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Abstract

The tractability of the NP-complete satisfiability problem (SAT) can be greatly improved
by algorithms that exploit knowledge about specific instances [7]. The observation that ma-
ny SAT instances arise from encoded Boolean circuits motivated the reconstruction of such
circuits from formulas, as effective algorithms are known for these instances [7]. Recent
research [13] devised algorithms to efficiently recover gate structure from CNF formu-
las, including from encodings that have been simplified to reduce the number of clauses
[18, 15]. Based on reconstructed Boolean circuits we attempt to recognize encoded cardi-
nality constraints in CNF formulas using a graph algorithm in conjunction with a search
algorithm for clauses in the constraint that are not distributed over the reconstructed gates.
Furthermore we show that the gate recognition algorithm by Iser [13] is not confluent. We
suggest a method to guide the reconstruction in a controlled manner such that graph based
algorithms become feasible.

As a framework for this approach, we supplement the existing algorithms in Candy [1]
with an encoder for cardinality constraints and implement an exporter to a common graph-
visualizer [11].





Hiermit versichere ich, dass ich diese Arbeit selbständig verfasst und keine anderen, als die
angegebenen Quellen und Hilfsmittel benutzt, die wörtlich oder inhaltlich übernommenen
Stellen als solche kenntlich gemacht und die Satzung des Karlsruher Instituts für Technolo-
gie zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet
habe.

Ort, den Datum





Contents

Abstract iii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Structure of Thesis and Contribution . . . . . . . . . . . . . . . . . . . . . 2

2 Fundamentals 3
2.1 General Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Sequential Counter Constraints 7
3.1 Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Related Work 11
4.1 Encodings of Constraints and other Bitvector Operations . . . . . . . . . . 11
4.2 Gate Recognition Procedures . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.3 Subcircuit Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5 Gate Recognition, Classification and Visualization 13
5.1 Gate Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.2 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.3 Graph Representation of Boolean Circuits . . . . . . . . . . . . . . . . . . 19
5.4 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

6 Unification 23
6.1 Formal Definition of Syntactical Unification . . . . . . . . . . . . . . . . . 23
6.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6.2.1 Syntactical Unification . . . . . . . . . . . . . . . . . . . . . . . . 27
6.2.2 Syntactical Classification . . . . . . . . . . . . . . . . . . . . . . . 31

7 Sequential Counter Recognition 33
7.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

7.1.1 Soundness of Recognition Algorithms . . . . . . . . . . . . . . . . 33
7.1.2 Data Structures and Auxiliary Algorithms . . . . . . . . . . . . . . 33
7.1.3 The General Subcircuit . . . . . . . . . . . . . . . . . . . . . . . . 34

vii



7.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.2.1 Graph-Based Recognition . . . . . . . . . . . . . . . . . . . . . . 34
7.2.2 Syntactical Recognition . . . . . . . . . . . . . . . . . . . . . . . 42

8 Implementation and Evaluation 45
8.1 Experimental Setup and Problem Instances . . . . . . . . . . . . . . . . . 45

9 Discussion, Future Work and Conclusion 49
9.1 Discussion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 49
9.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Bibliography 51



1 Introduction

1.1 Motivation

The NP-complete satisfiability (SAT) problem has long been thought to be too impracti-
cal for practical applications [9]. However more recent developments have incrementally
raised the size of tractable formulas. Even though some problems of (relatively) small
size remain hard, a large number of cases arising from practical instances became solvable
under real world circumstances. Key developments were the conflict driven clause learn-
ing algorithm, and the exploitation of structures in a formula that often allow heuristics
to satisfy an instance. The latter approach can be further improved by choosing appro-
priate encodings, not necessarily in CNF, of the problem. For an in-depth history of the
developments in satisfiability theory see [7].

Satisfiability modulo theories (SMT) and pseudo-Boolean (PB) solvers are examples
that extend a CNF formula with more abstract terms in formulas [7]. PB solvers for exam-
ple allow the direct representation of cardinality constraints and can possibly exploit these
using cutting-plane algorithms to shrink the solution space, SAT4J [10] being a notable
example.

Iser developed an algorithm to efficiently recover gate structure in CNF formulas [13].
This is of particular interest for two reasons. Firstly, a considerable amount of SAT-
problems in practice arise from encoded gate structures. Secondly, even if the formula
does not stem from an encoded gate structure, it may still encode one. This opens the
possibility of using graph algorithms to gain insight into CNF formulas to possibly further
improve the time needed to solve an instance by extracting information and employing
non-pure SAT solvers.

We narrow down the wide range of structures to recognize. Of particular interest are
structures that stem from encoded circuits since a more complete reconstruction back into
gates can be expected. Additionally, the extraction should promise useful applications, for
example by re-encoding the problem using the additional tools provided by SMT or PB
solvers. For those reasons we choose Sinz’ encoding [17] of at-most constraints as the
principle subcircuit to recognize in this thesis.

1



1 Introduction

1.2 Structure of Thesis and Contribution

We begin by revealing the graph structure in the gates found by the hierarchical gate recog-
nition implemented in Candy [1] and export the graph to the dot format that serves as the
input of Graphviz [11] to render images of Boolean circuits.

As a second step we implement an encoder for the sequential counter constraint by Sinz
[17]. Our implementation takes a formula in the DIMACS format [3] as an input and gives
an encoded cardinality constraint of the desired variables that can be added to the original
formula.

Thirdly, we implement a gate classifier. As the hierarchical gate recognition algorithm
is generic [13], i.e. it extracts clauses into gates, without explicit knowledge about the
function encoded by those clauses, it is desirable to reveal the hidden function in the gates.
We do this in two ways. The simple approach is using the properties known about the
clauses in a gate and use this knowledge to match them to a set of predefined cases. The
more elaborate way to classify gates is by unification. As the recognition of constraints
cannot be done solely via gates, as we will see later, unification is necessary for a complete
recognition. Incidentally, this also provides the basis for a different classification algorithm
that can be easily extended by giving patterns of functions.

Lastly, we suggest an algorithm to recognize sequential counter constraints and explain
why this algorithm can only be expected to work under special circumstances, as it assumes
a fixed reconstruction. However, we prove that the gate recognition algorithm employed
is not confluent. This questions the general applicability of the presented algorithm. To
devise a recognition algorithm nonetheless, we suggest a unification based recognizer and
show how to extend the hierarchical gate recognition algorithm by Iser [13] to complete
the recognition on the graph.
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2 Fundamentals

2.1 General Definitions

At the center of this thesis are Boolean functions and circuits. We begin by giving central
definitions of these concepts, terms related to these, and introduce formalities to connect
them. As this thesis largely depends on gate recognition and requires similar terminology,
we hold the definitions (mostly) coherent with the ones in [13].

Definition 2.1.1. Over the Boolean domain B := {0, 1} we define the following sets.
• Let Φk := {φ : Bk → B | k ∈ N} be the set of k-ary Boolean functions.
• Let Φ :=

⋃∞
i=1 Φi be the set of all finite Boolean functions.

• Call a finite subset κ of Φ a set of connectives.
• Any element of a countably infinite set X can serve as a variable symbol. Since for

every such set X ∼= N, we can use without restriction X = {xi | i ∈ N} as the set of
variable symbols. However more suitable namings may be employed.

• The set of k variables over which a function F ∈ Φk is defined, is denoted by XF ⊂
X.

• The set of variables actually occurring in a formula is denoted by vars(F ) ⊆ XF .
• A literal is either the variable itself, or the negation of the variable.
• The set of literals actually occurring in F is denoted by lits(F ).

Let x be a variable. Continuing from here on, we call literals ¬x signed or negative,
and x unsigned or positive. The norm | · | maps the negative literal ¬x to x and a positive
literal to x. The complement of a literal is the negated literal. For a literal l we denote the
complement by l.

Now we can start introducing terms fundamental to logic.

Definition 2.1.2. (Interpretation Functions and Models). Let F ∈ Φ be a formula and let
α : XF → B be a function. We call α a variable assignment. Furthermore, we define Mα

as the set of all literals satisfied under α, i.e. Mα := {l | l ∈ lits(F ) and Iα(l) = >}. We
call Iα : Φ→ {>,⊥} the interpretation function.

The assignment α is a model for F , iff Iα(F ) = >, in this case we write Mα |= F .
Lastly, we define the set of all models of F byM := {Mα | Iα = >}.

3



2 Fundamentals

Definition 2.1.3. (Logical Equivalence). Let F and G be two formulas in Φ. Iff F has the
same models as G, thusM(F ) =M(G). We write F ≡ G and call F logically equivalent
to G.

In most examples we are concerned with formulas containing additional encoding vari-
ables, the sequential counter encoding being the most relevant example in this thesis. Mo-
tivated by this we define the following two terms.

Definition 2.1.4. (Projection of Models). Let F ∈ Φ be a formula over the variables XF .
For a non-empty subset of variables X ⊆ XF we define the projection of models of F to X
by

MX(F ) := {M ∩ lits(X) | M ∈M(F )}.

Definition 2.1.5. (Equivalence under Projection). Let F,G ∈ Φ be two formulas and
let I = XF ∩ XG be non-empty. We call these formulas equivalent under projection, iff
MI(F ) =MI(G), we denote this with F ∼≡I G.

We remark that equivalence under projection is a generalization of logical equivalence,
as the following shows.

If XF = XG = I = XF ∩ XG, and F ∼≡I G then F ≡ G.

We apply these definitions in the following example.

Example 2.1.6. (At Most One Constraint and Projections). The models of the formula
F = (x1∨¬a)∧(¬x2∨¬a) can be constructed as follows. If a = ⊥ then every assignment
of x1, x2 satisfies the formula. If a = > then the formula is equivalent to x1 ∧ ¬x2. This
formula is satisfied if at most one of the variables is assigned to >. Now the projection
M{x1,x2}(F ) can be interpreted as a constraint which is satisfied iff no more than one of
the variables x1, x2 is satisfied. The assignment of a is ignored in the interpretation of the
function under this projection. I.e. this variable contributes only to the construction of the
formula, but not to its interpretation.

Next, we give a formal definition of gates and how they are connected to Boolean for-
mulas.

Definition 2.1.7. (Gates). Call a tuple G = (o, P, g) a gate over a finite, non-empty set of
variables XG ⊂ X, iff XG = {o} ∪ P , and call g : B|P | → B the characteristic function of
the gate.

Definition 2.1.8. (Gate Semantics). Let G = (o, P, g) be a gate with P = (p1, . . . , pn) and
α : XG → B a variable assignment. Iff the interpreting function I̊α = >, then α is a model
of the gate. The interpreting function is defined as follows

I̊α :=

{
>, if α(o) = g(α(p1), . . . , α(pn))
⊥, otherwise .
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2.1 General Definitions

In this thesis it is of primary interest how gate structure can be exploited. Later, the
following problem will be revealed: not all formulas of interest are given in a form that
can currently be described solely in terms of gates; i.e supplementing gate structures with
Boolean formulas is necessary. We consolidate both concepts in a single definition to
provide suitable language for the coming algorithms.

The mentioned problem can be observed for example in 14 by comparing the clauses
given by the sequential counter encoding in 3 with the clauses found in the gates.

Definition 2.1.9. (Structural Formulas). Let F be a finite set of clauses and Γ a finite set
of gates. We call (F,Γ) a structural formula over the variables XS := XF ∪ {v | G ∈ Γ
and v ∈ XG}.

Definition 2.1.10. (Structural Formula Semantics). An assignment α : XS → B is a model
of S iff Iα(F ) = > and ∀G ∈ Γ : X̊α = >.

Definition 2.1.11. (Gate Encodings). A formula F encodes a gate G iff XF = XG and
(F, ∅) ∼≡ (∅, {G}).

Notation

Commonly, SAT solvers take Boolean formulas in conjunctive normal form (CNF). We
define this form and propositional formulas formally and introduce the CNF set notation.

Example 2.1.12. (Propositional Formulas, CNF and DNF). It is common to construct for-
mulas over a fixed set of connectives. By requiring κ = {∧,∨,→,↔,¬} we obtain propo-
sitional formulas. Alternatively, we can require κ = {∧,∨,¬} and demand the formula to
be (a) a conjunction of disjunctions or (b) a disjunction of conjunctions. In case (a) we get
the conjunctive normal form (CNF), in case (b) the disjunctive normal form (DNF).
For propositional formulas we write PROPF and for formulas in CNF we write CNFF . The
latter are of particular interest in this thesis.

For many applications it is useful to rewrite a formula in CNF to a set, and use set-
theoretical operations.

Definition 2.1.13. (CNF Set Notation). Let F =
∧n
i=1Di be a conjunction of disjunctions

Di =
∨mi

j=1 lj with literals lj . The corresponding set representation is then defined as{
{l1, . . . , lm1}︸ ︷︷ ︸

D1

, . . . , {ln, . . . , lmn}︸ ︷︷ ︸
Dn

}
= F.

Although less precise, we choose to write the last equality to simplify notation.
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2 Fundamentals
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3 Sequential Counter Constraints

When modeling problems as SAT instances cardinality constraints are frequently employed.

Definition 3.0.1. (Cardinality Constraint). Let ◦ ∈ {<,≤,=,≥, >} be a relation. Then we
call ◦k(x1, . . . , xn) a cardinality constraint on x1, . . . , xn. Let there be further a variable
assignment α, then this constraint evaluates to true iff

∑n
i=1 α(xi) ◦ k.

To suggest the power of cardinality constraint, we formulate the well-known coloring
problem solely in terms of cardinality constraints. This construction could also serve as
a benchmark test for the number of constraints recognized and the possible performance
improvement by different problem encodings.

Example 3.0.2. (Vertex Coloring and Constraints). Given a graph G with vertices V and
edges E ⊆ {(vi, vj) | vi, vj ∈ V, vi 6= vj} we can define the k-coloring problem on G as
follows. Any vertex has to have a color assigned to it by c : V → {1, . . . , k}, such that for
every edge (vi, vj) ∈ E it holds that c(vi) 6= c(vj).

This problem can be encoded in a formula by introducing variables ci,j which indicate
whether vertex vi has been assigned color j. To ensure exactly one color is assigned to
each vertex we include the constraints =1(ci,1, . . . , ci,k) for every vertex vi . To furthermore
ensure that connected vertices have different colors, we include for every edge (vi, vj) ∈ E,
and for every color l, a constraint ≤1(ci,l, cj,l).

We now have a formula completely constructed from cardinality constraints, for which
every model is a valid k-coloring of G.

In this thesis constraints of the form ≤k(x1, . . . , xn) are of particular interest.

Lemma 3.0.3. Let X = {x1, . . . , xn} and X ′ ⊆ X . Then it holds under any variable
assignment that ≤k(X) =⇒ ≤k(X ′).

We adapt the definition of clausal encodings from Sinz [17] to our definitions:

Definition 3.0.4. (Clausal Encodings of At Most Constraints). A clause setE over the vari-
ables V = {x1, . . . , xn, s1, . . . , sm} is a clausal encoding of≤k(x1, . . . , xn), iffM{x1,...,xn}(E) =
M(≤k(x1, . . . , xn)).

Sinz also presents a clausal encoding LT n,kSEQ of ≤k(x1, . . . , xn) in [17] based on se-
quential counters. We recite the formula:

7



3 Sequential Counter Constraints

Definition 3.0.5. (Sequential Counter Encoding of At Most Constraints).

LT n,kSEQ =(¬x1 ∨ s1,1)
(¬s1,j) for 1 < j ≤ k

(¬xi ∨ si,1)(¬si−1,1 ∨ si,1)(¬xi ∨ ¬si−1,k) for 1 < i < n

(¬xi ∨ ¬si−1,j−1 ∨ si,j)(¬si−1,j ∨ si,j) for 1 < j ≤ k, 1 < i < n

(¬xn ∨ ¬sn−1,k).

The origin of this encoding is a gate structure with its size depending on n and k. For
formulas constructed in this manner we expect to be able to find a recursive form. In the
case of sequential counters this is possible. This form makes it straightforward to prove
properties of this encoding. These insights and the recursive form itself will later be central
to our constraint recognition algorithm.

Lemma 3.0.6. (Recursive Forms of the Sequential Counter Encoding). The base case is

LT 2,1
SEQ =(¬x1 ∨ s1,1)(¬x2 ∨ ¬s1,1).

The recursive forms are

LT n+1,k
SEQ =LT n,kSEQ

(¬xn ∨ sn,1)(¬sn−1,1 ∨ sn,1)
(¬xn ∨ ¬sn−1,j−1 ∨ sn,j)(¬sn−1,j ∨ sn,j) for 1 < j ≤ k

(¬xn+1 ∨ ¬sn,k)

LT n,k+1
SEQ =LT n,kSEQ

(¬s1,k+1)

(¬xi ∨ ¬si−1,k ∨ si,k+1)(¬si−1,k+1 ∨ si,k+1) for 1 < i < n

LT n+1,k+1
SEQ =LT n,kSEQ

(¬xn ∨ sn,1)(¬sn−1,1 ∨ sn,1)
(¬s1,k+1)

(¬xn ∨ ¬sn−1,j−1 ∨ sn,j)(¬sn−1,j ∨ sn,j) for 1 < j ≤ k

(¬xi ∨ ¬si−1,k ∨ si,k+1)(¬si−1,k+1 ∨ si,k+1) for 1 < i < n

8



3.1 Encoder

It holds that LT n+1,k+1
SEQ ≡ LT n+1,k

SEQ LT n,k+1
SEQ , and after removing duplicate clauses the

formulas are equal. Similarly to writing ≤ k(x1, . . . , xn), we write LT n,kSEQ(x1, . . . , xn)
when constraining the variables . It is important to note that ≤k is commutative, while
LT n,kSEQ is not; i.e. changing the order in which variables are presented to the sequential
counter encoding changes the resulting clauses.

The following observations lead to a requirement on recognition algorithms that must
hold, because the result is not useful otherwise. A precise discussion is provided later.

Lemma 3.0.7. Every formula that contains the clauses of a sequential counter encod-
ing of ≤ k(x1, . . . , xn) also contains the clauses of a sequential counter encoding of ≤
k′(x1, . . . , xn) for every k′ ≤ k.

Proof. Checking the recursive forms above, we see LT n,kSEQ ⊂ LT n,k+1
SEQ .

Similarly, the recursive form also suggests the following lemma.

Lemma 3.0.8. Every formula that contains an encoding of ≤k(X) also contains an en-
coding of ≤k(X ′) for any X ′ ( X .

Proof. We assume otherwise: there is an assignment of > to more than k variables in X ′

that doesn’t falsify ≤k(X ′). However, this assignment falsifies ≤k(X).

We formulate a last definition that encapsulates the desired properties the result of any
constraint recognition algorithm should satisfy.

Definition 3.0.9. (Maximality of Constraints). An encoded constraint ≤k(X ′) is maximal,
iff there is no superset X ) X ′ for which the formula contains an encoding of ≤k(X). I.e.
a maximal set of variables is constrained in a single encoding.

3.1 Encoder

We conclude this chapter with a straight-forward algorithm that encodes LT n,kSEQ in the DI-
MACS format [3]. Practical usages in mind, our algorithm takes a formula in the DIMACS
format as its input and additionally a set of numbers that represent the variables to con-
strain, and lastly the number k of variables that can be satisfied at most. The result is a
string of numbers that can be appended to the formula, as the auxiliary variables use a
seamless numbering. I.e. the number corresponding to the first auxiliary variable is one
larger than the largest variable occurring in the original formula.

To this end we define m as the number of variables in the formula. Now given n, the
number of variables constrained, and k, the upper bound, we can define the following map.
The auxiliary variables are mapped to positive integers by si,j 7→ m + 1 + (i− 1) · k + j.

9



3 Sequential Counter Constraints

The string representation of the result of this mapping shall be denoted by s′i,j . Similarly
the string representation of any variable x shall be denoted by x′.

Based on these definitions we give the following algorithm.

Algorithm 1: Encode LT n,kSEQ

Input: Formula F in the DIMACS format, a subset of variables
V = {x1, . . . , xn} ⊆ vars(F ) and k

1 Assert n ≥ 2 and k ≥ 1

2 Start with an empty string encoding
3 Append ”−x′1 s′1,1 0” to encoding in a new line
4 for j = 2, . . . , k do
5 Append ”−s′1,j 0” to encoding in a new line

6 for i = 2, . . . , n− 1 do
7 Append ”−x′i s′i,1 0” to encoding in a new line
8 Append ”−s′i−1,1 s′i,1 0” to encoding in a new line
9 for j = 2, . . . , k do

10 Append ”−x′i −s′i−1,j−1 s′i,j 0” to encoding in a new line
11 Append ”−s′i−1,j s′i,j 0” to encoding in a new line

12 Append ”−x′i −s′i−1,k 0” to encoding in a new line

13 Append ”−x′n −s′n−1,k 0” to encoding in a new line

14 return encoding

Here xi simply is V [i], where the variables in V are ordered arbitrarily but are fixed in
place.

10



4 Related Work

The tractability of SAT problems is largely determined by heuristics exploiting known
or assumed properties of SAT instances. Various solvers have been developed that allow
to express constraints in different ways. For example a pure SAT solver needs a clausal
encoding of a constraint, however an SMT solver possibly allows to directly express the
constraint as an (in)equality and then cuts the search space by applying a cutting-planes
algorithm [10]. This more abstract representation and the exploitation of the knowledge
about constraints in the solving algorithms allows SMT-solvers to possibly solve instances
more efficiently. Thus, a promising path to further improve the efficiency of solvers is to
extract information from formulas that can be exploited by existing algorithms. Conversely,
if an efficient and promising extraction of knowledge from formulas has been found, new
algorithms may be developed.

Three topics have been the interest of past research: (clausal) encodings of constraints
and bitvector operations based on Boolean circuits, gate recognition procedures, and the
exploitation of the extracted knowledge. In this chapter we will summarize key develop-
ments, relate them to subcircuit recognition, and briefly assess advantages and disadvan-
tages of the presented methods. In the following chapters we discuss concrete examples of
these topics and employ them for the described ends.

4.1 Encodings of Constraints and other Bitvector
Operations

Due to their wide applicability different realizations of constraints and their effect on per-
formance have been evaluated. For example, the sequential counter encoding introduced
by Sinz [17] has improved the naive, pairwise encoding of such constraints (at least in
the number of clauses required). Other encodings, and strengthenings of those, have been
presented and compared, for example, in [20]. We give a subset of encodings of at most
constraints:

• Pairwise Encoding,
• Sequential Counter Encoding [17],
• Parallel Counter Encoding [17],
• Pigeon Hole Encoding [20],

• Sort Based Encoding [20],
• Tree-Based Encoding [20],
• Bailleux & Boufkhad [5],
• Warners Encoding [19].

11



4 Related Work

However, it is subject to experimentation whether encoding a constraint or employing
an SMT-solver is more efficient, as Abío et al. showed in their paper "To Encode or to
Propagate? The Best Choice for each Constraint in SAT" [4].

4.2 Gate Recognition Procedures

Developments of gate recognition procedures include the following. Ostrowski et al. sug-
gested a procedure in [14] to recognize AND-, OR-, EQUIV-gates. Roy et al. [16] devised
a procedure that additionally recognizes NAND-, NOR-, NOT-, XOR-, XNOR-, and MAJ3-
gates. A comparison of these methods shows a fundamental difference in the foundation
of the recognition procedures. Ostrowski et al. use the resolution graph representation of
SAT instances in addition to the fact that gates appear in blocked sets; in contrast Roy et
al. extract gates from a formula using known patterns of gate encodings. Iser presents the
most recent approach in [13], which will receive a more in-depth introduction in the fol-
lowing chapters. While this approach shines in genericity, the presented algorithm requires
solving multiple SAT instances to decide right-uniqueness.

Since the performance improvement expected by the exploitation of structural knowl-
edge is dependent on the complexity of the gate recognition procedure, more restricted but
more efficient gate recognition procedures may be of practical value.

4.3 Subcircuit Recognition

Alan Mishchenko et al. [8] proposed a structural recognition approach based cut enumer-
ation to find half- and full-adders. They based their algorithms on the assumption that the
boundaries of arithmetic components are clear-cut and can be traced to these borders. By
detecting which components belong to the same adder tree they are able to extract arith-
metic components.

12



5 Gate Recognition, Classification
and Visualization

In this chapter we introduce the general concept of gate recognition and take a closer look
on the confluence of two gate recognition procedures. The second procedure introduced
hides the characteristic function of the recognized gates behind a clausal encoding. We take
such gate structures and suggest a first algorithm to reveal the underlying characteristic
functions of the gates. To conclude this, we present how we render reconstructed and
classified Boolean circuits to images.

5.1 Gate Recognition

Given a formula F , the process of finding encodings of a gate in F is called gate recogni-
tion. Iterating this process incrementally reveals a possible gate structure in the formula.

Definition 5.1.1. (Gate Recognition Procedure). Let (F,Γ) be a structural formula. A
process that applies a transformation under the condition C for which (F \E,Γ∪{G}) ≡
(F,Γ) holds, is denoted by C | (F,Γ)

R−→ (F ′, G′), and R is a procedure that describes
which E ⊆ F is transformed to the gate G.

The definition of a gate requires a non-empty set, thus ∅ 6= E ⊆ F in the above defi-
nition. This implicitly guarantees that any gate recognition rule applied repeatedly results
in either a violation of C or an empty formula F after a finite number of applications, if
there are no new clauses introduced during the procedure. Otherwise, the rules need to be
constructed such that the procedure terminates.

Definition 5.1.2. (Gate Recognition). We call any non-empty set R of gate recognition
rules a gate recognition procedure. The application of any single gate recognition rule in
R is denoted by R−→.

Applying k-many gate recognition rules in a procedure is denoted by Rk

−→. The reflexive,
transitive closure is denoted by R∗−→. For a given sequence of rules (R1, . . . , Rn) ∈ Rn we
write

(F (0),Γ(0))
R1...Rn−→ (F (n),Γ(n))

13



5 Gate Recognition, Classification and Visualization

as a shorthand for

(F (0),Γ(0))
R1−→ (F (1),Γ1)

R2−→ . . .
Rn−→ (F (n),Γ(n)).

Definition 5.1.3. (Irreducibility and Terminating Sequences). Let R be a gate recognition
procedure and let S = (F,Γ) be a structural formula. We call S irreducible underR iff no
rule inR can be applied. A sequence (R1, . . . , Rn) ∈ Rn of rules is called terminating, iff
the last structural formula in (F,Γ)

R1...Rn−→ (F (n),Γ(n)) is irreducible.

Definition 5.1.4. (Confluence). Let R be a gate recognition procedure and let A =
(R1, . . . , Rn) ∈ Rn and A′ = (R′1, . . . , R

′
k) ∈ Rk be two terminating sequences of rules

over this set. We callR confluent iff for every structural formula (F,Γ) the resulting struc-
tural formulas are equal, thus

(F,Γ)
R1...Rn−→ (F ′,Γ′)

R′1...R
′
n←− (F,Γ).

The first gate recognition procedure we present chiefly serves as an example for a con-
fluent gate recognition procedure. The second example, hierarchical gate recognition, is
one of the major developments contributed by Iser in [13] and is the go-to procedure in this
thesis.

Definition 5.1.5. (Trivial Gate Recognition). As a conjunction of disjunctions we can easily
convert the formula to a Boolean circuit consisting only of OR- and AND-Gates. To do
this we complete each disjunction with an output oC to an OR-gate. After completion, we
introduce a single AND-gate with the outputs of the OR-gates as its inputs and a new output
oF .

Formally,RT := {R1, R2}, with the rules defined by

∃C ∈ F : |C| > 1 | (F,Γ)
R1−→
(
(F \ C) ∪ {{oC}},Γ ∪ {(oC , vars(C), OR)}

)
∀C ∈ F : |C| = 1, |F | > 1 | (F,Γ)

R2−→
(
{{oF}},Γ ∪ {(oF , vars(F ), AND)}

)
Theorem 5.1.6. RT is confluent.

Proof. The conditions of R1, R2 are called K1, K2, respectively. Now, K2 can only be
applied after all clauses of size >1 have been extracted from F to an OR-gate in Γ. If K1

applies, then the clauses corresponding to OR-gates can be chosen in any order without
altering the reconstructed circuit which is obtained when (F,Γ) is irreducible under {R1}.
Furthermore, exactly one AND-gate is introduced by R2, and the set vars(F ) is invariant
under R1.

Thus, there is exactly one possible Boolean circuit that can be obtained byRT .

14



5.1 Gate Recognition

Of interest are gate recognition procedures that recognize gates other than AND-/OR-
gates as well. Trivial gate recognition reveals no new information about the formula, as
the result is obvious from the formula itself, and any other encoding of possible gates is
similarly hidden in the reconstructed circuit, e.g. encodings of XOR-gates are still hidden
in the gate structure. Thus, we are interested in more powerful recognition procedures that
promise the possibility of useful subcircuit recognition.

Multiple approaches present methods to extract specific sets of different gates [14, 16].
The approach taken by Iser in [13] is different in that it is based on the idea of blocked
clauses and a right-uniqueness prove to identify clauses that define a gate. The resulting
algorithm is generic in the sense that this recognition procedure is not limited by a specific
set of predefined gates. Before continuing to describe the algorithm itself, we introduce
further theory to formally root the approach to make an analysis of the resulting problems
possible.

Definition 5.1.7. (Resolution). Let C1 and C2 be clauses and let l be a literal for which
l ∈ C1 and ¬l ∈ C2. We define the resolvent by C1 ⊗l C2 := (C1 ∪ C2) \ {l,¬l}.

Definition 5.1.8. (Set of Literal Occurrences). Let F be a formula and l a literal. We define
F [l] := {C ∈ F | l ∈ C}.

Definition 5.1.9. (Blocked Clauses). Let F be a formula. We call F blocked on a literal l
iff either of the following conditions holds:

(i) F [¬l] = ∅, or
(ii) ∀D ∈ F [¬l] : Iα(C ⊗l D) = > for every assignment α of variables.

The mathematical concept of a function is well-known. For a relation to be a function
it needs to be well-defined: any input is mapped to at least one value. Additionally, for a
map to be a function, there has to be at most one value an input is mapped to. Iser applies
this idea to a definition of a relation over Boolean tuples, which in turn is more suitable.

Definition 5.1.10. (Functional Relation). Call a relation R ⊆ Bn+1 functional iff the
following holds.

∀I ∈ Bn∃o ∈ B : (i1, . . . , in, o) ∈ R (left-totality)
∀I ∈ Bn∃o ∈ B : (i1, . . . , in, o) /∈ R (right-uniqueness)

Theorem 5.1.11. (Gates and Functional Relations). Let G be a gate. There is a functional
relation and a bijection between its elements and models of G.

Iser also proofs the following theorem.

Theorem 5.1.12. (Left-Totality of Gate Encodings). Let G be a gate with output o and
encoding E. For every clause C ∈ E either o ∈ C or o ∈ C. Furthermore, all resolvents
in E[o]⊗o E[o] are tautologic.

15



5 Gate Recognition, Classification and Visualization

Thus, blockedness on the output literal is a sufficient criterion for left-totality. To detect
right-uniqueness of candidate encodings, Iser reformulates the criterion above and trans-
forms this to a SAT instance. See [13] for details.

Now given a formula F and a literal o, Iser verifies that F [o] and F [o] are blocked on o
and solve the SAT instance mentioned, to conclude that F encodes a gate (o, vars(F [o]) \
{o}, f), where f is the function defined by the clauses in F [o] ∪ F [o]. This procedure is
called decodeGate.

Definition 5.1.13. (The Hierarchical Gate Recognition Rule). There is a single, general
gate recognition rule

∃E ⊆ F : (E, ∅) ∼≡ (∅, {(o, I, g)}) | (F,Γ)
R−→ (F \ E,Γ ∪ {(o, I, g)})

This rule is implemented as a breadth-first search as follows. For a more in-depth dis-
cussion see [13].

Algorithm 2: Hierarchical Gate Recognition
Input: Structural Formula (F,Γ), roots ⊆ lits(F )

1 for r ∈ roots do setAsInput(r)

2 while roots 6= ∅ do
3 L← ∅
4 for r ∈ roots do
5 monotonic← ¬ isSetAsInput(r) ∨ isSetAsInput(¬r)
6 (r, P, g)← decodeGate(F, r)
7 if (r, P, g) 6= ⊥ then
8 Γ← Γ ∪ (r, P, g)
9 F ← F \ (F [¬r] ∪ F [r])

10 L′ ← lits(F [¬o]) \ {r,¬r}
11 L← L ∪ L′
12 for l ∈ L′ do
13 setAsInput(l)
14 if ¬monotonic then setAsInput(¬l)

Notably, the concrete set of roots is unspecified so far. Furthermore, any actual imple-
mentation presents the root candidates and the clauses in arbitrary order. These points of
freedom allow for different reconstructions.

The following formulas provide a starting point to evaluate possible choices in gate
recognition procedures and reveal a deficit of optimized encodings. Additionally and in-
formally speaking, a Boolean function can contain symmetries, while any (reconstructed)
Boolean circuit is a directed acyclic graph, and thus a linear ordering of gates exists.
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5.1 Gate Recognition

We construct two formulas from

F = (x1 ↔ x2 ↔ x3) ∧
[
≤1(x1, x2)

]
.

By encoding the equivalences in CNF we obtain

CNFF ′ =(¬x1 ∨ x2)(¬x2 ∨ x1) (I)

(¬x2 ∨ x3)(¬x3 ∨ x2) (II)

For the constraint≤1(x1, x2) we use the sequential counter encoding from definition 3. We
remark that LT 2,1

SEQ(x1, x2) 6= LT 2,1
SEQ(x2, x1) and construct a formula for each case. Now

CNFFa =(I)(II)

(¬x1 ∨ s1,1) (III.a)

(¬x2 ∨ ¬s1,1) (IV.a)

CNFFb =(I)(II)

(¬x2 ∨ s1,1) (III.b)

(¬x1 ∨ ¬s1,1) (IV.b)

Both formulas have the same models when considering the projection to X = {x1, x2, x3},
more precisely CNFFa

∼≡X CNFFb.
The clauses (IV.a) and (IV.b) never appear in any reconstructed gate resulting from

hierarchical gate recognition. However, the remaining parts (I), (II), (III.a), (III.b) all
define valid gates. Thus for each formula there are three choices for the first step of hierar-
chical gate recognition. The concrete order in which these are selected is irrelevant, other
than it possibly affects which literal the algorithm picks as the inputs of the gates. In all
three of the following examples we select the clauses in the same order, only changing the
input of the first gate. The first two examples are possible executions on the two formulas
above. The third example is a possible alternative to the first, where the input variable has
been switched with the output variable.
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5 Gate Recognition, Classification and Visualization

Example 5.1.14. (Non-Confluence of Hierarchical Gate Recognition).

STEP 1

STEP 2

STEP 3

CNFFayR

(I)

x1

x2

yR

(I)

(II)

x3

x1

yR

(I)

(II) (III.a)

x1

x3 s1,1

CNFFbyR

(I)

x1

x2

yR

(I)

(II)

x3

x1

yR

(I)

(II)

(III.b)

x1

x3

s1,1

CNFFayR

(I)

x2

x1

yR

(II)

(I)

x3

x1

yR

(II)

(I)

(III.a)

x2

s1,1

We compare the Boolean circuits in STEP 3; all three are the result of a terminating
sequence. Firstly, we see that none of the three graphs is isomorphic to any other graph.
Furthermore, there is no bijection between the literals in the clauses in the gates recon-
structed from CNFFa such that the circuits are isomorphic. Secondly, simply switching the
order in which the variables are encoded also possibly affects the reconstruction. Thirdly,
any recognition algorithm on a Boolean circuit that is the result of hierarchical gate recog-
nition can not find a complete encoding in the circuit alone, as there is a subset of clauses
that remains in the formula. Namely, we miss the clause (¬x2 ∨ ¬s1,1) in the first Boolean
circuit and (¬x1 ∨ ¬s1,1) in the second. We will later return to these problems.
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5.2 Classification

5.2 Classification

The result of hierarchical gate recognition is a set of gates with their characteristic function
given by a set of clauses. We present a simple method to recognize a limited set of func-
tions. This approach is based on the pattern check implemented in Candy [1] and has been
extended to also include other functions than k-ary ANDs and ORs, and binary EQUIVs in
non-monotonic gates.

Throughout this chapter we fix the meaning of the following symbols.

Definition 5.2.1. (Forward and Backward Clauses). LetG = (o, P, g) be a gate recognized
by hierarchical gate recognition with its characteristic function encoded by clauses in E.
Then F = E[o] is the set of forward clauses, and B = E[o] the set of backward clauses.

Now, as the gate is the result of hierarchical gate recognition, we know that F and B
are blocked on the output o of the gate. The algorithm implemented in [1] also provides
the possibility to check whether the given gate is monotonic. Based on this we classify the
gates by the following checks:

• If G is not monotonic, then check the following.
– If |B| = 1 and ∀c ∈ F : |c| = 2 then g is an |P |-ary AND.
– If |F | = 1 and ∀c ∈ B : |c| = 2 then g is an |P |-ary OR.
– If |B| = 1 = |F | and c ∈ F , d ∈ B : |c| = 2 = |d| then g is a binary

equivalence.
– If |B| = 2 = |F | and |P | = 2 then g is a binary XOR.

• If G is monotonic, then |B| = 0, and it remains to check the following.
– If ∀c ∈ F : |c| = 2 then g is an |P |-ary AND.
– If |F | = 1 then g is an |P |-ary OR.

5.3 Graph Representation of Boolean Circuits

We present a definition to construct a graph from the set of gates returned by a gate recog-
nition procedure.

We begin by formalizing the result of a gate recognition procedure.

Definition 5.3.1. (Reconstructed Boolean Circuits). LetR be a gate recognition procedure.
By GR(F ) we denote the Boolean circuit that is the result of R applied to the formula F .
IfR is clear from the context, we omit the subscript.
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5 Gate Recognition, Classification and Visualization

Informally, we called a Boolean circuit, which is a set G = {G1, . . . , Gn}, a graph.
Formally a graph (V,E) has a set of vertices and a set of edges. The construction(

G,
{(

(o1, P1, g1), (o2, P2, g2)
)
∈ G2 | o1 ∈ P2

})
justifies calling G a graph as well, as the edges are already implicitly given by the gates in
the Boolean circuit.

5.4 Visualization

We use the graph from the previous section as the input of an algorithm that exports to the
dot format used by Graphviz [11], to render the graph as an image with the characteristic
functions described by the result of the classification.

Dot files conceptually have the format ’digraph{V,E}’, where V is a list of vertex
names and E is a list of vertex name -> vertex name representing the edges. If
we assume the input to be given as an adjacency list, we can construct a valid dot-file by
iterating over the gates, and for each gate over its connections. The default case for the
text in a vertex, rendered by Graphviz, is given by the CNF set notation. If a gate can be
successfully classified, we assume to know how the recognized function shall be rendered
to text.

Algorithm 3: Boolean Circuit Visualizer
Input: A formula F in CNF set notation
Output: A string that is a valid dot file

1 Calculate GR(F ) as an adjacency list
2 Let v and e be empty strings
3 for g ∈ GR(F ) do
4 v∗ ← classification of g or otherwise set notation as string
5 Append v∗ to v
6 for each edge (g, h) do
7 w∗ ← classification of h or otherwise set notation as string
8 Append v∗+ ” -> ” +w∗ to e

9 return”digraph { ” +v + e+ ” } ”

We provide an implementation of a visualizer that uses hierarchical gate recognition and
additionally renders input variables. As an example we render LT n,kSEQ for small n and k.
The text in the first line of each gate is the function name assigned by the classifier.
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5.4 Visualization

Figure 5.1: LT 2,1
SEQ, LT

3,1
SEQ, LT

4,1
SEQ, LT

5,1
SEQ and LT 6,1

SEQ

Figure 5.2: LT 3,2
SEQ, LT

4,2
SEQ, LT

5,2
SEQ and LT 6,2

SEQ
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Figure 5.3: LT 4,3
SEQ and LT 5,3

SEQ

Figure 5.4: LT 5,4
SEQ and LT 6,3

SEQ
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6 Unification

In Example 14 on the non-confluence of hierarchical gate recognition we already observed
that there is a single clause that never belongs to any gate. Visualizing the reconstructed
circuit of the sequential counter constraint in the previous section further suggested the
necessity to recognize not only a subcircuit, but additionally a set of clauses. To this end we
introduce a unification algorithm. Later we will see the possibility to fix a major problem,
also arising from the non-confluence.

For clauses of length two and three, as we observe in the case of sequential counter
encodings, it is practical to implement the clause-search by a simple case analysis. Under
the perspective of further generalizations it is of interest to provide an algorithm for any
formula and clause length. Further this algorithm provides a more generic alternative to
the classification algorithm we presented in the respective section. Ultimately, this purely
syntactical approach on clauses provides a promising path to fixing the problems arising
from the non-confluence of gate recognition procedures and a general view on the problem
of subcircuit recognition.

6.1 Formal Definition of Syntactical Unification

Before we give a formal definition, we adapt and extend previous definitions to suit our
needs in this chapter.

For the purpose of improving the performance of unification it will prove useful to
impose an ordering on the clauses and literals in a CNF formula. However, not any arbitrary
ordering is of interest here, which is why we impose a fixed ordering in the following
definition. This will prove to be substantial to the algorithms developed later.

Definition 6.1.1. (CNF Tuple Notation). Let F be a formula given in CNF set notation. By
ordering the clauses in the sets above as follows we obtain a tuple notation:

(i) Pick all disjunctions only containing negative literals and order them increasing in
the number of literals they contain.

(ii) Then append clauses with negative and positive literals, only this time sort them
a) decreasing in the number of literals they contain, then within clauses of fixed

length,
b) sort the clauses decreasing in the number of negative literals they contain, then

sort each individual clause by,
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6 Unification

c) first listing all negative clauses (in any order), secondly all positive clauses (in
any order).

(iii) Lastly, append all disjunctions only containing positive literals and, again, order
them increasing in size.

The resulting formula has the following structure

N1, . . . , Nn,M2, . . . ,Mm, P1, . . . , Pp = F.

where Ni represents disjunctions of i-many negative literals and Pj represents disjunctions
of j-many positive literals. For k from 2 to the maximum length m of mixed clauses Mk =
M ′

1, . . . ,M
′
mk

where M ′
j represents a disjunction of j > 0 negative literals and k − j > 0

positive literals. Any M ′
j may be empty.

Again, for the sake of simplicity, we choose to write the equality.

The empty set and the empty tuple both represent the formula that is always satisfied. In
comparison the set {∅}, and the tuple (∅) represent the formula that is always unsatisfied.

We give an illustrating example of the different kinds of representations:

Example 6.1.2. (Set and Tuple Notation). The formula

(x3∨¬x4∨¬x6)∧(1)∧(x1∨x2∨x3)∧(x1)∧(¬x3)∧(x2∨x4∨¬x5)∧(x8∨¬x5∨¬x7∨¬x9)
can be represented by the set{
{x3,¬x4,¬x6}, {1}, {x1, x2, x3}, {x1}, {¬x3}, {x2, x4,¬x5}, {x8,¬x5,¬x7,¬x9}

}
,

or alternatively is given in tuple notation by(
(¬x3), (¬x5,¬x7,¬x9, x8), (¬x4,¬x6, x3), (¬x5, x4, x2), (x1), (1), (x1, x2, x3)

)
.

All three terms represent the same Boolean function.

Definition 6.1.3. (Variable and Literal Tuples). Let there be a formula in tuple notation
TF , we define the following

• lits(TF ) is defined as the duplicate-free tuple of literals appearing in the same order
as in TF ,

• vars(TF ) is defined as the duplicate-free tuple of variables appearing in the same
order as their corresponding literals appear in TF .

Analogously we define the tuples lits(c) and vars(c) for a clause c.

Definition 6.1.4. (η-Equivalence). Let F,G ∈ Φ be two formulas. We call these η-
equivalent, iff there is a bijection η : vars(F ) → vars(G), and with the renamed vari-
ables in F we obtain F̃ , under which it holds that F̃ = G; we denote this by F

η
= G. Thus

η-equivalent formulas only differ in variable-naming, not in semantics.
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6.1 Formal Definition of Syntactical Unification

Lemma 6.1.5. η-equivalence is an equivalence relation.

Equality, as well as the existence of a bijection, are equivalence relations. Thus the same
must hold for η-equivalence. ©

As usual, the corresponding equivalence class to a formula F is [F ]η = {G | F η
= G}.

Informally, this is the set of all formulas, which can be transformed to F by consistently
renaming the occurring variables.

Firstly, this is of interest because it suggests that there is a canonical variable naming
of the variables. The DIMACS format [3] uses seamless numbering starting from 1 to
represent the variables, posing a possible definition of this canonical naming. Secondly,
this provides a simple language to formulate the problem of syntactical unification.

Definition 6.1.6. (Unification and Unificator). Let F and G be two formulas. We call
deciding whether F ∈ [G]η or F /∈ [G]η unification. If F and G unify, any bijection
η : vars(F ) → vars(G), under which the formulas are equivalent, shall be called a
unificator.
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6 Unification

6.2 Algorithms

Continuing from the formal definition of the problem we now develop a unification algo-
rithm.

The naïve approach, to test every possible bijection between variables and then check
whether the formulas are equal, has time complexity Ω(n!) where n is the size of the
intersection of the variables under which the formulas shall be compared. We give an
algorithm that improves the expected time complexity of the naïve approach drastically for
many cases.

As a starting point we assume a given set κ of predefined connectives in CNF tuple
notation. The input function F , however, is given by a sequence of clauses. We remark
that the set definition of CNFs implies the absence of duplicates.

Our first algorithm calculates a possible CNF tuple notation for F .

Algorithm 4: CNF Tuple Notation
Input: A formula CNFF

1 N ′ ← {c = {l1, . . . , ln} ∈ F | li is a negative literal}
2 M ′ ← {c = {l1, . . . , ln} ∈ F | ∃li positive and ∃lj negative}
3 P ′ ← {c = {l1, . . . , ln} ∈ F | li is a positive literal}

4 N ← sort clauses in N ′ increasing in size
5 {Mi} ← {M ∈M ′ | M is a disjunctions of i literals }
6 {M ′

i,k} ← {Mi | there are k negative literals in Mi}
7 {Mi,k} ← move negative literals in each M ′

i,k to the front
8 M ← sort Mi,k lexicographically first by i, then by k
9 P ← sort clauses in P ′ increasing in size

10 return (N,M,P )

This algorithm can also be employed to construct the set κ.

Example 6.2.1. (Tuple Notations of Common Connectives). We give the tuple notation of
commonly used propositional connectives using the algorithm above

((a), (b))︸ ︷︷ ︸
= a∧b

, ((a, b))︸ ︷︷ ︸
= a∨b

, ((¬a, b))︸ ︷︷ ︸
= a =⇒ b

, ((¬a, b), (¬b, a)︸ ︷︷ ︸
= a⇐⇒ b

, ((¬a,¬b), (a, b))︸ ︷︷ ︸
= a⊕b

.

It is notable that each of these can be uniquely identified by the number of positive,
negative, and mixed clauses. Extending this idea to incorporate the number of literals in
the clauses inN,M, and P , and to the number of negative literals in clauses inM we arrive
at the signature of a formula.

Instead of directly defining the signature, we say that S is the signature of a sequence
of clauses F , iff the following algorithm returns S given the input F .
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6.2 Algorithms

Algorithm 5: Calculate Formula Signature
Input: A formula CNFF

1 ((N1, . . . , Nn),M, (P1, . . . , Pp))← tuple notation of F

2 N∗ ← (|N1|, . . . , |Nn|)
3 M∗ ← iterate over lexicographically ordered entries Mi,k in M and append (i, k)
4 P ∗ ← (|P1|, . . . , |Pp|)

5 return (N∗ | M∗ | P ∗) // Here | is an arbitrary separator

Definition 6.2.2. (Signature of a Clause). The signature of a clause c is the signature of
the formula (c).

Example 6.2.3. The signatures of the propositional connectives from above are

(() | () | (1), (1))︸ ︷︷ ︸
= a∧b

, (() | () | (1, 1))︸ ︷︷ ︸
= a∨b

, (() | (1, 2) | ())︸ ︷︷ ︸
= a =⇒ b

, ((1, 2) | (1, 2) | ()︸ ︷︷ ︸
= a⇐⇒ b

, ((2) | () | (2))︸ ︷︷ ︸
= a⊕b

.

Here we clearly see that different signatures of the given connectives correspond to different
formulas.

This example leads to the following insight.

Lemma 6.2.4. Let F and G be formulas with F ∈ [G]η. Then F and G have the same
signature.

The contraposition, different signatures for given formulas, implies that they are differ-
ent, will be used in the following algorithms to cut the search space further.

6.2.1 Syntactical Unification

Before we give the actual unification algorithm we need an auxiliary algorithm that returns
a data-structure that implicitly represents all possible CNF tuple notations. We note that
clauses need to be of the same size and need to contain the same number of negative and
positive literals. Thus, only clauses of the same signature in N,M,P , respectively, need to
be compared and possibly permuted.
We give an algorithm that returns a list of tuples (start, finish), such that all clauses in
start, . . . , finish have the same signature and neither start nor finish can be changed to
include more clauses in the sequence. Clauses are identified by their position in the CNF
tuple notation.

Lastly, we give an algorithm that decides F
?
∈ [G]η for given formulas F and G in tuple

notation. An important prerequisite for this algorithm is another algorithm that allows
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Algorithm 6: Permutation List
Input: A formula F in CNF tuple notation

1 L a tuple of elements in N2
0

2 start← 0
3 finish← 0
4 Sstart ← signature of F [start]
5 Sfinish ← Sstart
6 while finish < |F | do
7 while Sstart = Sfinish and finish+ 1 < |F | do
8 finish← finish+ 1
9 Sfinish ← signature of F [finish]

10 Append (start, finish) to L
11 start← finish+ 1
12 finish← start
13 Sstart ← signature of F [start]
14 Sfinish ← Sstart

15 return L

iterating over all permutations of a given tuple. For example, Heap’s algorithm [12] can be
employed.

The bijection η is constructed during the execution of the algorithm, to test whether η-
equivalence can be established. For practical purposes it is useful to not map variables to
variables, as in the definition of η, but instead to define it over a sortable set. Inspired by
the DIMACS format [3] for CNFs, we define ηZ over the integers, thus

ηZ : lits(F )→ D,

where D := {δ(l) | l ∈ lits(F )} and if xi is a variable, then δ(xi) = i and δ(¬xi) = −i.
For G we expect to already know a map to D; i.e. the formula tuple notation is not given
in terms of literals but as integers representing the literals.

Furthermore, it is of value to introduce placeholders; these are literals in a formula that
can be freely mapped by η, after considering their polarity.

Definition 6.2.5. (Fixed Literals and Placeholders). Let F be a formula, l ∈ lits(F ) a
variable, and ηZ : lits(F ) → D a partially defined bijection. We call l a fixed literal, if
ηZ(l) is defined, otherwise we call l a placeholder if it is not assigned to any integer (yet).
We annotate placeholder literals l, we write l∗.

The bijection ηZ serves the same purpose as η. Because it is possible to freely translate
between the DIMACS format and any other variable naming, we do not formally distin-
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guish between the two functions and continue with the notation used so far to avoid inflating
the complexity of the notation in the following algorithms.

Algorithm 7: Unify Literal
Input: Two literals l1, l2 ∈ D, a partially defined bijection η
Output: True iff the literals unify, η is possibly updated

1 if η(l1) is defined then
2 return η(l1)

?
= l2

3 else
4 if l1 has the same polarity as l2 then
5 η : l1 7→ l2
6 return true
7 else
8 return false

Pseudocode Notation. (Updating Maps). If an algorithm defines a new unique key-
value-pair (x, y) in a map η, we denote this by writing η : x 7→ y.

Algorithm 8: Unify Clauses
Input: A clause c1 and a clause c2 ∈ Dn both in CNF tuple notation, a partially

defined bijection η
Output: True iff the literals unify, η is possibly updated

1 Return false if c1 and c2 have different length or a different number of negative literals

2 Sort c1 by first listing literals defined under η in order, then by listing the placeholders
3 Sort c2 by listing literals the order under η
4 for i = 0, . . . , n− 1 do
5 if c1[i] does not unify with c2[i] then return false

6 return true

Definition 6.2.6. (Distinct Clause). Given two formulas F and G, and a clause c ∈ F . We
call c distinct over G iff there is exactly one clause in d ∈ G that unifies with c. Similarly,
we call (c, d) a pair of distinct clauses over F and G.

Lemma 6.2.7. (Distinct Clauses and Signatures). A pair (c, d) of clauses is distinct, iff
they have the same signature and there is exactly one clause with this signature in G.

Proof. Let (c, d) be a pair of distinct clauses. The clause c can be unified with d by mapping
the i-th literal lits(c) to the i-th literal in lits(d). Conversely, if there is exactly one clause
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d with a given signature then the unificator to c can be constructed as above, making (c, d)
a pair of distinct clauses.

Distinct clauses can be used to update a unificator early in the unification process, since
they restrict the possible bijections.

Algorithm 9: Unify Formulas
Input: Two formulas F,G in CNF tuple notation, a partially defined bijection η,

that is defined for all literals in G
Output: True, iff the formulas unify, and in the case of successful unification a

completely defined η, otherwise an update of this map

1 Calculate the signatures SF and SG of F and G respectively
2 Return false if SF 6= SG
3 D ← collect all pairs of distinct clauses in F over G
4 for (c, d) ∈ D do
5 Unify c with d or return false
6 Remove c from F and d from G

7 P ← calculate permutation list of F
8 for (s, f) ∈ P do
9 for each permutation of the clauses in F [s, f ] do

10 η′ ← η
11 for ci ∈ F [s, f ] = (c1, . . . , cf−s+1) do
12 η′′ ← η′

13 if ci does not unify with G[i] then
14 η′ ← η′′

15 else
16 if i = f − s+ 1 then return true

17 η ← η′

18 return false

The performance of Algorithm ?? is largely improved over the naïve approach by (a)
terminating immediately for formulas with different signatures, (b) exploiting the tuple
notation, (c) cutting the search space by only permuting necessary clauses and literals based
on permutation lists, and (d) sorting the literals on demand.

The time complexity of Algorithm ?? can be determined as follows. Each of the signa-
tures can be calculated in linear time. They can be compared in linear time as well. The
permutation list P can be calculated in linear time. The set D can be calculated in a single
iteration over P , and thus in linear time. Let there be n many elements in P . For every
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pair (si, fi) there are at most (fi − si)! many permutations to be checked. The unification
of a single clause can be done in linear time (assuming a linear time sorting algorithm) or
otherwise in time n · log n. Combining these results we see that the time complexity of the
complete algorithm is in Θ

(∏n
i=1(fi − si)! +max(|F |, |G|)

)
.

Although the time complexity is still daunting, the algorithm is expected to perform
reasonably well for many desirable cases. For example, if η is fully defined, the search for
clauses is expected to be similarly complex as a simple search.

6.2.2 Syntactical Classification

The approach taken in chapter 5.2 to classify the gates is based on the knowledge that
the clauses form a blocked set and additional insights on the properties of characteristic
functions. The presented unification algorithm allows for a different approach that does
not rely on specific knowledge and instead only requires a canonical form of the function
to be recognized. This approach is expected to be substantially slower, but more generic
and easier to extend.

For a fixed set of connectives κ in tuple notation we define the following algorithm.

Algorithm 10: Gate Classification
Input: A set of clauses E

1 TE ← tuple notation of E
2 TE ← tuple notation of E

3 return first K ∈ κ that unifies with TE or TE , or otherwise ⊥.

The power of this algorithm is determined by the number of predefined Boolean func-
tions in κ. Adding more, and especially longer, formulas to κ can drastically worsen the run
time of this algorithm. If |Ti| = n is the length of the longest tuple in any K ∈ κ, and K is
defined by k many tuples, then the time complexity of the classification is in Ω(|κ| ·k! ·n!).
For many practical usages only a handful of connectives are of interest, which in turn are
of manageable, i.e. they are small and of constant size.
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Example 6.2.8. (Tuple Notation of Propositional Connectives). As a starting point we
suggest to include the following, binary connectives in κ

ANDfull = ((¬x1,¬x2, o), (¬o, x1), (¬o, x2)),
ANDhalf = ((¬o, x1), (¬o, x2)),

ORfull = ((¬o, x1, x2), (¬x1, o), (¬x2, o)),
ORhalf = ((¬o, x1, x2)),
XOR = ((¬o,¬x1,¬x2), (¬o, x1, x2), (¬x1, x2, o), (¬x2, x1, o)),

NAND = ((¬o,¬x1,¬x2), (x1, o), (x2, o)),
NOR = ((¬o,¬x1), (¬o,¬x2), (x1, x2, o)).

Encodings can possibly appear minimized, which is why different forms of the same
Boolean function can be of interest.
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7 Sequential Counter Recognition

After finding constraints in the formula, it is our intent to extract these and represent them in
an abstract manner. We thus wish to extract maximal structural encodings of the constraint.
However, this criterion is not sufficient for a sensible reconstruction. We begin this chapter
by formalizing an additional property a recognition algorithm should satisfy. Furthermore,
we present a data structure and auxiliary algorithms and conclude the section with the
general Boolean circuit we intend to find.

7.1 Preliminaries

7.1.1 Soundness of Recognition Algorithms

We explain the soundness of recognition algorithms under the following definition.

Definition 7.1.1. (Soundness of At-Most Extractions). Let F be the starting formula for
an extraction of a subset E ⊆ F . Furthermore, we require knowledge of the variables
constrained, i.e. {x1, . . . , xn}, and the number k of variables that can be true at most. We
call an extraction (F \ E) ∪ ≤k(x1, . . . , xn) =: R sound, iff R ≡ F .

Based on Definition 3 an algorithm that returns a subset X ′ ⊂ {x1, . . . , xn} is sound.
However, soundness is violated, if a k′ < k is returned.

In summary, soundness is a necessary criterion on our recognition algorithm, maximal-
ity is a desirable but not necessary criterion on our algorithm.

7.1.2 Data Structures and Auxiliary Algorithms

The data structure used to hold the Boolean circuit is based on an adjacency list. Without
modification the following auxiliary algorithms would each take linear time to traverse the
gates. If we however introduce a second adjacency list that represents the edges in reversed
order, we can implement both auxiliary algorithms to only take constant time.

The first auxiliary algorithm shall be called hop over and is best explained in con-
junction with figure 7.1.

Given the leftmost gate we want to reach the rightmost gate at the top. Our chosen graph
representation allows us to find the out-edge of the starting gate and the in-edge of the hop
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Figure 7.1: Part of the rectangle

gate in constant time. Additionally we want two properties to be incorporated as well. The
first is to ensure we hop in the right direction. That is, when hopping from a to b we do
not want to hop back to a, given the input b for the next hop. After considering the first
condition we want to ensure there is exactly one possible hop. In any other case the result
shall be ⊥.

The second algorithm shall be called hop under. After switching the directions of
the edges in Figure 7.1, we require essentially the same behaviour as hop over.

Both of these auxiliary algorithms are used to traverse the rectangle in 7.2.
Lastly, we assume the gates to be classified as described in chapter 5.2 with the result

being saved in an array and the result being obtainable by a function c that maps a gate to
its classification.

7.1.3 The General Subcircuit

Lastly, we give the general, reconstructed Boolean circuit for LT n,kSEQ for sufficiently large
n and k.

For the sake of ease we name several parts of the graph in Figure 7.2. The gates with
an extra line at the bottom form a (n− 4)× (k − 1) grid of gates. We refer to this part as
the rectangle. Both hop-algorithms are for the traversal of this part. The column of n − 1
many gates to the left of the rectangle shall be called the k1-column, as it corresponds to
the reconstructed circuits where k = 1. The remaining part of the connected part of the
Boolean circuit consists of the three gates at the rightmost bottom of the rectangle; we refer
to those gates as the closing part. The remaining gates, detached from the other parts, shall
be called the floating gates. The following algorithms correspond to these four parts.

7.2 Algorithms

7.2.1 Graph-Based Recognition

We develop a recognition algorithm that recognizes constraints in formulas F = LT n,kSEQ.
This is done by simultaneously traversing the reconstructed graph and building a map be-
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Figure 7.2: The result of hierarchical gate recognition applied to LTn,kSEQ
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7 Sequential Counter Recognition

tween variables in the gates and variables in the encoding. This map can then be used to
find clauses not distributed over the gates.

The recognition algorithm consists of four building blocks corresponding to the parts
of the graph, namely the k1-column, the rectangle, the closing-part and the floating gates.
At the end of this chapter we consolidate these parts into a single algorithm, as edge cases
must be handled and the recognition of multiple constraints in an arbitrary formula is the
end goal.

Part I

The first part searches for the base case (n = 2, k = 1) and extends the set of constrained
variables as far as possible at this stage. This corresponds to the recognition of the k1-
column above.

Algorithm 11: Recognize LT n,1SEQ (k1-column part)

Input: CNF formula F , a corresponding Boolean Circuit G(F ), a base gate g
Output: A possible structural encoding (E,Γ) of LT n,1SEQ, and a map η

1 Initialize an empty map η
2 vb ← find a gate that unifies with (¬x∗1 ∨ s∗1,1)
3 η : x1 7→ var(vb[0]) and η : s1,1 7→ var(vb[1])
4 Γ← {vb}
5 vc ← vb
6 vs ← ⊥
7 i← 2

8 do
9 vs ← ⊥

10 for edge (vc, w) where c(w) is an implication do
11 if w unifies with (¬si−1,1 ∨ s∗i,1)(¬x∗i ∨ si,1) then
12 vc ← vs
13 vs ← w
14 η : si,1 7→ var(vs[0]) and η : xi 7→ var(vs[2])
15 Γ← Γ ∪ {vs}
16 i← i+ 1
17 break for-loop

18 while vs 6= ⊥

19 E ← find non-gate clauses in F or return ⊥
20 return (E,Γ, η)

Not all clauses ofLT n,1SEQ are distributed over the gates found by Algorithm 11. Nonethe-
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less, the map η allows to construct the missing clauses, which in turn can be used to effi-
ciently find them in F to complete the encoding. This is done in line 17 with help of the
following lemma.

Lemma 7.2.1. (Non-Gate Clauses of LT n,1SEQ). Let Γ be the gates found in Algorithm 11,
and η the bijection defined after the completion of the while-loop. Now({

¬η(x2) ∨ ¬η(s1,1)
}
∪
{
¬η(xi+1) ∨ ¬η(si,1) | i ∈ {2, . . . , n− 1}

}
,Γ
)

is a (not necessarily maximal) structural CNF encoding of ≤1(x1, . . . , xn).

The missing clauses can be determined by comparing the recursive forms of LT n,kSEQ

with the clauses in the gates found by Algorithm 11. ©
We remark, however, that this algorithm alone is not sound, as it does not consider the

possibility of k > 1.
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Part II and Part III

The next step is to extend the recognition to extend the found structural encodings to find
possible constraints with k ≥ 2. Informally, the rectangle in Figure 7.2 increases in width
as k grows. The following algorithm traverses the rows of this rectangle and verifies the
existence of the necessary clauses in each gate.

During this part we can determine the possible k of the constraint. The width of the
rectangle plus one is the desired value.

Algorithm 12: Recognize LT n,kSEQ (rectangle part)

Input: Boolean Circuit G = G(F ), the result (E,Γ, η) of Algorithm 11
Output: A possible partial encoding of LT n,kSEQ, a partially defined map η

1 Γ′ ← ∅
2 i← 1
3 while i < |Γ| do
4 vs ← Γ[i]
5 j ← 2
6 do
7 En ← (¬η(xi) ∨ ¬η(si,j−1) ∨ s∗i,j)(¬s∗i−1,j ∨ si,j)
8 vn ← hop vs and verify the result unifies with En
9 if vn = ⊥ then return (E,Γ, η)

10 if vn[0] does not unify with En[0] then swap clauses in vn
11 η : si,j 7→ var(vn[2]) and η : si−1,j 7→ var(vn[3])
12 Γ′ ← Γ′ ∪ vn
13 F ← F \ {(¬xi ∨ si−1,1 ∨ si,k)(si−1,k ∨ si,k)}
14 j ← j + 1

15 while η is defined for si,j, si−1,j and vn 6= ⊥
16 i← i+ 1

17 E ′ ← find non-gate clauses in F or return ⊥
18 return (E,E ′,Γ,Γ′, η)

Again, not all clauses are distributed over the gates, in line 17 we search for those. The
missing clauses corresponding to the rectangle are ¬η(s1,j) for j ∈ {1, . . . , k}.

In the case k > 1, i.e. Γ′ 6= ∅ in Algorithm 12, we additionally need to verify the
existence of the closing part and the floating gates that belong to a constraint. The search for
the closing part is a verification that the gates in this subgraph are connected as presented
in 7.2 and contain the correct clauses. This can be implemented as a simple, but rather
lengthy, case analysis in conjunction with a unification. This part binds two of the last
three variables in the constraint, i.e. η maps xn−2 and xn−1 to variables in F . We assume
that the resulting gates are saved in Γ′′. Previously unmapped auxiliary variables are now
also known.
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Part IV

The recognition of the floating gates remains subject to the last part.

Algorithm 13: Recognize LT n,kSEQ (floating part)

Input: Boolean Circuit G = G(F ), the result (E,E ′,Γ,Γ′,Γ′′, η) of the previous
algorithms

Output: An encoding (E,Γ) of LT n,k≥2SEQ or LT n,1SEQ

1 ΓF ← {G = (o, P, g) ∈ G(F ) : η(xn−1) ∈ P, and c(g) = constraint,
and deg+(G) = 0 = deg−(G)}

2 return (E,Γ) if |Γ| < k − 2
3 Create a hash table h of size 2 · 3 · (k − 2) and initialize entries in h with (0, ∅)
4 for G = (o, P, g) ∈ ΓF do
5 for p ∈ P do
6 (count, gates)← h(p)
7 count← count+ 1
8 gates = gates ∪G

9 Γ′′′ ← ∅
10 for (count, gates) ∈ h do
11 if count = 1 then
12 Gf ← ⊥
13 G← first and only element in gates
14 Find ¬sn−1,2 in G[0]
15 for i = 3, . . . , k − 4 do
16 G′ ← gate with input sn−1,i
17 Break loop if count 6= 2 in result of h(sn−1,i)
18 Γ′′′ ← Γ′′′ ∪ {G′}
19 if i = k − 1 then Gf ← G′

20 if Gf 6= ⊥ then
21 Update η by iterating over Γ′′′

22 Return (E,Γ,Γ′,Γ′′,Γ′′′, η) if h(sn−2,k−3) = 1

23 else
24 Γ′′′ ← ∅

25 return (E,Γ)

We remark to line 13 and 15 that the desired input is the negative literal not equal to
¬η(xn−1).

This algorithm first finds a superset of potential gates of interest by checking the re-
quirements. If there are enough gates, the algorithm continues beyond line 2, otherwise we
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return the gates and clauses belonging to the k = 1 case.
After this sieve we allocate a hash table to save count, which is the number of times p

is an input variable, and gates which is the set of gates that have p as an input.
The last loop finds potential start inputs, and tries to find the necessary amount (k − 2

many) gates that have the structure of the floating gates. After the sieve in line 1 a search
for the desired input variable in each gate is sufficient.

Putting it Together

If all algorithms complete we find the a clause that unifies with (¬x∗n ∨ ¬η(sn−1,k)) and
update η. Now η is a unificator

{x1, . . . , xn} ∪ {si,j}1≤i<n,1≤j≤k → E

such that E ⊆ F is an encoding of the constraint ≤k(x1, . . . , xn) with auxiliary variables
si,j . To obtain this map from the previous four algorithms we execute them in order, passing
the output of the previous to the input of the next algorithm. However, if any part fails, i.e.
it returns ⊥, we cannot conclude the absence of a constraint. This is due to the fact that the
structure given in Figure 7.2 only takes a consistent form for n ≥ 7 and k 6= 2.

The cases with n < 7 can be handled by case analysis based on the examples in 9.
The case k = 2 is handle as a special case or, for larger n, as follows. For k = 2

we recognize the k1-column with the corresponding algorithm. Then it remains to check
whether the base gate has an outgoing edge to the first column of the rectangle, but with
the output of the last gate being the input of the last gate in the k1-column.

Time Complexity

Let m be the number of gates in G(F ).
(Part I): Finding a start gate (line 2) requires searching all gates. Accessing the classi-

fication result takes constant time. The while-loop iterates at most once over all gates. The
number and length of clauses in gates is bound by small constants. The map η is accessed
(find and insert) for each gate, each access taking logarithmic time, and at most all variables
in F are mapped. Altogether, the first part is bound by O(m · log(|vars(F )|).

(Part II): We iterate at most once over the complete rectangle. As in Part I, η is accessed
for each gate. Altogether, we see the second part is bound byO(m · log(|vars(F )|) as well.

(Part III): The case analysis of this part takes constant time. And there are three inser-
tions to η. Altogether, the third part is bound by log(|vars(F )|.

(Part IV): The size of the set found in line 1 takes one iteration over all gates and its
size is bound by m. The for-loop in line 4 thus also iterates over at most m − (k − 4)
many gates. The number of inputs is bound by half the size of the hash table, which is
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3 · (k − 2). The for-loop in line 10 takes at most 3 · (k − 2) many iterations as well, each
access to the hash table taking constant time. Finding the desired variables takes constant
time. Accessing η for each of the at most m gates takes logarithmic time, similarly as in
the previous parts. Altogether, the fourth part is also bound by O(m · k · log(|vars(F )|).

(Case Analysis): The case analysis described to recognize smaller instances of the
constraint can be covered in a constant number of cases.

Soundness and Expectations

Our graph based algorithm returns⊥ if the exact k cannot be determined and is thus sound.
It is also perceivable that not all constrained variables can be recognized but a valid k can
be determined. This, again, is due to the non-confluence of the gate recognition procedure
used. In this case gates corresponding to n > k are found, but gates corresponding to other
constrained variables are separated from the k1-column.
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7.2.2 Syntactical Recognition

As we’ve observed in previous examples, the constraint recognition procedure described
in possibly fails in cases where ambiguity is possible. More specifically, the gates in the
k1-column may not appear in a column of this structure at all. If other gates contain the
constrained variables and the Boolean circuit is this not reconstructed as expected, then
the soundness criterion leads to a termination of our graph based approach, as no com-
plete constraint can be found. However, the auxiliary variables introduced in the encoding
LT n,kSEQ only appear in the constraint itself, limiting the possible reconstructed graphs, even
if the gates of the k1-column are spread elsewhere.

Alternatively, to working on a reconstructed graph, Algorithm 8 allows to build an al-
gorithm that consecutively unifies clauses, to find a subformula in a CNF that matches that
of a constraint. This recognition algorithm only implicitly exploits the gate structure by
constructing the next, expected clauses to unify, on demand. Motivated by this we sketch
the pseudocode for the case k = 1, expecting to be able to fix the mentioned problem of
the splitting of the k1-column, at least in theory.

Once more we base our algorithm on the recursive forms in 3. The first unification based
algorithm finds a clause corresponding to the base case LT 2,1

SEQ.

Algorithm 14: Find Base Clause
Input: A formula F in CNF Tuple Notation

1 return (c1, c2) ∈ F 2 for which holds that c1 unifies with (¬x∗1 ∨ s∗1,1) and c2 unifies
with (¬x∗2 ∨ ¬s1,1)

We restrict ourselves to the k = 1 case. Given the result of Algorithm 14 and the case
LT n+1,k

SEQ for k = 1 we can construct a two part recognition of sequential counter encodings.
This algorithm is potentially very slow. However, we expect the tuple notation and the

underlying gate structure to restrict the search space dramatically in each step. A fixed
literal appears in each clause to unify. Additionally, the auxiliary variables only appear in
the constraint and thus in a small amount of clauses. This raises the question whether this
algorithm performs acceptably given real-world instances.

The main interest in this approach is the possibility to fix the aforementioned problems
with the k1-column. We approach this as follows.

A blockedness and right-uniqueness check shows that the same gates as previously seen
in the k = 1 case can be extracted in a single iteration. This ensures that we have a pre-
dictable reconstruction of a partial formula. Further we can now initialize Γ in Algorithm
2 with the gates found, to reconstruct a Boolean circuit out of the complete formula F ,
all while ensuring the problematic clauses are distributed in the expected manner. To com-
plete the recognition we can execute the graph-based recognition algorithm on the formula,
given the already known (partial) constraint to ensure the soundness of this approach.
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Algorithm 15: Find LT n,1SEQ Clauses (Base)

Input: A formula F in CNF Tuple Notation, and the base clauses (c1, c2)
Input: A unificator η to an encoded constraint

1 η : x2 7→ var(c2[0])
2 η : s1,1 7→ var(c1[1])
3 for clause ci−1 ∈ F that unifies with (¬s1,1 ∨ s∗2,1) do
4 η : s2,1 7→ ci−1[1]
5 if there is a clause c = (¬η(x2) ∨ η(s2,1)) ∈ F then
6 Remove c from F
7 else
8 Continue for-loop

9 if there is a clause c ∈ F that unifies with (¬x∗3 ∨ ¬s2,1) then
10 Call the recursive case with F , η and i = 3 and return the result // n > 2

case
11 else
12 return η // n = 2 case

13 return η

Algorithm 16: Find LT n,1SEQ Clauses (Recursive)
Input: A formula F in CNF Tuple Notation, the map η from the base algorithm, the

number i of variables constrained

1 for c1 ∈ F that unifies with (¬sn−1,1 ∨ sn,1)∗ do
2 η : sn,1 7→ var(c1[1])
3 if there is a clause c2 ∈ F that unifies with (¬x∗n ∨ sn,1) then
4 η : xi 7→ if there is a clause c3 ∈ F that unifies with (¬x∗i+1 ∨ si,1) then
5 η : xi 7→ var(c3[0])
6 return the result of this function called with F , η and i+ 1

7 Remove mappings added in this call of the algorithm
8 return η // n = i case

9 return η
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8 Implementation and Evaluation

Implementation

A part of the algorithms presented in this thesis have been implemented in a branch of the
modular SAT-solver Candy [1]. All algorithms that employ hierarchical gate recognition
use the respective implementation in Candy.

The implementation includes a visualizer with additional styling and the option to render
input variables. The implemented classifier uses the criteria described in chapter 5.2 and
maps the result to a fixed set of functions saved in an enumeration. Lastly, a recognition
algorithm has been implemented. This implementation however only finds the described
subgraph, no full unificator is returned and neither is the formula searched for the non-gate
clauses.

8.1 Experimental Setup and Problem Instances

Experimental Setup

All tests were executed on a computer running Ubuntu 18.04.5 LTS on an Intel Core i5-
5300U CPU @ 2.30GHz (2 cores / 4 threads) with 8GB of DDR3 RAM clocked at 1600
MHz.

Problem Classes

We devise three classes of problems against which we test our recognition algorithm. The
first class is the set of formulas consisting of only the sequential counter encoding, T1 =
{LT n,kSEQ} for small n and k. The class T1 is used to verify that the algorithm works and is
also used for a performance evaluation.

The second class models a controlled, practical test. We choose a real-world instance
and randomly select variables to constrain from the formula. The set of test-cases is T2 =
{F} ∪ {LT n,kSEQ(x1, . . . , xn)} for a formula F without any encoded constraints.

The third class T3 consists of a set of real-world instances for which we know that they
contain sequential counter encodings [6]. However, we do not know which variables in the
formula are constrained.
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(01) 02223564bd2f5c20768e63cf28c785e3 mp1-squ_ali_s10x10_c39_abio_SAT
(02) 166e1e5a9f63fcf94ddae8533fa2a090 mp1-squ_any_s09x07_c27_abix_UNS
(03) 1bda6f076bbed75ed4250946919446a6 mp1-squ_any_s09x07_c27_sinx_UNS
(04) 22fdbcb094a1c1b513b8fd90e9b50f65 mp1-squ_any_s09x07_c27_sinz_UNS
(05) 37fde221cfa265eb7ec2c221e5272686 squ_any_s09x07_c27_abio_UNS-sc2017
(06) 44f9463b7fb3a23027aa4520f3bafe61 mp1-squ_ali_s10x10_c39_sinx_SAT
(07) 4c9b7b964c5b2b540ee5e09b3a5f3c8e mp1-tri_ali_s11_c35_sinz_UNS
(08) 5a0120a44efe84c0cb4e58cebc3c4982 mp1-squ_any_s09x07_c27_bail_UNS
(09) 6587d5077bc6962cf8939636eeb57c35 mp1-tri_ali_s11_c35_abio_UNS
(10) 67158b829ad61fbc3ae12f9fafe2de3c squ_ali_s10x10_c39_abix_SAT-sc2017
(11) 6965d5369d3ab26daaf074303c3d1739 mp1-squ_ali_s10x10_c39_abix_SAT
(12) 703ca000646a0789dfb0939aae936a6b mp1-squ_any_s09x07_c27_abio_UNS
(13) b023ea0eb9adbd9182c01d7e2d443289 mp1-tri_ali_s11_c35_bail_UNS
(14) b09e9e8cf2f55863d9e27dad49e1a3b7 mp1-tri_ali_s11_c35_sinx_UNS
(15) b1c44904cf06682f973b60c8282f45e8 mp1-squ_ali_s10x10_c39_bail_SAT
(16) f293dc11e842227dd1a49fe1571bcb8b mp1-tri_ali_s11_c35_abix_UNS
(17) fc5605315fa468603aff94a24fc41272 mp1-squ_ali_s10x10_c39_sinz_SAT

Table 8.1: Problem Instances

The instances have been obtained from the Global Benchmark Database [2] through the
query ’author like %wynn%’, the obtained instances are identified below by their gbd-hash
and their given name in Table 8.1.

Evaluation

(Correctness and Performance Test). As expected the algorithm recognizes all con-
straints in T1 for 2 ≤ n ≤ 40 and 1 ≤ k < n. Figure 8.1 plots the number of gates
against the time needed to initialize the recognizer and execute the recognition itself.

Quite clearly the time needed for the recognition is linear in the number of gates.

(Random Variable Constraining Test). For this test we chose the problem instance
mp1-squ_ali_s10x10_c39_abio_SAT and removed all recognized constraints. The result is
the formula F used in T2. For each k ∈ {1, 2, 4, 8} and for 2 ≤ n ≤ 40 we randomly
choose variables in vars(F ) and added the constraint to the formula. As we know exactly
which constraint has been added, we can assess the proportion of constraints recognized.

The result of this test shows that no constraint could be found.

(Real-World Instance Search). The problem instances given in Table 8.1 were searched
for constraints. We obtained the following result:

• In (10), (13) and (15) we found nothing.
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8.1 Experimental Setup and Problem Instances

Figure 8.1: Constraint Recognizer Performance
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8 Implementation and Evaluation

• In (01), (05) and (11) we found a single constraint with one gate.
• In (02), (08) and (12) we found two constraints with a single gate.
• In (09) and (16) we found 3 constraints each with one gate
• In (07) we found a single constraint with 31 gates.
• In (04) we found a single constraint with 36 gates.
• In (17) we found a single constraint with 61 gates.
• In (14) we found 30 constraints each with one gate and single constraint with 31

gates.
• In (03) we found 35 constraints each with one gate and single constraint with 36

gates.
• In (06) we found 60 constraints with a single gate and one constraint with 61 gates.

Summary

The first test was to verify that the implemented algorithm works and at least finds the
constraints when they are given in their plain form. The remaining two tests are interesting,
especially under comparison. Randomly choosing variables and constraining them leads
to the worst ratio of gates recovered. Apparently, the clauses of every constraint added
were distributed over the reconstructed Boolean circuit in a manner that made recognition
unlikely. However, the recognition of constraints with our algorithm is not impossible, as
the real-world instances show. Even though most constraints found were of small size,
some large constraints were recognized in the formulas.
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9 Discussion, Future Work and
Conclusion

9.1 Discussion and Future Work

Throughout this thesis we encountered the problem of non-confluence. Any (constraint)
recognition algorithm that relies on a specific structure of the Boolean circuit resulting
from a non-confluent gate recognition procedure likely breaks. As the number of possible
reconstructions is not known in the instance of hierarchical gate recognition, the likelihood
of any such reconstruction being unsuitable to a specific recognition procedure is subject to
experimentation. This further raises the question of how much performance improvement
can be expected from the exploitation of additional knowledge under the considerable effort
necessary to extract this information.

Our constraint recognition algorithm requires little, additional time to recognize a con-
straint. However, the proportion of constraints recognized versus the constraint known to
be encoded is unsatisfying. To counter this we suggested an additional, purely syntactic
algorithm based on unification to extract the clauses corresponding to gates that possibly
would not appear and suggested adding them to the set of known gates in the hierarchi-
cal gate recognition algorithm. It is not obvious from our standpoint, whether a purely
syntactic approach delivers satisfying performance in real-world instances. We suggest an
implementation of this approach and its evaluation as subject to future work.

If such an algorithm proves performant enough for practical applications several more
questions arise. Firstly, we may ask whether it is then practical to recognize not only partial,
but complete constraints with this method. This would motivate an algorithm that only
requires an encoder for the recognition and no other special construction by a developer.
Vastly improving the time necessary to develop a recognition algorithm.

Secondly, if the recognition of a complete constraint is not sensible, a general procedure
to determine a minimal set of gates which arise from encoded constraints that are subject
to possible ambiguity in a reconstruction. It is perceivable that all clauses corresponding
to the gates of a constraint are in close relationship with other clauses, making a suitable
reconstruction intractable.

In the concrete case of sequential counter constraints we observed that not all clauses of
an encoding are distributed over gates. Hence, if algorithms unifying partial formulas ap-
pear to be unsuitable for practical purposes, it is to be expected that recognition procedures
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9 Discussion, Future Work and Conclusion

on other constraints are unsuitable for real-world usage as well.
As non-confluence is a central problem for all graph-based recognition approaches it

would be desirable to develop a confluent gate recognition procedure. However, it is not
clear whether such a recognition procedure can be powerful enough to allow the efficient
recognition of a constraint, or further of a subcircuit. We briefly discussed trivial gate
recognition to illuminate this problem.

9.2 Conclusion

With the general interest in mind to be able to visualize the result of gate recognition pro-
cedures, we implemented a visualizer that employs a common tool to render graphs to im-
ages. With the intent of experimentation we wrote a sequential counter constraint encoder
and rendered instances with our visualizer. Based on these visualizations and a recursive
form of the encoding we derived desirable properties of constraint recognition algorithms.
Which we took to construct a general recognition procedure, which we completed by cov-
ering a number of non-consistent reconstructions by case analysis. This approach required
the combination of graph and syntactical algorithms. Nonetheless, the necessity for even
further work on the recognition became apparent, as the problem of non-confluence of the
used gate recognition procedure poses a problem.
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