/26 208/27

Table 4.2 shows the parallel disk performance of the Stxxl implementations.
The Stxxl-STL implementation achieves a speedup of about 1.5 using two
disks and 1.8 using four disks. The reason for this low speedup is that
many parts of the code become compute-bound: priority queue operations
in the MIS computation stage, the run formation in the sorting stage, and
the generating random edges in the filling stage. The Stxxl-pipelined im-
plementation was almost compute-bound in the single disk case, and, with
two disks the first phase shows no speedup as expected. However the sec-
ond phase has a small improvement in speed due to faster I/O. A close to
zero I/O wait time indicates that the Stxxl-pipelined implementation is
fully compute-bound when running with two or four disks. We had run the
Stxxl-pipelined implementation on very large graphs that require the entire
space of four hard disks (360 GBytes). The results of this experiment, using
the faster SCSIOpteron system (Section 2.4), are shown in Table 4.3.

Table 4.3: Running time of the Stxxl-pipelined implementation on very
large random graphs (SCSIOpteron system).

Input volume N/M n m m/n D Running time
100 GB 200 2.1 · 109 13.4 · 109 6.25 4 2h 34min
100 GB 200 4.3 · 109 13.4 · 109 3.13 4 2h 44min

92 CHAPTER 4. ENGINEERING ALGORITHMS FOR LARGE GRAPHS

4.3 Minimum Spanning Trees

The results presented in this section were partially published in [DSSS04]
and in the bachelor thesis [Sch03a].

4.3.1 Definitions

A spanning tree of a connected undirected graph G = (V, E) is a connected
acyclic subgraph T = (V, E ′), E ′ ⊆ E that contains all nodes of G. Given a
weight function w : E → N0, the weight of a spanning tree is the sum of the
weights of all edges belonging to it: w(T) =

∑

e∈E′ w(e). A minimum span-
ning tree (MST) is a spanning tree with the smallest weight over all possible
spanning trees. Graphs having several connected components cannot have a
single spanning tree, but a spanning forest, which consists of trees spanning
the connected components. Analogously, a minimum spanning forest (MSF)
has the smallest weight over all spanning forests.

4.3.2 Related Work and Motivation

The problem of finding an MST (or MSF) has already been mentioned in
1926 by Boruvka [Bor26]. His goal was to find an efficient electrical coverage
of Bohemia. MST can be used to model many other kinds of minimum cost
network coverage problems. Many graph algorithms need an MST computa-
tion as a subroutine.

The MST problem can be solved in internal memory very efficiently. Re-
cently, Pettie and Ramachandran [PR00] have found a provably optimal de-
terministic MST algorithm. However, the running time complexity of this
algorithm is unknown, it is a long standing open problem. Like the algo-
rithm of Chazelle [Cha00], the algorithm of Pettie and Ramachandran has
complexity O(mα(m, n)), where α is the inverse Ackermann function. The
function α grows extremely slowly, so that for all practical purposes it may
be considered a constant no greater than 4. Thus these algorithms can be
considered to run in time very close to linear. Randomized MST algorithms
are known that run in linear expected time.

MST is one of the rare graph problems that can be solved I/O-efficiently.
Using a randomized algorithm a MST can be found in O(sort(m)) expected
I/Os [ABW02]. The best known deterministic algorithm finds a MST using
O(sort(m) · max{1, log log(nBD/m)}) I/Os [MR99]. The deterministic lower
bound for the number of I/Os is unknown, too.

4.3. MINIMUM SPANNING TREES 93

Despite the fact that a number of I/O-efficient MST algorithms exist, none
of them has ever been implemented. A reason for that may be that even the
simplest algorithms turned out to be difficult to implement. The authors of
[DSSS04] developed a simple I/O-efficient algorithm for computing MSTs of
very large graphs. In the following we describe this algorithm as well as its
two Stxxl implementations.

The algorithm consists of two phases. The first phase (Section 4.3.4) re-
duces the node set of the input graphs until the number of nodes reaches
n′ = O(M), simultaneously outputting some MST edges. For this phase
one has two implementations: an implementation for graphs with arbitrary
node degrees, based on stxxl::priority queue, and a faster bucket imple-
mentation that works if the node degree is limited by O(M). In the second
phase (Section 4.3.3) the main memory can hold a constant size per-node
information, thus the algorithm can operate in semi-external mode 6. The
rest of the MST edges is then output. Section 4.3.5 presents the performance
characteristics of the algorithm implementation on various families of sparse
random graphs.

4.3.3 Semi-External Algorithm

This algorithm is a variant of Kruskal’s algorithm [Kru56]. It processes
the edges in order of increasing weight. To sort the edges by weight,
stxxl::ksort is used (Section 3.5). This sorter version is faster than
stxxl::sort because it can take advantage of the integer weights with re-
spect to the internal work. During processing, the algorithm maintains a
minimum spanning forest F of the edges seen so far. If an edge (u, v) joins
two spanning trees in F then it is output as MST edge, otherwise it is dis-
carded. The necessary operations can be implemented very efficiently using
a union-find data structure [Tar75] if nodes are numbered 0..n−1. This data
structure has been implemented using an array of integer tree links and an
array of merging ranks, both having n entries. The paper [DSSS04] shows
how to dispense with the merging rank array.

4.3.4 Node Reduction

The node reduction algorithm is based on edge contraction. In each step
a random node v is chosen from the graph, and the lightest edge (v, w)

6Semi-external graph algorithms are the algorithms which operate I/O-efficiently for
graphs with n = O(M).

94 CHAPTER 4. ENGINEERING ALGORITHMS FOR LARGE GRAPHS

incident to v is found. Edge (v, w) is output as an MST edge. Node v is
removed from the graph and all its incident edges (v, u) are replaced with
edges (w, u) (relinking), i.e. nodes v and w are contracted. Since the nodes
are renamed during the processing, one keeps the original edge id in the edge
data structure to obtain the original ids in the MST output.

The expected number of edges inspected till the number of nodes is reduced to
n′ by this abstract algorithm is bounded by 2m ln n

n′
(see [DSSS04] for details

of the proof). Instead of choosing the node to delete at random the I/O-
efficient implementation fixes the order of nodes in advance. If the nodes are
numbered 0..n−1 one renames the node ids using a random permutation π :
0..n−1 → 0..n−1. Then the nodes are removed in the order n−1, n−2, . . . , n′.
One can prove that this approach is equivalent to random sampling [DSSS04].

Priority Queue Implementation

The above mentioned algorithm easily can be implemented using an I/O-
efficient priority queue. Our implementation uses stxxl::priority queue

from Section 3.4.5. Edges are stored in the form ((u, v), c, eold), where (u, v)
is the edge in the current graph, c is the weight of the edge and eold is
the original id of the edge. The queue stores edges (u, v) with u > v with
the order defined as ((u, v), c, eold) < ((u′, v′), c′, e′old) iff u > u′ or u = u′ and
c < c′. Using these conventions the algorithm shown in Figure 4.1 reduces the
node set to n′ nodes and outputs the MST edges performing O

(

sort(m) ln n
n′

)

I/Os [DSSS04]. The real code [Sch03a] that implements the pseudocode using
Stxxl is very short and simple: the reduction is programmed using only
12 lines of C++ code (see Listing 4.2).

Bucket Implementation

The priority queue implementation has a substantional internal CPU work
overhead since it unnecessarily sorts the edges within the adjacency list of
a node. However, one should assure that the lightest edge comes first. The
authors of the paper [DSSS04] propose an implementation of the reduction
phase that has linear work in the total I/O volume.

As in the PQ implementation, in iteration i node i is removed by outputting
the lightest edge incident to it and relinking all the other edges. The edges
(u, v), v < u ∧ n′ < u ≤ n − 1 are stored in k equal sized external memory
buckets, where k = O(M/B). The remaining edges (u, v), v < u, u ∈ [0, n′)
are stored in a special external memory bucket. This bucket is implemented

4.3. MINIMUM SPANNING TREES 95

Listing 4.2: C++ code for reduction with Stxxl priority queue.

1 // get s ho r t e s t edge i n c i d en t to the l a s t node
2 RelabeledEdge minWeightEdge(_pqueue . top ()) ;
3 _pqueue . pop () ;
4 _result . add (minWeightEdge) ;
5 // Proces s a l l edges in the p r i o r i t y queue
6 whi le (! _pqueue . empty ()) {
7 // get cur r ent edge
8 RelabeledEdge currentEdge(_pqueue . top ()) ;
9 _pqueue . pop () ;

10 // check whether the cur r ent edge has the same
11 // source ver tex as the pr edece s so r
12 i f (minWeightEdge . source () == currentEdge . source ()) {
13 // throw the o ld source ver tex away
14 RelabeledEdgeWithoutSource

15 curEdgeWithoutSource(currentEdge) ;
16 // add the r e l a b e l e d edge to the f i r s t e x t e r na l
17 // bucket resp . to the p r i o r i t y queue
18 add (RelabeledEdge(curEdgeWithoutSource ,
19 minWeightEdge . target ())) ;
20 }
21 e l s e {
22 // the cur r ent edge i s the s ho r t e s t one i n c i d en t
23 // to the cu r r en t l y l a s t node
24 minWeightEdge = currentEdge ;
25 _result . add (minWeightEdge) ;
26 }
27 }

96 CHAPTER 4. ENGINEERING ALGORITHMS FOR LARGE GRAPHS

ExternalPriorityQueue: Q
foreach (e = (u, v), c) ∈ E do Q.insert(((π(u), π(v)), c, e)) // rename
currentNode := −1 // node currently being removed
i := n // number of remaining nodes
while i > n′ do

((u, v), c, eold) := Q.deleteMin()
if u 6=currentNode then // lightest edge out of a new node

currentNode := u // node u is removed
i--
relinkTo := v
output eold // MST edge

elsif v 6= relinkTo then
Q.insert((v, relinkTo), c, eold) // relink non-self-loops

Figure 4.1: An I/O-efficient implementation of the node reduction algorithm
using a priority queue.

as an stxxl::vector. It is assumed that the current bucket completely fits
into the internal memory. The other external buckets are implemented as
stxxl::stacks. We have tried both the basic implementation normal stack

(Section 3.4.2) that keeps a single private write block with the recently re-
linked edges and the advanced stack implementation grow shrink stack2

that owns a private write block and can overlap I/O and computation using
a common pool of additional output buffers. Preliminary tests have shown
that the grow shrink stack2 version of the node reduction is faster by 40-
50 % even if the block size is reduced to make space for the overlap buffers.

When i reaches a new external memory bucket, it is distributed to internal
buckets — one for each node in the external memory bucket. Before read-
ing the edges from the external memory bucket its grow shrink stack2 is
switched to prefetch mode such that it can use additional buffers to read
ahead the data, overlapping I/O and computation. The internal bucket for
node i is scanned twice: Once for finding the lightest edge and once for re-
linking. Relinked edges belonging to the current external memory bucket
are immediately inserted to the corresponding internal memory bucket. The
remaining edges are put into their external memory buckets.

When n′ nodes are left, the special bucket is used directly as input for the
semi-external algorithm (Section 4.3.3).

Note that the bucket implementation can fail if internal memory buckets must

4.3. MINIMUM SPANNING TREES 97

hold adjacency list of nodes with very a high degree. [DSSS04] proposes
solutions for this problem, namely, it is possible to move the high-degree
nodes from the internal bucket to the special bucket and even if the average
size external bucket does not fit into the internal memory then one can apply
a multi-level distribution scheme. As an option for problem buckets one could
also temporarily switch to the priority queue implementation.

Parallel Edges and Sparse Graphs

The node reduction algorithm described earlier can produce parallel edges
during relinking. Moreover, these edges also remain in the graph after subse-
quent relinking operations. However, they can be removed relatively easily.
While scanning the internal buckets the edges (u, v) are put into an interme-
diate hash table before before moving them to the appropriate buckets. Note
that this hash table only keeps the lightest edge between the nodes u and v
seen so far. When the capacity of the hash table is reached or all nodes in
the current external bucket are scanned, the edges accumulated in the hash
table are flushed to the buckets.

[DSSS04] proves that this simple treatment reduces the I/O complexity of the
algorithm to O(sort(n)) I/Os for planar graphs, graphs with a bounded tree-
width and other families of graphs that remain sparse under edge contraction.

Implementation Details

The implementation of the internal buckets is very efficient both in running
time and space consumption. They are represented as linked lists of small
blocks that can hold several edges each. An edge structure stored in an
internal bucket does not keep the source node id because this information is
redundant. In the external memory part, the edge data structure is stored as
a 5-tuple of 32-bit integers and stores the original edge id directly as two end
points. This saves the additional sort/scan phase at the end for the restoring
of the original ids of MST edges. Another advantage is that it allows to
give ids to more than 232 edges in a straightforward way without needing
any special coding scheme for ids greater than 232. More details about the
implementation can be found in [Sch03a].

98 CHAPTER 4. ENGINEERING ALGORITHMS FOR LARGE GRAPHS

4.3.5 Experiments

In this section we present the most important subset of the experimental
results reported in [Sch03a, DSSS04]. For the detailed data see the original
sources.

The performance of the Stxxl implementations of the MST algorithm was
evaluated on several graph families:

• random graphs with given n and m and random edge weights,

• random geometric graphs where random points in the unit square are
connected to their d closest neighbors.

• planar graphs — grid graphs with random edge weights and nodes
connected with (up to four) direct neighbors.

The number of edges m was chosen between 2m and 8m. The dense graph
families were not considered since they can be easily solved by the semiex-
ternal algorithm.

Experiments were conducted on the MPIXeon computer described in Sec-
tion 2.4, but only up to four disks have been in use for external memory
implementations, which were given about 800 MB of main memory. Swap-
ping was switched off to avoid paging effects. Programs were compiled with
the GNU C++ compiler version 3.2 with an the optimization level -O3. The
time spent for the experiments was about 25 days producing a total volume
of several dozens TBytes.

Figure 4.2 compares the bucket implementation with the internal memory
MST implementations by Irit Katriel [KST03]. The curves for internal mem-
ory implementations show the running times on random graph instances,
since the behavior of these algorithms is very similar to other graph classes.
Given the 1 GByte of main memory, the internal memory Kruskal imple-
mentations can handle graphs with up to 20 million edges. Prim’s algorithm
implementation requires more internal memory for the same graph such that
it could process graphs with up to 10 million edges. For very sparse graphs
(m ≤ 4n) Kruskal’s algorithm performs better than Prim’s algorithm, while
for denser graphs Prim’s is slightly faster. For n ≤ 160, 000, 000, the bucket
implementation runs semiexternally, such that it is about two times slower
than the internal memory implementations. The internal and semiexternal
implementations leave some room for improvements: e.g. using a specialized
integer sorting, the semiexternal Kruskal’s implementation can benefit from

4.3. MINIMUM SPANNING TREES 99

1

2

3

4

5

6

5 10 20 40 80 160 320 640 1280 2560

t /
 m

 [µ
s]

m / 1 000 000

Kruskal
Prim

random
geometric

grid

1

2

3

4

5

6

5 10 20 40 80 160 320 640 1280 2560

t /
 m

 [µ
s]

m / 1 000 000

Kruskal
Prim

random
geometric

1

2

3

4

5

6

5 10 20 40 80 160 320 640 1280 2560

t /
 m

 [µ
s]

m / 1 000 000

Kruskal
Prim

random
geometric

Figure 4.2: Execution time per edge of the bucket implementation for m ≈
2 · n (top), m ≈ 4 · n (center), m ≈ 8 · n (bottom).

100 CHAPTER 4. ENGINEERING ALGORITHMS FOR LARGE GRAPHS

merging the sort and the scan part in a pipeline saving I/Os (Section 3.7).
Beyond 160, 000, 000 nodes the full bucket implementation is needed. The
running time almost doubles because of the additional costs of the node re-
naming, node reduction, and a blowup of the size of the edge data structure
from 12 to 20 bytes. As the complexity of the reduction is superlinear (Sec-
tion 4.3.4), the running time keeps growing with n/M for random graphs.

The running time on grid graphs and geometric graphs is much better than
one could expect. The time per edge even decreases with m. An explanation
for this is that for these types of graphs, many parallel edges are produced
and eliminated during relinking. For denser graphs less edges survive during
the node reduction, such that the semiexternal Kruskal’s implementation
processes unproportionally small number of edges.

The largest graph that has been tried out was a grid graph with about 232

nodes taking 96 GBytes just to represent the input (12 bytes per edge). This
graph was processed in a record time of about 8h 40min transferring 830
GBytes of data.

The bucket implementation has been compared with the implementation
based on the stxxl::priority queue. The following small table shows the
running time in µs per edge for random graphs with n = 320 · 106 and
m = 640 · 106, where we varied the number of disks:

1 disk 4 disks
bucket implementation 6.7 4.3
priority queue implementation 11.0 8.9

Since the speedup for the bucket algorithm after quadrupling the number of
disks is only 1.56, one can conclude that even with a single disk and the inter-
nally efficient bucket algorithm, the computation is rather CPU-bound. Since
the bucket implementation requires less CPU work, it performs considerably
better than the the PQ implementation. However, the PQ implementation is
still interesting because it is simple, can process graphs on which the bucket
implementation might fail, and also achieves a reasonable performance for a
single disk.

4.3.6 Conclusions

It has been demonstrated that massive minimum spanning trees filling several
disks can be solved “overnight” on a cheap hardware. In particular, this
became possible due to the simple and efficient implementations that profit
from the Stxxl library.

4.4. CONNECTED COMPONENTS AND SPANNING TREES 101

4.4 Connected Components and Spanning

Trees

In this section we show how the external memory implementations of MST
algorithms from Section 4.3 can be modified to compute spanning forests (SF)
and connected components (CC). This material is based on the extension
[Sch03b] of the bachelor thesis of Schultes [Sch03a].

4.4.1 Introduction

The connected component problem on an undirected graph G = (V, E) is the
problem of finding a mapping c : V → N, such that c(v) = c(u) for v, u ∈ V
iff v and u belong to the same connected component.

In the internal memory the connected component problem and the spanning
forest problem can be solved in linear time O(m + n) using the Breadth-
or Depth-First-Search algorithms. However, in the external memory setting
these problems can be solved only within the same asymptotic bounds as the
MST problem (Section 4.3.2 and [MR99, ABW02]). No better bounds are
known.

4.4.2 Spanning Forest

The node reduction algorithm (Section 4.3) coupled with the semiexternal al-
gorithm already produces a spanning forest. One can speedup this algorithm
by simplifying and removing some steps of the algorithm since the output
does not have to be a minimum forest. The I/O volume of the node reduction
can be reduced since the weight component of the edge tuples is not needed
anymore. This also leads to some saving of internal memory space of the
internal buckets. Thus, the block size of the external memory buckets can be
increased, which can affect the overall performance positively. The base case
(semiexternal Kruskal’s algorithm) can be simplified as the sorting step can
be skipped. In the node reduction phase, while removing node i, instead of
choosing the lightest adjacent edge to contract, one chooses an adjacent edge
(i, v) with the smallest id v. By intuition, this is a good decision, because
the work is postponed to later iterations and the number of nodes to process
in the future reduces faster (e.g. compared to the random choice) [Sib97].

The improvements concerning the node reduction phase can be applied to
both bucket and priority queue versions. In [Sch03b] only the reduction with

102 CHAPTER 4. ENGINEERING ALGORITHMS FOR LARGE GRAPHS

buckets has been implemented since the priority queue version would have
had a similar speedup.

4.4.3 Connected Components

Schultes [Sch03b] modifies and extends the bucket version of the algorithm
to perform accordingly with the algorithm described in [Sib04, SM02]. As in
the spanning forest algorithm, the input is an unweighted graph represented
as a list of edges. The output of the algorithm is a list of entries (v, c), v ∈ V ,
where c is the connected component id of node v, at the same time c is the
id of a node belonging to the connected component. This special node c is
sometimes called the representative node of a component. The algorithm
makes two passes over adjacency lists of nodes (left-to-right pass v = n−1..0
and right-to-left v = 0..n − 1, v ∈ V), relinking the edges such that they
connect node v with the representative node of its connected component.

Schultes integrates the algorithm [Sib04, SM02] into the bucket implemen-
tation of the spanning forests algorithm. If there are k = O(M/B) external
memory buckets then bucket i ∈ {0..k − 1} contains the adjacent edges
(u, v), u > v of nodes ui−1 < u ≤ ui, where ui is the upper (lower) bound of
node ids in bucket i (i + 1). Additionally, there are k question buckets and
k answer buckets with the same bounds. A question is a tuple (v, r(v)) that
represents the assignment of node v to a preliminary representative node
r(v). An answer is a tuple (v, r(v)) that represents the assignment of node
v to an ultimate representative node. Function b : V → {0..k − 1} maps a
node id to the coresponding bucket id according to the bucket bounds.

The bucket implementation is complemented with the following steps. Dur-
ing the processing of node v, the algorithm assigns r(v) tentatively the id
of its neighbor with the smallest id. If no neighbor exists then r(v) := v.
After processing the bucket i we post the preliminary assignments (v, r(v)) of
nodes v, ui−1 < v ≤ ui to question bucket b(r(v)) if r(v) does not belong to
bucket i. Otherwise we can update r(v) with r(r(v)). If the new r(v) belongs
to bucket i than it is the ultimate representative node of v and (v, r(v)) can
be written to the answer bucket b(v), otherwise we post question (v, r(v)) to
the appropriate question bucket. Note that the first answer bucket is handled
differently as it is implemented as the union-find data structure in the base
case. For v in the union-data structure r(v) is the id of the leader node of
the union where v belongs to. The connected component algorithm needs an
additional right-to-left scan to determine the ultimate representatives which
have not been determined in the previous left-to-right scan. The buckets are

4.4. CONNECTED COMPONENTS AND SPANNING TREES 103

read in the order 0..k − 1. For each (v, r(v)) in question bucket i we update
r(v) with the ultimate representative r(r(v)) looking up values in answer
bucket i. The final value (v, r(v)) is appended to answer bucket b(v). After
answering all questions in bucket i, the content of answer bucket i is added
to the output of the connected component algorithm.

If one only needs to compute the component ids and no spanning tree edges
then the implementation does not keep the original edge id in the edge data
structure. It is sufficient to invert randomization for the node ids in the
output, which can be done with the chosen randomization scheme [DSSS04,
Sch03a] without additional I/Os. Due to this measure the total I/O volume
and the memory requirements of the internal buckets are reduced such that
the block size of the external memory buckets can be made larger. All this
leads to an overall performance improvement.

4.4.4 Experiments

The experiment setup including the computer system and input instances
was the same as in the MST algorithm evaluation (Section 4.3).

Since the connected component and spanning tree algorithms are modifica-
tions of the MST algorithm they show a similar development of running time
with the change in problem size and in density of the graphs. Thus we only
show the relative speedup of the algorithms over the MST algorithm for the
semi-external and the external case in Table 4.4. For the detailed data see
[Sch03b]. Computing connected components and/or spanning forests is at
least 1.4 times faster than computing MST. The most important reason for
that is that the I/O volume is decreased: the weight field in the edge tuple
is not needed and the edges are not sorted like in Kruskal’s algorithm. The
computation of connected components takes more time than the computation
of a spanning forest mainly because it needs an additional pass through the
nodes. Nethertheless SF&CC is still faster than the MST implementation.

104 CHAPTER 4. ENGINEERING ALGORITHMS FOR LARGE GRAPHS

type n/106 m/106 SF CC SF&CC
grid 80 160 7.1 5.8 5.8
grid 1280 2560 1.8 1.8 1.5
random 80 160 2.1 2.0 2.0
random 1280 2560 2.1 2.3 1.9
random 40 320 2.5 2.4 2.4
random 320 2560 2.1 2.5 2.0
geometric 80 149 2.8 2.4 2.4
geometric 640 1190 1.7 1.6 1.4
geometric 40 270 3.6 3.4 3.5
geometric 160 1080 3.3 3.2 3.2

Table 4.4: Speedup of the connected component and/or the spanning forest
algorithm over the MST algorithm.

4.5. BREADTH FIRST SEARCH 105

4.5 Breadth First Search

Some of the material of this section has been published in [ADM06] and in
the master’s thesis [Ajw05].

4.5.1 Introduction

Many combinatorial problems need to traverse a graph in a structured way.
Breadth First Search (BFS) is one of the most useful traversal strategies. For
an undirected graph G = (V, E) and a source node s ∈ V , BFS decomposes
nodes of the graph into at most n = |V | levels, where each level i contains
the nodes that can be reached from s via a path of i edges, but can not be
reached using less than i edges.

In the internal memory setting, the problem of finding the BFS decomposi-
tion can be solved by a simple linear time algorithm [CLR90]. In the external
memory setting, i.e. when the input graph is too big to be processed in the
main memory, this algorithm incurs Θ(n+m) I/Os. Until recently it was not
clear if the exact BFS computation for such large graphs is feasible at all.
Therefore heuristics (exploiting some graph properties), and special precom-
putations producing approximate solutions have been developed. However,
two promising I/O-efficient BFS algorithms with small constant factors both
in I/O volume and CPU-time complexity exist: the MR-BFS [MR99] and
MM-BFS [MM02] algorithms.

In the remaining part of this section we show that MR-BFS and MM-BFS
algorithms implemented with Stxxl are able to compute the exact BFS-level
decomposition for huge synthetic and real graphs in a few hours. Thanks to
the Stxxl pipelining the implementations save at least a factor two in I/O-
volume.

4.5.2 Internal Memory BFS

The internal memory BFS (IM-BFS) algorithm [CLR90] visits the nodes of
the graph sequentially, starting from the source node s. The algorithm keeps
the candidate nodes to visit in a FIFO queue Q. When a node v is extracted
from Q, the adjacency list of v is examined and unvisited neighbors are
added to Q. This simple algorithm is not I/O-efficient due to two reasons:
(1) remembering the visited nodes costs Θ(m) I/Os in the worst case; (2)
unstructured accesses to the adjacency lists need up to Θ(n) I/Os.

106 CHAPTER 4. ENGINEERING ALGORITHMS FOR LARGE GRAPHS

4.5.3 MR-BFS

The MR-BFS algorithm [MR99] addresses the first problem reducing the
worst case I/O-complexity to O(n + sort(n + m)). The algorithm computes
the BFS levels incrementally. Let L(t) be the set of the nodes in level
t, N(S) be the multi-set of the neighbors of the nodes in set S and let
A(t) := N(L(t − 1)). The current level L(t) is constructed as follows:
A(t) is created by |L(t − 1)| accesses to the adjacency lists. This incurs
O(|L(t − 1)| + scan(|A(t)|)) I/Os. Then the duplicate nodes are removed
from the multi-set A(t) obtaining set A′(t) using a sorting and a scan-
ning step. This needs O(sort(|A(t)|)) I/Os. L(t) can be computed now
as A′(t) − {L(t − 1) ∪ L(t − 2)}. Filtering out the nodes contained in
the sorted sets L(t − 1) and L(t − 2) is possible by parallel scanning in
O(scan(|A(t)| + |L(t − 1)| + |L(t − 2)|)) I/Os. Since

∑

t |A(t)| = 2m 7 and
∑

t |L(t)| = n, the algorithm requires the O(n + sort(n + m)) I/Os. The
unstructured access to the adjacency lists of L(t − 1) is responsible for the
O(n) term.

Figure 4.3 shows the scheme of the pipelined and nonpipelined implemen-
tations of one MR-BFS iteration. In the pipelined version the whole algo-
rithm complexity can be implemented in one scanner that reads the nodes in
L(t− 1) and L(t− 1) and the adjacency lists E(t) of nodes in L(t) from the
corresponding stxxl::vectors and scans through the stream of A′(t) and
in just one pass outputs the nodes in the current level L(t) and the multi-set
A(t + 1), which is passed directly to the sorter. The output of the sorter is
scanned once to delete duplicates and output as the set A′(t + 1) used in the
next iteration.

Analyzing the schemes we conclude 8 that pipelining reduces the worst case
number of I/Os from
∑

t scan(|L(t − 1)| + |L(t − 2)| + |A(t)|) +
∑

t 2 scan(|L(t)|) +
∑

t(|L(t)| + scan(|N(L(t))|) +
∑

t 2 scan(|A(t + 1)|) +
∑

t(sort(|A(t + 1)|) + 3 scan(|A(t + 1)|)) = n + scan(4n + 14m) + sort(2m)

to
∑

t scan(|L(t − 1)| + |L(t − 2)|) +
∑

t(|L(t)| + scan(|N(L(t))|) +

7Note that graph is undirected and each edge is stored twice.
8To simplify the analysis the record size is assumed to be equal in all data streams.

4.5. BREADTH FIRST SEARCH 107

N(L(t))

N(L(t))

L(t−1)

L(t)E(t)

L(t−2) A’(t)

sort

L(t−1) L(t−2)

E(t)

sort

A’(t)

L(t)

compute A´(t)−L(t−1)−L(t−2)

find neighbors of L(t)

remove dupl.

parallel scan

Figure 4.3: Scheme of the MR-BFS algorithm: nonpipelined (left) and
pipelined (right).

∑

t scan(|L(t)|) +
∑

t sort(|A(t + 1)|) = n + scan(3n + 2m) + sort(2m).

Assuming that sort(x) = 2 · scan(x) with a careful choice of block size B we
conclude that pipelining can save at least half of the required I/O volume
(ignoring the worst case n term).

4.5.4 MM-BFS

The MM-BFS algorithm [MM02] is a refinement of the MR-BFS algorithm
that trades in the unstructured I/O for the increase of the number of itera-
tions in which an edge may be involved. On sparse graphs the total amount
of the unstructured I/O can be reduced by a factor of up to

√
B. MM-BFS

runs in two phases: a preprocessing phase that partitions the graph into dis-
joint clusters and the BFS phase itself. In [MM02], deterministic and nonde-
terministic variants of preprocessing have been proposed. [ADM06, Ajw05]
implements the simpler randomized version.

108 CHAPTER 4. ENGINEERING ALGORITHMS FOR LARGE GRAPHS

In order to efficiently store the graph partition the following graph repre-
sentation has been designed. The adjacency array is implemented as two
stxxl::vectors V and E. Vector E contains all edges of the graph twice
– once in the adjacency array of each adjacent node. Vector V contains the
iterators pointing to locations in E where a new adjacency array starts. An
stxxl::vector F stores the iterators to locations in V marking the first
node of clusters, i.e. nodes pointed by F [i], F [i] + 1, . . . , F [i + 1] − 1 build
cluster Fi. Edges and nodes in V and E are kept sorted according to the
cluster indices they belong to. Using this representation an arbitrary cluster
can be accessed in O(1) + scan(F [i + 1] − F [i]) I/Os.

The preprocessing step partitions the graph into disjoint connected subgraphs
Si, 0 ≤ i ≤ K, with a small expected diameter [MM02]. It also partitions the
adjacency arrays accordingly, i.e. it constructs vector F and reorganizes V
and E accordingly, such that cluster Fi contains the adjacency arrays of all
nodes in Si. We assume that S0 contains the source node s. The partition is
built by choosing master nodes independently and uniformly at random with

a probability µ =
√

(n+m) log n
nDB

and running a local BFS from all master nodes

“in parallel”: in each round, each master node si tries to capture all unvisited
neighbors of its current subgraph Si; this is done by first sorting the nodes
of the active fringes of all Si, and then scanning the dynamically shrinking
adjacency-array representation of the yet unexplored graph. If several master
nodes want to include a certain node, an arbitrary master nodes wins.

After choosing master nodes, the partitioning can run in pipelined mode
as shown in Figure 4.3 (left). The top scanner takes the sorted sequence
of the nodes on the fringe, updates their cluster ids in the external vector
V , adding them to the corresponding cluster. In the same scanner, adja-
cency lists of the fringe nodes are read and a new sequence of fringe nodes
is determined. The sequence is sent then to the sorter. After partitioning,
we generate the graph data structure described above. For this purpose,
each edge in E is supplemented with source and destination node cluster
ids. Sorted with respect to cluster ids, E and V are scanned to produce the
appropriate node and cluster iterator values. According to the analysis in
[MM02] the diameter of any cluster (the number of iterations) is less than
log n

µ
with high probability. Thus the total number of I/Os for the partitioning

is log n
µ

(scan(2m) + sort(2n)) + scan(4n + µn + 4m) + sort(4m + n).

In the BFS phase the algorithm performs similarly to the MR-BFS with one
difference: the adjacency arrays are not accessed directly, but cached in a
special pool H (“hot” adjacency arrays). The hot pool contains parts of the
cluster adjacency arrays Fi if Fi has a node in level L(t−1). Pool H initially

4.5. BREADTH FIRST SEARCH 109

sort

sort

sort sort

graph
partitioned

data structure

graph
partitioned

data structure

E(t)

E

fringe nodes

sort

L(t−1) L(t−2)

sort

sort

L(t)H(t)

H(t+1)

A(t)

F(t)

C(t)

compute new fringe

add cluster ids to src

add cluster ids to dst

compute iterators, etc.

comp. A´(t)−L(t−1)−L(t−2)

comp. ids of new clusters

remove dupl., update H

V

Figure 4.4: Pipelined scheme of the MM-BFS algorithm: partitioning phase
(left) and BFS phase (right).

contains cluster F0 with the adjacency lists of the source node s. To create
level L(t) based on L(t − 1) and L(t − 2), MM-BFS does not access single
adjacency arrays like MM-BFS. Instead it scans H to extract N(L(t − 1)).
In order to maintain the invariant that H contains the adjacency arrays of
all nodes on the current level L(t), the cluster adjacency arrays Fi of the
nodes whose adjacency arrays are not yet included in H will be merged in
H . The adjacency arrays of nodes in L(t) are removed completely from H at
the end of the iteration t. Each cluster Fi is added to H at most once. After
an adjacency array was copied to H , it will only be used for log n

µ
expected

iterations; afterwards it will be discarded from H .

The pipelined execution plan of the BFS phase is shown in Figure 4.4 (right).
The first scanner receives the sorted sequence A(t) of neighbors of L(t − 1)
from the previous iteration, reads L(t − 1) and L(t − 2) from the external
vectors and adjacency arrays of nodes in L(t − 1) from H in one scan. Se-
quence F (t) is computed – the multi-set of cluster ids of nodes in L(t). In
parallel, L(t) is written to disk. The second scanner takes the sorted F (t)
and the hot pool H to compute the multi-set C(t) of cluster ids that need

110 CHAPTER 4. ENGINEERING ALGORITHMS FOR LARGE GRAPHS

to be merged into H . The third scanner reads the sorted sequence of C(t),
eliminates duplicate cluster ids (we denote the set of unique ids as C ′(t)),
computes A(t) – the neighbor multi-set of L(t) – and updates H :

Hnew := Hold +
⋃

i∈C′(t)

Fi − Adj(L(t))

where Adj(S) represents the adjacency arrays of nodes in S. The total num-
ber of I/Os for this phase is bounded by

µn + scan(2m + 4n +
8m log n

µ
) + sort(2m + 2n)

w.h.p.

4.5.5 Experiments

In this experimental section we present some of the computational results
obtained in [ADM06].

Configuration. The implementations were compiled with the g++ version
3.32 with the optimization level -O3 on a Linux Debian system with a 2.4
kernel and Stxxl version 0.77. The computer had two 2 GHz Intel Xeon
processors (only one was used by the computations), one GByte of main
memory, and four 250 GByte Seagate Barracuda hard disks. The average
seek time for read and write is 8 and 9 msec, respectively, while the maximum
sustained bandwidth is 65 MByte/s.

Figure 4.5 shows the total running time of the presented algorithms on ran-
dom graphs of varying sizes (keeping m = 4n). An important point to note
here is that even when half of the graph fits in the internal memory, the
performance of IM-BFS is much worse than that of external BFS algorithms.
For this case (222 nodes and 224 nodes) the I/O wait time of IM-BFS (8.09
hours) dominates the total running time (8.11 hours), thereby explaining the
worse results of IM-BFS. On the other hand, MR-BFS and MM-BFS have
much less I/O wait time (1.55 and 4.93 minutes) and consequently, the total
running time (2.57 and 10.6 minutes) is small also. This clearly establishes
the need for efficient implementations of external memory BFS algorithms.

Running the experiments on single disk on other random graph instances
it was observed that MR-BFS is faster than the MM-BFS algorithm by a

4.5. BREADTH FIRST SEARCH 111

Figure 4.5: Running times of IM-BFS, MR-BFS and MM-BFS with graph
size (D = 1).

factor of 3.8. This result is expected, since random graphs have a small
diameter of size O(log n), and edges can remain in the hot pool for quite a
long time in MM-BFS. On high diameter graphs like grid graphs

√
n ×√

n,
MM-BFS outperforms MR-BFS by a factor of 87.9 in total running time.
Since the difference in running time for small diameter graphs is moderate,
the overhead of MM-BFS can be considered as an acceptable investment,
because it provides much stronger running time guarantees for really difficult
inputs.

The experiments in [ADM06] have shown that a bad initial layout of the
graph on the disk(s) can destroy the performance of the MR-BFS algorithm.
On the contrary, MM-BFS is not sensitive to the layout, because it neutralizes
the impact of bad layouts in the preprocessing phase giving a better worst
case guarantee. Thus, losing some time for MM-BFS preprocessing (days),
much time can be saved for adverse layouts (months).

When using all four disks the I/O-efficient implementations become more
CPU-bound; a speedup of about two can be obtained. The MM-BFS al-
gorithm gains more from the parallel I/O: It reduces the I/O wait time by
a factor of three, whereas for the MR-BFS algorithm the reduction is only
two-fold. However, the total running time of the MM-BFS is relatively far
above from the I/O wait time, such that further Stxxl optimizations includ-

112 CHAPTER 4. ENGINEERING ALGORITHMS FOR LARGE GRAPHS

ing better overlapping between I/O and computation and usage of multiple
CPUs for sorting can bring an improvement in performance.

As an instance of a real world graph, we considered an actual WWW crawl
from the WebBase project9, where an edge represents a hyperlink between
two nodes. For the BFS experiments the direction of edges was ignored. The
graph has around 130 million nodes and 1.4 billion edges. For this graph, the
total I/O volume of the BFS algorithm (with the data structure described
earlier) is around 25 GB. The bulk of the nodes is contained in the core of
this graph spread across 10-12 BFS levels (similar to random graphs). The
remaining nodes are spread out over thousands of levels with 2-3 nodes per
level. However, the I/O wait time as well as the total running time for the
BFS traversal is dominated by the core of this graph, hence the results are
similar to the ones for random graphs. The graph can be processed in a few
hours using a PC with four cheap disks. MR-BFS (2.3 hours) beats MM-BFS
(4.5 hours).

9http://www-diglib.stanford.edu/~testbed/doc2/WebBase/

http://www-diglib.stanford.edu/~testbed/doc2/WebBase/

4.6. LISTING ALL TRIANGLES IN HUGE GRAPHS 113

4.6 Listing All Triangles in Huge Graphs

Recently, there is an increasing interest in analyzing huge networks like the
Internet, the WWW [BLMP06, DLMT05, HL04, BYBC06, Leo04], or social
networks. The number of triangles in a graph is a very important metric
in (social) network analysis [HK79]. It is used to compute the clustering
coefficient [WS98] — the measure of concentration of clusters in graphs with
regard to its tendency to decompose into communities.

The problem of finding, counting and listing all triangles in a graph has been
studied theoretically and, only recently, in practice. In [SW05a, SW05b]
the authors extensively study various internal memory algorithms for the
problem. They investigate the performance of the algorithms running them
on random and real world graphs. However, the presented implementations,
due to the I/O-bottleneck, can not cope with very large graphs that do not
fit into the main memory (like the WWW graph [DLL+06]).

In the following we design an I/O-efficient Stxxl implementation of the
node-iterator algorithm [SW05b], and show that it can list all triangles in a
huge web crawl graph in a few hours.

4.6.1 I/O-Efficient Node-Iterator Algorithm

We denote deg(v) as the degree of node v and ∆ as the maximum node degree
in the undirected graph G = (V, E) with n nodes and m edges.

The node-iterator algorithm [SW05a, SW05b] iterates over all nodes and
tests each pair of neighbors of a node if they are connected by an edge. In
the worst case there can be up to

∑

v∈V

(

deg(v)
2

)

= O(n∆2) pairs. This results
in O(n∆2) I/Os accessing the adjacency lists.

We can reduce the number of edge queries heuristically if the nodes are pro-
cessed in the order of increasing degrees. While examining the neighbors
of node v an edge query is made only for neighbors u and w if v < u < w.
The traversal of the graph in the increasing degree order can be implemented
I/O-efficiently by renaming the nodes with new ids: nodes with smaller de-
gree get smaller ids. This can be done using a constant number of sorting
and scanning steps. To achieve I/O-efficiency the queries are not answered
immediately, but collected in batches of size Θ(m). A sorted query batch is
answered in a parallel scan with a lexicographically sorted array of all edges
in E.

114 CHAPTER 4. ENGINEERING ALGORITHMS FOR LARGE GRAPHS

4.6.2 Pipelined Implementation

Figure 4.6 shows the pipelined data flow graph of the I/O-efficient algo-
rithm 10. The implementation assumes that the input is an array E of edges
sorted lexicographically, where each edge is stored twice: as (u, v) and (v, u).
Any other graph representation can be easily converted to this format in
O(sort(n + m)) I/Os. In the first scanner, the graph array is scanned com-
puting the degree of nodes: a stream K of pairs (v, deg(v)), v ∈ V is out-
put. K is sorted by the degree component and fed to the second scanner
which computes new ids: a stream of maps (newID, oldID) is produced.
This stream is sorted by oldID and stored in an external vector R. The
stream is read in parallel by the third scanner which also scans E and adds
the newID for the source node v in the edge tuples. The fourth scanner
adds the newID for the destination node w and feeds edge tuples with
newID(v) < newID(w) into the sorter. Edge tuples, sorted lexicograph-
ically by new IDs, are read by the fifth scanner and are stored in an external
vector E ′ in parallel. The scanner scans the adjacency lists of nodes v and
for each neighbor pair u and w such that newID(u) < newID(w) a query
(newID(u), newID(w), v) is added to array Q. If array Q gets longer than
k ·m, where k is a constant, then the scanner suspends and the accumulated
queries are answered. For answering queries, Q is sorted and scanned with
E ′. The old node IDs of the triangles can be output directly, since they have
been kept in the edge tuple. After answering, the content of Q is emptied.
The choice of parameter k trades in the external space consumption of the
algorithm (query storage) for the number of scans of E ′.

In Figure 4.6 the arrows denoting the streams between the nodes are labeled
with the I/O-volume in 32-bit words transfered through the links (italic font
face). The total number of queries is denoted as t′, the number of triangles
in the graph is denoted as t. Using the diagram we can easily figure out the
precise I/O volume of the implementation:

scan(m(10 + 2⌈ t′

km
⌉) + 4n + 3t) + sort(4n + 6m + 3t′).

In the fifth scanner, the implementation copies previous neighbors of the
current node into an internal array assuming they fit in the internal memory.
Otherwise, an external storage can be used, causing an additional scan(m+t′)
I/Os in the worst case.

10The source code is available at
http://algo2.iti.uka.de/dementiev/tria/algorithm.shtml.

http://algo2.iti.uka.de/dementiev/tria/algorithm.shtml

4.6. LISTING ALL TRIANGLES IN HUGE GRAPHS 115

t’
km

E

sort

sort

sort

sort

T

E’

sort
Answer queries

R

Q

4m

4m

2n

2n
2n

2n

4m

2m2m

3t’
3t

2m

K

1. compute degrees

2. generate new ids

3. add new ID for src

4. add new ID for dst

5. generate triangle queries

6. answer queries

Figure 4.6: The pipelined scheme of the triangle counting/listing algorithm.

116 CHAPTER 4. ENGINEERING ALGORITHMS FOR LARGE GRAPHS

4.6.3 Experiments

Using our Stxxl implementation we have counted the number of triangles in
a web crawl graph from the WebBase project 11. In this graph the nodes are
web pages and the edges are hyperlinks between them. For the computation
we ignored the direction of the links. Our crawl graph had 135 million nodes
and 1.2 billion edges. The machine we have used is described in Section 2.4
as SCSIOpteron. The difference is that we have used seven hards disks and
one GByte of main memory. During the computation which took only 4h
46min we have detected 10.6 billion triangles. A total volume of 851 GB was
transferred between the main memory and the hard disks.

11http://www-diglib.stanford.edu/~testbed/doc2/WebBase/

 http://www-diglib.stanford.edu/~testbed/doc2/WebBase/

4.7. GRAPH COLORING 117

4.7 Graph Coloring

4.7.1 Introduction

Coloring a graph using as few colors as possible is an important problem
having many diverse applications, such as solving sparse linear systems of
equations, resource allocation, scheduling, and the construction and testing
of VLSI circuits. Finding the smallest possible number of colors is known to
be an NP-complete problem. Therefore it makes more sense to concentrate
on fast algorithms that give good non-optimal colorings. A class of such
algorithms are heuristics, they do not give guarantees on the quality of the
produced coloring, however, they give colorings with a small number of colors
on real-world instances and are very fast. Highest-degree-first [WP67] and
smallest-degree-last [MMI72] are the classical heuristics.

A special case of the problem is coloring planar graphs. Finding the mini-
mum number of colors for this type of graphs is also NP-complete [GJS76].
However, it is known that the nodes of every planar graph can be colored
with at most four colors. The best known internal memory O(n2) algorithm
[RSST96] for finding such a color assignment has very large constants and is
considered impractical. Coloring planar graphs with five colors can be done
faster, in linear time [Fre84].

The problem of coloring has been studied theoretically and experimentally
in the standard RAM model (see links in [Cul]). Solving the problem of
coloring in more advanced models of computation has attracted much atten-
tion. Many parallel and distributed coloring algorithms have been published,
however, much less has been done to evaluate these algorithms experimen-
tally. Parallel variants of the highest-degree-first and smallest-degree-last
heuristics are implemented in [ABC+95]. In the paper [JP93] the authors
devise a heuristic for distributed memory computers that generates color-
ings of a quality comparable with sequential greedy heuristics. Finnocchi et
al. [FPS05] provides a very detailed experimental study of fast randomized
distributed memory heuristics.

Many efficient parallel algorithms have been devised for finding a color assign-
ment with 8,7,6 and 5 colors [GPS87, Nao87, BK87, HCD89, Dik86, BJ85]
for planar graphs. The main idea behind most of these algorithms is to re-
move a constant fraction of small degree nodes and proceed with computing
the coloring of the (modified) rest of the graph recursively. Then, the set of
the removed nodes is colored based on the colors of the remaining nodes.

Parallel algorithms for coloring planar algorithms with only seven colors (7-

118 CHAPTER 4. ENGINEERING ALGORITHMS FOR LARGE GRAPHS

coloring) can be considered folklore. In at least two papers [GPS87, Nao87]
the authors propose a simple graph reduction, which leads to an optimal ex-
ternal memory coloring algorithms. The reduction allows to remove at least
1/6 nodes of the graph keeping it planar. The authors of [Nao87, BK87]
came up with somewhat complicated (R)NC parallel algorithms for the 5-
color version of the problem. The algorithms run in Ω

(

log3 n
)

suboptimal
worst-case parallel time and use the computation of connected components as
a subroutine. Diks [Dik86] presented a very complicated parallel 6-coloring
algorithm, which requires an efficient BFS algorithm as a subroutine. There
is an optimal parallel algorithm that can 5-color planar graphs [HCD89]. Its
externalization can give an I/O-efficient algorithm with sorting time com-
plexity. The algorithm is far from being practical: its reduction procedure
is very expensive and it can only reduce a tiny number of nodes (< n/196)
in a recursion in the worst case. A similar 5-coloring algorithm in [GPS87]
reduces the node set in the recursion by an even smaller fraction in the worst
case.

Although parallel (coloring) algorithms can often be reformulated as external
algorithms, the external memory model gives us additional opportunities. In
particular, the technique of time forward processing is I/O-efficient yet in-
herently sequential. The only coloring algorithm explicitly developed for the
I/O model we are aware of is the greedy algorithm by Zeh [Zeh02]. Although
this algorithm is based on time forward processing, it can be viewed as a
particularly efficient externalization of the parallel algorithm from [JP93]. A
particular application of an external memory coloring algorithm would be
computing a schedule for executing many parallel jobs if only a single pro-
cessor is available for computing the schedule. Each color gives a subset of
jobs that can be processed in parallel.

Our contributions. We propose a fast I/O-efficient implementation of the
Highest-Degree-First graph coloring heuristic, a new external memory vari-
ant of the Smallest-Degree-First heuristic, and its implementation, develop
new simple I/O-efficient algorithms for computing 6- and 7-colorings of pla-
nar graphs, provide a practical implementation of the 7-coloring algorithm,
and show how to implement the 2-coloring algorithm I/O-efficiently. We
implement the algorithms using the Stxxl library and compare the perfor-
mance of the devised implementations experimentally, running them on huge
random and real-world graph instances. To the best of our knowledge, no
algorithm for finding good colorings of graphs exceeding the size of the main
memory has been published so far. Our experimental study of I/O-efficient
coloring algorithms is the first of that kind.

4.7. GRAPH COLORING 119

Definitions and Theoretical Background. A coloring of graph G =
(V, E) with m edges and n nodes is an assignment of colors to the nodes of G
such that adjacent nodes receive distinct colors, i.e., a function c : V → N0

that has the property that c(u) 6= c(v) for all edges (u, v) ∈ E. A k-coloring
is a coloring that uses at most k colors. We say G is k-colorable if there is a
k-coloring of G.

We denote Vi as the subset of V that includes all nodes with degree i. Then
Vi..j =

⋃j
h=i Vh for 0 ≤ i ≤ j. Let ni be the number of nodes with degree i,

i.e. ni = |Vi|.
Lemma 1. Let Ud be a set of nodes whose degree is at most d. The size of
every maximal independent set in the induced subgraph defined by Ud is at
least 1

d+1
|Ud|.

Proof. The lemma follows from the fact that a node in a maximal indepen-
dent set can be incident to at most d other nodes in Ud.

Lemma 2. Let Ud be a set of nodes whose degree is at most d. The size
of every maximal matching in the induced subgraph defined by Ud is at least

k
2d−1

, where k is the number of edges in the induced subgraph.

Proof. The lemma follows from the fact that an edge in a maximal matching
can be incident to at most 2(d − 1) other edges in the subgraph induced by
Ud.

4.7.2 Greedy Coloring

Zeh [Zeh02] gives a greedy I/O-efficient algorithm for graph coloring. The
nodes are processed in arbitrary order. When a node v is visited, it is assigned
the smallest color, which has not been assigned to any of the already visited
neighbors of v. Figure 4.7 shows the pseudocode of an implementation of the
greedy algorithm. The algorithm accepts a lexicographically sorted list of
edges (src, dst) ∈ E, src < dst. Priority queue Q stores pairs (node, color)
ordered by node, signaling that node has a neighbor colored with color.
It is assumed that E = ∅ ⇔ E.front().src = ∞ and Q = ∅ ⇔
Q.min().node = ∞. Line (2) determines the node to be visited. In Line
(4) the colors of already visited neighbors of v are accumulated in array U .
Line (6) colors node v with the smallest available color C. Line (7) sends the
color signal (u, C) to each neighbor u of v via the priority queue.

Theorem 3 ([Zeh02]). In the worst case the greedy coloring algorithm per-
forms O(sort(m)) I/Os on an undirected graph with m edges.

120 CHAPTER 4. ENGINEERING ALGORITHMS FOR LARGE GRAPHS

Function GreedyColoring(E)
ExternalPriorityQueue: Q // stores neighbor colors
while E 6= ∅ ∨ Q 6= ∅ do (1)

v := min{E .front().src,Q .min().node} (2)
U := ∅ //used colors (3)
while v = Q .min().node do U .append(Q .delMin().color) od (4)
sort U (5)
scan U and assign node v color C := minc 6∈U {c} (6)
while v = E .front().src do Q .insert((E .popFront().dst ,C)) od (7)

Figure 4.7: The implementation of the greedy algorithm.

Proof. The algorithm performs m insertions in the priority queue, each taking
(1/B) logM/B(m/M) amortized I/Os [San00]. Sorting and scanning in Lines
(5–6) take

∑

v∈V sort(deg(v)) + scan(deg(v)) ≤ sort(2m) + scan(2m) I/Os.
For each visited node v, there is a color in [0, . . . , d] which has not been
assigned to a neighbor of v. Therefore, at most d + 1 colors are used.

4.7.3 Highest-Degree-First Heuristic

HDF heuristic is a variant of the greedy algorithm that visits and colors the
nodes in the order of their degree, starting from highest degree nodes. A high
level pseudocode of the I/O-efficient HDF heuristic is shown in Figure 4.8.
The algorithm accepts a lexicographically sorted list of edges (src, dst) ∈ E,
src < dst.

(1) Rename nodes in E such that
deg(v) > deg(u) ⇒ newName(v) < newName(u).

(2) Call GreedyColoring(E) computing a coloring.

(3) Restore the old names in the coloring.

Figure 4.8: The I/O-efficient HDF algorithm.

Corollary 4. The I/O-efficient HDF heuristic colors an undirected graph
with m edges in O(sort(m)) I/Os.

4.7. GRAPH COLORING 121

The pipelined scheme of our Stxxl HDF heuristic implementation is pre-
sented in Figure 4.9. Renaming of the nodes according to their degree is
implemented using a constant number of scan/sort passes in blocks from (a)
to (k). Calling greedy coloring in block (l) colors the graph with new node
ids. The old ids are restored in blocks (m)–(n).

Now we treat the diagram in detail. The algorithm duplicates each in-
coming each edge producing two edges: (u, v) and (v, u) for (u, v) ∈ E
(a). While processing (b) the sorted adjacency lists, stream of pairs J =
{(v, deg(v)) : v ∈ V } is computed (c). Stream J is sorted by deg(v) in de-
scending order (d). The nodes are numbered in (e): node v obtains a new
ID that is equal to the position of pair (v, d) in the sorted stream J ; pair
(v, newID) is output; v is appended to external array O. The name maps
(oldID, newID) are sorted in (f) and stored in external array R. Blocks
(g)–(i) rename the nodes in edges E. Block (j) exchanges src and dst in
edges with src > dst. Edges ordered by src are fed to the greedy coloring
algorithm (l). The nodes in the result of (l) receive their old names in (m).

We can precisely compute the worst case I/O volume of the implementation
considering the data flow between the nodes in the diagram. Assuming that
the pipelined sorters need only one merge pass and with proper settings the
priority queue performs only (64m/DB) I/Os [San00], and node and color
ids are represented with 4-byte C++ ints, then the pipelined HDF heuristic
has I/O volume at most 112m+72n bytes. A non-pipelined implementation
would transfer 224m + 120n bytes.

4.7.4 Batched Smallest-Degree-Last Heuristic

The Smallest-Degree-Last (SDL) heuristic [MMI72] algorithm operates in
two phases. In the first phase, it removes a node with smallest degree from
the graph (reducing the degrees of its neighbors). The procedure is applied
recursively to the graph that remains. Denote the node removed in recursion
i as vi. The second phase of the algorithm greedily colors the nodes of the
graph in the backward order vn,vn−1,. . .,v1.

A direct implementation of the SDL heuristic needs to do random accesses
to the adjacency lists of vi and its neighbors in each recursion, therefore
the implementation might require Ω (m) I/Os. We propose the Batched
Smallest-Degree-Last heuristic (BSDL), where a set of small degree nodes
(batch) is removed in a recursion. The recursion step gets more expen-
sive with respect to the number of I/Os and internal work, but the total
number of recursions is reduced. Nodes with degrees at most δ(V, E) are

122 CHAPTER 4. ENGINEERING ALGORITHMS FOR LARGE GRAPHS

sort by src node (b)

duplicate (a)

(c)compute degrees

E

sort by degree (d)

number nodes (e)

(f)

sort by dst node (h)

sort by oldID

src−>newID(src) (g)

R

(i)dst−>newID(dst)

O
GreedyColoring

sort by src node

orient (j)

(k)

(l)

(n)sort by node

E’

E’

result

(node,color)

J

(oldID,newID)

(oldID)

node−>oldID(node) (m)

Figure 4.9: The pipelined scheme of the I/O-efficient HDF algorithm.

4.7. GRAPH COLORING 123

taken in a batch, where function δ maps a graph to an integer in the range
[minv∈V {deg(v)} ,∞). We will refer to function δ as the maximum batch
degree function. The choice of this function balances the quality of the col-
oring and the running time of the heuristic: the smaller the value of δ(V, E),
the fewer color classes are used, and the slower the graph is reduced. Ideally,
the computation of the value of δ(V, E) should not cause much computa-
tional and I/O overhead. In this thesis, we experimentally investigate an
obvious maximum batch degree function: the rounded up average degree
δ(V, E) = ⌈2|E|/|V |⌉. Other possible functions one might consider are the
median degree, node c-quantile δ(V, E) = min {k : |V1..k| ≥ cn}, edge c-
quantile δ(V, E) = min

{

k :
∑

v∈V1..k
deg(v) ≥ 2mc

}

. However, the values of
those functions are more expensive to compute.

The I/O-efficient BSDL procedure is shown in Figure 4.10.

(1) Compute the value of δ(V, E).

(2) Find the set of nodes R = {v : v ∈ V, deg(v) ≤ δ(V, E)}.

(3) Delete the nodes in R from the graph G reducing it to graph G′ =
(V ′, E ′), where V ′ = V − R and E ′ = {(u, v) ∈ E | u, v ∈ V ′}.

(4) Color G′ recursively.

(5) Color the nodes in R calling GreedyColoring on the subgraph of G
induced by R. Before running the algorithm the priority queue is
filled with entries signaling the existence of already colored neighbors
of nodes in R, i.e. values {(v, color(u)) | (u, v) ∈ E, v ∈ R, u 6∈ R} are
inserted.

Figure 4.10: I/O-efficient implementation of the Batched Smallest-Degree-
Last coloring heuristic.

Figure 4.11 depicts an Stxxl pipelined implementation of the recursion of
the I/O-efficient BSDL heuristic. The nodes to remove R, the edges incident
to R and the input graph G′ for the recursion call are computed in a constant
number of scan/sort passes in blocks from (a) to (g). After the recursion the
nodes in set R are colored using the greedy coloring algorithm and a few
scan/sort passes (blocks (j)–(l)).

Now we consider the processing that goes on in the implementation in detail:
In each recursion, the algorithm receives a stream of edges E sorted by the
source node, which is fed into the duplicate algorithm (a). For each incoming

124 CHAPTER 4. ENGINEERING ALGORITHMS FOR LARGE GRAPHS

edge (v, w) the duplicate algorithm outputs two edges (v, w) and (w, v) to
the output stream, which is consumed by the sorter (b). The output of sorter
is a sequence of adjacency lists, which is fed to the algorithm (c), computing
the degrees of the nodes. In algorithm (d) the value of function δ(V, E) is
computed. The stream of triples in the form (src, dst, deg(src)) is analyzed,
passing the triples (src, dst, B), src < dst with binary bit B = (deg(src) ≤
δ(V, E)) to sorter (e) and pushing the nodes src ∈ R to an external vector.
To save I/O volume, field B is coded as the most significant bit of the src
field. In our implementation, algorithms (c) and (d) are combined into one
algorithm to reduce the computational overhead. Algorithm (f) passes the in-
coming edge (src, dst) from sorter (e) to the next recursion (f) if src, dst 6∈ R.
Edges in EC = {(src, dst) | src, dst ∈ R} are fed to sorter (i), and edges in
EIN = {(dst, src) | src 6∈ R, dst ∈ R} ∪ {(src, dst) | src ∈ R, dst 6∈ R} go to
sorter (h). Let V ′

0(i) be the set of nodes v ∈ V ′ having degree zero in graph G′

in the current recursion i, i.e., the nodes that become isolated after removal
of edges EIN , and let V ∗

0 =
⋃∞

j=i V
′
0(j). Then the stream of color assignments

(v′, color(v′)), v′ ∈ V ′ − V ∗
0 sorted by v′ comes from the recursion call (g).

Algorithm (j) initializes the priority queue used in the GreedyColoring with
entries (v, color(u)), v ∈ R, u ∈ V ′, indicating that node v has a neighbor
colored with color(u). For nodes u ∈ V ∗

0 algorithm (j) assumes that they
have color 0. This way the nodes in V ∗

0 are implicitly colored with zeros.
Nodes in R are colored calling GreedyColoring on graph (V, EC) (k). Algo-
rithm (l) merges the color assignment stream from algorithm (k) with the
color assignments of nodes in G′ stored in external array C. The array C is
rewritten with the output of algorithm (l), such that it finally contains the
color assignments for all nodes in G − V ∗

0 .

4.7.5 7-Coloring of Planar Graphs

In this section we show that the BSDL heuristic with maximum batch de-
gree function δ(V, E) = 6 computes a 7-coloring of a planar graph I/O in
O(sort(m)) I/Os. In contrast to the parallel algorithm of Naor [Nao87] our
7-coloring algorithm does not filter adjacent nodes computing a maximal in-
dependent set of R. Using the time-forward-processing technique we are able
to reduce by more nodes per iteration.

Lemma 5 ([Nao87]). In planar graphs, the number of nodes with a degree
less than seven is at least n/6.

4.7. GRAPH COLORING 125

EC

sort by src node (b)

duplicate (a)

(c)compute degrees

filter edges (d)

E

R

(g)

dst R AND B=0

(f)categorize

sort by dst node (e)

(src,dst,B)

recursion (h)sort by dst node

(j)initialize PQsort by src node (i)

(k)GreedyColoring

update colors C

(v,color(v))

(l)

dst R AND B=1

(dst R AND B=0)

(dst R AND B=1)
OR

E IN

Figure 4.11: The pipelined scheme of the Batched Smallest-Degree-Last col-
oring heuristic.

126 CHAPTER 4. ENGINEERING ALGORITHMS FOR LARGE GRAPHS

Proof. According to Euler’s formula for planar graphs [Har69]:

2m < 6n (4.1)

or

∞
∑

i=1

i ni < 6

∞
∑

i=1

ni

We have
∑∞

i=1 i ni =
∑6

i=1 i ni +
∑∞

i=7 i ni ≥
∑6

i=1 ni + 7
∑∞

i=7 ni. On the
other hand 6

∑∞
i=1 ni = 6

∑6
i=1 ni + 6

∑∞
i=7 ni. Then

∑6
i=1 ni + 7

∑∞
i=7 ni <

6
∑6

i=1 ni + 6
∑∞

i=7 ni. Subtracting 6
∑∞

i=7 ni on both sides we get
∑6

i=1 ni +
∑∞

i=7 ni < 6
∑6

i=1 ni ⇔ n < 6
∑6

i=1 ni.

Theorem 6. The BSDL heuristic with maximum batch degree function
δ(V, E) = 6 computes a 7-coloring of a planar graph in O(sort(m)) I/Os.

Proof. The pipelined implementation implies that steps (1)–(3) run in
O(sort(m)) I/Os. Step (5) needs O(sort(m)) I/Os by Theorem 3. Lemma 5
states that |R| ≥ n

6
, then by Euler’s formula (Equation 4.1): |R| > m

18
. Since

every node in R has at least one edge, the edge set E ′ has at most a constant
fraction of edges in E: |E ′| < 17

18
m. Therefore the I/O complexity of the

algorithm can be expressed as:

T (m) < O(sort(m)) + T

(

17

18
m

)

The recurrence has the solution T (m) = O(sort(m)).

Since the maximum degree of nodes R in graph (V, EC ∪ EIN) is at most
6, then by Theorem 3 the number of colors used by the heuristic is at most
7.

Analyzing the data flow between and inside the blocks in the diagram shown
in Figure 4.11, we can obtain the worst case I/O volume of the 7-coloring
algorithm. With the same assumptions about the I/O volume of the pipelined
sorters and priority queue as in Section 4.7.3, the I/O volume of the 7-coloring
algorithm is 1168m + 144n bytes in the worst case. Without pipelining it
would be 3192m + 336n bytes.

4.7. GRAPH COLORING 127

4.7.6 6-Coloring of Planar Graphs

In this section, we present an I/O-efficient algorithm that 6-colors planar
graphs. As in the 7-coloring algorithm we try to find a set of low degree
nodes R whose size is at least a constant fraction of the total number of nodes.
This set contains the candidates for removal. In our 6-coloring algorithm, in
contrast to 7-coloring, not all nodes with degree six are taken into R, one
takes only those having at least two neighbors that can be merged into one
node efficiently, thus reducing the maximum possible number of neighbor
colors to five. In candidate set R we include two categories of nodes:

(1) nodes with a degree at most five, V1..5.

(2) nodes with degree six having at most two large neighbors. We denote
this set as V ′

6 ⊆ V6, and the cardinality of this set we denote as n′
6.

Lemma 7 proves that there is a sufficient number of nodes of that kind.
Amazingly, the worst case ratio between the size of the candidate set R and
n is the same as in the 7-coloring algorithm (Lemma 5), i.e. the number of
degree-six nodes rejected in condition (2) is small.

Definition: A node is small if it has at most K neighbors, large otherwise.
deg(v) denotes the degree of node v.

Lemma 7. There exists a constant K such that the number of nodes in set
R is at least n/6.

Proof. First let us bound the number of nodes with degree six having at least
three large neighbors (n6−n′

6). Consider the worst case when the large nodes
are incident only to the degree-six nodes. Moreover, each node of degree six
has exactly three edges connecting it to the large degree nodes. Then:

n6 − n′
6 ≤

∑∞
i=K+1 i ni

3

or

3n′
6 ≥ 3n6 −

∞
∑

i=K+1

i ni (4.2)

128 CHAPTER 4. ENGINEERING ALGORITHMS FOR LARGE GRAPHS

According to Euler’s formula

2m < 6n

⇒
∞

∑

i=1

i ni < 6
∞

∑

i=1

ni

⇒
5

∑

i=1

i ni + 6n6 +

∞
∑

i=7

i ni < 6

5
∑

i=1

ni + 6n6 + 6

∞
∑

i=7

ni

⇒
∞

∑

i=7

(i − 6)ni +

5
∑

i=1

i ni − 6

5
∑

i=1

ni < 0

⇒
∞

∑

i=7

(i − 6)ni +
5

∑

i=1

ni − 6
5

∑

i=1

ni < 0

⇒ 0 >

∞
∑

i=7

(i − 6)ni − 5

5
∑

i=1

ni (4.3)

We add α times Inequality (4.3) to Inequality (4.2):

3n′
6 > 3n6 + α

∞
∑

i=7

(i − 6)ni −
∞

∑

i=K+1

i ni − 5α

5
∑

i=1

ni

⇒ 5α

5
∑

i=1

ni + 3n′
6 > 3n6 + α

K
∑

i=7

(i − 6)ni +

∞
∑

i=K+1

((α − 1)i − 6α)ni

⇒ 5α
5

∑

i=1

ni + 3n′
6 > 3n6 + α

K
∑

i=7

ni +
∞

∑

i=K+1

((α − 1)(K + 1) − 6α)ni

For all K ≥ 10 the ratio 5α
min{3,α,(α−1)(K+1)−6α}

is minimal with α = 3. Plug-
ging in the values of α and K = 10 we obtain:

4.7. GRAPH COLORING 129

15
5

∑

i=1

ni + 3n′
6 > 3n6 + 3

K
∑

i=7

ni + 4
∞

∑

i=K+1

ni

⇒ 15
5

∑

i=1

ni + 3n′
6 > 3

∞
∑

i=6

ni

⇒ 5

5
∑

i=1

ni + n′
6 >

∞
∑

i=6

ni

Adding
∑5

i=1 ni to both sides of the inequality we arrive at:

6
5

∑

i=1

ni + n′
6 >

∞
∑

i=1

ni

Finally:

6(

5
∑

i=1

ni + n′
6) >

∞
∑

i=1

ni = n

⇒ |R| >
n

6

The algorithms for 5-coloring planar graphs in [HCD89, GPS87] have similar
constructions of candidate sets. However, they guarantee only a very small
ratios |R|/n (1/196 and 1/301 accordingly), which may lead to huge con-
stants in the overall running times. Our construction is more practical: the
reduction step is simpler and it can find more nodes in the worst case.

Now we present the algorithmical procedure of the reduction step. Let R′

be a maximal independent set of R. The nodes in R′ having a degree less
than six (V1..5∩R′) are deleted from the graph as in the 7-coloring algorithm.
We delete every node in V ′

6 ∩ R′ from G and merge two non-adjacent small
neighbors in a single node concatenating their adjacency lists. Such two nodes
always exist, since otherwise there is a clique on five nodes (the degree-six

130 CHAPTER 4. ENGINEERING ALGORITHMS FOR LARGE GRAPHS

S

SS

6

S

L L

Figure 4.12: The clique between the degree-six node (center) and the four
small neighbors (corner nodes).

S

S

L LS

Figure 4.13: The only non-neighbor small nodes from Figure 4.12 are merged
(the top-left and bottom-right nodes).

4.7. GRAPH COLORING 131

node and its four small neighbors, see Figure 4.12). It is easy to see that
after the described reduction, the graph remains planar (see Figure 4.13).

In general, two or more nodes in V ′
6 can cause the merging of the same node:

v1 ∈ V ′
6 merges node w1 with w2 and v2 ∈ V ′

6 merges node w1 with w3. To
resolve these conflicts we propose two solutions. The first approach com-
putes the connected components in graph Gc with a node set Vc consisting of
nodes that have to be merged and the edge set Ec, which models the merge
operations: edge (w1, w2) is in Ec if w1 has to be merged with w2. Then we
compute the connected components of the planar graph Gc, using the algo-
rithm in [CGG+95] in O(sort(n)) I/Os. Each connected component includes
the set of nodes that have to be merged together in one node. The merging
is then done by renaming the nodes to the node id of the representative node
of the respective connected component. This can be performed in a constant
number of sort and scan operations.

Our second solution does not require calling the connected components sub-
procedure. We compute a maximal matching Mc of the (multi)graph Gc

using a simple algorithm from [Zeh02] running in O(sort(n)) I/Os. We per-
form only those merge operations that are present in Mc. We also have to
remove the nodes from R′ which contributed to Gc, but their merge opera-
tions were filtered out from Mc. Since all nodes in Gc are small, this can be
implemented using O(sort(n)) I/Os. The degree of a node v ∈ Gc can be at
most K, since for each edge (v, u) ∈ E, u ∈ V ′

6 ∩R′, there is exactly one edge
(v, w) ∈ Gc and node v is small in G. Therefore by Lemma 2 set R′ might
be reduced in size by a factor at most 1/(2K − 1).

It is not clear which solution is faster: connected components is a more
expensive procedure in the external memory, but the approach does not
reduce set R′; the second solution is cheaper but might reduce set R′ by
factor 1/(2K−1) in the worst case, i. e. postponing the computation to later
recursions.

Summing all up we present a high-level scheme of the algorithm in Figure 4.14

Theorem 8. The I/O-efficient algorithm for computing 6-coloring of a pla-
nar graph runs in O(sort(m)) I/Os.

Proof. Steps (1)–(5) and (7)–(8) can be implemented in a constant number
of sort and scan steps. From Lemma 7, Lemma 1 and Lemma 2 it follows

that |V ′| ≤
(

1 − 1
6·7·(2K−1)

)

n. Then, by the Euler’s formula (Equation 4.1)

there exists a constant q, such that |E ′| ≤ q · m, 0 ≤ q < 1. Hence the I/O
complexity of the algorithm can be expressed as:

T (m) ≤ O(sort(m)) + T (q · m)

132 CHAPTER 4. ENGINEERING ALGORITHMS FOR LARGE GRAPHS

(1) Find sets V1..5 and V ′
6 , R = V1..5 ∪ V ′

6 .

(2) Compute a maximal independent set R′ of R using the I/O-efficient
algorithm from [Zeh02].

(3) Construct Gc: for each v ∈ V ′
6 ∩ R′ add edge (w1, w2), where w1 and

w2 are two non-adjacent small neighbors of v, label (w1, w2) with v.

(4) Do (a) or (b):

(a) Compute the connected components of Gc. In graph G merge all
nodes belonging to the same connected component of Gc into one
node. We denote this graph with merged nodes as Gm = (Vm, Em).

(b) Find a maximal matching Mc in Gc. Keep a node v ∈ V ′
6 ∩ R′ in

R′ if ∃(w1, w2) ∈ Mc with the label v, otherwise exclude v from
R′. In graph G merge nodes w1 with w2 for all (w1, w2) ∈ Mc,
obtaining graph Gm.

(5) Delete the nodes in R′ from the graph Gm reducing it to graph G′ =
(V ′, E ′), where V ′ = Vm − R′ and E ′ = {(u, v) ∈ Em | u, v ∈ V ′}.

(6) Color G′ recursively.

(7) Each node in R′ chooses a color different from its neighbors in Gm. It
has at most five neighbors, so that a vacant color always exists.

(8) Color the nodes in G that were deleted during the merging with the
colors of the nodes they were represented by in Gm.

Figure 4.14: I/O-efficient 6-coloring algorithm for planar graphs.

4.7. GRAPH COLORING 133

The recurrence is solved by T (m) = O(sort(m)).

4.7.7 2-Coloring

The well known linear time algorithm for finding a 2-coloring of a
graph (or proving that no 2-coloring exists)12 can be implemented I/O-
efficiently. The algorithm computes a spanning forest of the graph in
O(sort(m)(1 + log log(B · n/m))) I/Os using the deterministic algorithm
[MR99] or in O(sort(m)) I/Os using the randomized algorithm [ABW02].
Around each tree of the spanning forest, an Euler tour [CGG+95] is computed
using a constant number of sort and scan steps. When the algorithm tra-
verses the Euler tours using list ranking [CGG+95], the color (d(v) mod 2)
is assigned to node v, where d(v) is a tree distance from the root of node
v. Then, the edge list is scanned: if there is an edge (u, v) ∈ E such that
colors of u and v match, then the graph has an odd-length cycle and is not
2-colorable. Otherwise, the obtained coloring is valid.

Theorem 9. A graph can be 2-colored in O(sort(m)(1 + log log(B · n/m)))
I/Os deterministically or in O(sort(m)) expected I/Os.

4.7.8 Experiments

In this section, we experimentally evaluate the performance of the Stxxl

external memory implementations of the HDF heuristic, the BSDL heuristic
with δ(V, E) = ⌈2|E|/|V |⌉, the 7-coloring algorithm for planar graphs (EM7),
a tuned SDL implementation from the Boost library (www.boost.org) and
an implementation of a 7-coloring algorithm for planar graphs that uses the
LEDA library version 5.1 [MN99] (IM7 algorithm) 13. The Boost SDL imple-
mentation uses the adjacency list graph representation with std::vectors
storing the set of vertices and the adjacency structure. This choice reduces
the internal memory consumption and guarantees constant time operations
for the SDL algorithm. The implementation itself does not modify the input
graph during the node removal, instead, it maintains an auxiliary array with
the current node degrees. Finding the smallest degree node is implemented
with a bucket priority queue. The IM7 implementation follows the algo-
rithm from Figure 4.10 using data type leda::graph to represent graphs.

122-colorability is equivalent to the bipartiteness test.
13The source code of the implementations and random graph generators is available at

http://algo2.iti.uka.de/dementiev/files/coloring.tgz.

www.boost.org
http://algo2.iti.uka.de/dementiev/files/coloring.tgz

134 CHAPTER 4. ENGINEERING ALGORITHMS FOR LARGE GRAPHS

Node and edge removal have been implemented via hiding, using the method
leda::graph::hide node.

In the experimental evaluation we have run the implementations on random
and real graph instances:

• G(n, m)-random graphs where edges are generated picking the end
points uniformly at random from [0, n). Self-loops has been discarded.

• a web crawl graph from the WebBase project14. In this graph the nodes
are web pages and edges are hyperlinks between them (the direction
was ignored).

• maximal random planar graphs with m ≈ 3n, which were obtained us-
ing the leda::maximal planar map function, and more sparse planar
graphs with m = 2n generated by the leda::random planar map func-
tion. We could not generate graphs with more than 223 nodes because
of the 4 GBytes limit of the address space.

• instances of Delaunay triangulations of real-world point sets (Neuse
River Basin of North Carolina) obtained in [AAY05].

In our experiments we have used three systems running Linux SUSE 9.3 or
10.0, their configurations are described in Tables 4.5 and 4.6. The Opteron
machines correspond to the systems described in Section 2.4. The STREAM
value is the average of the copy, scale, add, and triad memory bandwidths
obtained by the popular STREAM benchmark [Str]. Our programs were
compiled with the GNU C++ compiler version 3.4 and 4.0 with options -O3
-DNDEBUG -DLEDA CHECKING OFF. For experiments with external memory im-
plementations, we used up to 660 MBytes of the available main memory and
block sizes 512 KBytes or 1 MByte, if not stated otherwise. During all ex-
periments, the swap file was switched off to avoid paging. The values of the
running time and the number of used colors for (general and planar) random
graphs are averaged over runs with 20 random instances.

Figure 4.15 compares the performance of the SDL, BSDL and HDF heuristics
on random graphs with a fixed edge probability p = 0.2 15. The smaller
instances fit into the internal memory, for n ≥ 215 the inputs need to be
processed in external memory. With respect to the running time, the internal
memory SDL shows to be up to 1.6 times faster than the external memory

14http://www-diglib.stanford.edu/~testbed/doc2/WebBase/
15We consider all possible edges in an undirected graph with n nodes and choose each

edge with probability p. This is another method to generate G(n, m)-random graphs.

http://www-diglib.stanford.edu/~testbed /doc2/WebBase/

4.7. GRAPH COLORING 135

Table 4.5: Parameters of experimental systems.

Name Main mem. CPU STREAM
Opteron-IDE 4 GBytes DualCore 2.0 GHz 2.9 GByte/s
Opteron-SCSI 8 GBytes 4-way 1.8 GHz 2.0 GByte/s
Pentium-4 1 GByte 3.2 GHz HT 3.1 GByte/s

Table 4.6: Disk parameters.

Measured read/write
Read/write bandwidth (MByte/s)

Name Type seek time 1 disk 4 disks
Opteron-IDE SATA 7200RPM 9/9 ms 60/80 240/320
Opteron-SCSI SCSI 15000RPM 3.6/4 ms 75/63 284/244
Pentium-4 PATA 5400RPM 8.9/8.9 ms 37/31

implementations. However, for n > 213 the SDL implementation needs more
memory than the physical main memory of the system and aborts if the swap
file is switched off. With working virtual memory, SDL already needs 57µs
per edge for n = 214 and 180µs per edge for n = 215. For larger inputs it did
not finish even in one day due to many unstructured accesses to the swap
file; the experiments have been interrupted manually. For large inputs, we
only show the performance of the BSDL and HDF heuristics, since we are
not aware of any other I/O-efficient coloring heuristics. One recursion of the
BSDL heuristic is cheaper than the whole procedure of HDF with respect
to the I/O volume. However, BSDL is slower than HDF on random graphs,
since there are not many nodes with a degree that is less than average, and
the algorithm has to perform many recursions only discarding about 50 % of
the graph in most of them. The right part of the figure shows the difference
in the quality of the obtained colorings. Note that this difference is very
small and below 1.2% for all input sizes and heuristics. At least for random
graphs, BSDL achieves near the same quality of coloring as SDL, though
BSDL colorings can be worse than SDL colorings theoretically.

Figure 4.16 compares the performance of the heuristics on random graphs
with varying density and fixed size. The graphs have about five million edges
such that the space consumption of SDL does not exceed the size of the main
memory. Changing the density of graphs does not change the order of the
heuristics with respect to the running time. As before, the difference in the
number of used colors is very small (below 1.3%). BSDL and SDL achieve

136 CHAPTER 4. ENGINEERING ALGORITHMS FOR LARGE GRAPHS

 0

 0.5

 1

 1.5

 2

 2.5

 3

218219216215214213212

E
xe

cu
tio

n
tim

e
[µ

s]
 /

m

n

SDL
BSDL

HDF

 0

 2

 4

 6

 8

 10

 12

 14

218219216215214213212

N
um

be
r

of
 c

ol
or

s
[1

]

n

col(SDL) - col(HDF)
col(BSDL) - col(HDF)

Figure 4.15: The running time (left) and the difference in the average number
of colors (right) of the heuristics on random graphs with edge probability
0.2. (Opteron-IDE, 4 disks, M = 660 MB, B = 2 MB for n > 215, otherwise
B = 128 KB).

 0

 0.5

 1

 1.5

 2

 0 0.2 0.4 0.6 0.8 1

E
xe

cu
tio

n
tim

e
[µ

s]
 /

m

density 2m/(n(n-1))

SDL
BSDL

HDF

 0

 2

 4

 6

 8

 10

 0 0.2 0.4 0.6 0.8 1

N
um

be
r

of
 c

ol
or

s
[1

]

density 2m/(n(n-1))

col(SDL) - col(HDF)
col(BSDL) - col(HDF)

Figure 4.16: The running time (left) and the difference in the number of
used colors (right) of the heuristics on random graphs with about five million
edges. (Opteron-IDE, 4 disks, M = 200 MB, B = 128 KB).

almost the same quality of coloring. Figure 4.17 shows similar behavior of
the HDF and BSDL heuristics on larger random graphs with varying density.
SDL could not cope with these inputs. The curves in Figures 4.16 and 4.17 go
slightly down as the graph density increases. We explain it by the presence
of an Θ(n) term in the complexity of the algorithms.

The absolute number of colors obtained in the experiments above is shown
in Figure 4.18. The difference between the heuristics is indistinguishable.

Table 4.7 shows the performance of the HDF and BSDL heuristics on planar
graphs and the webgraph. Note that the delaunay1 instance and random
planar graphs16 can fit into the main memory. However, the sorters work in

16These are the largest graphs we could generate with LEDA.

4.7. GRAPH COLORING 137

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.2 0.4 0.6 0.8 1

E
xe

cu
tio

n
tim

e
[µ

s]
 /

m

density 2m/(n(n-1))

BSDL
HDF

 0

 5

 10

 15

 20

 25

 30

 35

 0 0.2 0.4 0.6 0.8 1

N
um

be
r

of
 c

ol
or

s
[1

]

density 2m/(n(n-1))

col(BSDL) - col(HDF)

Figure 4.17: The running time (left) and the difference in the number of used
colors (right) of the heuristics on random graphs with about 2 · 109 edges.
(Opteron-IDE, 4 disks).

Table 4.7: The running times/I/O wait time/the number of obtained colors
for the HDF and BSDL heuristics. The running times are given in minutes.
(Opteron-IDE, 4 disks)

Instance n/106 m/106 HDF BSDL
rand.planar1 8.4 16.8 0.55/0.07/6.0 0.57/0.10/5.1
rand.planar2 8.4 25.2 0.72/0.07/7.0 0.77/0.11/6.1
delaunay1 8.5 25.5 0.69/0.13/7 0.67/0.10/7
delaunay2 84.7 254.0 6.95/0.96/7 6.57/0.87/7
delaunay3 503.0 1509.0 49.87/10.41/7 43.19/5.68/7
webgraph 135.0 1079.9 35.86/8.72/246 43.57/5.89/246

the external memory even in this setting, because they share the main mem-
ory. We have run the implementations with reduced M = 200 MBytes also,
but the running time has remained almost the same. The BSDL heuristic is
slightly faster than the HDF heuristic on all measured Delaunay triangula-
tions. The reason for this is that the number of nodes with a degree that it
at most average (rounded up) is large in the Delaunay graphs (about 88 %),
therefore the BSDL heuristic can reduce many nodes in the first recursion
already. The webgraph could be colored by HDF in 35.86 minutes using
246 colors. The last recursions of the BSDL heuristic have identified a very
dense subgraph of the webgraph, which explains the relatively large number
of colors used in the obtained colorings. Note that the average degree of the
entire webgraph is less than 16.

138 CHAPTER 4. ENGINEERING ALGORITHMS FOR LARGE GRAPHS

 100

 1000

 10000

218219216215214213212

N
um

be
r

of
 c

ol
or

s
[1

]

n

constant edge probability

SDL
BSDL

HDF

 100

 1000

 0 0.2 0.4 0.6 0.8 1

N
um

be
r

of
 c

ol
or

s
[1

]

density 2m/(n(n-1))

random graphs with about 5 mln edges

SDL
BSDL

HDF

 1000

 10000

 0 0.2 0.4 0.6 0.8 1

N
um

be
r

of
 c

ol
or

s
[1

]

density 2m/(n(n-1))

random graphs with about 2 109 edges$

BSDL
HDF

Figure 4.18: The absolute number of colors obtained by the heuristics on
random graphs with constant edge probability 0.2, on random graphs with
about five million edges and about 2 · 109 edges.

4.7. GRAPH COLORING 139

Figure 4.19 shows the execution times of the internal memory implementation
IM7 and the EM7 implementation running on the instances of the random
planar graphs. The linear time IM7 implementation is faster than the EM7
implementation for n ≤ 222 because of the smaller CPU work and the use of
the efficient internal memory data structures from LEDA. For larger inputs,
the IM7 implementation needs more memory than the system physically
holds.

 5

 10

 15

 20

223222221220219218

E
xe

cu
tio

n
tim

e
[µ

s]
 /

n

n

EM 7-coloring max.
EM 7-coloring m=2n

IM 7-coloring max.
IM 7-coloring m=2n

Figure 4.19: Performance of 7-coloring algorithms on random planar graphs
(Pentium-4, M = 200 MB, B = 128 KB).

For each recursion the second column (|R|/|V |) in Table 4.8 presents the real
node reduction factors in the EM7 implementation on a maximal random
planar graph with 223 nodes. We present numbers for this instance size
only, since they are very similar to the numbers for other instances from this
graph family. The obtained node factors |R|/|V | are much larger than the
theoretical worst case 1/6. The algorithm could reduce about 80 % of nodes
and edges in each recursion. It required only 10 recursions to complete. The
real I/O volume of the algorithm is 11–14 times smaller than the bound
mentioned in Section 4.7.5. This holds true for other planar graph instances
also (Table 4.9). We conclude that for real graphs the performance of the
EM7 algorithm is much better than the worst case. The measured I/O
volume of the HDF heuristic does not deviate much from its worst case
bound (only 7–15 % less).

The running times of the EM7 algorithm on instances of Delaunay triangula-
tions are presented in Table 4.9. The bottom line of this experiment is that a
real planar graph with 1.5 · 109 edges can be 7-colored in about 42 min by an
external memory algorithm. Running with four disks, the EM7 algorithm is
close to being compute-bound: the processing thread is waiting for I/O only
about 10 % of the total running time. The algorithm is faster (20–30 %) on

140 CHAPTER 4. ENGINEERING ALGORITHMS FOR LARGE GRAPHS

Table 4.8: Reduction factors in the EM7 algorithm implementation on a
maximal random planar graph instance with 223 nodes.

recursion |R|/|V | (%) |V0|/|V | (%) |E − E ′|/|E| (%)
1 78.58 0 79.07
2 79.2 0 79.59
3 79.67 0 79.78
4 79.84 0.01 79.89
5 79.57 0.02 79.52
6 79.7 0 79.68
7 78.58 0 79.16
8 80.15 0 81.53
9 81.48 0 87.14
10 100 0 100

the Opteron-IDE system perhaps because of a faster CPU and a faster inter-
nal memory subsystem. Comparing the running times of the instances, one
concludes that the EM7 algorithm almost linearly scales with the input size.
In running time, the EM7 algorithm has a small advantage over the HDF and
BSDL heuristics (Table 4.7) on planar graph instances because it can reduce
many nodes in a recursion, leading to less recursions. In particular, it can be
faster than BSDL when the average degree is less than six. We have observed
that Delaunay inputs need much less recursions: delaunay1 and delaunay3
are processed in only four recursions, note also that the latter instance is
60 times larger than the first one. This fact indicates that the Delaunay
triangulations have a nature different from that of maximal random planar
graphs. Starting from the second recursion, the graph begins to shrink very
quickly, such that only a tiny ratio of the input edges and nodes is passed
to the next recursion. A reason for this is that from this point many nodes
become isolated after the removal of nodes R and their incident edges EIN

(see |V0|/|V | ratio in Table 4.10 and Table 4.8). The described behavior is
not observed for the maximal random planar instances. The colorings of the
BSDL heuristic and EM7 algorithm are better than the colorings of the HDF
heuristic for random planar graphs (Tables 4.7 and 4.9). Perhaps smallest-
degree-last approaches are more successful for planar graphs, in particular,
because the pure SDL heuristic can always 6-color planar graphs. Moreover,
in our experiments SDL produced colorings with four colors for the largest
random planar graphs it could cope with.

4.7. GRAPH COLORING 141

Table 4.9: Running time/I/O wait time in minutes and number of colors
(column ’C’) of the EM7 algorithm.

D = 4
Instance n/106 m/106 C Opt.-IDE Opt.-SCSI
delaunay1 8.5 25.5 7 0.62/0.09 0.82/0.12
delaunay2 84.7 254 7 5.80/0.24 7.43/0.49
delaunay3 503 1509 7 42.1/5.58 49.7/4.62
rand.planar1 8.4 16.8 5.5 0.49/0.05
rand.planar2 8.4 25.2 6.05 0.71/0.05

D = 1
n/106 m/106 C Pentium-4 Opt.-IDE Opt.-SCSI

delaunay1 8.5 25.5 7 1.39/0.74 0.78/0.25 0.90/0.24
delaunay2 84.7 254 7 13.29/6.53 7.06/1.48 8.56/1.60
delaunay3 503 1509 7 no space 48.7/12.2 58.3/12.5

Table 4.10: Reduction factors in EM7 algorithm implementation on the
delaunay1 instance.

recursion |R|/|V | (%) |V0|/|V | (%) |E − E ′|/|E| (%)
1 71.22 0 87.89
2 99.96 3.05 99.98
3 97.21 41.03 94.65
4 100 0 100

The same experiments (Table 4.9) being run using a single disk shows the
differences in the performance characteristics of the disks on the test systems.
Due to a slow IDE disk with a low bandwidth, the Pentium-4 system waits
for I/Os during half of the total running time. On systems with faster disks
(Opteron-IDE and -SCSI) this ratio is only 18–25 %.

4.7.9 Conclusion and Future Work

We have presented I/O-efficient heuristics for graph coloring that can handle
huge graphs on cheap machines. This is significant since so far only few exter-
nal graph algorithms have implementations of comparable practicability. We

142 CHAPTER 4. ENGINEERING ALGORITHMS FOR LARGE GRAPHS

have also presented a new I/O-efficient 6-coloring algorithm for planar graphs
and shown how to externalize a 2-coloring algorithm for general graphs.

The BSDL algorithm is a particularly flexible and efficient algorithm, for
example, it can be instantiated to yield 7-colorings of planar graphs. Several
interesting questions arise here. Can we reduce the large constant factor gap
between its guaranteed I/O-volume and its real performance using a more
careful analysis? Will a more clever δ function yield colorings with less than
7 colors in practice (similar to the pure SDL algorithm)? Another approach
is to combine the idea of the HDF heuristic with the BSDL heuristic, coloring
the batches R in highest-degree-first order.

Acknowledgments. Kevin Yi has kindly provided some input instances.

Chapter 5

Engineering Large Suffix Array
Construction

The results that presented in this section were partially published in
[DKMS06] and in the master’s thesis [Meh04].

5.1 Introduction

The suffix array [MM93, GBYS92], a lexicographically sorted array of the suf-
fixes of a string, has numerous applications, e.g., in string matching [MM93,
GBYS92], genome analysis [AKO02] and text compression [BW94]. For ex-
ample, one can use it as a full text index: To find all occurrences of a pattern
P in a text T , do a binary search in the suffix array of T , i.e., look for the
interval of suffixes that have P as a prefix. A lot of effort has been devoted
to the efficient construction of suffix arrays, culminating recently in three
direct linear time algorithms [KSB06, KSPP03, KA03]. One of the linear
time algorithms [KSB06] is very simple and can also be adapted to obtain
an optimal algorithm for the external memory: The DC3-algorithm [KSB06]
constructs a suffix array of a text T of length n using O(sort(n)) I/Os.

However, suffix arrays are still rarely used for processing huge inputs. Less
powerful techniques like an index of all words appearing in a text are very
simple, since they have favorable constant factors and can be implemented
to work well with the external memory for practical inputs. In contrast, the
only previous external memory implementations of the suffix array construc-
tion [CF02] are not only asymptotically suboptimal but also so slow that

143

144 CHAPTER 5. ENGINEERING LARGE SUFFIX ARRAY CONSTRUCTION

measurements could only be done for small inputs and an artificially reduced
internal memory size.

5.1.1 Basic Concepts

We use the shorthands [i, j] = {i, . . . , j} and [i, j) = [i, j − 1] for ranges of
integers and extend to substrings as seen below. The input of the discussed
algorithms is an n character string T = T [0] · · ·T [n− 1] = T [0, n) of charac-
ters in the alphabet Σ = [1, n]. The restriction to the alphabet [1, n] is not a
serious one. For a string T over any alphabet, we can first sort the charac-
ters of T , remove duplicates, assign a rank to each character, and construct
a new string T ′ over the alphabet [1, n] by renaming the characters of T with
their ranks. Since the renaming is order preserving, the order of the suffixes
does not change. A similar technique called lexicographic naming will play
an important role in all of these algorithms where a string (e.g., a substring
of T) is replaced by its rank in some set of strings.

Let $ be a special character that is smaller than any character in the alphabet.
We use the convention that T [i] = $ if i ≥ n. Ti = T [i, n) denotes the i-th
suffix of T . The suffix array SA of T is a permutation of [0, n) such that
TSA[i] < TSA[j] whenever 0 ≤ i < j < n. Let lcp(i, j) denote the longest
common prefix length of SA[i] and SA[j] (lcp(i, j) = 0 if i < 0 or j ≥
n). Then dps(i) := 1 + max {lcp(i − 1, i), lcp(i, i + 1)} is the distinguishing
prefix size of Ti. We get the following derived quantities that can be used to
characterize the “difficulty” of an input or that will turn out to play such a
role in the following analysis.

maxlcp := max
0≤i<n

lcp(i, i + 1) (5.1)

lcp :=
1

n

∑

0≤i<n

lcp(i, i + 1) (5.2)

log dps :=
1

n

∑

0≤i<n

log(dps(i)) (5.3)

We extend the set notation to sequences in the obvious way. For example
〈i : i is prime〉 = 〈2, 3, 5, 7, 11, 13, . . .〉 in that order.

5.1.2 Overview

In Section 5.2 we present the doubling algorithm [AFGV97, CF02] for a suf-
fix array construction that has I/O complexity O(sort(n log maxlcp)). This

5.2. DOUBLING ALGORITHM 145

algorithm sorts strings of size 2k in the k-th iteration. This variant already
yields some small optimization opportunities.

Section 5.3 gives a simple and efficient way to discard suffixes from fur-
ther iterations of the doubling algorithm when their position in the suffix
array is already known. This leads to an algorithm with I/O complexity
O(sort(n log dps)), improving on a previous discarding algorithm with I/O
complexity O(sort(n log dps) + scan(n log maxlcp)) [CF02]. A further con-
stant factor is gained in Section 5.4 by considering a generalization of the
doubling technique that sorts strings of size ak in iteration k. The best
multiplication factor is four (quadrupling) or five. A pipelined optimal algo-
rithm with I/O complexity O(sort(n)) in Section 5.5 and its generalization
in Section 5.6 conclude our sequence of suffix array construction algorithms.

A useful tool for testing our implementations was a fast and simple external
memory checker for suffix arrays described in Section 5.7.

In Section 5.8 we report on extensive experiments using synthetic difficult
inputs, the human genome, English books, web-pages, and program source
code using inputs of up to 4 GByte on a low cost machine and a faster high-
end system. The theoretically optimal algorithm turns out to be the winner
closely followed by quadrupling with discarding.

Section 5.10 summarizes the overall results and discusses how even larger
suffix arrays could be build.

5.2 Doubling Algorithm

Figure 5.1 shows a pseudocode for the doubling algorithm [AFGV97, CF02].
The basic idea is to replace characters T [i] of the input by lexicographic names
that respect the lexicographic order of the length 2k substring T [i, i + 2k) in
the k-th iteration. In contrast to previous variants of this algorithm, this
formulation never actually builds the resulting string of names. Rather, it
manipulates a sequence P of pairs (c, i) where each name c is tagged with its
position i in the input. To obtain names for the next iteration k+1, the names
for T [i, i+2k) and T [i+2k, i+2k+1) together with the position i are stored in
a sequence S and sorted. The new names can now be obtained by scanning
this sequence and comparing adjacent tuples. Sequence S can be build using
consecutive elements of P if we sort P using the pair (i mod 2k, i div 2k).
Previous formulations of the algorithm use i as a sorting criterion and there-
fore have to access elements that are 2k characters apart. Our approach saves
I/Os and simplifies the pipelined implementation.

146 CHAPTER 5. ENGINEERING LARGE SUFFIX ARRAY CONSTRUCTION

Function doubling(T)
S:= 〈((T [i], T [i + 1]), i) : i ∈ [0, n)〉 (0)
for k := 1 to ⌈log n⌉ do

sort S (1)
P := name(S) (2)
invariant ∀(c, i) ∈ P : c is a lexicographic name for T [i, i + 2k)
if the names in P are unique then return 〈i : (c, i) ∈ P 〉 (3)
sort P by (i mod 2k, i div 2k) (4)
S:= 〈((c, c′), i) : j ∈ [0, n), (c, i) = P [j], (c′, i + 2k) = P [j + 1]〉 (5)

Function name(S : Sequence of Pair)
q:= r:= 0; (ℓ, ℓ′):= ($, $)
result := 〈〉
foreach ((c, c′), i) ∈ S do

q++
if (c, c′) 6= (ℓ, ℓ′) then r:= q; (ℓ, ℓ′):= (c, c′)
append (r, i) to result

return result

Figure 5.1: The doubling algorithm.

5.3. DISCARDING 147

The algorithm performs a constant number of sorting and scanning opera-
tions for sequences of size n in each iteration. The number of iterations is
determined by the logarithm of the longest common prefix.

Theorem 10 ([DKMS06]). The doubling algorithm from Figure 5.1 can be
implemented to run using sort(5n) ⌈log(1 + maxlcp)⌉ + O(sort(n)) I/Os.

Proof. The following pipelined data flow graph shows that each iteration can
be implemented using sort(2n)+sort(3n) ≤ sort(5n) I/Os. The numbers refer
to the line numbers in Figure 5.1.

1 2 54
3n 2n

sorting nodenodestreaming

After ⌈log(1 + maxlcp)⌉ iterations, the algorithm finishes. The O(sort(n))
term accounts for the I/Os needed in Line 0 and for computing the final
result. Note that there is a small technicality here: Although naming can find
out “for free” whether all names are unique, the result is known only when
naming finishes. However, at this time, the first phase of the sorting step
in Line 4 has also finished and has already incurred some I/Os. Moreover,
the convenient arrangement of the pairs in P is destroyed now. However, we
can then abort the sorting process, undo the wrong sorting, and compute the
correct output.

5.3 Discarding

The paper [DKMS06] present a new discarding algorithm for computing suffix
arrays. With the help of Stxxl pipelining the algorithm can be implemented
with very small constant factors in I/O volume.

Let ck
i be the lexicographic name of T [i, i+2k), i.e., the value paired with i at

iteration k in Figure 5.1. Since ck
i is the number of strictly smaller substrings

of length 2k, it is a non-decreasing function of k. More precisely, ck+1
i − ck

i is
the number of positions j such that ck

j = ck
i but ck

j+2k < ck
i+2k . This provides

an alternative way of computing the names given in Figure 5.3.

Another consequence of the above observation is that if ck
i is unique, i.e.,

ck
j 6= ck

i for all j 6= i, then ch
i = ck

i for all h > k. The idea of the discarding
algorithm is to take advantage of this, i.e., discard pair (c, i) from further

148 CHAPTER 5. ENGINEERING LARGE SUFFIX ARRAY CONSTRUCTION

2,10 3,11 4 5 6 71

P

98
3N 2N 2ninput

2n2n

output

Figure 5.2: Data flow graph for the doubling + discarding. The numbers
refer to line numbers in Figure 5.4. The edge weights are sums over the
whole execution with N = n log dps.

Function name2 (S : Sequence of Pair)
q:= q′:= 0; (ℓ, ℓ′):= ($, $)
result := 〈〉
foreach ((c, c′), i) ∈ S do

if c 6= ℓ then q:= q′:= 0; (ℓ, ℓ′):= (c, c′)
else if c′ 6= ℓ′ then q′:= q; ℓ′:= c′

append (c + q′, i) to result
q++

return result

Figure 5.3: The alternative naming procedure.

5.3. DISCARDING 149

Function doubling + discarding(T)
S:= 〈((T [i], T [i + 1]), i) : i ∈ [0, n)〉 (1)
sort S (2)
U := name(S) //undiscarded (3)
P := 〈〉 //partially discarded
F := 〈〉 // fully discarded
for k := 1 to ⌈log n⌉ do

mark unique names in U (4)
sort U by (i mod 2k, i div 2k) (5)
merge P into U ; P := 〈〉 (6)
S:= 〈〉; count := 0
foreach (c, i) ∈ U do (7)

if c is unique then
if count < 2 then append (c, i) to F

else append (c, i) to P
count := 0

else
let (c′, i′) be the next pair in U
append ((c, c′), i) to S
count++

if S = ∅ then
sort F by first component (8)
return 〈i : (c, i) ∈ F 〉 (9)

sort S (10)
U := name2 (S) (11)

Figure 5.4: The doubling with discarding algorithm.

150 CHAPTER 5. ENGINEERING LARGE SUFFIX ARRAY CONSTRUCTION

Table 5.1: I/O requirements for different variants of the a-tupling algo-
rithm. The entries specify the variable x defined in the column headings.
+O(sort(n)) terms are omitted.

a 2 3 4 5 6 7
(a + 3)/ log a 5.00 3.78 3.50 3.45 3.48 3.56

iterations once c is unique. A key to this is the new naming procedure shown
in Figure 5.3, because it works correctly even if we exclude from S all tuples
((c, c′), i), where c is unique. Note, however, that we cannot exclude ((c, c′), i)
if c′ is unique but c is not. Therefore, we will partially discard (c, i) when
c is unique. We will fully discard (c, i) = (ck

i , i) when also either ck
i−2k or

ck
i−2k+1 is unique, because then in any iteration h > k, the first component of

the tuple ((ch
i−2h, c

h
i), i− 2h) must be unique. The final algorithm is given in

Figure 5.4.

Theorem 11 ([DKMS06]). Doubling with discarding can be implemented to
run using sort(5n log dps) + O(sort(n)) I/Os.

Proof. We prove the theorem by showing that the total amount of data in
the different steps of the algorithm over the whole execution is as in the
pipelined data flow graph in Figure 5.2. The nontrivial points are that at
most N = n log dps tuples are processed in each sorting step over the whole
execution and that at most n tuples are written to P . The former follows
from the fact that a suffix i is involved in the sorting steps as long as it has
a non-unique rank, which happens in exactly ⌈log(1+dps(i))⌉ iterations. To
show the latter, we note that a tuple (c, i) is written to P in iteration k only if
the previous tuple (c′, i−2k) was not unique. That previous tuple will become
unique in the next iteration, because it is represented by ((c′, c), i− 2k) in S.
Since each tuple turns unique only once, the total number of tuples written
to P is at most n.

5.4 From Doubling to a-Tupling

It is straightforward to generalize the doubling algorithms from Figures 5.1
and 5.4 so that it maintains the invariant that in iteration k, lexicographic
names represent strings of length ak: just gather a names from the last
iteration that are ak−1 characters apart. Sort and name as before.

5.5. I/O-OPTIMAL PIPELINED DC3 ALGORITHM 151

The pseudocode of the generalized doubling algorithm without discarding is
presented in Figure 5.5.

Theorem 12 ([DKMS06]). The a-tupling algorithm can be implemented to
run using

sort(
a + 3

log a
n) log maxlcp + O(sort(n)) or

sort(
a + 3

log a
n) log dps + O(sort(n))

I/Os without or with discarding respectively.

We get a tradeoff between higher cost for each iteration and a smaller number
of iterations that is determined by the ratio a+3

log a
. Evaluating this expression

we get the optimum for a = 5 (Table 5.1). But the value for a = 4 is only
1.5 % worse, needs less memory, and calculations are much easier because
four is a power two. Hence, we choose a = 4 for our implementation of the
a-tupling algorithm. This quadrupling algorithm needs 30 % less I/Os than
doubling.

Function atupling(T)
S:= 〈((T [i], T [i + 1], . . . , T [i + a − 1)]), i) : i ∈ [0, n)〉
for k := 1 to ⌈logan⌉ do

sort S
P := name(S)
invariant ∀(c, i) ∈ P :c is a lexicographic name for T [i, i + ak)
if the names in P are unique then return 〈i : (c, i) ∈ P 〉
sort P by (i mod ak, i div ak))
S:= 〈((c0, . . . , cq, . . . , ca−1), i) : j ∈ [0, n),

(cq, i + q · ak) = P [j + q], q ∈ [0, a)〉

Figure 5.5: The a-tupling algorithm.

5.5 I/O-Optimal Pipelined DC3 Algorithm

The following three-step algorithm outlines a linear time algorithm for suffix
array construction [KSB06]:

152 CHAPTER 5. ENGINEERING LARGE SUFFIX ARRAY CONSTRUCTION

1. Construct the suffix array of the suffixes starting at positions i mod 3 6=
0. This is done by reduction to the suffix array construction of a string
of two thirds the length, which is solved recursively.

2. Construct the suffix array of the remaining suffixes using the result of
the first step.

3. Merge the two suffix arrays into one.

Figure 5.6 gives a pseudocode for an external implementation of this algo-
rithm and Figure 5.7 gives a data flow graph that allows pipelined execution.
Step 1 is implemented by Lines (1)–(6) and starts out quite similar to the
tripling (3-tupling) algorithm described in Section 5.4. The main difference
is that triples are only obtained for two thirds of the suffixes and that we
use recursion to find lexicographic names that characterize the relative order
of these sample suffixes exactly. As a preparation for the Steps 2 and 3, in
lines (7)–(10) these sample names are used to annotate each suffix position
i with enough information to determine its global rank. More precisely, at
most two sample names and the first one or two characters suffice to com-
pletely determine the rank of a suffix. This information can be obtained I/O
efficiently by simultaneously scanning the input and the names of the sample
suffixes sorted by their position in the input. With this information, Step 2
reduces to sorting suffixes Ti with i mod 3 = 0 by their first character and
the name for Ti+1 in the sample (Line 11). Line (12) reconstructs the order
of the mod-2 suffixes and mod-3 suffixes. Line (13) implements Step 3 by or-
dinary comparison based merging. The slight complication is the comparison
function. There are three cases:

• A mod-0 suffix Ti can be compared with a mod-1 suffix Tj by looking
at the first characters and the names for Ti+1 and Tj+1 in the sample,
respectively.

• For a comparison between a mod-0 suffix Ti and a mod-2 suffix Tj the
above technique does not work since Tj+1 is not in the sample. However,
both Ti+2 and Tj+2 are in the sample so that it suffices to look at the
first two characters and the names of Ti+2 and Tj+2 respectively.

• Mod-1 suffixes and Mod-2 suffixes can be compared by looking at their
names in the sample.

The resulting pipelined data flow graph is large but fairly straightforward
except for the file node which stores a copy of input stream T . The problem is
that the input is needed twice. First, Line 2 uses it for generating the sample

5.5. I/O-OPTIMAL PIPELINED DC3 ALGORITHM 153

and later, the node implementing Lines (8)–(10) scans it simultaneously with
the names of the sample suffixes. It is not possible to pipeline both scans,
however, this problem can be solved by writing a temporary copy of the input
stream. Note that this is still cheaper than using a file representation for the
input since this would mean that this file is read twice. We are now ready
to analyze the I/O complexity of the algorithm.

Function DC3 (T)
S:= 〈((T [i, i + 2]), i) : i ∈ [0, n), i mod 3 6= 0〉 //mod12 suffixes (1)
sort S by the first component // sort triples (2)
P := name(S) //name triples (3)
if the names in P are not unique then

sort the (i, r) ∈ P by (i mod 3, i div 3) //build rec. input (4)
SA12:= DC3 (〈c : (c, i) ∈ P 〉) // recurse (5)
P :=

〈

(j + 1, SA12[j]) : j ∈ [0, 2n/3)
〉

(6)
sort P by the second component // inv. SA of sample (7)
S0:= 〈(T [i], T [i + 1], c′, c′′, i) : i mod 3 = 0, (c′, i + 1), (c′′, i + 2) ∈ P 〉 (8)
S1:= 〈(c, T [i], c′, i) : i mod 3 = 1, (c, i), (c′, i + 1) ∈ P 〉 (9)
S2:= 〈(c, T [i], T [i + 1], c′′, i) : i mod 3 = 2, (c, i), (c′′, i + 2) ∈ P 〉 (10)
sort S0 by components 1,3 // sort mod0 suff. (11)
sort S1 and S2 by component 1 // resort mod12 suff. (12)
S:= merge(S0, S1, S2) using comparison function: (13)

(t, t′, c′, c′′, i) ∈ S0 ≤ (d, u, d′, j) ∈ S1 ⇔ (t, c′) ≤ (u, d′)
(t, t′, c′, c′′, i) ∈ S0 ≤ (d, u, u′, d′′, j) ∈ S2 ⇔ (t, t′, c′′) ≤ (u, u′, d′′)
(c, t, c′, i) ∈ S1 ≤ (d, u, u′, d′′, j) ∈ S2 ⇔ c ≤ d

return 〈last component of s : s ∈ S〉 (14)

Figure 5.6: The DC3-algorithm.

Theorem 13 ([DKMS06]). The DC3 algorithm from Figure 5.6 can be im-
plemented to run using sort(30n) + scan(6n) I/Os.

Proof. Let V (n) denote the number of I/Os for the external DC3 algorithm.
Using the pipelined data flow diagram from Figure 5.7 we can conclude that

V (n) ≤ sort((8
3

+ 4
3

+ 4
3

+ 5
3

+ 4
3

+ 5
3
)n) + scan(2n) + V (2

3
n)

= sort(10n) + scan(2n) + V (2
3
n)

This recurrence has the solution V (n) ≤ 3(sort(10n) + scan(2n)) ≤
sort(30n) + scan(6n). Note that the data flow diagram assumes that the

154 CHAPTER 5. ENGINEERING LARGE SUFFIX ARRAY CONSTRUCTION

file
node

streaming
node

T

recursionsorting
node

8n
3

4n
3

12

11

12

13 14
4n
3

5n
3

5n
3

4n
3

321

input
if names are not unique

8−
105 6 7

output

n
n

4

Figure 5.7: Data flow graphs for the DC3 algorithm. The numbers refer to
line numbers in Figure 5.6.

input is a data stream into the procedure call. However, we get the same
complexity if the original input is a file. In that case, we have to read the
input once but we save writing it to the local file node T .

5.6 Generalized Difference Cover Algorithm

DC3 computes the suffix array of the two-thirds of the suffixes in its recursion.
In the generalized algorithm DCX [KSB06] one tries to reduce the number
of sample suffixes, which might decrease the cost of the recursion.

The algorithm DCX chooses the sample of suffixes starting at indexes IX =
{i | i mod X ∈ CX} (for DC3 X = 3 and C3 = {1, 2}). For any given X
the set CX must be chosen such that |CX | is minimal and the order of the
remaining suffixes can be reconstructed using the sample suffixes. To fulfill
these requirements one uses the minimum difference covers [Haa04] of ZX

(ZX is the set of integers modulo X). For a subset C ′ of a finite Abelian
group G, we define d(C ′) = {a − b | a, b ∈ C ′}. If d(C ′) = G, we call C ′ a
difference cover of G. [Haa04] contains minimum difference covers C ′

X of
ZX for primes X up to 133 (see also Table 5.2). The algorithm DCX sets
CX = {j |X − j − 1 ∈ C ′

X}.
Now we find the number of I/Os needed by a recursion of the DCX algorithm:

sorting S by T [i, i+X −1] (Line (2) in Figure 5.6) costs sort((X +1)n · |CX |
X

)
I/Os, writing and reading T takes scan(2n) I/Os, building the input for

the recursion (Line (4)) needs sort(2n · |CX |
X

) I/Os, permuting in Line (7)

incurs sort(2n · |CX |
X

) I/Os, sorting the merge tuples (Lines (11)–(12)) needs
sort(δXn) I/Os, where δX is the average merge tuple size (e. g. δ3 = 5+4+5

3
).

5.6. GENERALIZED DIFFERENCE COVER ALGORITHM 155

Table 5.2: Minimum difference covers.

X C ′
X

3 {0, 1}
7 {0, 1, 3}
13 {0, 1, 3, 9}
21 {0, 1, 6, 8, 18}
31 {0, 1, 3, 8, 12, 18}
39 {0, 1, 16, 20, 22, 27, 30}
57 {0, 1, 9, 11, 14, 35, 39, 51}
73 {0, 1, 3, 7, 15, 31, 36, 54, 63}
91 {0, 1, 7, 16, 27, 56, 60, 68, 70, 73}
95 {0, 1, 5, 8, 18, 20, 29, 31, 45, 61, 67}
133 {0, 1, 32, 42, 44, 48, 51, 59, 72, 77, 97, 111}

Let VX(n) be the number of I/Os for the DCX algorithm.

VX(n) ≤ sort(((X + 5) |CX |
X

+ δX)n) + scan(2n) + VX(|CX |
X

n)

This recurrence has the solution

VX(n) ≤ sort(n
(X + 5)|CX| + XδX

X − |CX |
) + scan(2n

X

X − |CX |
)

To analyse VX(n) one needs to know the values of δX for given X. Unfortu-
nately, a simple formula does not exist. Instead, we compute upperbounds
for δX using a simple algorithm. Let

dmax(i) = max {k | i + k mod X ∈ CX ∧ k < X}

be the maximal distance from starting position i to the right to the next
sample, i.e. the maximum number of characters needed in a merge tuple.
Then the merge tuple size for positions j such that i ≡ j mod X is dmax(i)+
1+|CX|, because one might need the ranks of all the |CX | samples to compare
two arbitrary merge tuples and one component takes the index value. Hence
the average merge tuple size is:

δX = 1 + |CX | +
1

X

∑

0≤i<X

dmax(i)

156 CHAPTER 5. ENGINEERING LARGE SUFFIX ARRAY CONSTRUCTION

Table 5.3: I/O volume of DCX

X 3 7 13 21 31 39 57
|CX | 2 3 4 5 6 7 8

sort[N] 30 24.75 30.11 38.56 50.12 60.65 79.02
scan[N] 6 3.50 2.89 2.63 2.48 2.39 2.33
Total 66 53 63.11 79.75 102.72 123.75 160.37

Table 5.4: I/O volume of DCX with the small alphabet optimization

X 3 7 13 21 31 39 57
|CX | 2 3 4 5 6 7 8

sort[N] 28 20.43 17.08 16.48 16.16 17.51 18.18
scan[N] 4.13 2.70 1.97 1.55 1.29 1.20 0.97
Total 60.13 43.55 36.13 34.51 33.61 36.23 37.32

Table 5.3 presents the computed I/O volume for DCX algorithm with X ∈
{3, 7, 13, 21, 31, 39, 57}. The algorithm with the smallest I/O volume is DC7.

Each tuple component of the DCX algorithm is represented as a 32-bit word,
which is wasteful for small alphabets. For the genome data with a four
character alphabet one can put up to 16 characters needed for a naming
tuple in one word. The merge tuple can be compressed similarly. Table 5.4
shows the computed I/O volume of the DCX algorithm that uses this bit
optimization in its first recursion and calls DC3 in the further recursions.

5.7 Checker

To ensure the correctness of our algorithms we have designed and imple-
mented a simple and fast suffix array checker. It is given in Figure 5.8 and
is based on the following result.

Lemma 14 ([BK03]). An array SA[0, n) is the suffix array of a text T iff
the following conditions are satisfied:

1. SA contains a permutation of [0, n).

5.8. EXPERIMENTS 157

2. ∀i, j : ri ≤ rj ⇔ (T [i], ri+1) ≤ (T [j], rj+1) where ri denotes the rank of
the suffix Si according to the suffix array.

Function Checker(SA, T)
P := 〈(SA[i], i + 1) : i ∈ [0, n)〉 (1)
sort P by the first component (2)
if 〈i : (i, r) ∈ P 〉 6= [0, n) then return false
S:= [(r, (T [i], r′)) : i ∈ [0, n), (3)

(i, r) = P [i], (i + 1, r′) = P [i + 1]]
sort S by the first component (4)
if 〈(c, r′) : (r, (c, r′)) ∈ S〉 is sorted (5)
then return true else return false

Figure 5.8: The suffix array checker.

Theorem 15. The suffix array checker from Figure 5.8 can be implemented
to run using sort(5n) + scan(2n) I/Os.

5.8 Experiments

We have implemented the algorithms (except DCX) in C++ using the g++
3.2.3 compiler (optimization level -O2 -fomit-frame-pointer)1 and the ex-
ternal memory library Stxxl Version 0.52 [Dem, DKS05a]. We have run the
experiments on two platforms. The first system has two 2.0 GHz Intel Xeon
processors (our implementations only use one processor), one GByte of RAM
and eight 80 GByte ATA IBM 120GXP disks. Refer to [DS03] for a perfor-
mance evaluation of this machine whose cost was 2500 Euro in July 2002. The
second platform is a high-end SMP system with four 64-bit AMD Opteron
1.8 GHz processors, 8 GByte of RAM (we use only one GByte) and eight 73
GByte SCSI Seagate 15000 RPM ST373453LC disks. In our experiments we
used four disks if not specified otherwise.

Table 5.5 shows the considered input instances.
We have collected some of these instances at
http://algo2.iti.uka.de/dementiev/esuffix/instances.shtml and
ftp://www.mpi-sb.mpg.de/pub/outgoing/sanders/. For a nonsynthetic

1 The sources are available under
http://algo2.iti.uka.de/dementiev/esuffix/docu/index.html.

http://algo2.iti.uka.de/dementiev/esuffix/instances.shtml
 ftp://www.mpi-sb.mpg.de/pub/outgoing/sanders/
http://algo2.iti.uka.de/dementiev/esuffix/docu/index.html

158 CHAPTER 5. ENGINEERING LARGE SUFFIX ARRAY CONSTRUCTION

Name Description
Random2 Two concatenated copies of a Random string of length

n/2. This is a difficult instance that is hard to beat
using simple heuristics.

Gutenberg Freely available English texts from
http://promo.net/pg/list.html.

Genome The known pieces of the human genome from
http://genome.ucsc.edu/downloads.html (sta-
tus May, 2004). We have normalized this input to
ignore the distinction between upper case and lower
case letters. The result are characters in an alphabet
of size 5 (ACGT and sometimes long sequences of
“unknown” characters).

HTML Pages from a web crawl containing only pages from .gov

domains. These pages are filtered so that only text and
html code is contained but no pictures and no binary
files.

Source Source code (mostly C++) containing coreutils, gcc,
gimp, kde, xfree, emacs, gdb, Linux kernel and Open
Office).

Table 5.5: Input instances.

Table 5.6: Statistics of the instances used in the experiments.

T n = |T | |Σ| maxlcp lcp log dps
Random2 232 128 231 ≈ 229 ≈ 29.56
Gutenberg 3 277 099 765 128 4 819 356 45 617 10.34

Genome 3 070 128 194 5 21 999 999 454 111 6.53

HTML 4 214 295 245 128 102 356 1 108 6.99

Source 547 505 710 128 173 317 431 5.80

instance T of length n, our experiments use T itself and its prefixes of the
form T [0, 2i). Table 5.6 and Figure 5.9 show statistics of the properties of
these instances.

Figure 5.10 shows the execution time and the I/O volume side by side, for
each of our instance families and for the algorithms nonpipelined doubling,
pipelined doubling, pipelined doubling with discarding, pipelined quadru-

http://promo.net/pg/list.html
http://genome.ucsc.edu/downloads.html
.gov

5.8. EXPERIMENTS 159

 0

 2

 4

 6

 8

 10

232230228226224

lo
ga

rit
hm

ic
 lc

p

n

Gutenberg
Html

Open Source
Genome

Figure 5.9: Statistics of the instances used in the experiments.

pling, pipelined quadrupling with discarding2, and DC3 running on the Xeon
machine. All ten plots share the same x-axis and the same curve labels. Com-
puting all these instances takes about 14 days moving more than 20 TByte
of data. Due to these large execution times it was not feasible to run all
algorithms for all input sizes and all instances. However, there is enough
data to draw some interesting conclusions.

Complicated behavior is observed for “small” inputs up to 226 characters.
The main reason is that we made no particular effort to optimize special cases
where at least some part of some algorithm could execute internally. Some-
times Stxxl makes such optimizations, e.g. automatically sorting small
inputs in the internal memory. Another factor is the constant start-up over-
head of stxxl::vectors which amortizes only with larger inputs. The gran-
ularity with which stxxl::vector loads and stores blocks from/to external
memory was not optimized for small inputs.

The most important observation is that the DC3-algorithm is always the
fastest algorithm and is almost completely insensitive to the input. For all
inputs of a size of more than a GByte, DC3 is at least twice as fast as
its closest competitor. With respect to the I/O volume, DC3 is sometimes
equaled by quadrupling with discarding. This happens for relatively small

2The discarding algorithms we have implemented need slightly more I/Os and perhaps
more complex calculations than the newer algorithms described in Section 5.3.

160 CHAPTER 5. ENGINEERING LARGE SUFFIX ARRAY CONSTRUCTION

0

20

40

60

80

100

120

140

R
an

do
m

2:
 T

im
e

[µ
s]

 /
n

nonpipelined
Doubling

Discarding
Quadrupling

Quad-Discarding
DC3

0

500

1000

1500

2000

2500

3000

3500

I/O
 V

ol
um

e
[b

yt
e]

 /
n

0

10

20

30

40

50

60

70

80

G
ut

en
be

rg
: T

im
e

[µ
s]

 /
n

0

100

200

300

400

500

600

700

800

900

1000

I/O
 V

ol
um

e
[b

yt
e]

 /
n

0

10

20

30

40

50

60

70

80

G
en

om
e:

 T
im

e
[µ

s]
 /

n

0

100

200

300

400

500

600

700

800

900

1000

I/O
 V

ol
um

e
[b

yt
e]

 /
n

0

5

10

15

20

25

30

35

40

H
T

M
L:

 T
im

e
[µ

s]
 /

n

0

100

200

300

400

500

600

I/O
 V

ol
um

e
[b

yt
e]

 /
n

0

5

10

15

20

25

30

35

40

224 226 228 230 232

S
ou

rc
e:

 T
im

e
[µ

s]
 /

n

n

0

100

200

300

400

500

600

224 226 228 230 232

I/O
 V

ol
um

e
[b

yt
e]

 /
n

n

Figure 5.10: Execution time (left) and I/O volume (right) for Random2,
Gutenberg, Genome, HTML (on the Xeon machine).

5.8. EXPERIMENTS 161

 0

 10

 20

 30

 40

 50

 60

R
an

do
m

2:
 T

im
e

[µ
s]

 /
n

nonpipelined
Doubling

Discarding
Quadrupling

Quad-Discarding
DC3

 0

 5

 10

 15

 20

 25

 30

 35

G
ut

en
be

rg
: T

im
e

[µ
s]

 /
n

 0

 5

 10

 15

 20

 25

 30

 35

G
en

om
e:

 T
im

e
[µ

s]
 /

n

 0

 5

 10

 15

 20

H
T

M
L:

 T
im

e
[µ

s]
 /

n

 0

 5

 10

 15

 20

232230228226224

S
ou

rc
e:

 T
im

e
[µ

s]
 /

n

n

Figure 5.11: Execution time for Random2, Gutenberg, Genome, HTML (on
the Opteron machine).

162 CHAPTER 5. ENGINEERING LARGE SUFFIX ARRAY CONSTRUCTION

inputs. Apparently quadrupling has more complex internal work.3 For ex-
ample, it compares quadruples during half of its sorting operations whereas
DC3 compares triples or pairs during sorting. For the difficult synthetic in-
put Random2, quadrupling with discarding is by far outperformed by DC3.
Even plain quadrupling, is much faster than quadrupling with discarding.
This indicates that the internal logics for discarding is a bottleneck.

For real world inputs, discarding algorithms turn out to be successful com-
pared to their nondiscarding counterparts. They outperform them both with
respect to the I/O volume and the running time. This could be explained by
the smaller log dps values according to Table 5.6. For random inputs without
repetitions the discarding algorithms might actually beat DC3 since one gets
inputs with very small values of log dps.

Quadrupling algorithms consistently outperform doubling algorithms as pre-
dicted by the analysis of the I/O complexity in Section 5.4.

Comparing pipelined doubling with nonpipelined doubling in the top pair of
plots (instance Random2) one can see that pipelining brings a huge reduction
of the I/O volume, whereas the execution time is affected much less — a
clear indication that our algorithms are dominated by internal calculations.
However, in a setting with a slower I/O subsystem, e.g. a system with a
single disk, pipelining gives a significant speedup. Our experiments with
D = 1 show that pipelined doubling is faster than its nonpipelined version
by a factor 1.9–2.4. We also have reasons to believe that our nonpipelined
sorter is more highly tuned than the pipelined one so that the advantage
of pipelining may grow in future versions of Stxxl. We do not show the
nonpipelined algorithm for the other inputs since the relative performance
compared to pipelined doubling should remain about the same.

A comparison of the new algorithms with previous algorithms is more dif-
ficult. The implementation of [CF02] only works up to 2 GByte of total
external memory consumption and would thus have to compete with space
efficient internal algorithms on our machine. At least we can compare the
I/O volume per byte of input for the measurements in [CF02]. Their most
scalable algorithm for the largest real world input tested (26 MByte of text
from the Reuters news agency) is nonpipelined doubling with partial dis-
carding. This algorithm needs an I/O volume of 1303 Bytes per character
of input. The DC3-algorithm needs about 5 times less I/Os. Furthermore,
it is to be expected that the lead gets bigger for larger inputs. The GBS
algorithm [GBYS92] needs 486 bytes of I/O per character for this input in

3One might also conclude that a similar increase in internal work could be expected in
an implementation of the DC7 algorithm.

5.8. EXPERIMENTS 163

[CF02], i.e., even for this small input DC3 already outperforms the GBS al-
gorithm. We can also attempt a speed comparison in terms of clock cycles
per byte of input. Here [CF02] needs 157, 000 cycles per byte for doubling
with simple discarding and 147, 000 cycles per byte for the GBS algorithm
whereas DC3 only needs about 20, 000 cycles. Again, the advantage should
grow for larger inputs in particular when comparing with the GBS algorithm.

The following small table shows the execution time of DC3 for 1 to 8 disks
on the ‘Source’ instance on the Xeon machine.

D 1 2 4 6 8
t[µs/byte] 13.96 9.88 8.81 8.65 8.52

We see that adding more disks only gives a very small speedup. (And we
would see very similar speedups for the other algorithms except nonpipelined
doubling). Even with 8 disks, DC3 has an I/O rate of less than 30 MByte/s
which is less than the peak performance of a single disk (45 MByte/s). Hence,
by more effective overlapping of I/O and computation it should be possible
to sustain the performance of eight disks using a single cheap disk so that
even very cheap PCs could be used for external suffix array construction.

Figure 5.11 shows the execution times of the implementations running on the
Opteron machine. The implementations need a factor of 1.7–2.4 less time.
The largest speedup is observed for the quadrupling with discarding running
on the largest source code instance. This might be due to the faster SCSI
hard disks with higher bandwidth (70 MB/s versus 45 MB/s) and the shorter
seek time (3.6 ms versus 8.8 ms on average), and perhaps a faster 64-bit CPU.
However, the relative performance of the algorithms remains the same as in
the experiments using the Xeon system.

5.8.1 The Checker

Figure 5.12 shows the execution time and the I/O volume of the suffix array
checker from Section 5.7 running on the Opteron system. The horizontal axis
denotes the size of the input string T . The curves for the other input families
are not shown, since the algorithm is not sensitive to the type of input. The
implementation only needs 1–1.2 µs per input string character.

164 CHAPTER 5. ENGINEERING LARGE SUFFIX ARRAY CONSTRUCTION

 0

 0.5

 1

 1.5

 2

232230228226224

S
A

 C
he

ck
er

: T
im

e
[µ

s]
 /

n

n

Gutenberg
Random2

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

232230228226224

S
A

 C
he

ck
er

: I
/O

 V
ol

um
e

[b
yt

e]
 /

n

n

Gutenberg
Random2

Figure 5.12: Execution time (left) and I/O volume (right) for the suffix array
checker (Opteron machine).

5.9 An Oracle PL/SQL Implementation

In [Foy06] we have implemented the doubling algorithm using the PL/SQL
language of the Oracle XE relational database system4. For I/O-efficient
sorting, the Oracle data base engine has been used.

As an opponent we took the pipelined Stxxl implementation of doubling.
We have run both implementations on a 3.0 GHz Pentium 4 system with
a single SATA disk. Oracle XE could use 1 GByte of main memory, the
internal memory consumption of Stxxl doubling has been limited to 512
MBytes. The source code instance has been chosen as the input.

Table 5.7 shows the results of the experiments. The PL/SQL implementation
needs a lot of time even for small inputs: processing a 20 MByte input took
more than 11 hours. PL/SQL could not avoid disk I/O despite the fact that
the working space space for such small inputs fits into the internal memory.
The observed CPU load has been about 40 %, which indicates that the
implementation was indeed I/O-bound. Additionally, Oracle XE does not
allow to change the block size for its tables: it is fixed to 8 KBytes, which
is too small for our application, and makes it perform more I/Os than the
Stxxl implementation does. The Stxxl implementation could save I/Os
in sorting which can be done in internal memory for these inputs. Another
source of inefficiency of PL/SQL is that the tables which store the S, T and
P arrays can not use a fast and simple 32-bit integer type to represent their
values. Only the heavy arbitrary-precision integer type NUMBER can be used
in Oracle tables.

In order to see how much time must be invested for the Stxxl doubling if

4http://www.oracle.com/technology/products/database/xe/

http://www.oracle.com/technology/products/database/xe/

5.10. CONCLUSION 165

the sorting must work externally, we ran an experiment on 512 MByte input.
Still, the Stxxl implementation was faster by a factor of 65 if we assume
that PL/SQL implementation needs 2662 µs per input character.

Table 5.7: Running times of PL/SQL and Stxxl pipelined doubling imple-
mentations in µs per input character.

input size (MBytes) PL/SQL Stxxl

1 2033 34
2 1307 30
4 2206 29
8 1836 27
15 2662 33
20 2662 33
512 — 41

5.10 Conclusion

The efficient external version of the DC3-algorithm is theoretically optimal
and clearly outperforms all previous algorithms in practice. Since all practi-
cal previous algorithms are asymptotically suboptimal and dependent on the
inputs, this closes a gap between theory and practice. Stxxl implemen-
tation of DC3 outperforms the pipelined quadrupling-with-discarding algo-
rithm even for real world instances. This underlines the practical usefulness
of DC3 since a mere comparison with the relatively simple, nonpipelined
previous implementations would have been unfair.

The suffix array construction algorithms are benefiting from the Stxxl

pipelining, saving huge amounts of I/Os. This is particularly important for
the performance on systems with slow I/O. On systems with many parallel
disks, the CPU-efficiency of the internal memory processing plays a bigger
role in the performance.

The most important practical question is whether constructing suffix arrays
in the external memory is now feasible. We believe that the answer is a careful
‘yes’. We can now process 4 ·109 characters overnight on a low cost machine,
Which is two orders of magnitude more than in [CF02] in a time faster or
comparable to previous internal memory computations [ST01, LSSY02] on
more expensive machines.

166 CHAPTER 5. ENGINEERING LARGE SUFFIX ARRAY CONSTRUCTION

There are also many opportunities to scale to even larger inputs. In Sec-
tion 5.6 we have outlined that for small alphabets, the generalized difference
cover algorithm DCX, can yield significant further savings in I/O require-
ments. With respect to the internal work, one could exploit that about half
of the sorting operations are just permutations. A better overlap between
I/O and computation in future versions of pipelined Stxxl sorters should
speedup the implementations. More interestingly, there are many ways to
parallelize. On a small scale, the pipelining paradigm allows us to run several
sorters and one streaming thread in parallel. On a large scale, DC3 is also
perfectly parallelizable [KSB06]. An MPI-based [GLT98] distributed mem-
ory implementation of DC3 [KS06] scales well up to 128 processors according
to the experiments. It looks likely that the algorithm would also scale to
thousands of processors. However, the parallel implementation does not use
I/O-efficient processing, therefore this leaves room for further improvements
which will enable a fast construction of even larger suffix arrays.

Chapter 6

Porting Algorithms to External
Memory

It turns out that some algorithms designed for the internal memory or for
parallel computers can be directly adapted to run efficiently in the external
memory. Such adaptation only includes a replacement of few underlying
non-I/O-efficient algorithms by corresponding I/O-efficient versions.

We have already seen a 2-coloring algorithm in Section 4.7.7 where the re-
placed algorithms were the spanning forest algorithm and the traversal of
the trees using I/O-efficient Euler tour and list ranking algorithms. In this
chapter, we show how to externalize a 5-coloring planar graph algorithm
in Section 6.1 and an approximation algorithm for the maximum weighted
matching problem in Section 6.2. An extended example of an externalization
for an algorithm finding perfect matchings in bipartite multigraphs is shown
in Section 6.3.

6.1 5-Coloring Planar Graphs

A PRAM algorithm [HCD89] for 5-coloring planar graphs can be adopted to
run in O(sort(n)) I/Os. It recursively colors the graph constructing a sub-
problem which has at most a constant fraction of nodes of the input graph.
The algorithm identifies a set of reducible nodes which are candidates for
the removal from the graph and also merges some of the nodes incident to
reducible nodes, similarly to the algorithm in Section 4.7.6. The identifica-
tion and the merging can be implemented in a constant number of sorting

167

168 CHAPTER 6. PORTING ALGORITHMS TO EXTERNAL MEMORY

and scanning steps. Not all of the candidates can be removed in a recur-
sion, because there might be conflicts, e.g. if many reducible nodes decide
to merge the same node. However, these conflicts might be resolved filtering
some candidate nodes out with a kind of maximal independent set com-
putation in O(sort(n)) I/Os [Zeh02]. The remaining node set is still large
enough [HCD89] such that one has a constant-fraction graph reduction in
each recursion.

6.2 1/2-Approximation of Maximum

Weighted Matching

6.2.1 Definitions

A matching in graph G is a set of pairwise non-adjacent edges.

A maximal matching is a matching M of a graph G with the property that
if any edge not in M is added to M it is no longer a valid matching.

A maximum weighted matching is a matching where the sum of the weights
of the edges in the matching have a maximal value. There may be many
maximum weighted matchings.

A p-approximation algorithm of a maximization problem is an algorithm
that computes for any input instance I a solution with weight W , such that

W
OPT(W)

≥ p, where OPT(W) is the weight of an optimal solution for I.

6.2.2 The Algorithm

The internal memory greedy algorithm [Avi83] grows a maximal matching,
choosing in each step the heaviest edge currently available, i.e. an edge
not incident to any of the already covered nodes. The algorithm runs in
Θ(m log m) time since it requires sorting the edges of the graph by decreasing
weight. This greedy algorithm produces an 1

2
-approximation as shown in

[Avi83].

The algorithm can be externalized as follows:

1. sort the edges by decreasing weight using the I/O-efficient sorting,

2. assign unique ids to the edges numbering them according to the ob-
tained order,

6.3. PERFECT MATCHINGS IN BIPARTITE MULTIGRAPHS 169

3. run the maximal matching algorithm from [Zeh02], but instead of the
edge numbering proposed there, use the edge ids computed in the pre-
vious step.

The maximal matching algorithm runs in O(sort(m + n)) I/Os [Zeh02],
therefore the 1/2-approximation algorithm for finding a maximum weighted
matching only needs O(sort(m + n)) I/Os.

6.3 Perfect Matchings in Bipartite Multi-

graphs

6.3.1 Definitions

A multigraph is a graph which is permitted to have multiple edges, (also
called “parallel edges”) i.e. edges that have the same end nodes.

A perfect matching is a matching which covers all nodes of the (multi)graph.
That is, every node of the (multi)graph is incident to exactly one edge of the
matching.

A bipartite (multi)graph is a special (multi)graph where the set of nodes
can be divided into two disjoint sets U and W such that every edge has one
end-point in U and one end-point in W .

An Euler partition is a partition of the edges into open and closed paths, so
that each node of an odd degree is at the end of exactly one open path, and
each node of an even degree is at the end of no open path.

An Euler split of a bipartite multigraph G = (V1, V2, E) is a pair of bipartite
graphs G1 = (V1, V2, E1) and G2 = (V1, V2, E2) where E1 and E2 are formed
from an Euler partition by placing alternate edges of paths into E1 and E2.

A ∆-regular (multi)graph is a (multi)graph where each node has exactly ∆
neighbors.

6.3.2 Introduction

Many efficient sequential algorithms for the problem have been developed.
Cole [Col82] and Rizzi [Riz02] develop algorithms with a running time
O(m + n log n log ∆). There is also an EREW PRAM algorithm by Lev,
Pippenger, and Valiant [LPV81] which requires O

(

log ∆ log2 n
)

time and

170 CHAPTER 6. PORTING ALGORITHMS TO EXTERNAL MEMORY

O(n∆) processors. The fastest sequential algorithm is the O(m) algorithm
by Cole, Ost, and Schirra [COS01] which has improved the O(m∆) algo-
rithm by Schrijver [Sch98]. The algorithms are complicated and require ef-
ficient algorithms and data structures (e.g. depth first search, splay trees)
to be available. Unfortunately the state-of-art external counterparts of those
techniques are slow.

Recently two simple sequential O(m log m) time algorithms [KM02, Alo03]
have been presented that are easier to externalize. The only non-trivial sub-
procedure they require is the Euler partition computation. We will present
a fast algorithm for finding an Euler partition of a multigraph that performs
O(sort(m)) I/Os. Then we show how to externalize the remaining subpro-
cedures of Alon’s algorithm [Alo03] efficiently. Finally we obtain a perfect
matching algorithm performing O(sort(m) log m) I/Os.

6.3.3 Euler Partition Algorithm

The algorithm chooses an arbitrary pair of incident edges (u, v) and (v, w)
and replaces them by the single edge (u, w), also logging the action made. It
continues doing that until no further replacement is possible, i.e. the remain-
ing graph consists of node disjoint edges only (self-loops are allowed). Then,
we assign each remaining edge a unique number. The number identifies the
path represented by the edge. We undo the performed replacements playing
back the logged history and transferring the path identifiers to the replaced
edges. The order of edges in the path can be computed as a byproduct during
unrolling of the edge replacements.

Since we have the freedom to choose in which order the edges are replaced,
we perform replacements of all edges incident to a certain node at once. If
the node has an odd degree, one edge is left. Fixing the order in which nodes
are processed and using the time forward processing technique we obtain an
I/O-efficient implementation of the algorithm.

Lemma 16. An Euler partition can be generated with O(sort(m)) I/Os.

Proof. An edge replacement operation does not increase the degree of any
node. Therefore the number of total replacements is at most m.

Lemma 17. A bipartite multigraph can be Euler split with O(sort(m)) I/Os.

Proof. We sort the edges from the output of the Euler partitioning al-
gorithm by the path identifier and the edge identifier within the path lex-
icographically. Then we take every second edge into E1, the rest is E2.

6.3. PERFECT MATCHINGS IN BIPARTITE MULTIGRAPHS 171

6.3.4 I/O-Efficient Perfect Matching Algorithm

We assume that the bipartite input multigraph G = (V1, V2, E) is ∆-regular,
where ∆ is the maximum node degree. If it is not the case, we can extend
the graph I/O-efficiently. Compute the degree of each node: sort list E
lexicographically, then scan, counting consecutive edges that belong to the
adjacency list of the same node. Add the degree information for lists V1 and
V2 (constant number of sort and scan passes). Scan V1 and V2 and contract
consecutive nodes into one node such that its degree is in the range [∆/2, ∆].
This step makes sure that there is at most one node in V1 and one in V2 with
a degree less than ∆/2. Add nodes to the smaller side. Add edges until the
obtained multigraph is regular. This can be done by parallel scan of V1 and
V2: insert min{∆ − deg(v), ∆ − deg(w)} edges between nodes v ∈ V1 and
w ∈ V2. Since the number of edges in G is at most doubled, the following
lemma holds.

Lemma 18. A bipartite graph can be made ∆-regular with O(sort(m)) I/Os.

If a bipartite graph G = (V1, V2, E) is 2t-regular for a positive integer t then
it is possible to find a perfect matching with O(sort(m)) I/Os using the idea
of Gabow [Gab76]. We compute an Euler split of graph G obtaining a 2t−1-
regular subgraph G1. We repeat this procedure recursively on G1 k times
ending up with a 1-regular subgraph, which is a perfect matching. However,
if a given graph is not 2t-regular for some positive t, the above approach
does not yield a perfect matching. Therefore for any regular multigraph, a
different strategy is conceived.

First we externalize the RegularSplit subroutine of Alon’s algorithm [Alo03]
that splits the 2k-regular bipartite multigraph G = (V, E) into two k-regular
spanning bipartite subgraphs G1 = (V, E1) and G2 = (V, E2). If the edge
multiplicity µ(e) is given by the value associated with edge e, then the split
can be performed with O(sort(m′)), where m′ is the number of distinct edges
in G. We proceed as follows: Sort list E lexicographically, scan the result
of the sorting, if edge e occurs multiple times (µ(e) > 1) move its ⌊µ(e)/2⌋
copies to E1 and ⌊µ(e)/2⌋ copies to E2 as well, compute an Euler split on the
remaining subgraph G′ of G obtaining lists E ′

1 and E ′
2 and add E ′

1 to E1 and
E ′

2 to E2. This can be done updating the edge multiplicities in a constant
number of sort and scan passes. Since the number of distinct edges in graphs
G′, (V, E ′

1), and (V, E ′
2) is at most m′, and due to Lemma 17, the Lemma 19

follows.

Lemma 19. The RegularSplit subroutine can be implemented to run in
O(sort(m′)) I/Os.

172 CHAPTER 6. PORTING ALGORITHMS TO EXTERNAL MEMORY

With the help of our RegularSplit procedure the Alon’s bipartite multigraph
perfect matching algorithm works I/O-efficiently:

1. Construct an arbitrary perfect matching M ′ between two sides of G
(which does not necessarily consist of edges of G).

2. Let t = min{i | 2i ≥ m}, α = ⌊2t/∆⌋, and β = 2t − ∆α

3. Construct graph G′ = (V1 ∪ V2, E
′): for each e ∈ E create α copies of

e in E ′ (these are the good edges) and add β copies of each edge of M ′

(the bad edges). (constant number of sorting and scanning passes)

4. Run RegularSplit on G′ obtaining subgraphs G1 and G2.

5. Count number of bad edges in G1 and G2 (scanning) and let G′ be
equal to the one with the smaller number of bad edges.

6. If G′ does not contain bad edges return G′, otherwise go to step 4.

Theorem 20. A perfect matching in a bipartite multigraph with m edges can
be computed with O(sort(m) log m) I/Os.

Proof. Let m̂ be the number of distinct edges in G′. Then each iteration
takes O(sort(m̂)) I/Os (Lemma 19), note that m̂ ≤ m + n/2 = O(m). Since
there can be at most t = log(m) iterations (see [Alo03]), Theorem 20 holds.

Chapter 7

Conclusions

We have developed Stxxl: a library for external memory computation that
aims for high performance and ease-of-use. It supports parallel disks and
explicitly overlaps I/O and computation. Stxxl processes data sets only
limited by the capacity of hard disks. The library is easy to use for peo-
ple who know the C++ Standard Template Library. Stxxl supports al-
gorithm pipelining, which saves many I/Os for many external memory algo-
rithms. The library implementations outperform or at least compete with the
best available practical implementations on real and random inputs. Several
projects using Stxxl have been finished already, among them are fast im-
plementations of algorithms for graph and text processing problems. They
include algorithms for computing (minimum) spanning forests, connected
components, breadth first search decomposition, network analysis metrics,
graph coloring and suffix arrays. With the help of Stxxl, they have solved
very large problem instances externally using a low cost hardware in record
time.

This thesis emphasizes the importance of engineering for computing that
deals with very large data sets. Our work indicates that for achieving a high
performance the engineering should be done vertically, from the bottom to
the top: starting from the hardware design and ending up with algorithmic
decisions at the application level.

The experiments in the thesis show that the running time of I/O-efficient
algorithms can be (significantly) improved by using parallel disks. How-
ever, the prerequisite of this speedup is the bottleneck-free hardware I/O-
subsystem that allows to transfer the data from/to the hard disks without
hindrance, at the full bandwidth of the disks.

At the operating system level, much attention should be given to the choice

173

174 CHAPTER 7. CONCLUSIONS

of the file system type and to the choice of the used I/O calls. File systems
based on linear search data structures should be avoided. Overlapping of
I/O and computation is important for the performance, since it can hide the
disk latency. Operating systems offer the buffered I/O and the system–wide
file caching to facilitate it, however, because of the lack of the access pattern
knowledge, this way to overlap is suboptimal for the application. For the best
results, one explicitly overlaps I/O with computation, invoking direct non-
buffered I/O calls and using the multithreading mechanisms. The fine details
of asynchronous I/O should be hidden in a library that provides high-level
I/O objects to the application.

At the algorithm implementation level it is important to reduce constant
factors in I/O volume. We have shown that one can save many I/Os avoiding
the storing of the output and the retrieving of the input to/from the hard
disks in many I/O-efficient algorithms. Instead, we directly feed the output
of external memory algorithms to algorithms that consume the output. To
facilitate rapid programming with this kind of pipelining one should provide
out-of-box implementations of basic external memory algorithms having a
stream interface, which does not require to store its data on disks.

At the algorithm design level the off-the-shelf RAID-0 solutions for disk par-
allelism can not achieve the best performance in I/O-efficient algorithms,
neither theoretically nor (as shown in this work) practically: The algorithms
should access the disks independently and balance the data between the
disks on their own. Once the I/O-bandwidth scales well with the number of
disks the performance can stagnate because of the bottlenecks in the inter-
nal memory processing. Possible inefficiencies might stem from cache/TLB
faults, branch mispredictions in internal subprocedures (e. g. sorting) or from
the saturation of the main memory bandwidth. It turns out that sometimes
the bottleneck algorithms and data structures can be (easily) replaced by
simpler and more CPU-efficient ones with the same (or smaller) I/O volume:
e. g. replace an I/O-efficient priority queue with a bunch of I/O-efficient
buckets, replace the internal quicksort by an integer sorting, replace integer
divisions by logical shifts, avoid modulo computations, etc.

Much attention should be devoted to the tuning of the algorithm parameters
(if there are any) and to the tuning of the parameters of the underlying
basic I/O-efficient algorithms and data structures (i.e. block size B, buffer
cache sizes, prefetch aggressiveness, etc.). The I/O-efficient algorithms can
be very sensitive to these parameters since they must fit into the computer
architecture and the input size range.

175

Directions for Future Work. The pipelined sorter can be improved with
respect to better overlapping of I/O and computation: currently, the run
formation algorithm has big fluctuations in CPU work while reading the
input elements, since it sorts large data chunks of size M/2 at once. This
results in a worse overlapping. Approaches that use fast priority queues
can both reduce these irregularities and generate longer runs using the same
memory size [Knu98]. The latter can improve the performance itself, since a
larger block size can be used in the merge phase(s).

The library has room for a speedup by using parallel processing. We have al-
ready achieved good results with the MCSTL library [Sin06] parallelizing the
CPU work in external memory sorters. Other possible improvements include
task-based parallelism: the processing in the nodes of pipelined applications
could be done in parallel.

The Stxxl library already has users both in academia and industry. Since
November 2004 it has been downloaded more than 1,000 times. We intend to
submit Stxxl to the collection of the Boost C++ libraries (www.boost.org)
to expose it to a greater user base. We have received many requests support-
ing our intentions.

www.boost.org

176 CHAPTER 7. CONCLUSIONS

Bibliography

[AAG03] P. K. Agarwal, L. Arge, and S. Govindarajan. CRB-Tree: An
Efficient Indexing Scheme for Range Aggregate Queries. In 9th
International Conference on Database Theory (ICDT ’03), pages
143–157. 2003.

[AAY05] P. K. Agarwal, L. Arge, and K. Yi. I/O-Efficient Construction
of Constrained Delaunay Triangulations. In 13th European Sym-
posium on Algorithms (ESA ’05), number 3669 in LNCS, pages
355–366. 2005.

[ABC+95] J. Allwright, R. Bordawekar, P. Coddington, K. Dincer, and
C. Martin. A comparison of parallel graph coloring algorithms.
Technical report, Northeast Parallel Architecture Center, Syra-
cuse University, 1995.

[ABD+02] L. Arge, M. A. Bender, E. D. Demaine, B. Holland-Minkley, and
J. I. Munro. Cache-oblivious priority queue and graph algorithm
applications. In Proceedings of the 34th ACM Symposium on
Theory of Computing, pages 268–276. ACM Press, 2002. ISBN
1-58113-495-9. doi:http://doi.acm.org/10.1145/509907.509950.

[ABH+03] L. Arge, R. Barve, D. Hutchinson, O. Procopiuc, L. Toma, D. E.
Vengroff, and R. Wickeremesinghe. TPIE: User manual and
reference, November 2003.

[ABW02] J. Abello, A. L. Buchsbaum, and J. R. Westbrook. A func-
tional approach to external graph algorithms. Algorithmica, vol-
ume 32:pages 437–458, 2002.

[ADM06] D. Ajwani, R. Dementiev, and U. Meyer. A computational study
of external memory BFS algorithms. In ACM-SIAM Symposium
on Discrete Algorithms (SODA-06), pages 601–610. ACM, Mi-
ami, USA, 2006.

177

178 BIBLIOGRAPHY

[ADN+96] T. E. Anderson, M. D. Dahlin, J. M. Neefe, D. A. Patterson,
D. S. Roselli, and R. Y. Wang. Serverless network file systems.
ACM Transactions on Computer Systems, volume 14(1):pages
41–79, 1996. ISSN 0734-2071. doi:http://doi.acm.org/10.1145/
225535.225537.

[AFGV97] L. Arge, P. Ferragina, R. Grossi, and J. S. Vitter. On sorting
strings in external memory. In 29th ACM Symposium on Theory
of Computing, pages 540–548. ACM Press, El Paso, May 1997.

[Aga96] R. Agarwal. A super scalar sort algorithm for RISC processors.
In ACM SIGMOD International Conference on Management of
Data, pages 240–246. 1996.

[AGL98] S. Albers, N. Garg, and S. Leonardi. Minimizing stall time in sin-
gle and parallel disk systems. In Proceedings of the 30th Annual
ACM Symposium on Theory of Computing (STOC-98), pages
454–462. ACM Press, New York, May 23–26 1998. ISBN 0-
89791-962-9.

[AHVV99] L. Arge, K. H. Hinrichs, J. Vahrenhold, and J. S. Vitter. Ef-
ficient Bulk Operations on Dynamic R-trees. In 1st Workshop
on Algorithm Engineering and Experimentation (ALENEX ’99),
Lecture Notes in Computer Science, pages 328–348. Springer-
Verlag, 1999.

[AJR+01] P. An, A. Jula, S. Rus, S. Saunders, T. Smith, G. Tanase,
N. Thomas, N. Amato, and L. Rauchwerger. STAPL: An Adap-
tive, Generic Parallel C++ Library. In Workshop on Languages
and Compilers for Parallel Computing (LCPC), pages 193–208.
Cumberland Falls, Kentucky, August 2001.

[Ajw05] D. Ajwani. Design, implementation and experimental study of
external memory BFS algorithms. Master’s thesis, Universität
des Saarlandes, 2005.

[AKO02] M. I. Abouelhoda, S. Kurtz, and E. Ohlebusch. The enhanced
suffix array and its applications to genome analysis. In 2nd
Workshop on Algorithms in Bioinformatics, volume 2452 of Lec-
ture Notes in Computer Science, pages 449–463. 2002.

[Alo03] N. Alon. A simple algorithm for edge-coloring bipartite multi-
graphs. Information Processing Letters, volume 85(6):pages 301–
302, 2003.

BIBLIOGRAPHY 179

[AMO07] D. Ajwani, U. Meyer, and V. Osipov. Improved external memory
BFS implementations. In 9th Workshop on Algorithm Engineer-
ing and Experiments (ALENEX). ACM-SIAM, 2007. To appear.

[APV02] L. Arge, O. Procopiuc, and J. S. Vitter. Implementing I/O-
efficient Data Structures Using TPIE. In 10th European Sympo-
sium on Algorithms (ESA), volume 2461 of LNCS, pages 88–100.
Springer, 2002.

[Arg95] L. Arge. The Buffer Tree: A New Technique for Optimal I/O-
Algorithms. In 4th Workshop on Algorithms and Data Struc-
tures, number 955 in LNCS, pages 334–345. Springer, 1995.

[AV88] A. Aggarwal and J. S. Vitter. The input/output complexity
of sorting and related problems. Communications of the ACM,
volume 31(9):pages 1116–1127, 1988.

[Avi83] D. Avis. A survey of heuristics for the weighted matching prob-
lem. Neworks, pages 475–493, 1983.

[BCFM00] K. Brengel, A. Crauser, P. Ferragina, and U. Meyer. An ex-
perimental study of priority queues in external memory. ACM
Journal of Experimental Algorithms, volume 5(17), 2000.

[BDIW02] M. Bander, Z. Duan, J. Iacono, and J. Wu. A locality-preserving
cache-oblivious dynamic dictionary. In 13th Annual ACM-SIAM
Symposium On Descrete Algorithms (SODA-02). 2002.

[BFMZ04] G. S. Brodal, R. Fagerberg, U. Meyer, and N. Zeh. Cache-
oblivious data structures and algorithms for undirected breadth-
first search and shortest paths. In SWAT 2004 : 9th Scandi-
navian Workshop on Algorithm Theory, volume 3111 of LNCS,
pages 480–492. Springer, Humlebaek, Denmark, 2004.

[BFV04] G. S. Brodal, R. Fagerberg, and K. Vinther. Engineering a cache-
oblivious sorting algorithm. In Proc. 6th Workshop on Algorithm
Engineering and Experiments, pages 4–17. 2004.

[BGV97] R. D. Barve, E. F. Grove, and J. S. Vitter. Simple ran-
domized mergesort on parallel disks. Parallel Computing, vol-
ume 23(4):pages 601–631, 1997.

[BJ85] F. Bauernöppel and H. Jung. Fast parallel vertex colouring. In
5th International Conference on Fundamentals of Computational
Theory, LNCS 199, pages 28–35. 1985.

180 BIBLIOGRAPHY

[BK87] J. F. Boyar and H. J. Karloff. Coloring planar graphs in parallel.
J. Algorithms, volume 8(4):pages 470–479, 1987.

[BK03] S. Burkhardt and J. Kärkkänen. Fast lightweight suffix array
construction and checking. In 14th Symposium on Combinatorial
Pattern Matching, LNCS. Springer, 2003.

[BLMP06] A. Z. Broder, R. Lempel, F. Maghoul, and J. O. Pedersen. Effi-
cient pagerank approximation via graph aggregation. Informa-
tion Retrieval, volume 9(2):pages 123–138, 2006.

[BM72] R. Bayer and E. McCreight. Organization and maintenance of
large ordered indices. Acta Informatica, page 173189, 1972.

[Bor26] O. Boruvka. O jistém problému minimálńım. Pràce, Moravské
Prirodovedecké Spolecnosti, pages 1–58, 1926.

[BS03] L. Bic and A. Shaw. Operating Systems Principles. Pearson
Education, 2003.

[BW94] M. Burrows and D. J. Wheeler. A block-sorting lossless data
compression algorithm. Technical Report 124, SRC (digital, Palo
Alto), May 1994.

[BYBC06] R. Baeza-Yates, P. Boldi, and C. Castillo. Generalizing Page-
Rank: damping functions for link-based ranking algorithms.
In SIGIR ’06: Proceedings of the 29th annual international
ACM conference on Research and development in information re-
trieval, pages 308–315. ACM Press, New York, NY, USA, 2006.
ISBN 1-59593-369-7. doi:http://doi.acm.org/10.1145/1148170.
1148225.

[CC02] G. Chaudhry and T. H. Cormen. Getting more from out-of-
core columnsort. In 4th Workshop on Algorithm Engineering and
Experiments (ALENEX), number 2409 in LNCS, pages 143–154.
2002.

[CCW01] G. Chaudhry, T. H. Cormen, and L. F. Wisniewski. Columnsort
lives! an efficient out-of-core sorting program. In 13th ACM
Symposium on Parallel Algorithms and Architectures, pages 169–
178. 2001.

[CE00] K. Czarnecki and U. Eisenecker. Generative Programming:
Methods, Tools, and Applications. Addison Wesley Professional,
2000. http://www.generative-programming.org/.

http://www.generative-programming.org/

BIBLIOGRAPHY 181

[CF02] A. Crauser and P. Ferragina. Theoretical and experimental study
on the construction of suffix arrays in external memory. Algo-
rithmica, volume 32(1):pages 1–35, 2002.

[CFKL96] P. Cao, E. W. Felten, A. R. Karlin, and K. Li. Implementation
and performance of integrated application-controlled file caching,
prefetching and disk scheduling. ACM Transactions on Com-
puter Systems, volume 14(4):pages 311–343, November 1996.

[CGG+95] Y.-J. Chiang, M. T. Goodrich, E. F. Grove, R. Tamasia, D. E.
Vengroff, and J. S. Vitter. External memory graph algorithms.
In 6th Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 139–149. 1995.

[Cha00] B. Chazelle. A minimum spanning tree algorithm with inverse-
ackermann type complexity. Journal of the ACM, pages 1028–
1047, 2000.

[Chi95] Y.-J. Chiang. Dynamic and I/O-Efficient Algorithms for Com-
putational Geometry and Graph Algorithms. Ph.D. thesis, Brown
University, 1995.

[Chr05] F. J. Christiani. Cache-Oblivious Graph Algorithms. Mas-
ter’s thesis, Department of Mathematics and Computer Science
(IMADA) University of Southern Denmark, Odense, 2005.

[CL91] L.-F. Cabrera and D. D. E. Long. Swift: Using Distributed Disk
Striping to Provide High I/O Data Rates. Computing Systems,
volume 4(4):pages 405–436, 1991.

[CLG+94] P. M. Chen, E. L. Lee, G. A. Gibson, R. H. Katz, and D. A. Pat-
terson. RAID: High-Performance, Reliable Secondary Storage.
ACM Comput. Surv., volume 26(2):pages 145–185, 1994.

[CLR90] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction
to Algorithms. McGraw-Hill, 1990.

[CM99] A. Crauser and K. Mehlhorn. LEDA-SM, extending LEDA to
secondary memory. In 3rd International Workshop on Algorith-
mic Engineering (WAE), volume 1668 of LNCS, pages 228–242.
1999.

[CM00] A. Crauser and K. Mehlhorn. LEDA-SM a platform for sec-
ondary memory computations. Technical report, MPII, 2000.
Draft.

182 BIBLIOGRAPHY

[Col82] R. Cole. Two problems in graph theory. Ph.D. thesis, Cornell
University, Ithaca, NY, 1982.

[COS01] R. Cole, K. Ost, and S. Schirra. Edge-coloring bipartite multi-
graphs in O(E log D) time. Combinatorica, volume 21:pages 5–
12, 2001.

[Cul] J. Culberson. http://web.cs.ualberta.ca/~joe/Coloring/.

[DC05] E. R. Davidson and T. H. Cormen. Building on a Framework:
Using FG for More Flexibility and Improved Performance in Par-
allel Programs. In IPDPS. 2005.

[Dem] R. Dementiev. The Stxxl library. Documentation and down-
load at http://stxxl.sourceforge.net/.

[Dik86] K. Diks. A fast parallel algorithm for six-colouring of pla-
nar graphs (extended abstract). In J. Gruska, B. Rovan, and
J. Wiedermann, editors, Mathematical Foundations of Computer
Science 1986 (Proceedings of the Twelfth Symposium Held in
Bratislava, Czechoslovakia), volume 233 of LNCS, pages 273–
282. Springer-Verlag, Berlin, 1986.

[DKMS06] R. Dementiev, J. Kärkkäinen, J. Mehnert, and P. Sanders. Bet-
ter external memory suffix array construction. ACM Journal of
Experimental Algorithmics, 2006. To appear.

[DKS05a] R. Dementiev, L. Kettner, and P. Sanders. Stxxl: Standard
Template Library for XXL Data Sets. In 13th Annual European
Symposium on Algorithms (ESA), volume 3669 of LNCS, pages
640–651. Springer, 2005.

[DKS05b] R. Dementiev, L. Kettner, and P. Sanders. Stxxl: Standard Tem-
plate Library for XXL Data Sets. Technical Report 18, Fakultät
für Informatik, University of Karlsruhe, 2005.

[DLL+06] D. Donato, L. Laura, S. Leonardi, U. Meyer, S. Millozzi, and
J. F. Sibeyn. Algorithms and experiments for the webgraph.
Journal of Graph Algorithms and Applications, volume 10(2),
2006. To appear.

[DLMT05] D. Donato, S. Leonardi, S. Millozzi, and P. Tsaparas. Mining
the inner structure of the Web graph. In International Workshop
on the Web and Databases (WebDB), pages 145–150. 2005.

http://web.cs.ualberta.ca/~joe/Coloring/
http://stxxl.sourceforge.net/

BIBLIOGRAPHY 183

[DMKS05] R. Dementiev, J. Mehnert, J. Kärkkäinen, and P. Sanders. Bet-
ter External Memory Suffix Array Construction. In Work-
shop on Algorithm Engineering & Experiments. Vancouver, 2005.
http://i10www.ira.uka.de/dementiev/files/DKMS05.pdf.

[DS03] R. Dementiev and P. Sanders. Asynchronous parallel disk sort-
ing. In 15th ACM Symposium on Parallelism in Algorithms and
Architectures, pages 138–148. San Diego, 2003.

[DSSS04] R. Dementiev, P. Sanders, D. Schultes, and J. Sibeyn. Engineer-
ing an External Memory Minimum Spanning Tree Algorithm. In
IFIP TCS, pages 195–208. Toulouse, 2004.

[FGK+00] A. Fabri, G.-J. Giezeman, L. Kettner, S. Schirra, and
S. Schönherr. On the Design of CGAL, a Computational Ge-
ometry Algorithms Library. Software - Practice and Experience,
volume 30(11):pages 1167–1202, September 2000.

[FJKT97] R. Fadel, K. V. Jakobsen, J. Katajainen, and J. Teuhola. Exter-
nal heaps combined with effective buffering. In 4th Australasian
Theory Symposium, volume 19-2 of Australian Computer Science
Communications, pages 72–78. Springer, 1997.

[FLPR99] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran.
Cache-oblivious algorithms. In 40th Symposium on Foundations
of Computer Science, pages 285–298. 1999.

[Foy06] E. N. Foyet. Konstruierung von Suffixarrays in PL/SQL.
Studienarbeit, Fakultät für Informatik, University of Karlsruhe,
July 2006.

[FPS05] I. Finocchi, A. Panconesi, and R. Silvestri. An experimental
analysis of simple, distributed vertex coloring algorithms. Algo-
rithmica, volume 41:pages 1–23, 2005.

[Fre84] G. N. Frederickson. On linear-time algorithms for five-
coloring planar graphs. Information Processing Letters, vol-
ume 19(5):pages 219 – 224, November 1984.

[FS01] R. Farias and C. T. Silva. Out-of-core rendering of large, un-
structured grids. IEEE Computer Graphics and Applications,
volume 21(4):pages 42 – 50, July 2001.

http://i10www.ira.uka.de/dementiev/files/DKMS05.pdf

184 BIBLIOGRAPHY

[Gab76] H. N. Gabow. Using Euler Partitions to Edge Color Bipartite
Multigraphs. International Journal on Computer and Informa-
tion Sciences, pages 345–355, 1976.

[GBYS92] G. Gonnet, R. Baeza-Yates, and T. Snider. New indices for text:
PAT trees and PAT arrays. In W. B. Frakes and R. Baeza-Yates,
editors, Information Retrieval: Data Structures & Algorithms.
Prentice-Hall, 1992.

[GGKM05] N. K. Govindaraju, J. Gray, R. Kumar, and D. Manocha. GPU-
TeraSort: High Performance Graphics Coprocessor Sorting for
Large Database Management. Technical Report MSR-TR-2005-
183, Microsoft, December 2005. Revised March 2006.

[GGL03] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google file
system. In SOSP ’03: Proceedings of the nineteenth ACM
symposium on Operating systems principles, pages 29–43. ACM
Press, New York, NY, USA, 2003. ISBN 1-58113-757-5. doi:
http://doi.acm.org/10.1145/945445.945450.

[GJS76] M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified
NP-complete graph problems. Theoretical Computer Science,
volume 1:pages 237–267, 1976.

[GLT98] W. Gropp, R. Lusk, and R. Thakur. Latest Advances in MPI-2.
Tutorial on EuroPVM/MPI’98, 1998.

[GND99] P. Gaumond, P. A. Nelson, and J. Downs. GNU dbm: A
Database Manager, 1999.

[GPS87] A. Goldberg, S. Plotkin, and G. Shannon. Parallel symmetry-
breaking in sparse graphs. In STOC ’87: Proceedings of the nine-
teenth annual ACM conference on Theory of computing, pages
315–324. ACM Press, New York, NY, USA, 1987. ISBN 0-89791-
221-7. doi:http://doi.acm.org/10.1145/28395.28429.

[Gra] J. Gray. Sort Benchmark Home Page.
http://research.microsoft.com/barc/sortbenchmark/.

[Gsc01] T. Gschwind. PSTL: A C++ Persistent Standard Template Li-
brary. In Sixth USENIX Conference on Object-Oriented Tech-
nologies and Systems (COOTS’01). San Antonio, Texas, USA,
January-February 2001.

http://research.microsoft.com/barc/sortbenchmark/

BIBLIOGRAPHY 185

[Haa04] H. Haanpää. Minimum sum and difference covers of Abelian
groups. Journal of Integer Sequences, volume 7(2):page article
04.1.8, 2004.

[Har69] F. Harary. Graph Theory. Addison Wesley, 1969.

[HCD89] T. Hagerup, M. Chrobak, and K. Diks. Optimal parallel 5-
colouring of planar graphs. SIAM Journal on Computing, vol-
ume 18(2):pages 288–300, 1989. ISSN 0097-5397.

[HK79] F. Harary and H. J. Kommel. Matrix measures for transitivity
and balance. Journal of Mathematical Sociology, volume 6:pages
199–210, 1979.

[HKM+88] J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols,
M. Satyanarayanan, R. N. Sidebotham, and M. J. West. Scale
and performance in a distributed file system. ACM Transactions
on Computer Systems, volume 6(1):pages 51–81, 1988. ISSN
0734-2071. doi:http://doi.acm.org/10.1145/35037.35059.

[HL04] M. Henzinger and S. Lawrence. Extracting Knowledge from the
World Wide Web. In Proc. of the National Academy of Science.
2004.

[HSV01] D. A. Hutchinson, P. Sanders, and J. S. Vitter. Duality between
prefetching and queued writing with parallel disks. In 9th Euro-
pean Symposium on Algorithms (ESA), number 2161 in LNCS,
pages 62–73. Springer, 2001.

[Hum02] A. Hume. Handbook of massive data sets, chapter “Billing in the
large”, pages 895 – 909. Kluwer Academic Publishers, 2002.

[Int] Intel web site. http://www.intel.com.

[JP93] M. Jones and P. Plassmann. A parallel graph coloring heuristic.
SIAM Joirnal on Scientific Computing, volume 14(3):pages 654–
669, 1993.

[KA03] P. Ko and S. Aluru. Space efficient linear time construction of
suffix arrays. In 14th, volume 2089 of Lecture Notes in Computer
Science, pages 200–210. Springer, 2003.

[Kar05] B. Karlsson. Beyond the C++ Standard Library: An Introduc-
tion to Boost. Addison-Wesley, 2005.

http://www.intel.com

186 BIBLIOGRAPHY

[KK00] T. Kimbrel and A. R. Karlin. Near-optimal parallel prefetching
and caching. SIAM Journal on Computing, volume 29(4):pages
1051–1082, 2000.

[KM02] S. F. K. Makino, T. Takabatake. A simple matching algorithm
for regular bipartite graphs. Information Processing Letters, vol-
ume 84(4):pages 189–193, 2002.

[Kni] K. Knizhnik. Persistent Object Storage for C++.
http://www.garret.ru/~knizhnik/post/readme.htm.

[Knu98] D. E. Knuth. The Art of Computer Programming—Sorting and
Searching, volume 3. Addison Wesley, 2nd edition, 1998.

[Kru56] J. B. Kruskal. On the shortest spanning subtree of a graph and
the traveling salesman problem. Proceedings of the American
Mathematical Society, volume 7:pages 48–50, 1956.

[KS06] F. Kulla and P. Sanders. Scalable parallel suffix array construc-
tion. In EuroPVM/MPI. 2006. To appear.

[KSB06] J. Kärkkäinen, P. Sanders, and S. Burkhardt. Linear work suffix
array construction. Journal of the ACM, 2006. To appear.

[KSPP03] D. K. Kim, J. S. Sim, H. Park, and K. Park. Linear-time con-
struction of suffix arrays. In 14th, volume 2676 of Lecture Notes
in Computer Science, pages 186–199. Springer, June 2003.

[KST03] I. Katriel, P. Sanders, and J. L. Träff. A practical minimum
spanning tree algorithm using the cycle property. In 11th Euro-
pean Symposium on Algorithms (ESA), number 2832 in LNCS,
pages 679–690. Springer, 2003.

[KV01] M. Kallahalla and P. J. Varman. Optimal prefetching and
caching for parallel I/O systems. In 13th Symposium on Par-
allel Algorithms and Architectures, pages 219–228. 2001.

[Leo04] S. Leonardi, editor. Algorithms and Models for the Web-Graph:
Third International Workshop, WAW 2004, Rome, Italy, Oc-
tober 16, 2004, Proceeedings, volume 3243 of Lecture Notes in
Computer Science. Springer, 2004. ISBN 3-540-23427-6.

[LPV81] G. F. Lev, N. Pippenger, and L. G. Valiant. A fast parallel algo-
rithm for routing in permutation networks. IEEE Transactions
on Computers, volume C-30(2):pages 93–100, February 1981.

http://www.garret.ru/~knizhnik/post/readme.htm

BIBLIOGRAPHY 187

[LSSY02] T.-W. Lam, K. Sadakane, W.-K. Sung, and S.-M. Yiu. A space
and time efficient algorithm for constructing compressed suffix
arrays. In Computing and Combinatorics, 8th Annual Interna-
tional Conference COCOON ’02, volume 2387 of Lecture Notes
in Computer Science, pages 401–410. 2002.

[Meh04] J. Mehnert. External Memory Suffix Array Construction. Mas-
ter’s thesis, University of Saarland, Germany, November 2004.
http://algo2.iti.uka.de/dementiev/esuffix/docu/data/diplom.pdf.

[MM93] U. Manber and G. Myers. Suffix arrays: A new method for
on-line string searches. SIAM Journal on Computing, vol-
ume 22(5):pages 935–948, October 1993.

[MM02] K. Mehlhorn and U. Meyer. External-Memory Breadth-First
Search with Sublinear I/O. In 10th Annual European Symposium
on Algorithms (ESA), volume 2461 of LNCS, pages 723–735.
2002.

[MMI72] D. W. Matula, G. Marble, and J. Isaacson. Graph Coloring
Algorithms. Academic Press, New York, 1972.

[MN99] K. Mehlhorn and S. Näher. The LEDA Platform of Combina-
torial and Geometric Computing. Cambridge University Press,
1999.

[Moo00] R. W. Moore. Enabling petabyte computing.
http://www.nap.edu/html/whitepapers/ch-48.html, 2000.

[MR99] K. Munagala and A. Ranade. I/O-complexity of graph algo-
rithms. In 10th Symposium on Discrete Algorithms, pages 687–
694. ACM-SIAM, 1999.

[MSS03] U. Meyer, P. Sanders, and J. Sibeyn, editors. Algorithms for
Memory Hierarchies, volume 2625 of LNCS Tutorial. Springer,
2003.

[MT03] R. J. T. Morris and B. J. Truskowski. The evolution of storage
systems. IBM Systems Journal, volume 42(2):pages 205–217,
2003. ISSN 0018-8670.

[Nao87] J. Naor. A fast parallel coloring of planar graphs with five colors.
In Information Processing Letters, Vol. 25, issue 1, pages 51–53.
1987.

http://algo2.iti.uka.de/dementiev/esuffix/docu/data/diplom.pdf
http://www.nap.edu/html/whitepapers/ch-48.html

188 BIBLIOGRAPHY

[NBC+94] C. Nyberg, T. Barclay, Z. Cvetanovic, J. Gray, and D. Lomet.
AlphaSort: A RISC machine sort. In SIGMOD, pages 233–242.
1994.

[Nel98] T. Nelson. Disk-based container objects. C/C++ Users Journal,
pages 45–53, April 1998.

[Neu45] J. v. Neumann. First draft of a report on the ED-
VAC. Technical report, University of Pennsylvania, 1945.
http://www.histech.rwth-aachen.de/www/quellen/vnedvac.pdf.

[NKG00] C. Nyberg, C. Koester, and J. Gray. Nsort: A paral-
lel sorting program for NUMA and SMP machines, 2000.
http://www.ordinal.com/lit.html.

[OBS99] M. A. Olson, K. Bostic, and M. Seltzer. Berkeley DB. In
USENIX Annual Technical Conference, page 183192. June 1999.

[OBS00] M. A. Olson, K. Bostic, and
M. Seltzer. Berkeley DB White Paper.
http://dev.sleepycat.com/resources/whitepapers.html,
2000.

[Osi06] V. Osipov. personal communication, 2006.

[PAAV] O. Procopiuc, P. K. Agarwal, L. Arge, and J. S. Vitter. Bkd-tree:
A Dynamic Scalable KD-Tree. In 8th International Symposium
on Spatial and Temporal Databases (SSTD ’03), pages 46–65.

[Pat04] D. A. Patterson. Latency lags bandwith. Communications of
the ACM, volume 47(10):pages 71–75, 2004. ISSN 0001-0782.
doi:http://doi.acm.org/10.1145/1022594.1022596.

[PGK88] D. Patterson, G. Gibson, and R. Katz. A case for redundant
arrays of inexpensive disks (RAID). Proceedings of ACM SIG-
MOD’88, pages 109–116, 1988.

[PR00] S. Pettie and V. Ramachandran. An optimal minimum spanning
tree algorithm. In 27th ICALP, volume 1853 of LNCS, pages 49–
60. Springer, 2000.

[PV92] V. S. Pai and P. J. Varman. Prefetching with multiple disks for
external mergesort: Simulation and analysis. In ICDE, pages
273–282. 1992.

http://www.histech.rwth-aachen.de/www/quellen/vnedvac.pdf
http://www.ordinal.com/lit.html
http://dev.sleepycat.com/resources/whitepapers.html

BIBLIOGRAPHY 189

[Raj98] S. Rajasekaran. A framework for simple sorting algorithms on
parallel disk systems. In 10th ACM Symposium on Parallel Al-
gorithms and Architectures, pages 88–98. 1998.

[Riz02] R. Rizzi. Finding 1-factors in bipartite regular graphs and edge-
coloring bipartite graphs. SIAM Journal on Discrete Mathemat-
ics, volume 15(3):pages 283–288, 2002.

[RSST96] N. Robertson, D. P. Sanders, P. Seymour, and R. Thomas. Ef-
ficiently four-coloring planar graphs. In Twenty-eighth annual
ACM symposium on Theory of computing, pages 571 – 575. 1996.

[San00] P. Sanders. Fast priority queues for cached memory. ACM Jour-
nal of Experimental Algorithmics, volume 5, 2000.

[Sch98] A. Schrijver. Bipartite edge coloring in O(∆m) time. SIAM
Journal on Computing, volume 28:pages 841–846, 1998.

[Sch03a] D. Schultes. External memory minimum spanning trees.
Bachelor thesis, Max-Planck-Institut f. Informatik and Saar-
land University, http://www.dominik-schultes.de/emmst/,
August 2003.

[Sch03b] D. Schultes. External Memory Span-
ning Forests and Connected Components.
http://i10www.ira.uka.de/dementiev/files/cc.pdf,
September 2003.

[SH02] F. Schmuck and R. Haskin. GPFS: A Shared-Disk File System
for Large Computing Clusters. In FAST ’02: Proceedings of
the 1st USENIX Conference on File and Storage Technologies,
page 19. USENIX Association, Berkeley, CA, USA, 2002.

[Sib97] J. Sibeyn. From parallel to external list ranking. Technical Re-
port MPI-I-97-1-021, Max-Planck Institut für Informatik, 1997.

[Sib04] J. Sibeyn. External connected components. Techni-
cal report, Fachbereich Mathematik und Informatik,
Martin-Luther-Universität, Halle, Germany, 2004.
http://users.informatik.uni-halle.de/~jopsi/dps/si54.ps.gz.

[Sin06] J. Singler. MCSTL: The Multi-Core Standard Template Library.
http://algo2.iti.uni-karlsruhe.de/singler/mcstl/,
2006.

http://www.dominik-schultes.de/emmst/
http://i10www.ira.uka.de/dementiev/files/cc.pdf
http://users.informatik.uni-halle.de/~jopsi/dps/si54.ps.gz
http://algo2.iti.uni-karlsruhe.de/singler/mcstl/

190 BIBLIOGRAPHY

[SKS01] A. Silberschatz, H. F. Korth, and S. Sudarshan. Database System
Concepts. McGraw-Hill, 4th edition, 2001.

[SKW92] V. Singhal, S. V. Kakkad, and P. R. Wilson. Texas: An efficient,
portable persistent store. In Fifth International Workshop on
Persistent Object Systems. September 1992.

[SL94] A. A. Stepanov and M. Lee. The Standard Template Library.
Technical Report X3J16/94-0095, WG21/N0482, Silicon Graph-
ics Inc., Hewlett Packard Laboratories, 1994.

[SM02] J. Sibeyn and U. Meyer. External connected components and
beyond, 2002. Unpublished.

[ST01] K. Sadakane and T.Shibuya. Indexing huge genome sequences for
solving various problems. Genome Informatics, volume 12:pages
175–183, 2001.

[Ste98] A. Stevens. The persistent template library. Dr. Dobb’s, pages
117–120, March 1998.

[Str] The STREAM Benchmark: Computer Memory Bandwidth.
http://www.streambench.org/.

[SW05a] T. Schank and D. Wagner. Finding, counting and listing all trian-
gles in large graphs, an experimental study. In 4th International
Workshop on Experimental and Efficient Algorithms (WEA’05),
volume 3503 of Lecture Notes in Computer Science. Springer,
2005.

[SW05b] T. Schank and D. Wagner. Finding, counting and listing all tri-
angles in large graphs, an experimental study. Technical report,
Universität Karlsruhe, Fakultät für Informatik, 2005.

[Tar75] R. E. Tarjan. Efficiency of a good but not linear set merging
algorithm. Journal of the ACM, volume 22:pages 215–225, 1975.

[Unia] University of California, Berkeley. dbm(3) Unix Programmer’s
Manual.

[Unib] University of California, Berkeley. ndbm(3) 4.3BSD Unix Pro-
grammer’s Manual.

http://www.streambench.org/

BIBLIOGRAPHY 191

[vdBDS00] J. van den Bercken, J.-P. Dittrich, and B. Seeger. java.XXL:
A prototype for a library of query processing algorithms. In
International Conference on Management of Data, volume 29(2),
page 588. ACM, 2000.

[Ven94] D. E. Vengroff. A Transparent Parallel I/O Environment. In
Third DAGS Symposium on Parallel Computation, pages 117–
134. Hanover, NH, July 1994.

[VH01] J. S. Vitter and D. A. Hutchinson. Distribution sort with ran-
domized cycling. In 12th ACM-SIAM Symposium on Discrete
Algorithms, pages 77–86. 2001.

[Vit01] J. S. Vitter. External memory algorithms and data structures:
Dealing with MASSIVE data. ACM Computing Surveys, vol-
ume 33(2):pages 209–271, 2001.

[VS94] J. S. Vitter and E. A. M. Shriver. Algorithms for parallel mem-
ory, I/II. Algorithmica, volume 12(2/3):pages 110–169, 1994.

[VV96] D. E. Vengroff and J. S. Vitter. I/O-Efficient Scientific Com-
putation using TPIE. In Goddard Conference on Mass Storage
Systems and Technologies, volume 2, pages 553–570. 1996. Pub-
lished in NASA Conference Publication 3340.

[WP67] D. J. A. Welsh and M. B. Powel. An upper bound for the chro-
matic number of a graph and its application to timetabling prob-
lems. Computing Journal, volume 10(85), 1967.

[WS98] D. Watts and S. H. Strogatz. Collective dynamics of “small-
world” networks. Nature, volume 393:pages 440–442, 1998.

[Wyl99] J. Wyllie. SPsort: How to sort a terabyte quickly.
http://research.microsoft.com/barc/SortBenchmark/SPsort.pdf,
1999.

[Zeh02] N. R. Zeh. I/O Efficient Algorithms for Shortest Path Related
Problems. Ph.D. thesis, Carleton University, Ottawa, April 2002.

http://research.microsoft.com/barc/SortBenchmark/SPsort.pdf

192 BIBLIOGRAPHY

Appendix A

Notation

If not stated explicitly, the symbols below have the following meaning:

Symbol Definition
N The input size in bytes
M The main memory size in bytes
B The block size in bytes used for transfers between

main memory and hard disk
D The number of disks
scan(N) The number of I/Os required to scan N items
sort(N) The number of I/Os required to sort N items
G or G = (V, E) Denotes a graph which consists of a set of nodes

V and a set of edges E
V The set of nodes in a graph
E The set of edges in a graph
n The number of input items, or the number of nodes

in the input graph (n = |V |)
m The number of edges in the input graph (m = |E|)
deg(v) The degree of node v
∆ The largest node degree of the graph

193

	Introduction
	I/O-Efficient Algorithms and Models
	Disk Parallelism in Storage Technologies
	Memory Hierarchies
	Algorithm Engineering for Large Data Sets
	C++ Standard Template Library
	The Goals of Stxxl
	Software Facts
	Stxxl Users
	Related Work
	Outline

	Building Experimental Parallel Disk Systems
	Hardware Disk Interfaces
	Busses, Controllers, Chipsets
	Our First System
	Other Systems
	File System Issues

	The Stxxl Library
	Stxxl Design
	AIO Layer
	AIO Layer Implementations

	BM Layer
	Stl -User Layer
	Vector
	Stack
	Queue
	Deque
	Priority Queue
	Map
	General Issues Concerning Stxxl Containers
	Algorithms

	Parallel Disk Sorting
	Multi-way Merge Sort with Overlapped I/Os
	Implementation Details
	Experiments
	Discussion

	Algorithm Pipelining
	Streaming Layer

	Engineering Algorithms for Large Graphs
	Overview
	Maximal Independent Set
	Minimum Spanning Trees
	Definitions
	Related Work and Motivation
	Semi-External Algorithm
	Node Reduction
	Experiments
	Conclusions

	Connected Components and Spanning Trees
	Introduction
	Spanning Forest
	Connected Components
	Experiments

	Breadth First Search
	Introduction
	Internal Memory BFS
	MR-BFS
	MM-BFS
	Experiments

	Listing All Triangles in Huge Graphs
	I/O-Efficient Node-Iterator Algorithm
	Pipelined Implementation
	Experiments

	Graph Coloring
	Introduction
	Greedy Coloring
	Highest-Degree-First Heuristic
	Batched Smallest-Degree-Last Heuristic
	7-Coloring of Planar Graphs
	6-Coloring of Planar Graphs
	2-Coloring
	Experiments
	Conclusion and Future Work

	Engineering Large Suffix Array Construction
	Introduction
	Basic Concepts
	Overview

	Doubling Algorithm
	Discarding
	From Doubling to a-Tupling
	I/O-Optimal Pipelined DC3 Algorithm
	Generalized Difference Cover Algorithm
	Checker
	Experiments
	The Checker

	An Oracle PL/SQL Implementation
	Conclusion

	Porting Algorithms to External Memory
	5-Coloring Planar Graphs
	1/2-Approximation of Maximum Weighted Matching
	Definitions
	The Algorithm

	Perfect Matchings in Bipartite Multigraphs
	Definitions
	Introduction
	Euler Partition Algorithm
	I/O-Efficient Perfect Matching Algorithm

	Conclusions
	Notation

