
D
esign

Analysis

M
odelEx

pe
rim

ent

Im
p
le
m
e
n
ta
tio

n

Algorithm
Engineering

Bachelor Thesis

Optimizing a Parallel Graph Partitioner
for Memory Efficiency

Daniel Salwasser

Date: March 28, 2024

Reviewers: Prof. Dr. Peter Sanders
T.T.-Prof. Dr. Thomas Bläsius

Advisors: Dr. Lars Gottesbüren
M.Sc. Daniel Seemaier

Institute of Theoretical Informatics, Algorithm Engineering
Department of Informatics

Karlsruhe Institute of Technology





Abstract

Graph partitioning is a classical NP-hard optimization problem with a wide range of practi-
cal applications. The problem is to divide the nodes of a graph into balanced blocks such
that the sum of edge weights between different blocks is minimized. One challenge in
graph partitioning is the partitioning of huge graphs due to their high memory footprint.
Since graphs from real-world applications often outgrow the amount of RAM available on a
single machine, recent work focuses on streaming, external memory or distributed partition-
ing. However, these approaches incur significant resource overheads or suffer from severe
degradation in solution quality when compared to in-memory algorithms. In this thesis, we
therefore deal with the memory optimization of the in-memory graph partitioner KaMinPar,
to scale fast and high-quality in-memory graph partitioning to substantially larger graphs.
We present algorithmic changes, more memory-efficient data structures, and a graph com-
pression scheme and integrate them into KaMinPar. These memory optimizations enable
us to partition some of the largest real-world graphs with less than 100 GB of RAM, down
from over 800 GB without optimizations.

Graphpartitionierung ist ein klassisches NP-schweres Optimierungsproblem mit einer Viel-
zahl von praktischen Anwendungen. Das Problem besteht darin, die Knoten eines Graphen
in balancierte Blöcke aufzuteilen, sodass die Summe der Kantengewichte zwischen ver-
schiedenen Blöcken minimiert ist. Eine Herausforderung bei der Graphpartitionierung ist
die Partitionierung von riesigen Graphen aufgrund ihres hohen Speicherbedarfs. Weil für
Graphen von realen Anwendungen oft der verfügbare RAM einer einzelnen Maschine
nicht ausreicht, beschäftigen sich neuere Arbeiten mit Streaming, External Memory und
verteilten Graphpartitionierern. Diese Ansätze verursachen im Vergleich mit in-memory Al-
gorithmen jedoch einen erheblichen Ressourcen-Overhead oder leiden unter einer starken
Verschlechterung der Lösungsqualität. Deshalb beschäftigen wir uns in dieser Thesis mit
der Speicheroptimierung des in-memory Graphpartitionierers KaMinPar, um schnelle und
qualitativ hochwertige in-memory Graphpartitionierung auf wesentlich größere Graphen zu
skalieren. Wir stellen algorithmische Änderungen, speichereffizientere Datenstrukturen und
ein Graphkompressionsschema vor und integrieren diese in KaMinPar. Mit diesen Speiche-
roptimierungen können wir einige der größten realen Graphen mit weniger als 100 GB an
RAM partitionieren, anstelle von über 800 GB ohne Optimierungen.
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1 Introduction

Graphs are often used abstractions to represent objects and the relationships between these
objects. One fundamental problem in computer science is the graph partitioning problem.
The problem is to determine a partition of the nodes into blocks such that the partition is
fairly balanced and the weight of the edges between different blocks is minimized. Because
the problem is NP-hard [22] and also NP-hard to approximate by a constant factor [7],
heuristic methods are used in practice. A very successful heuristic method to compute such
partitions is multilevel graph partitioning [20]. The multilevel scheme consists of three
steps: coarsening, initial partitioning and uncoarsening. During coarsening, the graph to
partition is first coarsened and thus approximated by smaller graphs. When the graph is
small enough, an initial partition is computed on the coarsest graph. Because the graph
is small, expensive methods can be used in this step. Subsequently, during uncoarsening,
the partition is iteratively projected onto the finer graphs and improved by refinement
algorithms. In this step, refinement algorithms can find improvements more easily because
of the global overview of the input graph, which is provided by the coarse graphs [8].
In practice, there is a need to partition huge graphs [28], which are for example used to
represent parts of the web, social networks or biological networks like the brain. However,
due to memory constraints, they usually cannot be partitioned by an in-memory multilevel
graph partitioner. Therefore, such graphs are partitioned using streaming [39, 13], external
memory [1] or distributed [36] algorithms. Streaming partitioners only read in individual
nodes or a group of nodes and assign them on-the-fly to a partition, allowing them to be run
with less memory by only holding few nodes and their neighborhood in memory at a time.
External memory partitioners use read and write operations on external memory to compute
a partition and are therefore not dependent on the RAM of a machine. Distributed graph
partitioners run on multiple machines and split the graph into parts, where each machine
processes a part and communicates by messages with the other machines.
However, those approaches have disadvantages. Streaming partitioners produce partitions
of lower quality because they do not utilize global properties of the graph. External memory
partitioners use expensive IO operations, which is why there are slower than in-memory
partitioners. Distributed partitioners require server clusters, which is why they are very
expensive to run. In-memory partitioners on the other hand are fast, can be run inexpensively
on a single machine and exploit the global structure of the graph and thus produce partitions
of high quality. However, they are limited by the main memory of a single machine. It is
therefore necessary to reduce the memory consumption of in-memory partitioners in order
to partition huge graphs with them.

1



CHAPTER 1. INTRODUCTION

1.1 Problem Statement

The goal of this thesis is to optimize an in-memory multilevel graph partitioner for memory
efficiency. With this we want to be able to partition huge graphs on a single shared-memory
machine using an in-memory graph partitioner, which was not possible before due to high
memory consumption or only possible on machines with a lot of RAM. The multilevel
graph partitioner, which we are modifying to be more memory-efficient, is KaMinPar [19].
As we will see later in this thesis, the main memory consumption problem of KaMinPar is
the coarsening step and the representation of the input graph in memory. In this thesis, we
therefore want to reduce the memory consumption of the coarsening step and hold the input
graph in memory with a more space-efficient representation. Furthermore, we still want to
produce partitions of high quality and not lose much running time because of the memory
optimizations.

1.2 Contribution

In this thesis, we present techniques to reduce the memory consumption of an in-memory
multilevel graph partitioner. That include changes to the algorithms used during the cluster-
ing and contraction step of coarsening as well as the use of graph compression to store the
input graph more space-efficiently. Furthermore, we integrate these memory optimization
techniques into KaMinPar and thereby reduce its memory consumption. Figure 1.1 shows
how each memory optimization, which we present in this thesis, affects the peak memory
of KaMinPar on 64 threads for one of the largest real-world graphs. We reduce its memory
consumption from 802.4 GB to 92.9 GB by a factor of 8.6. We therefore demonstrate that
in-memory multilevel graph partitioners can be used to partition huge graphs on a single
machine equipped with a reasonable amount of memory.
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Figure 1.1: Burndown plot showing the reduction in peak memory from our optimizations for the
clueweb12 graph on 64 threads, number of blocks k = 128, imbalance factor ε = 0.03
and not duplicating the coarse graphs during coarsening. Note that only the input graph,
clustering step and contraction step are responsible for the peak memory for this graph.
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1.3 Structure of Thesis

1.3 Structure of Thesis

In Chapter 2, we first define notations, definitions and concepts for this thesis. Then, in
Chapter 3, we present research on graph partitioning and graph compression, which is
relevant to this thesis. Next, we present our memory optimizations. We begin Chapter 4
by analyzing the memory consumption of KaMinPar and identifying components that are
responsible for a high memory consumption. Afterwards, in Chapter 4, we describe the
changes to the coarsening phase. In Chapter 5, we describe how we use graph compression
to store the input graph with a space-efficient representation in memory. Finally, we evaluate
our memory optimizations in Chapter 6 and conclude this thesis in Chapter 7.
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2 Preliminaries

In this chapter, we introduce the notations and concepts used in this thesis. We first introduce
notations and definitions about graphs. Then, we define the problem of graph partitioning.
We also introduce the adjacency array, which is a representation of graphs in memory. Next,
we introduce graph compression and describe common techniques to represent graphs
in a compressed form. Furthermore, we describe the size-constrained label propagation
algorithm. Finally, we describe memory overcommitment, which is a technique to allocate
memory before the required memory space is known.

2.1 Graphs

An undirected weighted graph, which we simply call graph, is a tuple G = (V,E, c, ω).
It consists of finite sets V and E ⊆

(
V
2

)
, whose elements are called nodes and edges,

respectively. G also consists of a function c : V → N>0, which assigns a weight to each
node, and a function ω : E → N>0, which assigns a weight to each edge. We denote the
size of the sets V and E as n := |V | and m := |E|. We also identify the nodes with the
natural numbers from 0 to n− 1 and the edges with the natural numbers from 0 to m− 1.
Furthermore, we denote the number of nodes n as the order of G and the number of edges
m as the size of G. An edge e = {u, v } ∈ E is also denoted by e = uv. We call two nodes
u, v ∈ V adjacent if there exists an edge e = uv ∈ E, and we say that an edge e ∈ E is
incident to a node w ∈ V if w is one of the endpoints of e, i.e., e = wx for another node
x ∈ V . We call a node with no incident edges an isolated node. The neighborhood N(u) of
a node u ∈ V is the set of nodes that are adjacent to u, i.e., N(u) = { v ∈ V | uv ∈ E }.
We call the nodes in N(u) the neighbors of u. The degree deg(u) of a node u ∈ V is the
number of nodes that are adjacent to u, i.e., deg(u) = |N(u)|. With ∆(G) and d(G) we
denote the maximum degree and average degree of G, respectively.

Let C1, . . . , Cl ⊆ V be disjoint subsets of nodes, which collectively contain all nodes, a so-
called clustering. Then, a new graph is created by contracting the clustering. A clustering
is contracted by identifying each cluster Ci with a single node i. The weight of a new node
i is thereby given by

∑
v∈Ci

c(v). Furthermore, there is an edge between two new nodes i
and j with i ̸= j if there is an edge uv ∈ E in the original graph with u ∈ Ci and v ∈ Cj .
Note that we do not allow self-loops and that we reduce parallel edges. The weight of such
an edge is given by

∑
u∈Ci,v∈Cj ,uv∈E ω(uv).

5



2 Preliminaries

2.2 Graph Partitioning

A k-way partition Π = {V1, . . . , Vk } of a graph G is a partitioning of the nodes V into
k disjoint sets, which we call blocks, i.e., V1 ∪ · · · ∪ Vk = V and Vi ∩ Vj = ∅ for i, j ∈
{ 1, . . . , k } with i ̸= j. We define the cut edges Eij for i, j ∈ { 1, . . . , k } with i ̸= j to be
the set of edges with one endpoint in the vertex set Vi and one endpoint in the vertex set Vj ,
i.e., Eij = {uv ∈ E | u ∈ Vi, v ∈ Vj }. The cut of a k-way partition Π is the sum of the
weights of all cut edges, i.e., cut(Π) =

∑
i ̸=j ω(Eij) :=

∑
i ̸=j

∑
e∈Eij

ω(e).
The balance constraint for a k-way partition Π requires that the total node weight of the
graph is split evenly with respect to some imbalance parameter ε > 0 among the blocks
V1, . . . , Vk of the partition, i.e., c(Vi) ≤ (1 + ε) c(V )

k
for all i ∈ { 1, . . . , k }.

The graph partitioning problem is defined to be the problem of finding a k-way partition
with minimal cut, which satisfies the balance constraint for a given graph G, number of
blocks k and imbalance parameter ε [18]. The problem is NP-hard [22] and NP-hard to
approximate by a constant factor [7].

2.3 Adjacency Array

An adjacency array is a static representation of a graph G = (V,E, c, ω). In this context,
static means that the graph structure cannot be modified, i.e., insertion and deletion opera-
tions of nodes or edges are not supported. The adjacency array A = (N , E , C,W) consists
of four arrays, which are each stored contiguously in memory. N is called the node array
and stores for each node u ∈ V the offset N [u] into the edge array E where the neighbor-
hood of u is encoded. Furthermore, the node array stores the number of edges m in the entry
n. This allows the degree of each node u to be determined by deg(u) = N [u+ 1]−N [u].
The edge array E stores for each node u ∈ V its adjacent nodes N(u) = { v1, v2, . . . , vd }
contiguously, i.e., E [N [u]] = v1, E [N [u] + 1] = v2, . . . , E [N [u] + d− 1] = vd. Moreover,
the adjacency array consists of a node weight array C and an edge weight arrayW . The
node weight array stores for each node u ∈ V its weight, i.e., C[u] = c(u). Likewise, the
edge weight array stores for each edge e ∈ E its weight, i.e., W(e) = ω(e). Figure 2.1
gives an example of an adjacency array.

m - 1...9876543210Edge IDs

......4...72...71...70...202...201...200...130...6...5Edge Array

......10...3...0Node Array

n - 1...210Node IDs

Figure 2.1: The structure of the node and edge array of an adjacency array.
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2.4 Graph Compression Techniques

2.4 Graph Compression Techniques

Graph compression is the process of representing a graph in memory with an encoding that
uses less memory space than its original representation [2]. Lossless graph compression
has the additional constraint that the compressed graph representation does not lose any
information about the nodes, edges, node weights or edge weights of the graph. In the
following, we present three techniques for lossless graph compression, which can be applied
to the adjacency array to make it more space-efficient.

Gap Encoding. With gap encoding, node IDs are not stored directly but as differences
between consecutive node IDs [2]. Thus, for a node u, the node IDs of its neighbors
N(u) = { v1, v2, . . . , vd } are for example encoded as v1 − u, v2 − v1, . . . , vd − vd−1 or a
similar construction. The idea of this encoding is that the differences are smaller values than
the IDs themselves, and therefore the stored value takes up less space due to variable-length
encodings.

Variable-Length Encoding. Variable-length encoding describe integer encodings with
a variable number of bytes per integer, where the number of used bytes for each integer is
proportional to its value [2]. This means that smaller values occupy fewer bytes and larger
values occupy more bytes. This encoding can be applied to the node IDs that are stored in
the edge array of an adjacency array. The advantage of this encoding is that possibly fewer
bytes per integer are used to store them. This advantage is particularly utilized if the node
IDs are not stored directly but stored in an encoded form, e.g., by gap encoding.

Variable-length integer (VarInt) is one type of variable-length encoding, which uses the
most significant bit (MSB) of a byte to indicate, whether the following byte is part of the
current integer [2]. Therefore, the MSB is also called the continuation bit. To encode a
binary-encoded integer as a VarInt, first split it into chunks of 7 bits. Then, from the lowest
to the most significant chunk add a continuation bit to each chunk such that it becomes a
byte. Further, set the continuation bit if the following chunk is non-zero. Otherwise, stop at
that chunk and concatenate the current and all previous created bytes. Figure 2.2 gives an
example of a VarInt.

Continuation Bits

0 10000010 0110110VarInt00000000 00000000 00000001 00110110Binary
310

Figure 2.2: An example of a 32-bit integer encoded as a VarInt.

Because the node IDs can be stored with an alternative encoding such as gap encoding,
which can lead to some node IDs becoming negative, the representation of signed integers as
VarInts is required to save memory space when storing possibly negative integers. One way

7



2 Preliminaries

to store signed integers as VarInts is to use zigzag encoding. Zigzag encoding transforms a
signed integer to an unsigned integer with the following mapping [4]:

z(x) =

{
2x, x ≥ 0

2|x| − 1, x < 0

Thus, to encode a signed integer x as a VarInt, first map it with zigzag encoding to an
unsigned integer z(x) and then encode z(x) as a normal VarInt.

Interval Encoding. Interval encoding is a technique where instead of storing a consec-
utive part of a neighborhood v, v + 1, . . . , v + l ∈ N(u) of some node u directly, only the
start of the interval v and its length l are stored [2].

2.5 Size-Constrained Label Propagation

Label propagation is an algorithm for computing a node clustering in a graph [34]. At the
start of the algorithm, each node in the graph is assigned to its own cluster. Then, it works in
multiple rounds. At the beginning of each round, a random ordering of the nodes is selected.
Afterwards, the nodes are iterated in the selected ordering. Each node is thereby moved to
the cluster that most neighbors are assigned to. If there are several clusters that have the
same amount of neighbors assigned to, then one of these clusters is selected uniformly at
random. The rounds are repeated until the process converges.
Size-constrained label propagation is an extension of label propagation, which ensures
that the weight of each cluster is constrained by a maximum weight, where the maximum
weight is a parameter of the algorithm [32]. This algorithm works like label propagation, but
instead of moving a node to a cluster with the most neighbors, a node is moved to a cluster
with the most neighbors that additionally does not violate the maximum size constraint
when the node is moved.

2.6 Memory Overcommitment

In some scenarios, it is necessary to store aggregated data, whereby the required storage
space is only known after the data has been aggregated. Therefore, in such scenarios, the
aggregated data is often stored in a temporary buffer or computed twice, determining the
size the first time to allocate enough storage space, and then storing the data the second
time. However, both approaches have disadvantages. With the former, additional memory
is allocated and the latter costs running time. Another way to resolve the problem is to trick
the virtual memory with a technique called memory overcommitment [31].

8



2.6 Memory Overcommitment

On operating systems that allow memory overcommitment, memory allocations that request
more memory than is physically available are allowed. These operating systems allow this
because they only assign virtual pages to physical pages when the corresponding page is
touched. This means that only the memory pages that are touched are used and take up
actual memory. This behavior can be used for the described scenario. For that, memory
is overcommited by requesting enough memory to store the aggregated data. This can be
done by either computing an upper bound or allocating all the physically available memory.
Furthermore, only the memory that stores the aggregated data is written to and read from.
This ensures that only these memory pages are mapped to physical pages and that therefore
no memory is wasted.

9
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3 Related Work

In this chapter, we provide an overview of literature and research that is relevant to this thesis.
We first describe the multilevel paradigm, which is arguably the most successful approach
for heuristically solving the graph partitioning problem. Then, we give an overview of
the KaMinPar graph partitioner as the memory optimization techniques described in this
thesis have been applied to and evaluated on KaMinPar. We also present the Ligra+ and the
WebGraph Framework, which are frameworks for compressing graphs, that both have been
very influential to our own graph compression scheme.

3.1 Multilevel Graph Partitioning

As the graph partitioning problem is NP-hard [22] and NP-hard to approximate by a constant
factor [7], heuristic algorithms are used in practice to solve the problem. One technique that
has been very successful in doing so is multilevel graph partitioning (MGP) [20]. The mul-
tilevel approach consists of three phases: coarsening, initial partitioning and uncoarsening.
In the first step, the so-called coarsening, the input graph is successively coarsened to
smaller approximations of the input graph. Typically, this is done by computing a clustering
of the nodes and contracting the clustering to create a coarse graph. Parallel edges, which
might emerge from contraction, are thereby replaced by a single edge, whose weight is the
sum of the weights of the parallel edges. Likewise, the weight of a coarse node is the sum
of the node weights in the corresponding cluster. Graphs are coarsened until the order of the
smallest graph reaches a threshold or the coarsening converges [20, 19]. After coarsening,
an initial partitioning of the smallest coarse graph is computed. Since the coarsening step
creates graphs, which maintain the weights of nodes and edges of the original graph, a
balanced partition of a coarse graph corresponds to a balanced partition of the finer graph
[20]. In the last step, starting from the initial partition, each partition of the coarse graph
is successively applied to the finer graph. This is done by projecting the partition class of
a coarse node onto the set of nodes from whose contraction the coarse node was created.
This process is called uncoarsening. In addition, with each uncoarsening, the partition of
the finer graph is improved with refinement algorithms [20].
There are two primary ways to implement MGP: recursive bipartitioning and direct k-way
partitioning [19]. Recursive bipartitioning computes in the three steps described above
a bipartition of the input graph. Then, it recursively computes further bipartitions of the
subgraphs induced by the partition until the desired number of blocks is given. With direct

11



3 Related Work

k-way partitioning only one coarsening and uncoarsening step is performed as the initial
partitioning step directly computes a partition into k blocks.

One reason why the multilevel approach is so successful, is that expensive partitioning
algorithms can be applied to the last coarse graph as it is typically much smaller than the
input graph. This can include more powerful algorithms or a portfolio of different fast
algorithms [8]. Further, during the refinement step, good improvements can be found on
the coarse levels, which would be difficult to find on the finer levels, as the coarse graphs
provide a more global overview of the fine graphs [8].

3.2 KaMinPar

KaMinPar is a parallel in-memory multilevel graph partitioner, which allows for balanced
partitions of high quality for a large number of blocks [19]. For that, the authors introduce
the deep multilevel graph partitioning scheme, which is a multilevel approach that combines
recursive bipartitioning and direct k-way partitioning. With deep MGP, coarsening is
applied until the coarsest graph has order of about 2C, where C is an input parameter.
Then, a bipartition of the coarsest graph is computed. During uncoarsening, the partition is
extended through further bipartitioning such that the subgraphs induced by a partition have
order of about 2C and the partition of the input graph has the desired number of blocks.

One benefit of the deep multilevel scheme compared to direct k-way partitioning is that
only small graphs are bipartitioned. This is because the coarsening step of direct k-way
partitioning typically terminates when the coarsest graph has order of about kC. Deep
MGP coarsens, for large k, much deeper with only about 2C nodes left and tries to maintain
this order for the subgraphs to bipartition during uncoarsening [19]. Therefore, deep MGP
allows for partitions with larger number of blocks as initial partitioning only operates on
small graphs, and thus does not become a bottleneck for running time or parallelism [19].

Moreover, deep MGP only performs one coarsening and uncoarsening step, unlike recur-
sive bipartitioning, and therefore has a better asymptotic running time. It also allows for
refinement algorithms to operate on more than two blocks, and therefore has the poten-
tial for better partition improvements during the refinement step compared to recursive
bipartitioning, which can only refine two blocks [19].

Furthermore, the deep multilevel scheme fully exploits parallelism, by ensuring that parallel
work of p processing elements (PEs) is performed on graphs of order at least pC [19, 10].
This is ensured by duplicating the coarse graph and splitting the PEs into two groups of
size ⌈P/2⌉ and ⌊P/2⌋ when the coarse graph becomes smaller than pC. Each group of
processors then works on a separate copy of the duplicated coarse graph. This results
in different partitions of the duplicated graph. During uncoarsening, the partition that is
balanced and has the smallest edge cut is selected. This allows the diversified search for a
good partitioning with only minimal additional running time costs.
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3.3 Ligra+

Ligra+ is a framework for in-memory graph processing, which builds upon the Ligra frame-
work by integrating graph compression techniques [38]. The Ligra framework itself consists
of a directed graph and node subset data structure and provides, besides basic graph opera-
tions such as order, size or degree queries, two operations: NodeMap and EdgeMap [37].
The operations are used for mapping over the nodes and edges of a subset.
Ligra+ extends Ligra by storing the graph in a compressed form and adapting the EdgeMap
operation to support the compressed graph form. The compressed graph representation is
an adjacency array with a compressed edge array, which integrates both edges and edge
weights. The compressed edge array uses two compression techniques, namely variable-
length encoding and gap encoding.
With this compression scheme, the authors achieve compression ratios between 1.79 and
2.04 with running times ranging from 1.1 times slower to 2.2 times faster than Ligra on
their graph benchmark set and six applications: Breadth-first search, betweenness centrality
computation from a source node, graph radii estimation, connected components, PageRank
and Bellman-Ford shortest path [38]. Note that the authors use different graph reorderings
and pick for each graph the reordering with the best compression ratio.

3.4 WebGraph Framework

The WebGraph Framework is a framework equipped with graph compression, which is
targeting web graphs [4]. It uses variable-length encoding, reference encoding, gap encod-
ing and interval encoding as its compression techniques. The framework provides several
variable-length encodings such as ζ, which is designed for integers with a power-law dis-
tribution with small exponent, Elias γ or Golomb [3]. Reference encoding is a technique
that identifies two nodes with a similar neighborhood and stores one of the neighborhoods
as a reference to the other neighborhood using a copy list. The copy list marks all the
adjacent nodes in the referenced neighborhood that are also adjacent nodes in the own
neighborhood. The remaining adjacent nodes of a neighborhood, which are not covered
through the referenced neighborhood, are stored using interval and gap encoding. Interval
encoding identifies intervals in the neighborhood of a node of a minimum length, which
is a parameter chosen by the user. An interval is then stored by encoding its left extreme
and its length. The remaining adjacent nodes, which are not covered through reference and
interval encoding, are stored with gap encoding.
With this compression scheme, the authors achieve a compression ratio of 6.40 resp. 8.09
for webbase2001 resp. uk2002 with the best configuration that they tested. With the worst
configuration that they tested, they achieve a compression ratio of 4.12 resp. 4.23 for
webbase2001 resp. uk2002. Note that the compression scheme with the best configuration
is slower than with the worst configuration in decoding due to additional decoding work.
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4 Reducing Memory Consumption
during Coarsening

In this chapter, we describe how we reduce the memory consumption of KaMinPar during
coarsening. To this end, we first analyze the memory consumption of KaMinPar and identify
the components of the algorithm with the highest memory consumption. Then, we describe
how we change these components to consume less memory space.

4.1 Memory Consumption Analysis of KaMinPar

We illustrate the memory consumption of KaMinPar using an example. To do this, we use
the graph with the highest memory consumption in our benchmark set. Figure 4.1 shows
the memory consumption of the KaMinPar algorithm before and after our optimizations for
this graph. In this figure, the memory consumption is logically split into two parts, namely
coarsening and uncoarsening as initial partitioning is fused into uncoarsening in KaMinPar.
We see that the memory peak is reached in the first coarsening level and that clustering
requires 57.4 GB of memory, followed by the input graph with 7.7 GB of memory and then
followed by contraction with 3.8 GB of memory. We also see that the other components as
well as uncoarsening are not responsible for the memory peak.
Therefore, besides the input graph that we address in Chapter 5, the two components of
the coarsening phase must be changed to reduce the memory consumption. Recall that
during coarsening, a clustering of the graph to coarse is first computed. The graph is then
contracted according to that clustering to create a coarse approximation of the input graph.
For computing a clustering, KaMinPar uses the label propagation algorithm. It accounts
for most of the memory consumption of clustering. As we see, the memory required for
contracting is also important for the total memory consumption. Moreover, clustering and
contraction only have a high memory consumption in the first coarsening level because
the graph to process is still large at that level, as opposed to the following levels, where
the graphs are much smaller. We also see in Figure 4.1 that the memory used for initial
partitioning and uncoarsening is not relevant for the total memory consumption. This is
because initial partitioning in the deep multilevel scheme only works on very small graphs.
Similarly, the memory consumption during uncoarsening is small because it mainly needs
memory for the refinement step. The refinement algorithm used is also label propagation,
where the initial number of clusters is the number of blocks of the partition. Thus, it has
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Figure 4.1: Peak memory during the different phases of the algorithm. The memory measurements
were carried out for the webbase2001 graph with number of blocks k = 128 and
imbalance parameter ε = 0.03 on 64 PEs and not duplicating graphs during coarsening.
The left plot shows the memory consumption before memory optimizations and the
right plot with our memory optimizations enabled.

a memory consumption of O(k) per PE, which is typically much smaller than the graph
to partition. In addition, a balancer is used during refinement because the partition may
become unbalanced on a fine graph due to the balance constraint equation that KaMinPar
uses. This balancer consumes memory in O(ñ), where ñ is the order of the graph to balance.
This is therefore also usually smaller than the input graph.

As we see, changes in the clustering implementation are crucial for reducing the memory
consumption. In Section 4.2, we therefore describe a modification of the label propagation
algorithm to reduce the memory consumption during clustering. We also reduce the amount
of memory required to compute a clustering by using a more memory-efficient data structure
in the process. We describe this change in Section 4.3. Finally, in Section 4.4, we describe
changes to the contraction algorithm to reduce its memory consumption.
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4.2 Two-Phase Label Propagation

As label propagation during coarsening is the largest contributor to the peak memory usage,
we focus on optimizing this stage first. Recall that label propagation visits nodes in a random
order in parallel and moves them to the adjacent cluster with the majority of neighbors.

Determining the best target cluster is implemented by counting the weight of edges to
adjacent clusters and selecting the cluster with the highest weight. As the maximum number
of adjacent clusters is n − 1, this computation uses an array of size n per PE, which is
responsible for the largest amount of memory consumed by webbase2001 with 57.4 GB.
Additionally, for low-degree nodes, a small fixed-capacity hash table is used to attain better
cache efficiency, as random access writes to the large array are avoided.

Ideally, one would like to use the hash table for all nodes. However, the number of adjacent
clusters for each node is unknown prior to counting. Therefore, growing hash tables have
to be used, which are slower than the full-size array. In addition, nodes with many adjacent
clusters can be present, which is why the hash tables might even grow to size n per PE.

Algorithm 1 depicts one iteration of label propagation as used in KaMinPar. Note that this
implementation is simplified, for the reason that we are interested in memory efficiency.
Furthermore, the capacity of the small hash table is 10 000, which is why this value is used
as the threshold in Line 5.

Algorithm 1: One iteration of label propagation
1 Function PerformIteration(G = (V,E, c, ω), C,W)

Input: Graph for which a clustering is computed, mapping from nodes to
clusters, mapping from clusters to weights

2 Ṽ ← SelectNodeOrder(G)
3 for u ∈ Ṽ do parallel
4 R← ⊥
5 if deg(u) ≤ 10000 then
6 R← Thread-local small hash table
7 else
8 R← Thread-local array

9 for v ∈ N(u) do
10 cv ← C[v]
11 R[cv]← R[cv] + ω(uv)

12 cnew, δweight ← SelectBestCluster(C,W,R)
13 MoveNode(C,W, u, cnew, δweight)
14 Reset(R)
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4 Reducing Memory Consumption during Coarsening

We see in Line 8 of Algorithm 1 that in the worst case it is possible for each PE to use an
array of size n. Since the hash tables have constant size, the memory consumption is thus
O(np), where p is the number of PEs. Our goal is now to modify the implementation of the
label propagation algorithm used by KaMinPar to avoid memory consumption that scales
with the number of PEs. We want the total memory consumption of the label propagation
implementation to be in O(n). For our example graph webbase2001, this would mean
that instead of 57.4 GB only 3.2 GB of memory would be required for label propagation.
To achieve this, we split label propagation into two phases. In the first phase, we process
all nodes whose adjacent clusters can be aggregated in a hash table. Note that we still
iterate over the nodes in parallel during the first phase. In the second phase, all nodes for
which an array is required are processed. However, we no longer iterate over the nodes in
parallel in the second phase. Instead, we iterate sequentially so that only one array has to be
allocated because the adjacent clusters of only one node are aggregated at a time. To utilize
parallelism nevertheless, we iterate in parallel over the neighborhood of a node, which is
fine because the degree is large enough to achieve efficient per-node parallelization. With
this two-phase approach, we reduce the memory consumption because in the first phase a
hash table of constant size is used per PE and in the second phase only a single array of size
n is used. Therefore, the memory consumption is in O(n) instead of O(np).
Algorithm 2 shows the second phase of two-phase label propagation. To ensure that the
second phase is executed correctly in parallel, a few aspects must be taken into consideration.
First, atomic fetch-and-add operations are used to update the edge weights to the adjacent
clusters. This is implemented in Line 6. Moreover, used entries in the array are stored for
faster iterations and resets by inserting the position of an entry to a dynamically growing
vector the first time it is incremented. Therefore, to avoid race conditions when storing an
entry as used, only the PE that first increments an entry inserts the corresponding position
to a dynamically growing thread-local vector. Here, a PE determines whether it is the first
one that increments an entry by comparing if the return value of the atomic fetch-and-add
operation is equal to zero. This works because initially all clusters have weight zero and
through the atomic fetch-and-add operation only one PE is guaranteed to read the zero value
when updating. This is implemented in Lines 7–8. Finally, to select the cluster to move the
node to, each PE determines in Lines 10–12 the cluster with the most neighbors, from the
stored clusters in its own thread-local vector. In Lines 13–14, the overall best cluster is then
selected from all the clusters selected as the best by the individual PEs.

So far, we have described how we split the label propagation algorithm, such that in the first
phase all nodes that can be aggregated in a hash table are processed and in the second phase
all remaining nodes are processed. In the following, we describe how we actually select
nodes for the first and second phase. The requirements for a selection strategy are that it
does not perform too much redundant work in the first and second phase as well as not
flood the second phase with nodes with few adjacent clusters, which results in bad parallel
efficiency. We have therefore explored two selection strategies, both of which fulfill the
requirements with certain trade-offs.
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4.2 Two-Phase Label Propagation

Algorithm 2: Second phase of two-phase label propagation
1 Function PerformSecondPhase(G = (V,E, c, ω), C,W,U)

Input: Graph for which a clustering is computed, mapping from nodes to
clusters, mapping from clusters to weights, nodes of the second phase

2 R← Array used for the second phase
3 for u ∈ U do
4 for v ∈ N(u) do parallel
5 cv ← C[v]
6 ωprev ← R[cv] +=

atomic
ω(uv)

7 if ωprev = 0 then
8 Add cv to thread-local vector

9 T ← Array of size p
10 for all threads i do parallel
11 Select best cluster clocal, δweight from thread-local vector
12 Store clocal, δweight at T [i]

13 cnew, δweight ← SelectBestCluster(C,W, T)
14 MoveNode(C,W, u, cnew, δweight)
15 Reset(R)

High-Degree Selection. One strategy to select nodes for the second phase is to make
it dependent on whether they have a high degree, and thus potentially many clusters in
their neighborhood. In other words, the nodes with a degree greater than a threshold are
selected for the second phase. We choose 10 000 as the threshold because it is the capacity
of the hash table. This means, that all nodes whose adjacent clusters potentially cannot
be aggregated in a hash table are processed in the second phase. However, nodes that can
theoretically be processed in the first phase are also processed in the second phase. This is
exactly the case when the degree exceeds the threshold, but the number of clusters in the
neighborhood is smaller than or equal to the threshold.

Full-Rating-Map Selection. If nodes are selected for the second phase, whose degree
is greater than the threshold but whose actual number of adjacent clusters is lower, the
algorithm can be slowed down because processing in the second phase requires additional
synchronization due to parallel aggregation. Furthermore, the synchronization to determine
the best adjacent cluster is also a potential issue since many short bursts of parallelism can
be harmful. We therefore present another strategy, which selects nodes for the second phase
depending on whether the neighborhood must be aggregated in the second phase because it
contains too many adjacent clusters.
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4 Reducing Memory Consumption during Coarsening

With this strategy all nodes are processed in the first phase using a hash table and only
bumped to the second phase when the hash table is full. The downside of this selection
strategy is that it wastes work by throwing away partially aggregated results of a node when
it is selected for the second phase. However, a reason why this selection strategy can work
well is that the nodes are visited in increasing order of degree with KaMinPar. When nodes
with low degree are processed first, they are processed in the first phase because they cannot
have many adjacent clusters due to their small neighborhood. Thus, at the beginning, the
number of possible clusters is reduced while only using the first phase. When nodes with
a higher degree, which are more likely to be selected for the second phase due to their
bigger neighborhood, are processed, fewer clusters are present since the low degree nodes
have already been moved. Therefore, the likelihood of being selected for the second phase
intuitively decreases as more nodes are processed. Algorithm 3 shows one iteration of
two-phase label propagation, which uses one of the two presented selection strategies.

Algorithm 3: One iteration of two-phase label propagation
1 Function PerformTwoPhaseIteration(G = (V,E, c, ω), C,W)

Input: Graph for which a clustering is computed, mapping from nodes to
clusters, mapping from clusters to weights

2 U ← ∅
3 Ṽ ← SelectNodeOrder(G)
4 for u ∈ Ṽ do parallel
5 if deg(u) > 10000 and use high-degree strategy then
6 U ← U + u
7 else
8 R← Thread-local small hash table
9 move← true

10 for v ∈ N(u) do
11 cv ← C[v]
12 R[cv]← R[cv] + ω(uv)

13 if |R| = 10000 and use full-rating-map strategy then
14 U ← U + u
15 move← false
16 break

17 if move then
18 cnew, δweight ← SelectBestCluster(C,W,R)
19 MoveNode(C,W, u, cnew, δweight)

20 Reset(R)

21 PerformSecondPhase(G, C, W , U)
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Buffered Aggregation. The algorithm can suffer from high contention during the sec-
ond phase caused by the atomic fetch-and-add operations when many neighbors belong
to the same cluster. To avoid this scenario, the PEs can temporarily buffer the aggregated
values in their thread-local hash table used in the first phase instead of writing them di-
rectly to the array. When a thread-local hash table is full, it is flushed by transferring the
aggregated values to the array with atomic fetch-and-add operations. Additionally, after
aggregation, each thread-local hash table is flushed to ensure that all aggregated values are
transferred to the array. By buffering the values, fewer atomic fetch-and-add operations
can be performed because no atomic operations are required for writing to the hash tables
as these are thread-local. Therefore, this could potentially improve the running time by
using less atomic fetch-and-add operations, which can cause high contention. However, a
downside of this approach is the overhead of transferring the aggregated values from the
thread-local hash tables into the array.

4.3 Two-Level Cluster Weight Vector

Through two-phase label propagation, we were able to reduce the memory consumption
of label propagation for webbase2001 from 57.4 GB to 3.2 GB. In this section, we now
describe how we can further reduce its memory consumption to 2.5 GB (with L = 16, see
below) by using a more memory-efficient data structure for storing the cluster weights.

KaMinPar stores the weight of each cluster in order to fulfill the balance constraint and thus
ensures that a node is not moved into a cluster that then has too high of a weight. To do
this, it stores the weight of each cluster in an array with n entries with 8 bytes per entry.
However, the cluster weights can be stored more space-efficiently when an unweighted
graph is partitioned if the distribution of the cluster weights is taken into consideration. If
we consider an unweighted graph, then in the first coarsening level the weight of a cluster,
which is the sum of the node weights in the cluster, corresponds to the number of nodes
in the cluster because in an unweighted graph each node has weight one. In the following
coarsening levels, the weight of a cluster corresponds to the number of fine nodes in the
cluster if the graph were uncontracted. Therefore, because in most cases, the number of
large clusters is small, many of the cluster weights are small and can thus be stored with
less than 8 bytes.

Taking advantage of this observation, we use a two-level data structure for storing the cluster
weights. The data structure consists of an array with n entries and L ∈ { 8, 16, 32 } bits per
entry, where L is a user-chosen parameter, and a dynamically growing concurrent hash table.
Small cluster weights are stored in the array and large cluster weights are stored in the hash
table. More precisely, the array stores cluster weights that are smaller than Lmax := 2L − 1.
The value Lmax is used to indicate, that the weight of a cluster in the corresponding entry is
large, and is therefore stored in the hash table. Figure 4.2 illustrates the two-level cluster
weight vector.
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Figure 4.2: The structure of the two-level cluster weight vector with L = 8. The arrays are filled
with sample data. The lower value in each entry of the arrays specifies how many bytes
the corresponding encoded integer takes up.

Because label propagation is used for clustering, which iterates over the nodes in parallel,
it is necessary to change the cluster weights atomically. For this we use atomic compare-
and-swap operations. Note that we only allow values to be added to the hash table if the
corresponding cluster becomes too large. Therefore, we do not support removing values
from the hash table when the cluster becomes smaller than Lmax again.

To increase the weight of a cluster with ID i because we are moving a node into it, we first
read the value of the array at entry i and check whether the value is equal to Lmax. If this is
the case, the value of key i is updated in the hash table. The concurrent hash table is thereby
responsible for the synchronization. Moreover, because we do not support removal from
the hash table, a race condition cannot occur since the value in the array stays the same
once it is set to Lmax. If the value does not correspond to Lmax, the value read is already
the weight of the cluster. We add the given value to the weight and check whether the new
weight exceeds Lmax − 1. If not, we use an atomic compare-and-swap operation to change
the value in the array at entry i and use the value read at the beginning as the expected
value. Moreover, if the operation fails, we start from the beginning and try again. If the new
weight is too large for the array, we use an atomic compare-and-swap operation to write the
value Lmax to the array at entry i and also use the value read at the beginning as the expected
value. We also start from the beginning and try again if the operation fails. Further, if the
operation does not fail, we add the entry to the hash table or update the value if another
thread has already read the Lmax value and added the entry.

The reduction of a cluster weight is easier because we do not have to consider the case that
a value stored in the hash table becomes smaller than Lmax again and should be removed
from the hash table. To reduce a cluster weight, the value is first read at the corresponding
position in the array. If this value is equal to Lmax, the value in the hash table is updated.
Otherwise, if the value is less than Lmax, the new value is written to the array using an atomic
compare-and-swap operation. The value read at the beginning is used as the expected value.
If the operation fails, we start from the beginning and try again.

22



4.4 Contraction

4.4 Contraction

As we have seen in the analysis of the memory consumption, contraction is also a contributor
to the peak memory usage. In this section, we therefore present how we reduce the memory
consumption of KaMinPar’s contraction implementation. We begin with a description of
the contraction implementation to understand where memory space can be saved.
Recall that the contraction step during coarsening creates the coarse graph using the cluster-
ing computed by label propagation. To create the coarse graph, the coarse nodes are visited
in parallel and for each coarse node its neighborhood is aggregated. A neighborhood is
aggregated by iterating over the adjacent nodes of the set of nodes that are contracted to
the coarse node, remapping the adjacent nodes to their corresponding coarse nodes, and
summing up the edge weights for each adjacent coarse node since we reduce parallel edges
to a single edge. The next step would be to store the aggregated neighborhood in the edge
and edge weight array of the coarse graph’s adjacency array. However, this step is chal-
lenging because of the structure of the adjacency array and because the neighborhoods are
aggregated in parallel. This is because the edge offset is necessary in order to write the
edges and edge weights of a coarse node into the edge arrays. However, the edge offset
depends on the degrees of other coarse nodes, namely those with smaller IDs, and therefore
additional effort is required when aggregating the neighborhoods in parallel.
One solution, which is used by KaMinPar, is the use of an edge buffer to temporarily store
the aggregated edges and edge weights. This approach is outlined in Algorithm 4. First, as
described above, the coarse nodes are visited in parallel and the neighborhood is aggregated
for each one. This is implemented in Lines 4–12. After a neighborhood has been aggregated,
it is temporarily stored in the edge buffer. Furthermore, the coarse node degree, i.e., the
number of aggregated edges, is stored in the node array. This is implemented in Lines 11–
12. Then, when all coarse nodes have been visited, a prefix sum over the node array is
computed in Line 13. This results in the correct offsets into the edge array. Finally, the
coarse nodes are visited again in parallel and their neighborhoods are transferred from the
edge buffer to the adjacency array using the offsets in the node array. This is implemented
in Lines 15–16. For the sake of simplicity, we omit the computation of the node weight
array as this can be done during the aggregation of the coarse neighborhoods.
Our goal in the following is to reduce the memory consumption of the edge buffer, in which
the aggregated edges are temporarily stored, since it consumes Θ(m̃) memory space, where
m̃ is the number of edges of the coarse graph.

4.4.1 Partially Filling the Edge Buffer

The first variant trades off additional synchronization overhead for reduced memory con-
sumption by only partially filling the edge buffer. Therefore, when aggregating the neigh-
borhoods of the coarse nodes, not all coarse nodes are visited at once, but only a part of
them. To do this, the coarse nodes are subdivided and processed from small to large IDs.
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Algorithm 4: Contraction
1 Function Contract(G = (V,E, c, ω), C)

Input: Graph to contract, mapping from nodes to clusters

2 Allocate node array N
3 Initialize edge buffer B
4 for each coarse node cu do parallel
5 R← Thread-local small hash table or array
6 for each fine node v that is contracted to cu do
7 for w ∈ N(v) do
8 cw ← C[w]
9 if cw ̸= cu then // no self-loops

10 R[cw]← R[cw] + ω(vw)

11 N [cu]← |R| // store degree of cu
12 Transfer aggregated neighborhood from R to B

13 Compute prefix sum over N in parallel

14 Allocate edge array E and edge weight arrayW
15 for each coarse node cu do parallel
16 Transfer N(cu) from B into edge arrays E ,W at offset N [cu]

17 return (N , E ,W)

After the edges and edge weights of some coarse nodes have been aggregated in the edge
buffer and the respective degrees have been written to the node array, a prefix sum is com-
puted for the entries in the node array that have been processed. These entries then contain
the correct offsets into the edge and edge weight array. The edges and their weights can
then be transferred from the buffer to the adjacency array. This process is repeated until all
coarse nodes have been processed.

In order to implement this contraction variant, the edge and edge weight array must be
allocated in advance. The problem thereby is that the size of the edge arrays is only known
once the neighborhood of all coarse nodes has been aggregated. Therefore, we overcommit
memory for the arrays and only touch the memory that is actually used.

Furthermore, to subdivide the coarse nodes, which are processed in groups one after the
other, an upper bound of the coarse node degrees is considered. The coarse nodes are
merged into groups with contiguous coarse node IDs, so that each group has no more than
M ·m edges, where M ∈ (0, 1) is a user-chosen parameter. With smaller M values, the
coarse nodes are divided into more groups and thus the edge buffer is filled to the maximum
with fewer edges. However, smaller M values also mean that more iterations are performed.
Note that with M = 1 this contraction variant is identical to the original implementation.
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4.4.2 Aggregating the Edges Twice

The second variant of the contraction algorithm completely eliminates the edge buffer by
aggregating twice. More precisely, it aggregates the neighborhood of all coarse nodes in a
first pass, writes the coarse node degrees into the node array and discards the aggregated
edges. Then, it computes a prefix sum over the node array, which afterwards stores the cor-
rect offsets into the edge and edge weight array. Finally, in a second pass, the neighborhood
of all coarse nodes is aggregated again and the computed edges and their weights are placed
in the edge and edge weight array using the computed offsets.

4.4.3 Remapping the Coarse Nodes

The third variant also avoids the edge buffer, but it avoids it by writing a neighborhood
directly into the edge and edge weight array after it has been aggregated for a coarse node.
Two problems must be overcome for this. First, the number of edges is not known in
advance, which is why it is not possible to allocate the edge and edge weight array properly.
The problem is overcome by overcommitting memory for the arrays and only touching the
memory that is actually used.

The second problem is that the offsets into the edge arrays are at the time of aggregation not
known, which is why the neighborhood cannot be written to the right place. To avoid this
problem, the coarse node IDs are remapped and the PEs use atomic operations to determine
the new coarse node IDs and their offsets into the edge arrays. This works exactly as follows.
Two counters are initialized with zeros. One counter is used to remap the coarse node IDs.
The other counter is used to store the offset into the edge arrays for the next coarse node to
be remapped. When a PE has aggregated a neighborhood and needs the offset into the edge
arrays, it atomically reads both counters and also increments the coarse node ID counter by
one and the edge offset counter by the degree of the coarse node, i.e., the number of edges
it writes. Note that in order to be able to read and write the two counters atomically, wide
words are required. The value read from the coarse node ID counter is then used to store the
offset into the edge array, which is read from the edge offset counter, in the corresponding
entry in the node array. Furthermore, the read edge offset is used to store the neighborhood
in the edge and edge weight array.

Because the aggregated neighborhoods still consist of the old coarse node IDs, the IDs of
the adjacent nodes stored in the edge array must subsequently be remapped. Moreover, the
contraction algorithm computes a mapping, which stores the assignment of fine nodes to
the coarse nodes, in the process. It must also be changed because it is used for projecting
the partition in the uncoarsening phase. To do this, the remapping is explicitly stored in an
array of size ñ, where ñ is the number of coarse nodes, and the entries in the edge array and
mapping are adjusted afterwards.
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Synchronization. For synchronization, the double-width compare-and-swap instruction
is used as an atomic operation. More precisely, the two counters are stored as a 128-bit
integer, with the lower 64-bit being used for one counter and the upper 64-bit for the other.
Then, when a coarse node is to be remapped, the 128-bit integer is read, the counters
extracted and updated with the double-width compare-and-swap instruction. For this, the
value read at the beginning is used as the expected value and the incremented counter is
used as the new value. If the operation fails, the process starts from the beginning until it
succeeds.

Buffering. In order to perform fewer compare-and-swap operations and thus improve
performance, we increase the counters for several coarse nodes at once. To do this, we
use a thread-local buffer of constant size to cache the neighborhood of multiple coarse
nodes. That means that each PE stores the data about aggregated neighborhoods in the
thread-local buffer until it is full. Then, a single compare-and-swap operation is used to
read the coarse node ID and the edge offset when the buffer is full in order to transfer the
data to the adjacency array. The coarse node counter is thereby not increased by one but by
the number of cached nodes and the edge offset counter is increased by the total number
of cached edges. Thus, fewer compare-and-swap operations are performed by fetching and
updating coarse node IDs and edge offsets in batches.
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5 Graph Compression

We observed in Section 4.1, in the analysis of the memory consumption, that the input graph
is another critical component for reducing the total memory consumption of KaMinPar. In
this chapter, we therefore present a graph compression scheme, which we use for storing
the input graph space-efficiently. In Section 5.1, we describe what the compression scheme
looks like. The goal is to provide a static and compressed representation of a graph. As
operations on the graph data structure, we provide simple operations such as order, size,
weight and degree queries as well as iterating over the neighborhood of a node. Another
motivation behind graph compression is the potential speed up of the program because fewer
memory accesses take place, and thus the load on the memory subsystem is reduced [2].
Therefore, in Section 5.2, we describe how iterating over the neighborhood of a node can
be accelerated to provide fast operations on the compressed graph data structure. Finally, in
Section 5.3, we describe how we read the input graph from disk in a single read operation
and compress it in the same process.

5.1 Compression Scheme

The basis of our compression scheme is the adjacency array, which we call the uncom-
pressed adjacency array. Recall that the adjacency array A = (N , E , C,W) consists of a
node array N , which stores for each node u ∈ V the offset N [u] into the edge array E ,
where the IDs of the adjacent nodes of u are stored contiguously. We transform the uncom-
pressed adjacency array by applying several compression techniques to the edge array and
storing the node array more compact. The node weight array C and the edge weight array
W remain unchanged. Note that since the graph data structure is static, we do not provide
graph operations that modify the graph structure, i.e., insertion and deletion of nodes or
edges is still not provided.

5.1.1 Compressed Edge Array

In the following, we describe the changes to the edge array. Since we have certain goals,
the edge array must be adapted accordingly. One requirement is that the degree queries
should be in constant time because many parts of the KaMinPar algorithm require the node
degree. Another requirement is that the edge weights must be available while iterating over
the neighborhood of a node. For this purpose, the IDs of the edges must be provided during
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5 Graph Compression

iteration in order to be able to access the edge weight array. The last requirement is that
we want to iterate in parallel over the neighborhood of nodes with high degree to exploit
parallelism.

Variable-Length Encoding

The first compression technique we apply to the edge array is variable-length encoding.
With this technique, we encode the IDs of the adjacent nodes of each neighborhood in the
edge array as VarInts with the format described in Section 2.4. Furthermore, the node array
must be adapted. In the uncompressed adjacency array, the node array stores the ID of the
first edge in the neighborhood for each node, because that is the index into the edge array
where the edge is stored. The other edges of the neighborhood are stored at the subsequent
indices. However, changing the edge array to use variable-length per edge means that
an entry of the node array can no longer store the ID of the first edge of the respective
neighborhood. Instead, the relative position of the first byte at which the neighborhood is
encoded in the edge array must be stored. This is because each encoded edge no longer
has a fixed length and therefore cannot be indexed consistently. In Figure 5.1, we give an
overview of the structure of the compressed adjacency array, which uses variable-length
encoding.
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Figure 5.1: The structure of the compressed adjacency array, whose edge array uses variable-length
encoding and explicitly stores the first edge ID of each neighborhood. The upper part
shows the uncompressed adjacency array and the lower part the compressed adjacency
array. Moreover, the lower value in each entry of the arrays specifies how many bytes
the encoded integer takes up.

One problem with variable-length encoding is that the degree of a node is no longer im-
plicitly stored by the offsets in the node array. With the uncompressed adjacency array, the
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5.1 Compression Scheme

degree of a node u can be obtained by computing the difference between the offset into the
edge array of the following node and its own offset, i.e., deg(u) = N [u+ 1]−N [u]. This
is true because the edge array stores the neighborhood contiguously and the neighborhood
of the next node is stored directly afterwards. Therefore, the offset into the edge array of
the following node is exactly deg(u) larger. This no longer applies to the edge array, which
stores the node IDs with variable length. Another problem is that the ID of an edge is no
longer stored implicitly. This ID is given with the uncompressed adjacency array, as the
node array stores the ID of the first edge in the neighborhood for each node. The IDs of the
following edges in a neighborhood can be obtained by incrementing the ID of the first edge.
Due to the variable-length encoding, the value stored in the node array is no longer the ID
of the first edge of a neighborhood, but the relative starting position in bytes at which the
adjacent node IDs of the neighborhood are encoded as VarInts.

Storing the First Edge ID. For these two reasons, additional information must be
explicitly stored for each neighborhood because we want to provide degree queries in
constant time and provide IDs for the edges of a neighborhood. We choose to store the ID
of the first edge of a neighborhood explicitly at the start of each neighborhood in the edge
array. With this information, the IDs of the edges of a neighborhood can be obtained by
incrementing the ID of the first edge, as with the uncompressed adjacency array. Further,
we can compute the degree based on that information. For that, we can take advantage of
the property that the IDs of the edges increase incrementally in the order in which they are
stored in the edge array. Formally, this means that for the edges uv1, uv2, . . . , uvdeg(u) of
a neighborhood its IDs are e, e+ 1, . . . , e+ deg(u)− 1 and the ID of the first edge of the
next neighborhood is e + deg(u) − 1 + 1. Therefore, the difference between the IDs of
the first edge in the neighborhood of the next node and its own is exactly the degree, i.e.,
e+ deg(u) + 1− 1− e = deg(u).

Further, the n-th entry in the node array must also be changed. In the uncompressed
adjacency array, the number of edges is stored in it, i.e., N [n] = e. The degree of the last
node n− 1 can therefore be obtained by N [n]−N [n− 1] = deg(n− 1) as for any other
node. As the degree is obtained differently with the compressed adjacency array, the n-th
entry of the node array now points to the position in the edge array where the number of
edges is encoded. More precisely, the n-th entry in the node array now stores the relative
position in bytes to the end of the last encoded neighborhood in the edge array. Moreover,
at that position in the edge array the number of edges m is encoded as a VarInt. With this
change, the degree of the last node can be obtained as for any other node in the compressed
adjacency array.

Isolated Nodes. For an isolated node, we do not store any information about it in the
edge array. Therefore, an isolated node can be identified by checking that the offset does
not increase. Thus, a node u is isolated if and only if N [u+ 1] = N [u] holds.
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5 Graph Compression

Gap Encoding

The next compression technique we apply to the edge array is gap encoding [4, 38]. For
this purpose, the neighborhood of each node u is sorted in ascending order, i.e., v1 < v2 <
· · · < vd−1 < vd with N(u) = { v1, v2, . . . , vd−1, vd }. The IDs of the adjacent nodes are
now stored as differences of consecutive adjacent nodes in the respective order. The first
adjacent node is treated differently. It is stored as the difference with respect to the source
node u. Moreover, all differences except the first difference are subtracted by one. The
resulting gaps are v1−u, v2−v1−1, . . . , vd−vd−1−1, which are stored in that order. Note
that the gaps are stored as VarInts. Since the neighborhood has been sorted in ascending
order, all gaps, except possibly the first one, are non-negative. Therefore, the first gap is
stored as a signed VarInt using the zigzag encoding described in Section 2.4. It should also
be noted that the IDs of the edges may change due to the sorting of each neighborhood.
However, this is not an issue as the structure of the graph does not change and as the IDs
are relabeled consistently.

First Edge ID Gap. An optimization regarding gap encoding can be applied to the
edge array if it is known that the graph has no isolated nodes. It can also be applied when
there are isolated nodes x1, . . . , xi, but only if they are the nodes with the highest IDs, i.e.,
x1 = n − i − 1, . . . , xi = n − 1. In both cases, the ID of the first edge e of the node
u that is stored at the beginning of each encoded neighborhood can be stored as the gap
e − u. As there are no isolated nodes or the isolated nodes are the ones with the highest
IDs, the ID of the first edge is greater than or equal to the node ID because each previous
neighborhood contains at least one edge. Therefore, the gap is non-negative and can still
be stored as an unsigned VarInt. It is also smaller than or equal to the first edge ID and can
therefore due to variable-length encoding only reduce the used memory space. With this
change, the degree of a node u is still implicitly stored, but has to be obtained differently.
Let ẽu = eu−u and ẽu+1 = eu+1− (u+1) be the gaps of the first edge IDs of a node u and
u+1, where eu and eu+1 are the first edge IDs respectively. The degree of u is then obtained
by ẽu+1− ẽu+1 since ẽu+1− ẽu+1 = eu+1− (u+1)− (eu−u)+1 = eu+1−eu = deg(u)
holds. Furthermore, in order for the degree computation to be correct for the last node,
the value at the position where N [n] points to must be changed. Instead of storing m, the
gap m− (n− i) must be stored, where i is the number of isolated nodes labeled last. The
changes to the degree computation are also the reason why the first edge ID cannot be
stored as a gap when the graph contains isolated nodes not labeled last. When the node u is
followed directly by isolated nodes u+ 1, u+ 2, . . . , u+ j, the first edge ID stored of the
next neighborhood is not that of the node u + 1 but of node u + j + 1 because we do not
store any information in the edge array for isolated nodes. Therefore, ẽu+1 − ẽu + 1 is off
by exactly j. This could be corrected by determining the amount of isolated nodes j that
are directly stored after the node. However, the degree query would then no longer run in
constant time. In Figure 5.2, we illustrate how gap encoding is applied to the compressed
adjacency array.
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Figure 5.2: The structure of the compressed adjacency array, whose edge array uses variable-length
encoding and gap encoding, where the first edge ID of each neighborhood is also stored
as a gap. The upper compressed adjacency array only uses variable-length encoding
and the lower compressed adjacency array additionally uses gap encoding.

Gap Decoder. We now present an algorithm to decode the neighborhood of a node u,
which is encoded with gap encoding. First, the relative position into the compressed edge
array to the start and the end of the encoded neighborhood of u is determined. The start is
given by N [u] and the end is given by N [u+ 1]. Then, a VarInt at the start of the encoded
neighborhood in the compressed edge array is decoded. This is the ID of the first edge.
In Algorithm 5, we illustrate how the gaps are then decoded. In Lines 4–5 the first gap is
decoded and the first adjacent node is derived from it. The first gap is treated specially as
it is encoded as a signed VarInt whereas the remaining gaps are normal VarInts. After that,
the first adjacent node and the ID of the respective edge is passed to a caller, who requested
to decode the neighborhood. Then, the edge ID is incremented and a variable that holds the
previous decoded adjacent node, which is needed to decode the next gap, is initialized. This
is implemented in Lines 9–10. The Lines 11–19 show how the remaining adjacent nodes
are iteratively decoded. Each gap stored as a VarInt is decoded and the adjacent node is
derived from it. Then, the caller is invoked and the ID of the next edge and the previous
adjacent node is updated.

Interval Encoding

The last compression technique applied to the edge array is interval encoding [4]. Interval
encoding identifies maximal contiguous intervals of adjacent nodes with consecutive IDs
for the neighborhood of each node. Additionally, only intervals whose length is greater than
or equal to a threshold TInterval are considered. Let I1 = [v1, v1 + l1], . . . , Ii = [vi, vi + li] be
all such intervals in the neighborhood of a node. Then, instead of storing each member of
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5 Graph Compression

1 template <typename Lambda>
2 void decode_gaps(uint8_t *data, uint8_t *end, NodeID u, EdgeID e,
3 Lambda lambda) {
4 NodeID first_gap = decode_signed_varint(&data);
5 NodeID first_adjacent_node = first_gap + u;
6
7 lambda(first_adjacent_node, e);
8
9 e += 1;

10 NodeID prev_adjacent_node = first_adjacent_node;
11 while (data != end) {
12 NodeID gap = decode_varint(&data);
13 NodeID adjacent_node = gap + prev_adjacent_node + 1;
14
15 lambda(adjacent_node, e);
16
17 e += 1;
18 prev_adjacent_node = adjacent_node;
19 }
20 }

Algorithm 5: An algorithm to decode adjacent nodes encoded as gaps.

an interval as a gap, only the left extremes v1, . . . , vi and lengths l1, . . . , li of the intervals
are stored. The encoded neighborhood in the compressed edge array is split up for this
purpose. As before, the ID of the first edge in the neighborhood is encoded at the beginning.
Then, the number of intervals i is encoded. After that, one after another, for each interval
Ij = [vj, vj+ lj] its left extreme vj and length lj are encoded. The first left extreme is stored
as it is, whereas the following left extremes are stored as the difference to the previous right
extreme. Further, it is decremented by two as this is the minimum distance between the end
of one interval and the start of the next interval. That is to say, if Ij−1 = [vj−1, vj−1 + lj−1]
is the previous interval for the interval Ij = [vj, vj + lj], then the left extreme of Ij is stored
as vj − (vj−1 + lj−1)− 2. The length is decremented by the minimum length of an interval,
i.e., lj − TInterval is stored. Figure 5.3 depicts the compressed adjacency array with interval
encoding.

Avoid Storing Unused Interval Counts. Even if some nodes do not have any in-
tervals of minimum length TInterval, the interval count is still stored at the beginning of its
neighborhood after the first edge ID. This results in an unused byte for each neighborhood
without proper intervals. To avoid storing unused bytes, we make use of the compact format
of the VarInt to only store the interval count if the neighborhood has at least one interval.
To implement that, we use a bit of the first encoded byte of the first edge ID as a boolean
value. The boolean thereby encodes whether the neighborhood has at least one interval.
Note that the data bits in the VarInt must therefore be shifted by one.
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Figure 5.3: The structure of the compressed adjacency array, whose edge array uses variable-length
encoding, gap encoding and interval encoding with TInterval = 3. The upper part shows
the compressed adjacency array that only uses variable-length and gap encoding and
the lower part shows the compressed adjacency array with additional interval encoding.

Interval Decoder. Algorithm 6 illustrates how adjacent nodes encoded as intervals are
decoded. First, the interval count is decoded. This is implemented in Line 4. The value of
the previous right extreme is then initialized in Line 5. The initial value is 2, since the first
interval is stored as it is. This cancels the subtraction by 2 in Line 11, which is only required
for the following intervals. In Lines 7–19 the intervals are decoded. For each interval, its
left extreme and length are derived from the decoded gaps. Then, the caller is invoked with
all elements in the interval. Finally, the previous right extreme is updated, such that the left
extreme of the next interval can be decoded correctly.

Decoding the Neighborhood in Parallel

Next, we present an encoding of the neighborhood of a node that allows parallel iteration
[38]. With the uncompressed adjacency array, a neighborhood can be iterated in parallel by
splitting the neighborhood into parts and then processing the parts in parallel. This is possi-
ble because all node IDs have a fixed width and the boundaries of the parts can therefore be
determined only using the start and end of the neighborhood. With our compression scheme
of the edge array, two problems arise with this approach. The first problem is that, due to the
variable-length encoding, the boundaries of the parts cannot be determined using the start
and end position of the neighborhood. If the neighborhood were split in some non-trivial
way, it would have to be aligned, such that the start of each part begins with a new VarInt.
This is possible, but the ID of the first edge of this part is not available. To compute the first
edge ID of a part, the number of edges in the previous parts must be known and added to
the first edge ID of the neighborhood. However, to determine the number of edges in the
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1 template <typename Lambda>
2 uint8_t* decode_intervals(uint8_t *data, EdgeID e,
3 Lambda lambda) {
4 NodeID interval_count = decode_varint(&data);
5 NodeID prev_right_extreme = 2;
6
7 for (NodeID i = 0; i < interval_count; ++i) {
8 NodeID left_extreme_gap = decode_varint(&data);
9 NodeID interval_len_gap = decode_varint(&data);

10
11 NodeID left_extreme = left_extreme_gap + prev_right_extreme - 2;
12 NodeID interval_len = interval_len_gap + kIntervalTreshold;
13
14 for (NodeID j = 0; j < interval_len; ++j) {
15 lambda(left_extreme + j, e + j);
16 }
17
18 prev_right_extreme = left_extreme + interval_len - 1;
19 }
20
21 return data;
22 }

Algorithm 6: An algorithm to decode adjacent nodes encoded as intervals.

previous parts, these must be decoded or their length must be stored explicitly. The second
problem is that a data dependency arises due to the gap encoding. This is because in order
to decode a gap, the previous decoded gap must be known.

High-Degree Encoding. To solve both problem, we modify the compressed edge array
in two ways. First, the neighborhood of each node is split into parts of fixed-length LPart,
which are encoded separately. This means that the encoding previously described, including
gap encoding and interval encoding, is applied to each part independent of the other parts.
It is therefore treated like a separate neighborhood in the context of the previously described
compression scheme. Second, the relative starting position at which each part is encoded
is stored explicitly at the beginning of the neighborhood after the first edge ID. Note that
the relative position is stored as a fixed-width integer. If it were stored as a VarInt, then not
all decoding routines could be started simultaneously because each part position must be
obtained in the stored order due to the variable-length encoding. Moreover, the amount of
parts is not stored because it can be derived from the size of the neighborhood and LPart.
These two modification allow for the parallel iteration of a neighborhood since each part
location is now known in advance and can be decoded independently. It also integrates
into the compression scheme described earlier, the only problem being that all parts use
the marked VarInt of the first edge ID to store whether its part has at least one interval. To
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avoid this, we include a bit marker in the integer of the relative starting position of each part
and use it to indicate whether the respective part has at least one interval.
Furthermore, parallel decoding of a neighborhood is only advantageous if the neighborhood
is large, as otherwise the overhead of starting the parallel tasks dominates. Therefore, we
only split large neighborhoods into parts. More precisely, we only apply this technique
to nodes with degree greater than or equal to a threshold TPart. We call this technique
high-degree encoding.

Parallel Decoder. Algorithm 7 outlines how to decode a neighborhood encoded with
high-degree encoding in parallel. The algorithm starts by computing the number of parts in
the neighborhood in Line 5. As each part contains LPart edges, the total number of parts is
the ceiling of the size of the neighborhood divided by LPart. Then, each part is decoded in
parallel. For that, the relative position of each part and whether it has at least one interval
is decoded. This is implemented in Lines 7–8. Next, the start, the ID of the first edge and
the end of each part are derived in Lines 10–20. The start of each part is the relative part
position added to the start of the encoded parts. The ID of the first edge of each part is the
amount of edges in the previous parts added to the ID of the first edge of the neighborhood.
As each part has LPart edges, there are i ·LPart edges encoded in front of part i+1. To obtain
the end of each part, two cases are considered. If it is not the last part, the end is the start
of the next part. If it is the last part, then the end is the end of the neighborhood. Lastly,
the adjacent nodes are decoded in Lines 22–28. For that, the intervals are decoded if there
are any, and if not all adjacent nodes have been encoded by intervals, the adjacent nodes
encoded as gaps are decoded.

Algorithm for Decoding the Compressed Edge Array

All presented algorithms can be combined to decode the whole neighborhood of a node u.
This results in Algorithm 8. It first determines the start and end of the neighborhood via
the node array. If the start is the same as the end, the node is isolated and the algorithms
stops. This is implemented in Lines 3–7. If the node is not isolated, the gap of the first
edge ID of u and u+ 1 is determined. From the gaps the actual first edge ID of u and the
degree of the neighborhood are derived. This is implemented in Lines 9–13. The next step
is to check whether the node has a high degree, i.e., whether deg(u) ≥ TPart holds. If this is
the case, the neighborhood is encoded using high-degree encoding and the corresponding
decoding routine is called in Line 16. Otherwise, the intervals are decoded first, if there are
any, and then the gaps are decoded, if not all nodes are encoded by the intervals. This is
implemented in Lines 18–24.
If the algorithm is used in a program where parallel decoding is not desired, the algorithm
must be adapted. One possible change would be to provide a second algorithm, which
replaces the parallel for loop in Algorithm 7 with a sequential for loop. This would be
favorable if sequential decoding is required but parallel decoding is also desired because
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1 template <typename Lambda>
2 void decode_parts(uint8_t *data, uint8_t *end,
3 NodeID u, EdgeID e, NodeID degree,
4 Lambda lambda) {
5 NodeID part_count = std::ceil(degree / kPartLength);
6 tbb::parallel_for(0, part_count, [&](NodeID i) {
7 uint8_t *pos_data = data + i * sizeof(NodeID);
8 auto [part_pos, has_intervals] = decode_marked_int(pos_data);
9

10 uint8_t *part_data = data + part_pos;
11 EdgeID part_edge = e + i * kPartLength;
12
13 uint8_t *part_end;
14 if (i + 1 < part_count) {
15 uint8_t *next_pos_data = data + (i + 1) * sizeof(NodeID);
16 auto [next_part_pos, _] = decode_marked_int(next_pos_data);
17 part_end = data + next_part_pos;
18 } else {
19 part_end = end;
20 }
21
22 if (has_intervals) {
23 data = decode_intervals(data, part_edge, lambda);
24 }
25
26 if (data != end) {
27 decode_gaps(part_data, part_end, u, part_edge, lambda);
28 }
29 });
30 }

Algorithm 7: An algorithm to decode adjacent nodes encoded with high-degree encoding in parallel.

then a sequential and parallel algorithm are available. One possible other change would be
to not use high-degree encoding. This would be favorable when only sequential decoding
is used because it avoids the overhead of determining a part position and first edge ID to
decode each part. Furthermore, it makes the compression scheme more space-efficient by
not storing the part count and the relative part positions as well as potentially encoding
larger intervals, which overlap different parts.

5.1.2 Compact Node Array

The uncompressed adjacency array uses fixed-width integers for storing edge IDs in the
node array, where the edge IDs are typically 64-bit integers. This is independent of the
graph to store and is space-inefficient if for example the number of edges of a graph is much
smaller than the maximum number that can be represented with an edge ID. Therefore, we
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1 template <typename Lambda>
2 void decode_neighborhood(NodeID u, Lambda lambda) {
3 uint8_t *data = node_array[u];
4 uint8_t *end = node_array[u + 1];
5 if (data == end) {
6 return;
7 }
8
9 auto [first_edge_gap, has_intervals] = decode_marked_varint(&data);

10 auto [next_first_edge_gap, _] = decode_marked_varint(&data);
11
12 EdgeID e = first_edge_gap + u;
13 NodeID degree = next_first_edge_gap - first_edge_gap + 1;
14
15 if (degree >= kHighDegreeThreshold) {
16 decode_parts(data, end, u, e, degree, lambda);
17 } else {
18 if (has_intervals) {
19 data = decode_intervals(data, e, lambda);
20 }
21
22 if (data != end) {
23 decode_gaps(data, end, u, e, lambda);
24 }
25 }
26 }

Algorithm 8: An algorithm to decode a compressed neighborhood of a node.

store the edge IDs as fixed-width integers, but select the width based on the graph. Ideally,
one would use the size of the compressed edge array in bytes as the width because this is the
largest value stored in the node array. However, since we compress the input graph during
reading, we do not know in advance how large the compressed edge array is, which is why
we select the width using an upper bound of the size that depends on the number of edges.

5.2 Accelerating the Decoding Routine

In addition to the goal of reducing memory consumption, graph compression has the poten-
tial to reduce the running time of the algorithm, especially if it is run in parallel on many
PEs. This is because the compressed graph can reduce the number of memory accesses and
thus reduce the load on the memory subsystem [2]. Parallel algorithms that are run on many
PEs are particularly bottle necked by the memory subsystem, which is why the potential
is greatest in this case. However, this requires fast decoding routines of the compressed
graph to provide graph operations that can keep up with their uncompressed counterparts.
Therefore, we now present various techniques for speeding up the decoding of the VarInts.
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A straightforward implementation of an algorithm for decoding VarInts is a loop that iterates
over the encoded bytes until the continuation bit is not set. In each iteration, the least
significant seven bits are extracted and accumulated into a variable. Algorithm 9 illustrates
such an algorithm. For the sake of simplicity, Algorithm 9 and the following algorithms do
not increment the pointer to the next encoded VarInt, in contrast to the decoding routines
used in Algorithm 8. Moreover, the algorithms only decode 32-bit integers. In order to
decode 64-bit integers with Algorithm 9, the type of the accumulation variable and the
return type have to be adapted.

1 int32_t decode_varint(const uint8_t *ptr) {
2 int32_t result = 0;
3 int32_t shift = 0;
4
5 while (true) {
6 const int32_t byte = *ptr;
7
8 if ((byte & 0b10000000) == 0) {
9 result |= byte << shift;

10 break;
11 } else {
12 result |= (byte & 0b01111111) << shift;
13 }
14
15 ptr += 1;
16 shift += 7;
17 }
18
19 return result;
20 }

Algorithm 9: A straightforward implementation of a VarInt decoder.

The algorithm can be improved by replacing the operations and, or and shift with a
specialized bit-level operation. This results in a faster algorithm because less arithmetic has
to be performed due to the more efficient bit manipulation operation. We use the parallel bit
extract (PEXT) instruction to replace the basic bit-level instructions in the algorithm. The
PEXT instruction receives two arguments: data bits and a mask. It extracts the data bits
according to the bits set in the mask and returns the bits so that they are right-aligned and
contiguous [21]. If the PEXT instruction is called with the mask, which has zeros at the
continuation bits and ones at the remaining places, the result is exactly the decoded integer.
Therefore, the previous algorithm is improved by unrolling the loop and using the PEXT
instruction with the mask that corresponds to the length of the VarInt. Algorithm 10 depicts
the improved implementation. Note that in the case where the VarInt has length one, the
and operation can be used instead. To decode 64-bit integers, the loop has to be unrolled to
handle ten cases because the maximum byte length of a VarInt that encodes a 64-bit integer
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is ten. Moreover, since a VarInt with byte length at least nine cannot fit into a 64-bit register,
the PEXT instruction can only be used to decode the lower 8 bytes of the VarInt. The upper
bytes are decoded with and, or and shift instructions and are appended.
Since the algorithm reads either 4-byte or 8-byte chunks, which contain the encoded integer,
but might also contain other data, it must be ensured that the chunks can be read from the
passed pointer. This could pose a problem when decoding the compressed edge array. For
example, if the last VarInt in the compressed edge array has length five, an 8-byte chunk
is read, which contains three bytes that do not belong to the compressed edge array. The
compressed edge array must therefore be padded with three bytes at the end in order to
avoid segmentation faults.

1 int32_t decode_varint(const uint8_t *ptr) {
2 if ((ptr[0] & 0b10000000) == 0) {
3 return *ptr & 0b01111111;
4 }
5
6 if ((ptr[1] & 0b10000000) == 0) {
7 return _pext_u32(
8 *reinterpret_cast<const uint32_t *>(ptr),
9 0x7F7F

10 );
11 }
12
13 if ((ptr[2] & 0b10000000) == 0) {
14 return _pext_u32(
15 *reinterpret_cast<const uint32_t *>(ptr),
16 0x7F7F7F
17 );
18 }
19
20 if ((ptr[3] & 0b10000000) == 0) {
21 return _pext_u32(
22 *reinterpret_cast<const uint32_t *>(ptr),
23 0x7F7F7F7F
24 );
25 }
26
27 return static_cast<uint32_t>(
28 _pext_u64(
29 *reinterpret_cast<const uint64_t *>(ptr),
30 0x7F7F7F7F7F
31 )
32 );
33 }

Algorithm 10: A decoder for VarInts using the PEXT instruction, where the number of cases con-
sidered corresponds to the number of bytes decoded.
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In the following, we present two further variable-length encodings, which can be used
instead of VarInts. With these encodings, the decoding can be accelerated. However, the
disadvantage of these encodings is that they have worse compression rates, i.e., they require
more bits per encoded integer on average. These encodings are therefore optional if one
wants better running times and can tolerate worse compression ratios.

5.2.1 Run-Length Encoding

Run-length encoding (RLE) is a variable-length encoding, which identifies consecutive
integers of the same length and stores each integer with the minimal number of bytes
behind a byte header [38]. The byte header encodes how many integers with the same
length follow and what length they have.

A reason to use this encoding is that it is faster than VarInts to decode because branch
mispredictions can be avoided. This is the case because the continuation bit does not have
to be checked as it is known how many integers are encoded in a run. Therefore, the
decoding loop is avoided for the integers in a run. Note that we only use it to encode the
gaps in the compressed edge array. This means that the first edge ID and interval data
are still encoded with VarInts when using RLE. The reason for this is that the algorithms
for decoding the different parts remain independent, which simplifies the implementation.
Furthermore, we do not apply RLE to the interval data because the data from one interval
could be contained in two runs, which would complicate the decoding routine.

The exact format of RLE used for the compression scheme is as follows. To encode 32-bit
node IDs, the byte header is split into two least significant bits and six upper significant bits.
The header uses the least significant two bits to encode the number of bytes used to store
the integers in the respective run. It uses the upper significant six bits to encode the length
of the run. We decrement the length of the run by one before storing it because each run
has a minimum length of one. Therefore, a run can only contain a maximum of 65 integers.
To encode 64-bit node IDs, the byte header is split into three least significant bits and five
upper significant bits. The run is encoded in the header analogously to the 32-bit encoding.
Therefore, a run can only contain a maximum of 33 integers. Figure 5.4 depicts the layout
of RLE with 32-bit node IDs.

Run 2
Header 2

Run 1
Header 1

Run 0
Header 0

......
1 byte

7...
1 byte
6...

1 byte
5

1 byte
000010 00...

2 byte
310

1 byte
000000 01...

1 byte
3...

1 byte
2...

1 byte
1

1 byte
000010 00

Figure 5.4: The layout of byte headers and encoded integers when stored with RLE. The array is
filled with sample data. The lower value in each entry of the arrays specifies how many
bytes the encoded integer takes up. Moreover, the value of the byte headers are shown
in binary.
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5.2.2 Stream VByte

Besides run-length encoding, vectorization of the decoding routine is another way to speed
up the decoding of the variable-length encoded integers in the compressed edge array. This
is because with Single-Instruction-Multiple-Data (SIMD) instructions multiple variable-
length encoded integers can be simultaneously decoded. Additionally, branch mispredic-
tions can be avoided by decoding multiple integers in blocks. Therefore, we provide an
alternative variable-length encoding, which uses SIMD instructions to speed up the decod-
ing routine.
We use the Stream VByte encoding for this, which decodes four variable-length integers
simultaneously using SIMD instructions [26]. Stream VByte stores each integer with only
the minimum number of bytes needed. To decode the integers, they are grouped into blocks
of four and a control byte is added for each such block. The control byte is split into
parts of 2 bits, each part storing the number of bytes an integer in the block is stored with.
For now, we assume that the number of stored integers is a multiple of four. The Stream
VByte encoding stores the control bytes and encoded integers separately in memory. This
means that all control bytes are stored contiguously at the beginning and the integers are
stored contiguously directly behind them. With this layout, the control bytes are stored
in such a way that the control byte of the next block does not depend on the length of
the previous block and can therefore be read predictably, unlike when control bytes and
integers are stored interleaved. This allows the processor to read the control bytes without
data dependencies [26]. Figure 5.5 shows the layout of Stream VByte.

Block iBlock 0
Control Byte iControl Byte 0

...
1 byte
3...

1 byte
2...

1 byte
1...

2 byte
1024......

1 byte
13...

3 byte
66531...

2 byte
346...

1 byte
4

1 byte
01 00 00 00...

1 byte
00 01 10 00

Figure 5.5: The layout of control blocks and encoded integers when stored with Stream VByte.
The array is filled with sample data. The lower value in each entry of the arrays
specifies how many bytes the encoded integer takes up. Moreover, the value of the
control bytes are shown in binary.

We will now explain how to decode a block of integers. Two lookup tables are used for this
purpose. The first lookup table stores for each possible control byte the number of bytes
that the corresponding block takes up in memory. It is used to determine the position of
the next block in memory. The second lookup table stores for each possible control byte a
shuffle mask. This shuffle mask is used to rearrange the encoded integers, which are loaded
into a SIMD register, such that the decoded integers can be extracted from the register. In
Algorithm 11, we show how the integers are decoded using the lookup tables. First, the
number of control bytes is determined from the number of encoded integers and then a
pointer to the start of the encoded integers is created. This is implemented in Lines 2–4.
Then, the blocks are visited and decoded. In Lines7–8, the current control byte is read and
the length of the block is derived from the lookup table. Then, the next 16 bytes, which
include the data of the current block, are loaded into a SIMD register. Further, the bytes
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of the current block are skipped such that the next block can be loaded afterwards. This is
implemented in Lines 10–11. Next, in Lines 13–14, the shuffle mask is loaded from the
lookup table and is applied to the data loaded into the SIMD register. Finally, in Lines16–20,
the decoded values are extracted and can be processed. Note that for decoding, the number
of encoded integers is required. For our case, this is given because we are storing the degree
of a neighborhood explicitly.

1 void decode_stream(const uint8_t *ptr, const size_t size) {
2 const size_t num_control_bytes = size / 4;
3 const uint8_t *control_bytes = ptr;
4 const uint8_t *data = ptr + num_control_bytes;
5
6 for (size_t i = 0; i < num_control_bytes; ++i) {
7 const uint8_t control_byte = control_bytes[i];
8 const uint8_t length = kLengthTable[control_byte];
9

10 __m128i value = _mm_loadu_si128((const __m128i *)data);
11 data += length;
12
13 const __m128i shuffle_mask = kShuffleTable[control_byte];
14 value = _mm_shuffle_epi8(value, shuffle_mask);
15
16 uint32_t value1 = _mm_extract_epi32(value, 0);
17 uint32_t value2 = _mm_extract_epi32(value, 1);
18 uint32_t value3 = _mm_extract_epi32(value, 2);
19 uint32_t value4 = _mm_extract_epi32(value, 3);
20 // Decoded values can be passed to a caller, for example
21 }
22 }

Algorithm 11: A decoder for integers encoded with Stream VByte.

If the number of encoded integers is not a multiple of four, the last block has to be treated
specially. The control byte is read first and is used to obtain the shuffle mask. Then the
data is loaded into a SIMD register and the shuffle mask is applied to it. Finally, only the
number of integers stored in the last block are extracted from the SIMD register.

As with RLE, we only apply Stream VByte encoding to the gaps because this simplifies
the decoding algorithms. Moreover, a padding of three bytes is added to the compressed
edge array. This is necessary because the decoder reads 4-byte chunks into a SIMD register,
which could lead to a segmentation fault if the number of encoded integers is not a multiple
of four. In addition, Stream VByte can only encode 32-bit integers. So when the encoding
is used, node IDs are 32-bit, which allow for graphs with up to 232 nodes.
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5.3 Compressing a Graph in a Single Disk-Read
Operation

A bottleneck for the practical use of a graph partitioning application is the time required
to read a graph from disk. This is particularly problematic for our use case because graph
compression is usually applied to large graphs. These graphs take up a lot of space on the
hard disk, and therefore have slow read times. To prevent reading the graph multiple times
due to the building of the compressed graph, we now describe a way to read the graph from
disk in a single read operation while compressing it, whereby only additional memory in
the size of the largest neighborhood of the graph is required.
One problem that makes it difficult to compress graphs in a single disk-read operation
without temporarily storing the graph in an uncompressed format is that the length of
the compressed edge array is not known prior to compression and therefore the amount of
memory that needs to be allocated is unknown. This is because the length of the compressed
edge array is the sum of the lengths of the individual integers, most of which are encoded
with variable length. In order to determine the lengths of all variable-length encoded
integers, they must be encoded or their encoded lengths have to be determined. This means
that the length is not available before the actual compression or before being aware of all
integers to encode. Therefore, it is not known how much memory needs to be allocated
before the graph to be compressed is read.
To solve this problem, we overcommit enough memory to store the compressed graph. This
can be done by either computing an upper bound of the maximal size of the compressed
graph if the order and size of the graph is known beforehand, or allocating all the physically
available memory. Further, only the memory that stores the compressed graph is written to
and read from. This ensures that only these memory pages are mapped to physical pages
and therefore no memory is wasted.
Moreover, we want to reduce the additional memory consumption during compression.
We therefore compress nodes individually and sequentially. In addition, when reading the
graph from disk and compressing it, we only use a single dynamically growing temporary
buffer, which stores exactly one neighborhood of a node at each time. The temporary buffer
is reused when compressing the nodes. Therefore, the additional memory used during
compression is in the size of the largest neighborhood of the graph.
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In this chapter, we evaluate the memory optimizations that we introduced in Chapter 4 and
Chapter 5. By means of these experiments, we want to find out how the changes affect
the memory consumption, the running time and the quality of the produced partition. To
this end, we explain the setup of the experiments and methodology in Section 6.1. In
Section 6.2, we then describe how we determine the memory consumption for the exper-
iments using a specially integrated heap profiler in KaMinPar. Next, in Section 6.3, we
describe the experiments and evaluate the results obtained with our benchmark sets. In
Section 6.4, we evaluate our memory optimizations on three huge graphs. Finally, in Sec-
tion 6.5, we compare memory-efficient KaMinPar against other shared-memory multilevel
graph partitioners.

6.1 Experimental Setup and Methodology

The presented memory optimizations have been applied to KaMinPar, which is imple-
mented in C++. For the following experiments, we compiled it using g++ version 12.1.0
and used Intel oneTBB [33] as a parallelization library. The flags -O3 -mtune=native
-march=native -msse4.1 -mcx16 were used for compilation. The additional com-
piler flag -mbmi2 was used for the experiment about the fast VarInt decoder using the
PEXT instruction.

Systems. The experiments were conducted on two machines. All experiments except the
one about the fast VarInt decoder using the PEXT instruction were conducted on a machine
equipped with an AMD EPYC 7702P processor, which has 64 cores running at 2.0-3.35
GHz, and with 1024 GB of main memory. Since the machine uses an AMD processor of
the second Zen generation, which needs 18 machine cycles for the PEXT instruction [16],
the experiment about the fast VarInt decoder was conducted on a machine with an Intel
processor. We used a machine with an Intel Xeon Gold 6314U processor, which has 32
cores running at 2.3 GHz, and with 512 GB of main memory. Such a processor only uses
3 machine cycles for the PEXT instruction [16]. Furthermore, both machines run Ubuntu
20.04. For all experiments, we used the taskset program1 to bind the execution of KaMinPar
to one thread of each core in order not to use hyper threading.

1https://github.com/util-linux/util-linux

45

https://github.com/util-linux/util-linux


6 Experimental Evaluation

Instances. For the evaluation of our changes to the KaMinPar algorithm, the benchmark
set by Maas, Gottesbüren and Seemaier [29] is used. It consists of 71 graphs from the
SuiteSparse Matrix Collection [11], Network Repository [35], graphs created by compress-
ing texts from the Pizza&Chill corpus [23, 14] and artificially created graphs [17]. The
graphs are mostly unweighted except for the six graphs from the compression class. More
details about the benchmark set can be found in Appendix A.

We have reordered the graphs for all experiments so that the nodes are sorted into exponen-
tially spaced degree buckets, i.e., a node u with 2i ≤ deg(u) < 2i+1 is placed in bucket
i. Usually this is done in-memory in KaMinPar but to avoid the memory overheads we
do it offline. We reorder the graphs to improve the quality of the clustering produced by
label propagation [19]. In addition, all isolated nodes are labeled as the last nodes with this
reordering. This allows us to store the first edge IDs at the beginning of each neighborhood
as gaps and thus improve the compression ratio for our compression scheme.

Methodology. To evaluate the change in quality, running time and memory consumption
from our modifications, we use two different benchmarks. The first benchmark is a complete
run of the KaMinPar algorithm. We use this benchmark to measure the impact on partition
quality, total running time and total memory consumption. The second benchmark is a label
propagation microbenchmark. It consists of one round of label propagation as performed
in the KaMinPar algorithm to compute a clustering. We use this benchmark to compare
different configurations of the compressed graph scheme and the choice of parameter L for
the two-level cluster weight vector. This allows us to obtain information about the effect on
the total running time and at the same time shorten the duration of the experiments. It also
gives us cleaner measurements because other factors, which are present in a full KaMinPar
run, are excluded.

For the experiments using the first benchmark, we run the graphs on five different numbers
of blocks k ∈ { 8, 37, 91, 128, 1000 }. We also use five different seeds for each pair of
graph and k. For the second benchmark, we just use k = 128 because this only has an
influence on the maximum cluster weight. Likewise, we run the experiments for each
graph on five different seeds. Furthermore, we use ε = 0.03 as the imbalance parameter.
To aggregate the results of the experiments, we calculate the edge cut, running time and
memory consumption for each graph and k by calculating the arithmetic mean of the results
over all seeds. To aggregate the results for one graph, we use the geometric mean over all
k-value results, and to aggregate the results for one algorithm, we use the geometric mean
over all graph results.

Performance Profiles. We use performance profiles [12] to evaluate how the quality,
i.e., the cut, of the partition produced by the algorithm changes with the memory optimiza-
tions. Let A be the algorithms we want to compare and I the graph instances on which
the quality measurement was performed. In addition, let qA(I) be the quality of algorithm
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A ∈ A on instance I ∈ I and rA(I) =
qA(I)

minA′∈A qA′ (I)
the so-called performance ratio. Then,

the performance profile plots for each algorithm the proportion of instances whose quality
is within a factor τ of the best quality. The curve of the following function is therefore
drawn for each algorithm A ∈ A:

ρA(τ) :=
|{ I ∈ I | rA(I) ≤ τ }|

|I|
An algorithm that achieves higher fractions for smaller τ values is considered better.

6.2 Heap Profiler

To evaluate the memory consumption of the algorithms, we have built our own heap profiler
into KaMinPar. The heap profiler works by overriding the standard functions provided by
the C standard library for allocating, reallocating and freeing memory, such as malloc and
free. Note that we do not overwrite the memory operations from the C++ standard library,
such as new and delete, because these call the memory operations of the C standard
library internally in the implementation of GCC [9], thus avoiding double counting. Since
in the Linux-based C standard library of GCC the memory allocation routines are defined
as weak symbols [27], which are special symbols during linking that can be overridden
by (strong) symbols of the same name, the override is done by simply redefining the
corresponding routines. The redefined routines then call the memory routines against which
they should actually be linked and additionally track the memory operation. This means
that by redefining the memory routines, the memory operations are forwarded as if they had
been linked correctly, with the change that the operation is also tracked by our heap profiler.
Because memory routines can be called from different PEs in parallel, the tracking of the
memory operations is synchronized by locks. Therefore, the measured running time of the
algorithms can increase while using the heap profiler.
One advantage of the heap profiler in contrast to an external tool that measures memory
consumption is the possibility of a detailed and customizable overview of the memory con-
sumption because it is integrated directly into the program. In addition to the measurement
of the overall memory consumption, the heap profiler also allows us to mark sections in the
algorithm in which memory measurements are recorded separately. This makes it possible
to examine how much memory is consumed by the various components of the algorithm,
such as clustering or contraction, and thus obtain a detailed overview of the algorithm’s
memory consumption.

6.3 Memory Optimizations

In this section, we evaluate our presented memory optimizations. We start the experiments
with all memory optimizations disabled and enable them one by one. In addition to the
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memory optimizations that we have presented in this thesis, we have made further minor
optimizations to KaMinPar, which we also enabled in all the following experiments. We
begin by first briefly presenting these minor optimizations.

6.3.1 Minor Optimizations

The first minor optimization is a change in the allocation of a memory buffer used to
store subgraphs induced by a partition. This buffer is used for bipartitioning during initial
partitioning [19]. It was previously allocated depending on the size of the input graph. Now
we allocate it with the size of the coarse graph on which the last bipartitioning takes place
because the partition then consists of the desired number of blocks and is therefore not
bipartitioned any further. This means that the buffer is not required for larger coarse graphs
and memory space can be saved if the buffer is allocated with a minimum size. With this
change, the memory consumption of KaMinPar on 64 PEs decreases from 5.87 GB to 4.65
GB and the running time from 3.63 s to 3.48 s.
We have also made changes to the initialization of the greedy balancer, which is responsible
for balancing the partition [19]. As the balancer is not always needed, we initialize it lazily
to save memory space in such cases. With this additional change, the memory consumption
of KaMinPar on 64 PEs decreases from 4.65 GB to 4.46 GB and the running time from
3.48 s to 3.43 s.
As a final minor optimization, we deallocate the data structures of label propagation and
contraction directly after execution during coarsening. This means that they are not held in
memory at the same time and the memory peak can therefore be reduced. We only apply
the technique to coarsening, because coarsening is the decisive factor for the peak memory.
With this final change, the memory consumption of KaMinPar on 64 PEs decreases from
4.46 GB to 3.93 GB while the running time increases from 3.43 s to 3.69 s. This means that
this change has running time costs of about 7.6%.

6.3.2 Two-Phase Label Propagation

We now present the experiments for evaluating the change in memory consumption, running
time and quality when using two-phase label propagation. Note that no further memory
optimizations from Chapter 4 or Chapter 5 are enabled for these experiments.

Memory Consumption. In Figure 6.1, we compare the memory consumption of single-
phase label propagation and two-phase label propagation. In the plot, we have excluded the
data for two-phase label propagation with 4 PEs because its memory consumption roughly
corresponds to the memory consumption of two-phase label propagation with 64 PEs. This
is because at most one array is allocated and the memory consumption otherwise only
differs due to the thread-local hash tables, which are each at most 1 MB in size
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Figure 6.1: The maximum memory consumption of label propagation during the coarsening phase
of KaMinPar. Each point (x, y) represents a graph instance, where x is the number of
nodes of the graph and y is the corresponding memory consumption of label propaga-
tion when run on the graph.

We can observe that single-phase label propagation on 64 PEs has the highest memory
consumption, followed by single-phase label propagation on 4 PEs and that two-phase label
propagation has the lowest memory consumption. This is expected, because at most one
array with memory space in Θ(n) is allocated for two-phase label propagation in contrast
to single-phase label propagation, which in the worst case allocates 4 resp. 64 such arrays
when run on 4 resp. 64 PEs. Note that the memory consumption is not strictly linear with
respect to the number of nodes because not every PE has to allocate an array or a hash table.

The total memory consumption of KaMinPar on 64 PEs is 3.93 GB with single-phase
label propagation and 2.89 GB with two-phase label propagation. With this change, we
therefore reduce the total memory consumption on our benchmark set by a factor of 1.36
when run on 64 PEs. When we look at the total memory consumption of the largest graphs
(∆(G) ≥ 250 000) from the benchmark set on 64 PEs, we see that it drops from 12.87 GB
to 4.92 GB by a factor of 2.62. In Figure 6.2, we compare the total memory consumption
relative to single-phase label propagation on 4 PEs for these graphs. The graph with the
best reduction of its memory consumption is webbase2001 with a factor of 5.23, where we
reduce its total memory consumption from 65.82 GB to 12.59 GB. However, the maximum
memory consumption of KaMinPar with two-phase label propagation is still 25.18 GB for
the friendster graph because other factors such as the graph itself still consume memory.
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Figure 6.2: The total memory consumption of KaMinPar relative to single-phase label propagation
on 4 PEs of the largest graphs (∆(G) ≥ 250 000) from the benchmark set.

Running Time. Next, we evaluate the running times of KaMinPar when the different
variants of two-phase label propagation are used. First, we want to find out which strategy
works best to select nodes for the second phase. Then, we also want to find out whether
buffering in the second phase provides running time advantages because it may prevent
high contention caused by the atomic fetch-and-add instructions.
In Table 6.1, we present the running times of single-phase label propagation and the variants
of two-phase label propagation. For two-phase label propagation, we compare High-Degree
(HD) and Full-Rating-Map (FRM) as the selection strategies. In addition, we evaluate the
advantages of buffering for both selection strategies.

Table 6.1: Geometric mean running times T of KaMinPar for the different variants of two-phase
label propagation when run on p PEs.

Algorithm T [p = 4] T [p = 64]

Single-Phase 8.10 s 3.84 s
Two-Phase HD 8.15 s 3.79 s
Two-Phase HD Buffered 8.17 s 3.63 s
Two-Phase FRM 8.27 s 3.48 s
Two-Phase FRM Buffered 8.28 s 3.46 s

We observe that single-phase label propagation is the fastest algorithm on 4 PEs. The
algorithm is followed by two-phase label propagation with HD as the selection strategy and
then with FRM as the selection strategy, both of which are slightly slower. Furthermore,
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the buffered variant brings no running time advantages for both strategies on 4 PEs. This
is possibly due to the fact that with 4 threads there is little contention and therefore the
overhead when flushing the buffer is predominant.
However, we observe that on 64 PEs all two-phase variants are faster than single-phase
label propagation. Furthermore, we can observe that FRM is the faster strategy on 64 PEs.
We also see that buffering provides running time advantages for both selection strategies.
However, the running time advantage is especially evident for HD as a selection strategy.
For the HD selection strategy, using buffers in the second phase reduces the running time by
about 4.4% and for the FRM selection mode by about 0.6%. When we look at the running
times of individual graphs, we see that for FRM the running time of none of the graphs of
our benchmark set decreases noticeable. For HD, however, a noticeable improvement can
be observed for individual graphs. For example, the running time for the sk2005 graph and
HD as the selection strategy decreases from 65.7 s to 14.6 s due to buffering, which is a
speed-up factor of 4.5.
Furthermore, if we only look at the running time required for label propagation and divide
it into the time for the first and second phase (only considering graphs that require a second
phase), we see that the second phase without buffering uses 1.6% resp. 6.3% of the time
for p = 4 resp. p = 64 with the FRM strategy and 8.7% resp. 54.8% of the time for p = 4
resp. p = 64 with the HD strategy. This shows that with the FRM strategy, fewer nodes
enter the second phase and therefore the percentage of time used for the second phase is
less compared to HD.

Quality. Finally, we want to evaluate how the quality is affected by two-phase label
propagation. In Figure 6.3, we compare the quality of single-phase label propagation and
the variants of two-phase label propagation. We find that two-phase label propagation has
slightly better quality than single-phase label propagation and that the FRM strategy results
in better quality than the HD strategy.
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51
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6.3.3 Graph Compression

In this section, we evaluate the memory consumption, running time and impact on quality
when our graph compression scheme is used to store the input graph in KaMinPar. For all
these experiments, we use two-phase label propagation with FRM as the selection strategy
and we do not use buffering in the second phase.

Compression Scheme. First, we evaluate the different variants of our compression
scheme. As compression techniques for the adjacency array we use the compact node array
and the edge array with variable-length encoding and gap encoding, which we call gap
encoding as a whole. Furthermore, we investigate the effects of applying interval encoding
and high-degree (HD) encoding to the edge array. We use TInterval = 3 as the threshold
for the minimum interval length, TPart = 10000 as the degree threshold for the use of
HD encoding for a node and LPart = 1000 as the length of the parts when splitting the
neighborhood of a high-degree node. In Table 6.2, we compare the compression ratios and
the running times of these compression schemes.

Table 6.2: Geometric mean compression ratios and running times T of a label propagation micro
benchmark with p PEs when graph compression is used with the corresponding scheme.

Compression Scheme Ratio T [p = 4] T [p = 64]

Uncompressed - 2.23 s 0.47 s
Gap Encoding 2.28 2.63 s 0.50 s
Gap HD Encoding 2.27 2.75 s 0.48 s
Gap Interval Encoding 2.80 2.80 s 0.52 s
Gap Interval HD Encoding 2.80 3.08 s 0.51 s

We observe that with gap encoding alone we already achieve an average compression ratio
of 2.28, i.e., we can reduce the memory space of the input graph by more than half on
average. Furthermore, we can achieve even higher compression ratios if we additionally
use interval encoding for the edge array. With such a scheme we achieve compression ratios
of 2.80 on average. However, the running time when we use graph compression increases
on average. This applies to the running time on both 4 and 64 PEs, whereby the relative
slowdown is higher with 4 than with 64 PEs. We also see that HD encoding improves the
running time on 64 PEs and has very little impact on the compression ratio.
In Figure 6.4, we present the detailed compression ratios of all graphs. The best compression
ratio we can achieve with gap encoding is 3.86 for the mycielskian19 graph. With interval
encoding, the best compression ratio is 8.79 for the HV15R graph. Compression ratios of
less than one are also achieved. This concerns the kmer-A2a and kmer-V1r graphs, whereby
the kmer graphs are all poorly compressible with our scheme. This is due to the fact that
the node IDs are not particularly reduced by gap encoding, and thus, despite variable-length
encoding, these IDs are stored on average with about 4 bytes. Then, there is the fact that
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6.3 Memory Optimizations

we store the first edge ID for each neighborhood, which causes more bytes to be required
overall than in the uncompressed adjacency array.

Interval Length Threshold. Because the running time of interval encoding increase
compared to gap encoding, which is especially the case on 4 PEs, we now investigate
the influence of the minimum interval length threshold TInterval on the running time and
compression ratio. With this, we hope to find a threshold that has better running times with
only a small loss in the compression ratio. Table 6.3 shows the compression ratios and
running times of various thresholds. We find that even increasing the threshold by one or
two does considerably reduce the compression ratio and has only minimal benefits for the
running time. For the following experiments, we therefore continue to use TInterval = 3.

Table 6.3: Geometric mean compression ratio and running times T of a label propagation mi-
crobenchmark with p PEs when using the corresponding interval length threshold.

TInterval Ratio T [p = 4] T [p = 64]

3 2.80 3.08 s 0.51 s
4 2.74 3.06 s 0.50 s
5 2.71 3.04 s 0.50 s

Variable-Length Encoding. In Table 6.4, we compare the compression ratios and
running times when using VarInts, RLE and Stream VByte encoding (SVE). As expected,
the compression ratios of both alternative variable-length encodings decrease because RLE
stores one byte header for each run of integers with the same byte width and SVE stores two
additional bits for each integer. On 64 PEs, both encodings offer running time advantages
compared to VarInt. On 4 PEs, however, only RLE brings running time advantages. In the
following, we will continue to use VarInt as the variable-length encoding for all experiments
because of the better compression ratio and because the running time improvements of the
alternative variable-length encodings are only minimal.

Table 6.4: Geometric mean compression ratio and running times of a label propagation microbench-
mark with p PEs when using the corresponding variable-length encoding.

Encoding Ratio T [p = 4] T [p = 64]

Uncompressed - 2.23 s 0.47 s
VarInt 2.80 3.08 s 0.51 s
RLE 2.66 3.06 s 0.50 s
SVE 2.69 3.09 s 0.50 s
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Figure 6.4: Compression ratios for all graphs in the benchmark set.
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Fast VarInt Decoder. In Table 6.5, we compare the running time when using the VarInt
decoder, which is implemented using a while loop, and the fast decoder, which is imple-
mented using the PEXT instruction. We observe that the fast VarInt decoder has better
running times. On 4 PEs it improves the running time by about 7.5% and on 64 PEs by
about 8.2%. In the following, however, we do not use the fast VarInt decoder for the reason
that it requires a natively supported PEXT instruction and the running time improvement
therefore depends on the system. For example, the system on which we conducted all
other experiments implements the PEXT in microcode [16], which is why the running time
advantages are not available on this system.

Table 6.5: Geometric mean running times of a label propagation microbenchmark with p PEs when
using the corresponding VarInt decoder. Note that this experiment was carried out on a
different machine than the other experiments.

VarInt Decoder T [p = 4] T [p = 32]

Uncompressed 2.00 s 0.40 s
VarInt 2.73 s 0.53 s
Fast VarInt 2.54 s 0.49 s

Total Memory Consumption. The total memory consumption of KaMinPar on 64
PEs is 2.89 GB without graph compression and is 2.33 GB with graph compression. We
therefore reduce the memory consumption of KaMinPar on our benchmark set with graph
compression by a factor of 1.26.

Total Running Time. The total running time of KaMinPar with graph compression is
9.55 s for p = 4 and 3.62 s for p = 64. KaMinPar without graph compression has running
times of 8.27 s for p = 4 and 3.48 for p = 64. Therefore, we have a slowdown of 1.16 for
p = 4 and of 1.04 for p = 64 on average. However, by using graph compression, on some
inputs we also achieve faster running times. Figure 6.5 shows the relative total running
times of KaMinPar for the graphs that are faster with graph compression. This is given for
13 graphs.

Quality. The left plot in Figure 6.6 compares the quality of KaMinPar when it uses graph
compression and when it does not use graph compression. There we can see that KaMinPar
produces better partitions with the uncompressed graph. The loss in quality is due to the
edge reordering of the compressed graph. This can be seen in the right plot in Figure 6.6,
which compares the quality of KaMinPar using the compressed graph and the uncompressed
graph, whose edges are reordered according to the order of the compressed graph. There
we can see that both have the same (worse) quality. We explain the worse quality due to
edge reordering by the fact that in label propagation, when selecting one of several clusters
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Figure 6.5: The total running time of KaMinPar relative to using the uncompressed graph repre-
sentation on 64 PEs for the graphs that are faster with graph compression.

with the same number of members in a neighborhood, the clusters of the adjacent nodes at
the end of a neighborhood are strongly preferred. Therefore, we believe that we can restore
the quality loss with a uniform random tie-breaking strategy. However, this requires further
experiments, which we do not address in this thesis.
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Figure 6.6: Performance profile comparing the quality of KaMinPar when using and not using
graph compression. The plot on the left compares the quality when the uncompressed
graph uses its default edge order and the plot on the right compares the quality when
the uncompressed graph uses the edge order of the compressed graph.

56



6.3 Memory Optimizations

6.3.4 Contraction

In this section, we evaluate the three proposed changes to the contraction algorithm to
reduce the memory consumption of the edge buffer. In the following experiments, we still
use two-phase label propagation with FRM as the selection strategy and without buffering
during the second phase. We also use graph compression with gap encoding, interval
encoding, high-degree encoding and VarInts as the compression scheme. Furthermore, we
use M = 1/10 as the parameter for the contraction variant that fills the edge buffer partially.

Memory Consumption. In Figure 6.7, we compare the memory consumption of all
four contraction implementations. We observe that all three proposed changes reduce
the memory consumption of contraction. Moreover, as expected, the two variants that
completely eliminate the edge buffer perform better than the variant that only partially
fills the edge buffer. If we look at the maximum memory consumption of contraction
on 64 PEs aggregated over all graphs, the original variant requires 0.36 GB, the variant
that fills the edge buffer partially 0.29 GB and the variants that eliminate the edge buffer
0.25 GB. However, if we look at the total memory consumption, it is 2.33 GB for the
original implementation, 2.31 GB for the variant that partially fills the edge buffer and 2.25
GB for the variants without edge buffer. The reason why the total memory consumption
decreases less than the memory consumption for contraction is due to the change that the
data structures of label propagation are deallocated afterwards. As a result, contraction is
not always responsible for the peak memory and therefore the change is not always reflected
in the total peak memory.
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Figure 6.7: The maximum memory consumption of contraction during the coarsening phase of
KaMinPar. Each point (x, y) represents a graph instance, where x is the number of
nodes of the graph and y is the corresponding memory consumption of contraction
when run on the graph.

57



6 Experimental Evaluation

Running Time. In Table 6.6, the running times of the contraction algorithms are com-
pared. We find that on 4 PEs, the variant that aggregates the neighborhoods of the coarse
nodes twice is the slowest. On 64 PEs, however, the variant that only partially fills the edge
buffer is the slowest. Moreover, in both cases, the variant that eliminates the edge buffer by
remapping is the fastest. This variant is even faster than the original implementation.

Table 6.6: Geometric mean running times T of KaMinPar with p PEs for the different contraction
algorithms.

Algorithm T [p = 4] T [p = 64]

Edge Buffer 9.55 s 3.62 s
Edge Buffer Partial Fill 9.64 s 3.74 s
No Edge Buffer Compute Twice 10.02 s 3.65 s
No Edge Buffer Remap 9.49 s 3.60 s

Quality. Finally, in Figure 6.8, we compare the change in quality when using the different
contraction algorithms. As we can see, the curves overlap, which means that all algorithms
compute the best partition on about the same fraction of graphs. We therefore observe no
loss of quality when a different contraction algorithm is used.
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Figure 6.8: Performance profile comparing the quality of KaMinPar when used with the different
contraction algorithms on 64 PEs.

6.3.5 Two-Level Cluster Weight Vector

In this section, we evaluate the two-level vector for storing the cluster weights. As before,
we use two-phase label propagation with graph compression for all experiments. This time
we also use the contraction algorithm that eliminates the edge buffer by remapping.
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Impact of the Vector Entry Size L. First, we evaluate the influence of the parameter
L ∈ { 8, 16, 32 } (word width in bits of the first level) on the running time and memory
consumption. As concurrent hash tables we have used the hash tables of oneTBB [33]
and growt [30]. Table 6.7 shows the running time for the different L values and the two
hash tables. For both hash tables and L = 8 is the original data structure for storing the
cluster weights faster. However, for L = 16 and L = 32 the two-level cluster weight vector
improves the running time except for growt with L = 32 and p = 4, where it performs
slightly worse. Furthermore, oneTBB’s hash table is faster than growt’s hash table in all
configurations.

Table 6.7: Geometric mean running times T of a label propagation microbenchmark when run on
p PEs and using the two-level cluster weight vector with the corresponding parameter
L.

oneTBB growt
L T [p = 4] T [p = 64] T [p = 4] T [p = 64]

Reference 3.08 s 0.51 s 3.08 s 0.51 s
8 3.24 s 0.66 s 3.64 s 1.57 s
16 2.85 s 0.49 s 3.04 s 0.50 s
32 2.86 s 0.49 s 3.11 s 0.51 s

In Table 6.8, we compare the memory consumption for the different L values and the two
hash tables. The best memory consumption can be seen with the two-level cluster weight
vector and L = 8, then with L = 16 and then with L = 32. As expected, the original
implementation has the worst memory consumption. We also see that the hash table of
oneTBB has the lower memory consumption.

Table 6.8: Geometric mean memory consumption M of a label propagation microbenchmark when
run on p PEs and using the two-level cluster weight vector with the corresponding
parameter L.

oneTBB growt
L M [p = 4] M [p = 64] M [p = 4] M [p = 64]

Reference 116.81 MB 228.15 MB 116.81 MB 228.15 MB
8 84.90 MB 189.91 MB 87.32 MB 191.44 MB
16 89.49 MB 195.53 MB 91.92 MB 197.03 MB
32 98.63 MB 206.60 MB 101.09 MB 208.13 MB

Total Running Time and Memory Consumption. The running time of KaMinPar
without the two-level cluster weight vector is 9.49 s for p = 4 and 3.60 for p = 64. The
running time with the two-level cluster weight vector and L = 16 is 9.18 s for p = 4 and
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3.62 s for p = 64. Therefore, we find that the running time decreases slightly for p = 4 and
increases slightly for p = 64. Furthermore, when we look at the total memory consumption
of KaMinPar we find that it decreases from 2.25 GB to 2.20 GB.

6.4 Memory Savings for Huge Graphs

The experiments in Section 6.3 show that our memory optimizations reduce the memory
consumption of KaMinPar on 64 PEs for our benchmark set from 3.93 GB to 2.20 GB
and that the running time even decreases from 3.84 s to 3.60 s. However, the benchmark
set consists of no huge graphs, which means that they can be partitioned on a machine
with a reasonable amount of main memory even before our memory optimizations. In
the following, we therefore want to evaluate how much the memory consumption of huge
graphs is reduced by our memory optimization and what effect it has on the running time.
For this purpose, we use three of the largest graphs available: gsh2015, clueweb12 and
uk2014 [4, 5, 6]. Details about the graphs are listed in Table 6.9.

Table 6.9: Number of nodes n, number of edges m, average degree d(G), max degree ∆(G) and
class of the three evaluated huge graphs.

Graph G n m d(G) ∆(G) Class

gsh2015 988 490 691 51 381 410 236 76.4 75 611 696 Web
clueweb12 978 408 098 74 744 358 622 52.0 58 860 305 Web
uk2014 787 801 471 84 928 431 100 107.8 8 605 492 Web

We performed the experiments for the huge graphs with 64 PEs. Furthermore, we only used
k = 128 because we are primarily interested in the reduction of the memory consumption,
thus shortening the duration of the experiments. In addition, we disabled the optimization
that the data structures of label propagation and contraction are deallocated after each
coarsening level. We did this because the huge graphs require a considerable amount of
time for deallocation (in contrast to the graphs in our benchmark set) because the data
structures used for them are so large, which can therefore bias the running times.

Memory Consumption. In Figure 6.9, we show the reduction of the memory con-
sumption for each graph, where we apply the memory optimizations one by one. Through
two-phase label propagation, the memory consumption is on average reduced by a fac-
tor of 2.40. When graph compression is additionally used, the memory consumption is
further reduced by a factor of 3.86 on average. Here, we achieve compression ratios of
5.53 for gsh2015, 6.68 for clueweb12 and 9.76 for uk2014. Moreover, through the use of
the contraction algorithm that avoids the edge buffer by remapping, we further reduce the
memory consumption by a factor of 1.02 on average. Note that this change has no effect
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on the memory consumption of uk2014 because KaMinPar’s contraction implementation
performs precomputations before the actual contraction, with the necessary memory be-
ing released afterwards. Thus, the peak memory of contraction is dependent on either the
precomputations or the actual contraction. In this case, the precomputations determine the
peak memory, which is why our memory change is not visible in the peak memory. Lastly,
through the two-level cluster weight vector, we can reduce the memory consumption by a
factor of 1.04 on average. Therefore, we have an average reduction in peak memory of 9.85
due to the memory optimizations.
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Figure 6.9: Peak memory of KaMinPar for the huge graphs when the memory optimizations are
applied one by one.

Running Time. In Table 6.10, we compare the running times of KaMinPar for the huge
graphs, where the memory optimizations are enabled one by one. We find that two-phase
label propagation reduces the running time on average by a factor of 1.19. Moreover,
through the use of graph compression, the running time increase on average by a factor of
1.31. The contraction algorithm, which avoids the edge buffer by remapping, also increases
the running time on average, however only by about 0.8%. Lastly, through the use of
the two-level cluster weight vector, the running time is on average reduced by a factor of
1.02. Therefore, when all memory optimizations are used, the average runtime increases
by a factor of 1.08 for the huge graphs, with the slowdown coming primarily from graph
compression.

Table 6.10: Running times and geometric mean running time of KaMinPar for the huge graphs
when the memory optimizations are applied one by one.

Memory Optimization gsh2015 clueweb12 uk2014 Average

Reference 140.5 s 192.6 s 129.5 s 151.9 s
Two-Phase Label Propagation 124.9 s 164.6 s 100.6 s 127.4 s
Graph Compression 165.8 s 219.2 s 126.8 s 166.4 s
Contraction 166.8 s 223.8 s 126.3 s 167.7 s
Two-Level Cluster Weight Vector 165.2 s 215.8 s 123.8 s 164.0 s
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6.5 Comparison to Other Shared-Memory Graph
Partitioners

In this section, we compare the memory consumption of KaMinPar to the memory consump-
tion of other multilevel graph partitioners. For the comparison, we use Metis (sequential)
[24] and MtMetis (multi-threaded) [25] as in-memory partitioners and HeiStream [13] as a
streaming partitioner.

We run the multi-threaded partitioners KaMinPar and MtMetis on 64 PEs. Metis and
HeiStream run as sequential algorithms by default on one PE. Furthermore, we only run
the experiments with k = 16 because we are again primarily interested in the reduction of
the memory consumption and can therefore shorten the duration of the experiments. To
control the size of the input graphs, we use randomly generated graphs for this experiment
[17]. rggN refers to a family of 2D random geometric graphs generated with 2N nodes and
average degree d(rggN) = 8. These graphs do not have any high-degree nodes and loosely
represent the class of regular graphs. To represent social networks with a skewed power-law
degree distribution, we employ a family of randomly generated hyperbolic graphs denoted
rhgN . These graphs are generated with 2N nodes, power-law exponent γ = 3.0 and average
degree d(rhgN) = 8. Note that we did not run Metis and MtMetis on the huge web graphs
from Section 6.4 because they run out of memory for these graphs on the testing machine.

Memory Consumption. In Figure 6.10, we compare the memory consumption of
HeiStream, KaMinPar with memory optimizations, KaMinPar without memory optimiza-
tions, Metis and MtMetis, where all failed runs are marked with ✗. We see that HeiStream
has the lowest memory consumption. This is because its memory consumption as a stream-
ing algorithm is mainly determined by the partition of the graph with memory space in
O(n). Therefore, its memory consumption is on average 16.4 times less than the memory
consumption of memory-efficient KaMinPar. We also see that memory-efficient KaMinPar
uses on average 1.7 resp. 5.5 times less memory for the rgg resp. rhg graphs than KaMinPar
without memory optimizations. Furthermore, it uses on average 5.6 times less memory
than Metis and 5.3 times less memory than MtMetis. Thereby, on average, we achieve a
compression ratio of 2.33 for the rgg graphs and a compression ratio of 1.82 for the rhg
graphs.

We observe that the memory consumption of all competing algorithms increases linearly
with the order of the graph. By extrapolating the memory consumption for Metis and Mt-
Metis, we find that Metis resp. MtMetis would roughly require 1 071.4 GB resp. 987.4 GB
for rgg31 and 1 164.8 resp. 1 108.3 GB for rhg31 by our calculation. Therefore, as expected,
they run out of memory on the largest graphs in the families. We also find that KaMinPar
without memory optimizations would require 1 213.2 GB for rgg31. Furthermore, assuming
that the memory consumption of memory-efficient KaMinPar continues to scale linearly, it
would require 506.7 GB resp. 621.6 GB for rgg33 resp. rhg33 and 1 013.4 GB reps. 1 243.1
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6.5 Comparison to Other Shared-Memory Graph Partitioners
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Figure 6.10: Peak memory of the graph partitioners we compare, where all failed runs are marked
with ✗.

GB for rgg34 resp. rhg34. Therefore, memory-efficient KaMinPar would presumably no
longer be able to partition rgg34 and rhg34 on the machine we conduct the experiments.
However, these are only calculations, which we cannot verify experimentally because of
limitations of the used graph generator.

Running Time. In Figure 6.11, we compare the running times of the graph partitioners.
KaMinPar without memory optimizations is the fastest algorithm with 43.7 s on average,
followed by memory-efficient KaMinPar with 44.8 s on average and then followed by
MtMetis with 100.6 s on average. Therefore, we find that despite the overhead of graph
compression, we are faster than MtMetis on the same number of PEs by a factor of 2.25
and 2.24 on the rgg and rhg graphs, respectively. Moreover, Metis requires 577.9 s and
HeiStream 813.3 s on average because, unlike KaMinPar and MtMetis, these are sequential
algorithms. Note that we have excluded the graphs rgg31 and rhg31 for the average results
above as they fail under Metis and MtMetis.

Quality. In Table 6.11 and Table 6.12, we compare the quality of the partitions produced
for the rgg and rhg graphs by the algorithms we compare. KaMinPar produces the best cut,
followed by Metis and MtMetis. HeiStream has the worst cut as a streaming algorithm. In
addition, the largest graphs rgg31 and rhg31 do not run on Metis and MtMetis, which is why
there is only the streaming algorithm for these graphs when compared to KaMinPar. Thus,
compared to HeiStream, memory-efficient KaMinPar produces partitions with a cut that is
8.64 times better for rgg31 and 59 452.23 times better for rhg31. We see that HeiStream’s
low memory consumption is possible due to compromises in quality, with partitions having
such a high cut that they are unusable for many applications.
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6 Experimental Evaluation
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Figure 6.11: Running times of the graph partitioners we compare, where all failed runs are marked
with ✗.

Table 6.11: Cuts of the partitions produced by the algorithms for the rgg graphs and the geometric
mean cut relative to memory-efficient KaMinPar (excluding rgg31).

Graph HeiStream KaMinPar-Mem KaMinPar Metis MtMetis

rgg28 3 787 408 406 480 407 490 456 658 465 934
rgg29 5 148 035 584 279 589 249 650 954 669 445
rgg30 7 549 167 835 903 836 530 935 634 946 685
rgg31 10 252 472 1 186 065 1 205 191 ✗ ✗

Relative Cut 9.10 1.00 1.01 1.12 1.14

Table 6.12: Cuts of the partitions produced by the algorithms for the rhg graphs and the geometric
mean cut relative to memory-efficient KaMinPar (excluding rhg31).

Graph HeiStream KaMinPar-Mem KaMinPar Metis MtMetis

rhg28 62 175 712 5 105 4 224 5 117 8 773
rhg29 118 444 885 3 022 2 857 5 272 8 946
rhg30 219 850 739 6 145 5 037 7 286 11 818
rhg31 465 570 405 7 831 ✗ ✗ ✗

Relative Cut 25 752.46 1.00 0.86 1.28 2.14
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7 Conclusion

In this thesis, we presented algorithmic modifications for the coarsening phase of a multi-
level graph partitioner and a graph compression scheme, both aimed at reducing the memory
consumption of the in-memory parallel multilevel graph partitioner KaMinPar. The changes
to the clustering step of the coarsening phase include a two-phase implementation of label
propagation, such that its memory consumption does not scale with the number of threads
and is instead in O(n), and a more memory-efficient data structure for storing the cluster
weights. For the contraction step of the coarsening phase, we presented various changes to
the contraction implementation, such that the memory consumption of a temporary edge
buffer is reduced. Moreover, we presented a graph compression scheme, which enables
us to store the input graph with less memory space. We also looked at various methods
to accelerate the decoding of compressed neighborhoods. Finally, we presented a way to
compress the graph in a single-read disk operation.
Furthermore, we integrated these memory optimizations into KaMinPar and evaluated
them. With two-phase label propagation, we can reduce the memory consumption of label
propagation for the largest graph that we tested, namely clueweb12, by a factor of about 2.34.
By additionally using graph compression, we can store the clueweb12 graph more space-
efficiently, consuming about 3.45 times less memory, where we achieve a compression
ratio of 6.68. Finally, through changes to the cluster weight vector and the contraction
implementation, we reduced the memory consumption of clueweb12 by a factor of about
1.07. Therefore, we reduced the memory consumption for clueweb12 from 802.4 GB to
92.9 GB. As a consequence, we can now partition some of the largest graphs available with
an in-memory graph partitioner on a machine with a reasonable amount of main memory.

7.1 Future Work

Although we have improved the memory consumption of KaMinPar in several places in
this thesis, there is still potential to further reduce its memory consumption. One com-
ponent of KaMinPar that could be considered in future work is the greedy balancer. It
is responsible for balancing a partition during the uncoarsening phase if it becomes un-
balanced by being projected onto a finer graph [19]. Furthermore, the implementation of
the Fiduccia-Mattheyses (FM) algorithm [15] could also be considered in order to reduce
memory consumption. FM can be used instead of label propagation in the refinement step
during uncoarsening to improve the quality of the partition as it is a more advanced tech-
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7 Conclusion

nique [19]. However, the memory consumption of KaMinPar’s current implementation is
in O(nk), rather than O(k) as with label propagation. Further work is therefore required
on the implementation of the algorithm in order to use FM during refinement while keeping
the memory consumption low. In addition, future work must investigate whether a uniform
tie-breaking strategy in the label propagation algorithm can restore the loss of quality due
to the edge reordering of the compressed graph, as we suspect it can.
Finally, considering the fact that even larger graphs will be partitioned in the future and that
in-memory partitioners are ultimately limited by the main memory of a single machine, it
should be explored to what extent our presented memory optimizations can be applied to
other partitioner types. For example, it could be explored whether our optimizations can
be applied to the distributed KaMinPar algorithm [36], which looks promising since the
distributed and in-memory KaMinPar share the same basic partitioning scheme. Transfer-
ring our techniques would then make it possible to partition very huge graphs, on which
memory-efficient KaMinPar fails due to memory constraints, with a distributed algorithm
that use smaller server clusters or clusters with machines using less memory, and thus being
more cost-effective.
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A Properties of the Graphs in the
Benchmark Set

Table A.1: Number of nodes n, number of edges m, average degree d(G), max degree ∆(G) and
class of the graphs in the benchmark set.

Graph G n m d(G) ∆(G) Class

delaunay-n24 16 777 216 100 663 202 6.0 26 Artificial
kron-g500n19 524 288 43 561 574 83.1 80 674 Artificial
kron-g500n20 1 048 576 89 238 804 85.1 131 503 Artificial
kron-g500n21 2 097 152 182 081 864 86.8 213 904 Artificial
mycielskian19 393 215 903 194 710 2 296.9 196 607 Artificial
rgg-n26 67 108 864 1 149 107 290 17.1 45 Artificial
rgg-n263d 67 108 864 755 904 090 11.3 34 Artificial
rhg-n23d20 10 000 000 399 184 966 39.9 96 981 Artificial
rhg-n23d4 8 388 608 64 163 456 7.6 415 850 Artificial
rmat-n16m24 65 527 33 554 422 512.1 26 068 Artificial
rmat-n25m28 27 089 643 536 831 408 19.8 24 179 Artificial
cage15 5 154 859 94 044 692 18.2 46 Biology
kmer-A2a 170 372 459 359 883 478 2.1 40 Biology
kmer-P1a 138 896 082 296 930 692 2.1 40 Biology
kmer-V1r 214 004 392 465 409 664 2.2 8 Biology
kmer-V2a 53 500 237 114 152 252 2.1 39 Biology
bn-M87117515 891 589 97 339 212 109.2 4 546 Brain
bn-M87122310 924 284 188 741 772 204.2 8 135 Brain
bn-M87123142 846 535 107 650 654 127.2 8 356 Brain
bn-M87126525 975 930 292 218 600 299.4 8 009 Brain
bn-M87128519-1 861 636 338 735 702 393.1 7 397 Brain
dna1GB-9 3 233 125 50 570 172 15.6 342 348 Compression
english1GB-7 801 514 26 125 176 32.6 100 816 Compression
proteins1GB-9 14 537 567 148 617 134 10.2 660 097 Compression
proteins1GB-7 2 825 742 87 714 764 31.0 373 750 Compression
sources1GB-7 898 704 14 544 726 16.2 32 091 Compression
sources1GB-9 2 792 175 24 376 602 8.7 37 881 Compression
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A Properties of the Graphs in the Benchmark Set

Table A.2: Number of nodes n, number of edges m, average degree d(G), max degree ∆(G) and
class of the graphs in the benchmark set.

Graph G n m d(G) ∆(G) Class

afshell10 1 508 065 51 164 260 33.9 34 Finite element
audikw 943 695 76 708 152 81.3 344 Finite element
boneS10 914 898 54 553 524 59.6 80 Finite element
Bump2911 2 911 419 124 818 480 42.9 194 Finite element
channelb050 4 802 000 85 362 744 17.8 18 Finite element
CubeCoup-dt6 2 164 760 125 041 384 57.8 67 Finite element
dielFilterV3 1 102 824 88 203 196 80.0 269 Finite element
Flan1565 1 564 794 115 841 250 74.0 80 Finite element
Geo1438 1 437 960 61 718 730 42.9 56 Finite element
Hook1498 1 498 023 59 419 422 39.7 92 Finite element
HV15R 2 017 169 324 715 138 161.0 492 Finite element
ldoor 952 203 45 570 272 47.9 76 Finite element
LongCoup-dt6 1 470 152 85 618 840 58.2 755 Finite element
MLGeer 1 504 002 109 375 970 72.7 73 Finite element
Queen4147 4 147 110 325 352 174 78.5 80 Finite element
Serena 1 391 349 63 140 352 45.4 248 Finite element
nlpkkt200 16 240 000 431 985 632 26.6 27 Optimization
nlpkkt240 27 993 600 746 478 752 26.7 27 Optimization
asia-osm 11 950 757 25 423 206 2.1 9 Road
europe-osm 50 912 018 108 109 320 2.1 13 Road
circuit5M 5 558 326 53 967 852 9.7 1 290 500 Semiconductor
nv2 1 453 908 51 274 454 35.3 83 Semiconductor
stokes 11 449 533 515 962 626 45.1 1 728 Semiconductor
vas-stokes2M 2 146 677 96 703 558 45.0 1 307 Semiconductor
vas-stokes4M 4 382 246 195 417 042 44.6 1 139 Semiconductor
flickr-und 1 715 255 31 110 082 18.1 27 236 Social
friendster 65 608 366 3 612 134 270 55.1 5 214 Social
hollywood 2 180 759 228 985 632 105.0 13 107 Social
imdb2021 2 996 317 10 738 944 3.6 833 Social
livejournal 4 036 538 69 362 378 17.2 14 815 Social
orkut 3 072 627 234 370 166 76.3 33 313 Social
sinaweibo 58 655 849 522 642 066 8.9 278 489 Social
twitter2010 41 652 230 2 405 026 092 57.7 2 997 487 Social
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Table A.3: Number of nodes n, number of edges m, average degree d(G), max degree ∆(G) and
class of the graphs in the benchmark set.

Graph G n m d(G) ∆(G) Class

arabic2005 22 744 080 1 107 806 146 48.7 575 628 Web
indochina2004 7 414 866 301 969 638 40.7 256 425 Web
it2004 41 291 594 2 054 949 894 49.8 1 326 744 Web
mavi2015 22 914 771 49 124 430 2.1 10 327 637 Web
sk2005 50 636 154 3 620 126 660 71.5 8 563 816 Web
uk2005 39 459 925 1 566 054 250 39.7 1 776 858 Web
webbase2001 118 142 155 1 709 619 522 14.5 816 127 Web
dewiki2013 1 532 354 66 186 058 43.2 118 246 Wiki
enwiki2022 6 492 490 289 177 312 44.5 231 674 Wiki
eswiki2013 972 933 42 369 862 43.5 145 310 Wiki
frwiki2013 1 352 053 62 074 604 45.9 148 758 Wiki
itwiki2013 1 016 867 46 859 288 46.1 91 517 Wiki
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