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Abstract
Counting triangles plays a crucial role in graph processing. Important metrics for

analyzing the structure of large real-world networks, such as the clustering coeffi-
cient, rely on the number of triangles.
As the size of graphs emerging from real-world applications continuously in-

creases, resulting in inputs with billions of edges, processing them in a reasonable
time becomes challenging.
One solution for this is the exploitation of parallelism. Sequential triangle count-

ing algorithms may be directly adapted to shared memory machines, but they are
limited in terms of available memory and processors. For handling graphs of massive
size, we therefore need to consider distributed memory machine models.
Popular algorithms rely on the MapReduce framework, which results in high

amounts of intermediate data required for communication, while other approaches
replicate the input among processors. Both techniques may hinder scalability.
Therefore the importance of message-passing-based implementations with predictable
communication behavior arises. Arifuzzaman et al. [6] propose such an algorithm,
but their approach still leaves room for improvement.
We introduce CETRIC, which builds upon this algorithm and reduces the amount

of data sent between processors by only requiring communication for counting tri-
angles consisting of cut edges.
Our algorithm uses 1D partitioning to distribute the input and identifies local

triangles. They are then removed from the graph, which reduces the neighborhood
size of vertices and therefore results in smaller messages.
We suggest additional building blocks of a scalable distributed triangle counter:

We speed up set intersection using bit-vectors and further reduce the communication
volume by avoiding sending redundant neighborhood information. We also reduce
latency introduced by the message startup overhead using an adaptive buffering
scheme that aggregates multiple messages.
We present an extensive evaluation of our algorithm using up to 4096 PEs and a

large variety of real-world and synthetic networks under strong and weak scaling.
We show that our algorithm is 30 − 50% faster than the previously proposed al-
gorithm and scales better with increasing number of processors. Compared to the
previous algorithm, it reduces the communication volume by 40%. CETRIC works
especially well on web graphs and prepartitioned networks with small cut sizes. Our
experiments also focus on load balancing and uncover scaling issues of the previous
approach.
Additionally, we outline an approximation algorithm based on CETRIC which uses

Bloom filters to further reduce communication.





Zusammenfassung
Das Zählen von Dreiecken spielt eine entscheidende Rolle in der Verarbeitung von

Graphen. Wichtige Metriken zur Strukturanalyse von großen Realwelt-Netzwerken,
wie beispielsweise der Clustering-Koeffizient, basieren auf der Anzahl der Dreiecke.
Die Größe von Graphen, die aus praktischen Anwendungen heraus entstehen,

nimmt stetig zu. Eingaben können Milliarden von Kanten enthalten, sodass eine
Verarbeitung in einem angemessenen Zeitrahmen eine Herausforderung darstellt.
Eine Lösung hierfür ist der Einsatz von Parallelismus. Sequentielle Dreieckszähl-

Algorithmen können zwar direkt auf Shared-Memory-Maschinen angepasst werden,
allerdings mangelt es den Maschinen in der Regel an ausreichend Hauptspeicher
und sie verfügen nur über eine begrenzte Prozessorzahl. Um nichtsdestotrotz riesige
Eingaben verarbeiten zu können, muss das Distributed-Memory-Maschinenmodell
in Betracht gezogen werden.
Bekannte Algorithmen basieren meist auf dem MapReduce-Framework, das zu

großen Mengen an Zwischendaten führt, die für die Kommunikation benötigt wer-
den. Andere Ansätze replizieren die Eingabe, doch, genau wie die Verwendung von
MapReduce, kann dies die Skalierbarkeit einschränken. Abhilfe schafft das Prinzip
des Message-Passing, welches vorhersehbare, feingranulare Kommunikation ermög-
licht. Arifuzzaman et al. [6] beschreiben einen solchen Algorithmus, jedoch bietet er
noch Verbesserungspotential.
Unser Algorithmus, CETRIC, baut auf diesem Ansatz auf und reduziert die Da-

tenmenge, die zwischen Prozessoren gesendet wird. Dies wird dadurch möglich, dass
er Kommunikation nur für Dreiecke benötigt, die ausschließlich aus Schnittkanten
bestehen.
Durch 1D-Partitionierung wird der Graph verteilt und jeder Prozessor identifiziert

lokale Dreiecke. Durch die Entfernung dieser Dreiecke werden die Nachbarschaften
der Knoten reduziert, was auch zu kleineren Nachrichten führt.
Zudem stellen wir weitere Komponenten eines skalierbaren verteilten Dreieckszäh-

lers vor: Durch die Verwendung von Bit-Vektoren können wir die Schnittmengen von
Nachbarschaften schneller bestimmen und durch die Vermeidung des Sendens red-
undanter Nachbarschaftsinformationen reduzieren wir das Kommunikationsvolumen
weiter. Durch adaptive Pufferung und Aggregierung von Nachrichten reduzieren wir
zudem die Latenz, die durch Verbindungsaufbau entsteht.
Wir führen eine umfangreiche Evaluation unseres Ansatzes auf bis zu 4096 Pro-

zessoren und einer Vielzahl an Realwelt- und synthetischen Datensätzen durch. Wir
zeigen, dass unser Algorithmus durch die Reduktion des Kommunikationsvolumens
zwischen 30 − 50% schneller als der bisherige Ansatz ist und zudem mit zuneh-
mender Prozessorzahl besser skaliert. Im Vergleich zu dem vorherigen Algorithmus
reduziert CETRIC das Kommunikationsvolumen um 40%. Unser Ansatz funktioniert
insbesondere gut auf Web-Graphen und vorpartitionierten Netzwerken mit kleinen
Schnitten. Ein weiteres Augenmerk unserer Experimente liegt auf Lastbalancierung
und wir identifizieren Skalierungsprobleme des bisherigen Ansatzes.
Darüber hinaus skizzieren wir einen Approximationsalgorithmus, der auf CETRIC

basiert und Bloom-Filter verwendet, um das Kommunikationsvolumen weiter zu
reduzieren.
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1 Introduction

1. Introduction

Graphs are a commonly used abstraction for modeling real-world networks. They may be
used to represent a large variety of data relations such as friendships in social networks, road
networks, hyperlinks in the world wide web, or protein-protein interaction networks [39]. There
exists a vast number of algorithms to analyze the structure and properties of these real-world
graphs, but over the last decade, problem sizes algorithms have to deal with are continuously
growing. For example, the largest social network, Facebook, had over 2.7 billion active users in
the fourth quarter of 2020 [51], and the Common Crawl 2012 web hyperlink graph [36] consists
of over 100 billion edges and requires 350GB of memory in uncompressed form.
Due to the size of these networks, processing them in a reasonable time requires the use of
parallelism. As the number of processors and available memory on shared memory machines
is limited, an important challenge is to design graph algorithms for distributed memory super-
computers with thousands of cores. This is outlined by the popular Graph 500 benchmark [54]
which ranks supercomputers based on their performance on fundamental graph algorithms such
as breadth-first search and shortest path computation. It also acts as an algorithmic challenge
for efficient distributed graph algorithms, using synthetic graphs with up to 246 edges and
requiring over 1000TB of memory. A flaw of the Graph 500 benchmark is its limited set of
algorithmic problems considered. Triangle counting is an essential algorithm on graphs and
has recently gained attention as another benchmark for supercomputers through the Graph
Challenge on Subgraph Isomorphism [46].
Triangles are the smallest complete subgraph, and several graph metrics such as the local
clustering coefficient [59] need to determine the number of triangles in a graph. Therefore the
problem has numerous applications in analyzing complex networks such as social graphs [38]
but is also applicable in practice. Becchetti et al. [10] show that analyzing the distribution of
the local clustering coefficient may be used to detect spam pages on the web, and Eckmann and
Moses [22] identify common topics of web pages using triangle counting. Other applications
include database query optimizations [9] and link recommendation [56].
Most algorithms proposed for distributed memory triangle counting either choose a high-level
approach and build upon existing graph processing frameworks [44] or the MapReduce frame-
work [52, 43] or they rely on fine-grained optimization of the algorithms for GPUs [29]. Espe-
cially when using the MapReduce framework, the communication volume of the algorithm is
very high due to large amounts of intermediate data. With an increasing number of processors,
this may become a bottleneck, as network speed is a magnitude slower than processing speed.
Therefore a pure message-passing-based implementation with predictable communication be-
havior may be preferred.
Arifuzzaman et al. [6] propose such an algorithm, but while it reduces the amount of commu-
nication compared to previous approaches, it still leaves room for improvement.

Our Contribution We introduce CETRIC, a scalable communication efficient triangle counting
algorithm that builds upon Arifuzzaman et al.’s algorithm. Compared to previous algorithms,
it only requires communication for triangles where each endpoint is located on a different
processor. This is achieved by counting triangles locally and removing cut edges from the
graph, which reduces the overall communication volume and as a result lowers the running
time.
We further speed up the algorithm by using bit-vectors for set intersections and introduce
a buffering scheme for messages, which reduces message startup overhead by using message
aggregation.

11



1 Introduction

We compare our algorithm to the algorithm by Arifuzzaman et al. [6]. This includes scalability
experiments on a large number of real-world and synthetic graph instances with up to 4092
processors. We uncover scalability issues of Arifuzzaman et al. [6]’s algorithm and suggest
further improvements for it.
Additionally, we propose an approximation algorithm that further reduces the required com-
munication volume by using Bloom filters.

Structure of this Thesis Our work is structured as follows. In Section 2 we introduce basic
definitions and give an overview of the considered machine model. Section 3 gives an overview
of the large amount of research in the field of triangle counting and introduces the core building
blocks of our algorithm.
In Section 4 we describe CETRIC in detail and how it compares to other distributed triangle
counting algorithms. In Section 5 we evaluate different parameters of our algorithm and ex-
tensively compare its performance and scalability to PATRIC by Arifuzzaman et al. [6] which is
the most notable distributed memory algorithm to date and the base of our algorithm.
Section 6 shows how the communication volume of our algorithm may be reduced even more by
using Bloom filters. Section 7 concludes our work and gives directions for future improvements.

12



2 Preliminaries

2. Preliminaries

In this section we introduce the basic concepts and notations used in this work. We further
provide details of the underlying machine model.

2.1. Basic Definitions

Let G = (V,E) be an undirected graph where V = {0, . . . , n− 1} and E ⊆
(
V
2

)
are the sets of

vertices and edges, respectively. G has n = |V | vertices and m = |E| edges. For a given vertex
v ∈ V let Nv(G) = {u ∈ V | {u, v} ∈ E} denote the neighborhood of v.
The degree of v is dv := |Nv(G)|, dmax is the maximum degree. If the considered graph G is
clear from the context, we simply write Nv instead of Nv(G).
Two vertices u, v ∈ V are called adjacent if the edge {u, v} ∈ E exists. An edge e ∈ E is
incident to a vertex v ∈ V if v ∈ e. The vertices incident to an edge are called endpoints.
For V ′ ⊆ V we define the induced subgraph G(V ′) = (V ′, E ′) of G, where E ′ := {u, v ∈ E | u ∈
V ′ ∧ v ∈ V ′}
For a set of three distinct vertices u, v, w ∈ V we call the induced subgraph G({u, v, w}) a
triangle if and only if it is complete, i.e. each edge {u, v}, {v, w}, {w, u} exists.
Most triangle counting algorithms depend on orienting undirected graphs, to prevent redundant
counting of triangles. This is accomplished by using a total ordering ≺ on the vertices. Each
edge is directed from the lower to higher ranked vertex.
With respect to a total ordering ≺ we define the outgoing neighborhood of v ∈ V as N+

v (G) :=
{u ∈ V | {v, u} ∈ E ∧ v ≺ u} and the incoming neighborhood as N−v (G) := Nv(G) \ N+

v (G)
and write a directed edge as an (ordered) tuple (u, v) if u ≺ v. We define the out-degree d+

v

of a vertex v ∈ V as d+
v := d+

v (G) := |N+
v (G)|. As before, we do not mention the considered

graph explicitly if it is clear from the context.
Based on the definition of Diestel [21] we call a graph sparse if the number of edges m is about
linear in the number of vertices n and dense if m is about quadratic in n.

2.2. Machine Model and Input Format

We consider a system consisting of p processing elements (PEs) numbered P0, . . . , Pp−1, which
are connected via a network with full-duplex, single-ported communication. Sending a message
of length ` from one PE to another takes time α+ β`, where α is the time required to initiate
a connection and β the subsequent transmission time for sending one machine word. Let the
communication volume denote the total number of machine words send between processors.

Input Format We assume that input graphs are stored in the adjacency array format, which
stores the set of neighbors Nv for each vertex v . A graph is represented using an array head
of size 2m, which is the concatenation of all neighborhoods for vertices v ∈ V and an array
first_out of size n+1, where first_out[v] stores the first index in head containing the neigh-
borhood of v. Then Nv is stored in the index range first_out[v], . . . , first_out[v + 1] - 1
in the array head.

Partitioning the Input We use 1D partitioning, which means that each Pi is assigned a vertex
set Vi, where all sets Vi are disjoint and V = ⋃p−1

i=0 Vi.

13



2 Preliminaries

Symbol Definition
V vertex set
E edge set
Nv {u ∈ V | {v, u} ∈ E} for v ∈ V
dv |Nv|
≺ total ordering on vertex set V
N+
v {u ∈ Nv | v ≺ u} for v ∈ V

N−v Nv \N+
v for v ∈ V

d+
v |N+

v |
Vi local vertex set of processor Pi
Vi Vi ∪

⋃
v∈Vi

Nv

∂Vi Vi \ Vi
Gi Gi := (Vi, E ′), where E ′ := {{u, v} ∈ E | |{u, v} ∩ Vi| ≥ 1}
∂G ∂G := (V,E ′), where E ′ := {u, v ∈ E | u ∈ Vi, v ∈ Vj, i 6= j}

Table 1: Definitions

Pi stores the neighborhoods for a subsequence Vi of the vertices {0, . . . , n − 1}. A vertex is
called local to Pi if it lies in Vi. For a vertex v the rank is defined as rank(v) = i :⇔ v ∈ Vi.
In addition to that we assume that the vertices are globally ordered among the processor by
vertex ID. This means that if rank(v) < rank(w) for vertices v ∈ Vi, w ∈ Vj, i 6= j then w has
a higher ID than v.
Vertices u which are contained in a neighborhood Nv for a vertex v ∈ Vi, but are not local to
Pi are called ghost vertices. Local vertices which are adjacent to at least one ghost vertex are
called interface vertices.
For processor Pi let Vi := Vi ∪

⋃
v∈Vi

Nv denote the set of all local vertices and ghost vertices
and let ∂Vi := Vi \ Vi denote the set of ghost vertices.
We assume that processor Pi only has access to vertices in Vi and their neighborhoods. This
effectively means that the local graph of Pi consists of the vertex set Vi and all edges E ′ ⊆ E
where at least one endpoint is in Vi (and at most one is a ghost vertex by definition), i.e.
E ′ := {{u, v} ∈ E | |{u, v} ∩ Vi| ≥ 1}. We call this graph Gi := (Vi, E ′).
An edge connecting two vertices v ∈ Vi, w ∈ Vj, i 6= j is called cut edge. We say that
a distributed memory algorithm is communication efficient if the communication volume is
proportional to the number of cut edges.
We define the cut graph ∂G as the graph only consisting of cut edges, i.e. ∂G := (V,E ′), where
E ′ := {u, v ∈ E | u ∈ Vi, v ∈ Vj, i 6= j}.
Table 1 summarizes all notations used in the following.
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3 Introduction on Triangle Counting

3. Introduction on Triangle Counting

Counting triangles efficiently in large graphs is an essential building block for analyzing the
structure of large networks. Several important metrics for analyzing real-world networks are
dependent on the number of triangles in a graph [59, 14, 23]. In the following, we describe
three metrics that are directly derived from the number of triangles in G.
The local clustering coefficient (LCC) [59] of a vertex v ∈ V is the density of the subgraph
induced by Nv and is defined as follows

lcc(v) = Tv(
dv

2

)
where Tv is the number of triangles in G containing v. The intuition behind this is that the LCC
describes the probability that two neighbors of a vertex are connected. The average of the local
clustering coefficient over all vertices v ∈ V with dv ≥ 2 is called the clustering coefficient [59].
The global clustering coefficient or transitivity [40] measures the global density of triangles with
respect to wedges in a graph. A wedge is a subgraph of three distinct vertices {u, v, w} and
edges {u, v}, {v, w} where v is the center vertex. The number of wedges centered at v is Πv

equivalent to the number of neighbor pairs of v, i.e. Πv =
(
dv

2

)
. We therefore define the global

clustering coefficient as
CC(G) = 3 ·∑v∈V Tv∑

v∈V Πv

For example, these metrics allow to analyze properties of time-dependent networks. Akoglu
and Dalv [1] show that the local clustering coefficient allows predicting whether ties in phone
networks will persist in the future.
To compute these metrics in a reasonable time in massive graphs we need efficient algorithms
for counting and listing triangles.
There has been a large amount of research on sequential and parallel triangle counting algo-
rithms. We mainly focus on exact algorithms in sequential and parallel settings in Sections 3.1
and 3.2. In Section 3.3 we also give a brief overview of the most important approximation
algorithms.
Other triangle counting algorithms are especially tailored for GPUs [26, 58, 29, 27] and ex-
ternal memory settings. The GPU algorithms mostly focus on exploiting GPUs for fast set
intersection.
The external memory algorithm by Chu and Cheng [18] shares minor similarities with our
proposed method. Like CETRIC it classifies triangles based on whether they contain ghost
vertices with respect to a partition of the input graph and only counts those triangles where all
required neighborhood information is available locally. While our algorithm uses this to remove
all triangles found locally to reduce neighborhoods and communication, Chu and Cheng write
the remaining graph to disk, repartition it and count local triangles iteratively until all triangles
have been found.
There also exists a parallel distributed memory algorithm based on matrix multiplication [8],
but the authors only perform experiments using up to 256 processors.
All these specialized algorithms are beyond the scope of this work.
We refer the reader to the review by Al Hasan and Dave [2] for a more in-depth look at different
triangle counting algorithms, their properties, and applications.
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3 Introduction on Triangle Counting

3.1. Sequential Algorithms

A simple brute-force triangle counting algorithm works as follows: for each vertex v ∈ V we
consider all pairs of neighbors {u,w} ∈

(
Nv

2

)
and check whether u and v are adjacent. This

approach has two major shortcomings. On the one hand, we count each triangle three times
and therefore do unnecessary work. On the other hand, we need a sophisticated way of storing
edges, to allow an efficient adjacency test.
Considering a complete graph Kn with n vertices, it is easy to derive a lower bound on the
running time of any triangle counting algorithm. As Kn has exactly

(
n
3

)
triangles, any triangle

counting algorithm has an asymptotic lower bound running time in Ω(n3) in terms of n or
Ω(m3/2) in terms of m [49].
There has been a large amount of work on finding efficient sequential triangle counting al-
gorithms. Schank’s Ph.D. thesis [49] and a more recent work by Ortmann et al. [41] give an
extensive overview. While the following algorithm EdgeIterator is not the fastest among all, it is
the base for many other algorithms in sequential and parallel settings and is easy to implement,
which is why it may be considered folklore.

EdgeIterator Like almost all algorithms the algorithm makes the input graph directed in a
preprocessing step. EdgeIterator uses a degree-based (total) ordering defined as follows: For
u, v ∈ V

u ≺ v ⇔

du < dv if du 6= dv

u < v if du = dv

EdgeIterator iterates over all vertices v ∈ V and their outgoing neighborhood N+
v . For each

directed edge (v, u) the number of vertices adjacent to both endpoints is counted by intersecting
N+
v and N+

u . Pseudocode is given in Algorithm 1.
The set intersection in line 6 relies on the neighborhoods being sorted. It is implemented using
a procedure similar to the merge phase of merge sort, shown in Algorithm 2.
The running time of EdgeIterator is O(dmax ·m) [49].
By orienting the graph, EdgeIterator ensures that each triangle consisting of vertices {v, u, w}
with v ≺ u ≺ w is only counted once, while considering vertex v in line 4.

Algorithm 1: EdgeIterator
1 for v ∈ V do
2 sort N+

v in ascending order
3 T ← 0
4 for v ∈ V do
5 for u ∈ N+

v do
6 S ← N+

v ∩N+
u // See Algorithm 2 for details

7 T ← T + |S|

NodeIterator Another sequential algorithm which may be considered folklore is NodeIterator.
Pseudocode of NodeIterator is given in Algorithm 3. As the name suggests, it does not count
triangles incident to an edge (u, v), but all triangles containing a vertex v ∈ V . Let

(
N+

v

2

)
denote

the set of all pairs of vertices in N+
v .

16



3.1 Sequential Algorithms

Algorithm 2: Sorted Merge Intersection
1 (x0, x1, . . . , xd+

v −1) := N+
v

2 (y0, y1, . . . , yd+
v −1) := N+

u

3 S ← ∅
4 i, j ← 0
5 while i < d+

v and j < d+
u do

6 if xi < yj then
7 i← i+ 1
8 else if xi > yj then
9 j ← j + 1
10 else
11 S ← S ∪ {xi}
12 i← i+ 1
13 j ← j + 1

The algorithm iterates over all vertices in V and for each v ∈ V considers each pair of outgoing
neighbors {u,w} ∈

(
N+

v

2

)
. For each of these pairs, the algorithm checks if the closing edge {u, v}

exists in the graph.
To perform this edge query in constant time, the neighborhood of each vertex is usually repre-
sented as a hash-map.
Schank [49] states that the running time of NodeIterator is bounded by O(d2

max · n), but an
amortized analysis shows that the running time is the same as for EdgeIterator. Based on his
experiments Schank concludes, that in practice algorithms based on EdgeIterator outperform
NodeIterator, as the use of hashing slows down NodeIterator.

Algorithm 3: NodeIterator
1 T ← 0
2 for v ∈ V do
3 for {u,w} ∈

(
N+

v

2

)
do

4 if {u,w} ∈ E then
5 T ← T + 1

Ortmann et al.’s Algorithm Ortmann et al. [41] describe a common framework to analyze
multiple sequential implementation variants. While EdgeIterator uses only constant additional
memory for counting triangles, they show that an efficient implementation of an algorithm by
Chiba and Nishizeki [17] using O(n) additional space is faster than all previously proposed
algorithms. We call their algorithm K3. The algorithm is similar to EdgeIterator, but instead
of intersecting N+

v and N+
u using sorted intersection, they mark all vertices in N+

v using a
bit-vector, which allows for intersecting each other neighborhood N+

u without having to iterate
over N+

v multiple times. Pseudocode for K3 is given in Algorithm 4.
The authors show that almost all algorithms investigated, including their proposed algorithm,
have a worst-case running time of O(a(G) ·m), where a(G) is the arboricity of G, the minimum
number of spanning forests needed to cover G.
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3 Introduction on Triangle Counting

Algorithm 4: K3 [41]
1 T ← 0
2 for v ∈ V do
3 for u ∈ N+

v do mark[u]← true
4 for u ∈ N+

v do
5 for w ∈ N+

u do
6 if mark[w] then
7 T ← T + 1

8 for u ∈ N+
v do mark[u]← false

3.2. Parallel Algorithms

Even carefully tuned sequential algorithms are not enough for today’s massive problem in-
stances. Large real-world networks may take up hundreds of gigabytes. For example, the
Common Crawl 2012 web hyperlink graph [36] has over 100 billion edges and takes up over
350GB of memory, the Graph 500 benchmark goes even further and uses problem instances
with up to 242 vertices and 246 edges, which require over 1125 TB to store them in the adjacency
array format. This brings up two major problems: main memory of a single machine may not
be sufficient to store the graph and counting may take several hours. For demonstration pur-
poses we ran K3 [41] on a web graph of the UK top-level domain from the LWA dataset [13, 12]
consisting of 3 billion edges, which already takes over 50 minutes. A solution for the memory
consumption may be to use approximative algorithms, which we discuss in Section 3.3, but in
many scenarios determining the exact number of triangles is desired. To deal with such large
inputs in a reasonable time, we therefore have to exploit processor and memory parallelism.
In this section we consider algorithms using shared memory and distributed memory machine
models.

3.2.1. Shared Memory

On a shared memory machine, EdgeIterator may be easily parallelized. As all set intersections
in line 6 are independent of each other they may be carried out in parallel and lock-free, as
each thread has random access to the whole graph and does not modify it. Shun and Tang-
wongsan [50] propose a parallel version of EdgeIterator, where the loops in lines 4-5 over vertices
v ∈ V and vertices u ∈ N+

v are executed in parallel. To avoid using atomic instructions for
incrementing the triangle count T , the number of triangles found by intersecting the endpoints
of an edge (u, v) is stored in T(u,v) and the total number of triangles is then aggregated by
using a parallel sum operation over the local counts. Orienting the graph with respect to ≺
and sorting the neighborhoods may also be parallelized over the vertex set V . They achieve
speedups of factor 17-50 for various instances on a 40-core-machine.
Other shared memory implementations [55, 45] share the same main idea with Shun and Tang-
wongsan’s algorithm: They are based on variants of EdgeIterator or NodeIterator and execute
the two outer loops of the algorithms in parallel.

3.2.2. Distributed Memory

While triangle counting is easily adaptable to a shared memory setting, as described in the
previous section, and achieves a good speedup, its practical use on large instances is limited,
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as shared memory systems with high number of processors and sufficient amount of memory
per processor are not widely available. Real-world networks may be of massive size. As al-
ready mentioned, the Graph 500 benchmark [54] aims to simulate large real-world inputs, by
generating instances which require up to 1125 TB of memory, while a typical shared memory
machine only has 64-128GB of main memory and up to 128 cores.
Handling such large inputs is only possible by exploiting the large amount of available memory
and high degree of parallelism of supercomputers. For example, the supercomputer SuperMUC-
NG used in our experiments has a total of 304,128 cores and 608TB of main memory. To fully
utilize these resources, the development of triangle counting algorithms tailored for a distributed
memory machine model is important.
A direct adaptation of the shared memory algorithms discussed above is not possible, because
they all require random access to vertex neighborhoods, which is not achievable on a distributed
memory machine, where each node only has several gigabytes of memory available.
In the following, we outline the most important distributed memory triangle counting algo-
rithms.

MapReduce-based Algorithms A common framework for distributed parallel algorithms is
the MapReduce framework [19]. Suri and Vassilvitskii [52] show how to adapt EdgeIterator to
the MapReduce framework. They further describe an algorithm that partitions the input graph
into overlapping subgraphs which are distributed among reducers. They then use a sequen-
tial triangle counting algorithm as a black-box and assign weights to triangles to account for
triangles counted multiple times. Park et al. [43] improve this algorithm by reducing redun-
dantly counted triangles and show bounds on the amount of work required per reducer, while
increasing the number of MapReduce rounds.
While the algorithms building on the MapReduce framework are easy to implement due to the
high level of abstraction, they produce large amounts of intermediate data and in turn require
a lot of communication during the shuffle phase, which hinders scalability [48, 43].

Message Passing While MapReduce-based algorithms benefit from abstracting away parallel
constructs, they offer no fine-granular control over how data is distributed among machines
in a large cluster. Arifuzzaman et al. [5, 6, 7] introduced two message-passing-based triangle
counting algorithms, which we describe in the following.

PATRIC PATRIC [5] is based on EdgeIterator (which is oddly called NodeIterator in their
publication) and partitions the vertex set of G into p disjoint sets V0, . . . , Vp−1. Processor Pi
operates on the induced subgraph Gi := G(Vi) and counts triangles incident on vertices in Vi
using EdgeIterator. By using an induced subgraph, the input graph is therefore partitioned
in overlapping subgraphs. The total number of triangles Ti is finally aggregated on a single
processor by summing over the local number of triangles Ti for each processor using a collective
reduce operation.
This limits the amount of inter-process communication required to a single reduce operation,
but the overlapping partitioning scheme hinders scaling of the algorithm with increasing number
of processors, as vertices with high degree may be replicated among multiple processors, which
increases the amount of memory required.
For PATRIC the authors assume that each PE may initially read arbitrary parts of the graph
from disk. Processor Pi needs to know the whole induced subgraph Gi, so it not only requires
access to the neighborhoods of each vertex in Vi, but also to the neighborhoods of each ghost
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vertex. This may not always be easily achievable, as the following example demonstrates.
Consider a large social media network with many servers (points-of-presence) all over the world.
Each point-of-presence only stores the friendship information of the user in its own geographic
region. When we now consider the friendship graph, it is easy to see that it is not feasible to
assume that direct access to neighborhoods of ghost vertices is available. Therefore additional
communication with other processors is required to gather Gi on a local processor.

PATRIC-NO To address this shortcoming and especially the high memory demand, Ari-
fuzzaman et al. introduce an unnamed variant of PATRIC [6, 7], which partitions the input
graph into non-overlapping subgraphs to save memory while requiring more communication.
We call this algorithm PATRIC-NO in the following.
PATRIC-NO is based on EdgeIterator. For pseudocode see Algorithm 5. The vertex set of G
is partitioned into disjoint subsets V0, . . . Vp−1 as before. Each processor Pi is responsible for
counting triangles incident on vertices in Vi. For each vertex v ∈ Vi the algorithms considers all
outgoing neighbors u ∈ N+

v . If u is local to Pi all triangles including edge (u, v) may be found
by intersecting N+

v ∩N+
u . If u is not local to Pi but to processor Pj, Pi sends N+

v to Pj.
This may lead to the neighborhood of vertex v being sent multiple times to Pj, if v is adjacent
to multiple vertices in Vj. The algorithm addresses this by keeping track of whether N+

v for a
vertex v ∈ Vi has already been sent to Pj and prevents retransmissions. A naive implementation
would require O(pn) additional space on each processor. The authors describe a space-efficient
approach which we discuss in detail in Section 4.2.
If Pj receives a neighborhood N+

v , it extracts all its local vertices u ∈ Vj ∩N+
v . The neighbor-

hoods of these vertices have to be intersected with the received neighborhood.
The total number of triangles is finally aggregated using a collective reduce and sum operation.

Load Balancing The performance of both algorithms presented heavily relies on the quality
of the partitions. If work is distributed unevenly among processors, the running time of a single
processor may dominate all others. Arifuzzaman et al. use the same load balancing scheme
for PATRIC and PATRIC-NO, which uses a cost function c(v) to estimate the cost for counting
triangles incident to vertex v ∈ V . The load balancing procedure is based on a prefix sum.
Using the cost function c(v) the cost for each vertex v is estimated and the inclusive prefix sum
C(v) := ∑v

i=0 c(i) is computed. Let α :=
∑

v∈V
c(v)

p
. A vertex bj ∈ V is a boundary vertex of Pj

if and only if there exists j ∈ 0, . . . , p − 1 such that C(bj − 1) < jα ≤ C(bj). Then processor
Pj is assigned the consecutive vertex range {bj, bj + 1, . . . bj+1− 1}. The new local vertices and
their corresponding neighborhoods are then reloaded from disk. The authors experimentally
evaluated several cost functions and choose the following for PATRIC based on their results:

c(v) =
∑
u∈N+

v

d+
v + d+

u

and
c(v) =

∑
u∈N−v

d+
v + d+

u

for PATRIC-NO.
The cost function for PATRIC is only an estimation, but PATRIC-NO’s cost function exactly
measures the number of edge traversals required for counting triangles incident on v [6].
Arifuzzaman et al. describe how to perform this load balancing in parallel. Initially, all local
partitions consist of an equal number of vertices. Each PE computes c(v) for all local vertices,

20



3.3 Approximative Algorithms

Algorithm 5: PATRIC-NO [6]
1 Ti ← 0
2 foreach v ∈ Vi do
3 foreach u ∈ N+

v do
4 if u ∈ Vi then
5 S ← N+

v ∩N+
u

6 Ti ← Ti + |S|
7 else
8 j ← rank(u)
9 if N+

v not sent to Pj yet then
10 send (v,N+

v ) to Pj

11 if receive (w,N+
w ) then

12 for u ∈ N+
w such that u ∈ Vi do

13 S ← N+
u ∩N+

w

14 Ti ← Ti + |S|

15 while receive (w,N+
w ) do

16 for u ∈ N+
w such that u ∈ Vi do

17 S ← N+
u ∩N+

w

18 Ti ← Ti + |S|

19 return Reduce(Ti, SUM)

and using a parallel prefix sum operation C(v) is computed for each local vertex. Processor Pi
then locates all boundary vertices in its local vertex set Vi and sends them to their respective
processor and its predecessor. In the original publication [5], the boundary vertices are located
using a linear scan, but in [7] the authors refer to a recursive scan described in detail in [3].
The authors do not account for the cost of gathering the neighborhoods of the new local vertices
of Pi, but assume that this information is reloaded from disk. This may not be practical, as
disk access may be by a magnitude slower than interprocess communication. For example, each
core of the predecessor of the supercomputer used for our experiments, SuperMUC Phase 2,
has a memory bandwidth of 137 GByte/s, while the bisection bandwidth of interconnection is
5.1 TByte/s [34].
Note that additional communication is required to evaluate c(v), as a vertex has to know the
degree and out-degree of each neighboring vertex, which may be located on another PE.

3.3. Approximative Algorithms

For many applications it suffices to only approximate the number of triangles instead of de-
termining the exact result. Approximation algorithms may reduce both the time and mem-
ory requirements of triangle counting when an exact result is not required. The algorithms
DOULION and Colorful Triangle Counting both rely on sampling a subgraph of the input and
running an exact algorithm on the reduced input instance.

DOULION Tsourakakis et al. [57] introduce Doulion, an edge-sampling-based approxima-
tion algorithm that reduces the input size. This allows for trading off running time against
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exactness and furthermore enables to approximate the number of triangles in a graph which
does not completely fit in main memory.
Each edge is sampled with probability p and an exact triangle counting algorithm is used on the
reduced input as a black box, giving triangle count T ′. The approximated number of triangles
is then T = T ′ · 1

p3 , as each triangle is left intact with probability p3. Reducing the number of
edges to 10% yields speedups from factor 30 to 130 in their experiments.

Colorful Triangle Counting Pagh and Tsourakakis [42] introduce another approximation al-
gorithm based on sampling. Each vertex v ∈ V is randomly assigned a color c(v) in the range
1, . . . N , where N := 1

p
. The reduced input graph then only consists of monochromatic edges,

i.e. edges {u, v} ∈ E where c(u) = c(v). This samples each triangle with probability p2. Again
counting the exact number of triangles in the reduced graph T ′, the approximation is T = T ′ · 1

p2 .
The authors further show that under assumptions, the estimate produced by their algorithm is
strongly concentrated around the exact number of triangles.

Both publications also provide parallel implementations of their algorithms using the MapReduce-
framework.

Streaming Algorithms Streaming algorithms are useful for inputs that do not completely fit
into main memory. The edges of the graph are processed in a stream of arbitrary order and an
approximation of the number of triangles is computed.
Bar-Yossef et al. [9] introduced the first streaming algorithm for triangle counting, which is
mostly of theoretical interest. Jha et al. [31] provide a streaming algorithm with space guaran-
tees which only requires a single pass over the edge stream. The algorithm maintains a uniform
sample of length-2-paths and checks on each new edge if any of the paths is closed. This
gives an approximation of the global clustering coefficient which may then be used to estimate
the number of triangles. The authors claim that the algorithm requires O(

√
n) space to give

accurate estimates.
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4. Main Contribution
There has been an extensive amount of research in the field of triangle counting but algorithms
using message passing which scale well on large supercomputers with high amounts of pro-
cessors have not received much attention. The most notable work has been PATRIC-NO by
Arifuzzaman et al. [6, 7] which we previously discussed in Section 3.2.2. While they analyze
the communication cost of their approach and show that they can reduce the number of inter-
processor messages compared to a naive algorithm by avoiding to send the neighborhood of a
vertex to the same processor multiple times, their algorithm still leaves space for improvement.
We introduce an algorithm called CETRIC (Communication Efficient Triangle Counting) and
show that by distinguishing between different types of triangles and using this information to
apply a reduction step to the graph, we can reduce the overall communication volume. Using
message buffering, we can lower the number of messages by aggregation and thereby reduce the
message startup overhead.
The rest of this section is structured as follows: We first give an overview of the main idea of
our exact triangle counting algorithm, going into detail in Section 4.2. Section 4.3 analyzes the
local work and communication volume of CETRIC and quantifies the communication reduction
compared to PATRIC-NO.

4.1. Overview

Revisiting PATRIC-NO [6], we see that triangles may be classified into three types, depending
on the placement of vertices on a processor. Remember that each processor Pi has access to a
distinct subset of vertices Vi and the neighborhoods Nv for each vertex v ∈ Vi. Let Pi, Pj, Pk
be processors. We call a triangle induced by the set {u, v, w} a Type-1 triangle if all vertices
are local to a single processor Pi, i.e. if u, v, w ∈ Vi. If any vertex u ∈ Vj, j 6= i and both
other vertices v, w ∈ Vi, we call it a Type-2 triangle. If each vertex in the triangle is local to
a distinct processor, we call it a Type-3 triangle. The different triangle types are depicted in
Figure 1.
Note that Type-1 triangles may always be found without interprocess communication, as all
vertices and corresponding edges of the triangle are “known” to Pi. Considering a Type-2
triangle as in Figure 1b, we see that vertices w, v are ghost vertices of Pi. Pi does not have
any information about the presence of the edge {u, v} and therefore has to communicate with
Pj to find the triangle. In contrast to this, Pj knows about all edges of the triangle and no
communication is required. In the case of Type-3 triangles, no processor has knowledge about
all edges of the triangle and therefore communication is always required.
PATRIC-NO makes no distinction between both cases for Type-2 triangles, as degree-based
orientation of edges decides which processor is responsible for counting the triangle. This leads
to our key observation: If we can count all Type-1 and Type-2 triangles without communication
and then remove all edges which may not be part of a Type-3 triangle from the graph, we can
reduce the size of the neighborhoods sent to other processors, thereby reducing the overall
message volume. We show that the reduced graph only consists of cut edges and the algorithm
is therefore communication efficient.
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(a) Type-1 triangle
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(b) Type-2 triangle

u v

w

Pi
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(c) Type-3 triangle

Figure 1: Different ways of how a single triangle may be distributed among the processors.
Dashed lines indicate processor boundaries.

4.2. Algorithmic Description

CETRIC works in three phases, the preprocessing phase, the local phase and the global phase.
The preprocessing phase makes the input graph directed and sorts neighborhoods, the local
phase is responsible for counting Type-1 and Type-2 triangles and reduction of the graph, while
the global phase counts all Type-3 triangles and aggregates the results. Pseudocode for our
algorithm is given in Algorithm 7.

Preprocessing Phase During the preprocessing phase each interface vertex sends its degree to
all neighboring ghost vertices. With this information available, Pi now determines N+

v for each
v ∈ Vi using the same degree-based total ordering ≺ on the vertices as discussed for EdgeIterator
in Section 3.1. This means, that u ∈ N+

v ⇔ u ∈ Nv ∧ u � v. The neighborhoods N+
v are then

sorted with respect to vertex ID. This is identical to the preprocessing step of PATRIC-NO [6].

Local Phase The local phase is responsible for counting all Type-1 and Type-2 triangles. As
discussed in the introduction of this section, this requires no communication. We now go more
into detail on how this is accomplished.
Counting Type-1 triangles is straightforward. A Type-1 triangle only consists of internal edges.
The graphG(Vi) induced by all vertices local to Pi only consists of internal edges by definition. If
we run EdgeIterator on G(Vi) we therefore count all Type-1 triangles and only Type-1 triangles.
For a Type-2 triangle, we call the processor where two of the triangle’s vertices are local to the
designated processor of the triangle. As discussed before, only the designated processor knows
all edges of the triangle. We therefore want to delegate counting a Type-2 triangle to that
processor.
Recall that Gi is the graph consisting of all edges where at least one endpoint is in Vi and has
the vertex set Vi. The following lemma shows that we can use EdgeIterator as a black-box for
the local phase of CETRIC.

Lemma 4.1. Applying EdgeIterator to each Gi counts every Type-1 and Type-2 triangle in G
exactly once and counts no Type-3 triangles. A Type-2 triangle is counted by its designated
processor.

Proof. All neighborhoods considered in this proof are defined with respect to Gi. Let {u, v, w}
be a triangle and without loss of generality assume that u ≺ v ≺ w. Recall that EdgeIterator
iterates over all vertices and over their outgoing neighborhoods, basically iterating over each
directed edge and then intersects the neighborhoods of both endpoints.
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(c) Case 2.b
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Figure 2: Case distinctions in the proof of Lemma 4.1. Dashed lines indicate processor bound-
aries. Only (a)-(c) are counted during the local phase as they are Type-1 and Type-2
triangles. The processor which counts the triangle is marked with a ˆ.

We say that the algorithm processes an edge (u, v) if it performs the neighborhood intersection
N+
u ∩ N+

v and updates the triangle count. We distinguish four cases, which are depicted in
Figure 2.
Case 1: u, v ∈ Vi. Then v, w ∈ N+

u and w ∈ N+
v . When examining edge (u, v), EdgeIterator

intersects N+
v and N+

u . We then count the triangle, as w ∈ N+
v ∩N+

u . Depending on whether
w ∈ Vi or w /∈ Vi, this is a Type-1 or Type-2 triangle respectively. If the algorithm processes
(u,w) and (v, w) it does not recount the triangle, as u, v /∈ N+

w and u /∈ N+
v . Note that all

edges of the triangle are processed by Pi.
Case 2: u ∈ Vi, v ∈ Vj, i 6= j.
Case 2.a: w ∈ Vi. Then v, w ∈ N+

u , w ∈ N+
v with respect to the local graph Gi. When Pi

processes edge (u, v), the same set intersection as in case 1 is performed. The only difference
is that N+

v only contains vertices in Vi, but as w ∈ Vi, the result is the same and the triangle
is found. This is a Type-2 triangle with designated processor Pi. Processing edge (u,w) yields
no triangles, as v /∈ N+

w . Edge (v, w) is processed by Pi and Pj, but as u /∈ N+
v and u /∈ N+

w ,
the same triangle is not counted twice.
Pj also processes (u, v) but w /∈ N+

u with respect to the local graph Gj because u is a ghost
vertex and w is not local to Pj. Therefore the triangle is not recounted by Pj but only by the
designated processor Pi.
Case 2.b: w ∈ Vj. The Type-2 triangle is only found by processing edge (u, v) as in the
previous case, but now only by the designated processor Pj instead of Pi. This can be shown
with an argument symmetric to the one given above.
Case 2.c: w ∈ Vk, i 6= k 6= j. This is a Type-3 triangle. Let (x, y) be any edge of the triangle.
Without loss of generality assume that x is local to Pi and y is local to Pj. With respect
to Pi, N+

y then only contains vertices in Vi, as y is a ghost vertex (by the definition of Gi).
Therefore N+

x ∩N+
y ⊆ Vi. As w /∈ Vi, we do not find the triangle. With the same argument,

the triangle is not found by Pj and as we chose (x, y) arbitrarily, the triangle is not found by
any processor.

After all Type-1 and Type-2 triangles have been counted, all non-cut edges are removed from
G, i.e. all edges where both endpoints are contained within the same local vertex set Vi. The
remaining graph is isomorphic to the cut graph ∂G.

Global Phase What remains to be counted are the Type-3 triangles from the initial input.
As seen before this requires communication. Our algorithm effectively uses PATRIC-NO as a

25



4 Main Contribution

subroutine on the remaining cut graph ∂G resulting after removal of all non-cut edges from the
input G.
For this paragraph, all neighborhoods are defined with respect to this reduced graph if not
stated explicitly.
Each processor Pi iterates over its local vertex set Vi and for each u ∈ Vi examines the outgoing
neighborhood N+

u . For each edge (u, v), the endpoint v is located on a different processor Pj.
Pi sends the set S := N+

u to Pj and Pj intersects S and N+
v . However, if the sending is done

naively, this results in a large communication overhead. To be more specific, consider the graph
given in Figure 4. Processor Pi would resend N+

u to Pj for each edge (u, vi), i = 1, . . . `, which
results in a high communication overhead due to redundant messages.

Surrogate Approach Arifuzzaman et al. [6] solve this using the so called surrogate ap-
proach. Pi sends the neighborhood N+

u of a local vertex u at most once to each other processor
Pj. A receiving processor Pj then completes all computation which requires N+

u . Therefore
Pj has to find all vertices v ∈ Vj where v ∈ N+

u as these are the vertices which would have
received the message without the surrogate approach. For a received neighborhood N+

u this is
the vertex set N+

u ∩ Vj, which is {v1, . . . , v`} in our example. For each vertex v ∈ N+
u ∩ Vj the

set intersection N+
u ∩N+

v is then performed by Pj.
To ensure that each neighborhood is sent at most once to each processor only O(|Vi|) memory
is required on each Pi. Since each Vi is a consecutive set of vertices by construction and all
neighborhoods are sorted, the vertices N+

u form consecutive groups of vertices, where each
group contains vertices local to Pj where j is larger than the processor index of the previous
group. This principle is illustrated in Figure 3. For each u ∈ Vi the algorithm keeps track
of the last processor last_proc the neighborhood N+

u has been sent to. If Pi processes an
edge (u, v) to Pj, it checks if last_proc 6= Pj. If this is true, Pi sends a message to Pj and
sets last_proc ← Pj, if not, the message is not sent. Consider that edge (u, v2) is processed
in Figure 3. The rank of v2 matches last_proc and therefore no communication occurs. On
examining edge u, va this is not true, therefore Pi sends N+

u to Pk and updates last_proc to
Pj.
Therefore keeping track of last_proc suffices to ensure that each neighborhood is sent at most
once to each processor.
The following lemma shows that due to the reduction of the input to the cut graph ∂G our
algorithm avoids that any Type-1 and Type-2 triangles counted during the local phase are
recounted and that ∂G contains all Type-3 triangles of G. Here G denotes the initial input of
the algorithm.

Lemma 4.2. The vertex set {u, v, w} ⊆ V induces a triangle in ∂G if and only if it is a
Type-3-triangle in G.

Proof. ⇒ Assume that {u, v, w} induces a triangle in G that is not a Type-3 triangle. Then
there exist at least two endpoints of the triangle which belong to the same processor.
Without loss of generality assume that these vertices are u and v. Therefore the edge
{u, v} connects two local vertices and is not contained in ∂G. This implies that at least
one edge of the triangle from G is missing in ∂G and the triangle will not be counted.

⇐ Let {u, v, w} be a Type-3 triangle in G. Then each edge of the triangle connects vertices
located on different processors. Therefore each edge of the triangle is a cut edge and also
contained in ∂G.
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u

v1 v2 v`
. . .

va vb
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. . . . . .N+
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Pj Pk Pl

last_proc

Figure 3: Visualization of the surrogate approach. Each neighborhood N+
u is sorted by vertex

ID. Vertex and processor IDs increase from left to right. Because each Vi is a consec-
utive set of vertices, the neighborhood may be divided into consecutive groups, where
each group only contains vertices local to a processor Pi and the next group is located
on a processor with higher index. N+

u is only sent to a processor Pi on examining the
first vertex of a group. In this example this only occurs while examining edges (u, v1)
(u, va) and (u, vx).

Together with the correctness of PATRIC-NO [6] this shows that the global phase of CETRIC
counts all Type-3 triangles.
By combining the number of Type-1, Type-2 and Type-3 triangles and using a reduce operation
over all processors, we obtain the total number of triangles in G.
Combining our triangle classification, Lemma 4.1, Lemma 4.2 and the correctness of PATRIC-
NO we get the following corollary.

Corollary 1. For a given graph G CETRIC counts each triangle in G once and exactly once.

4.2.1. Further Reducing Message Volume

We can further reduce the size of neighborhoods being sent for counting Type-3 triangles.
Assume that the algorithm has finished the local phase, i.e. Type-1 and Type-2 triangles have
been counted and all internal edges have been removed. Consider the graph given in Figure 4,
where u ∈ Vi, v1, . . . , v` ∈ Vj and w ∈ Vk. u is adjacent to w, u is adjacent to each vi, i = 1, . . . , `
and each vi is adjacent to w. The global phase of CETRIC then processes edge (u, v1).
If we use the algorithm from [6] without adaptation, Pi sends the set S := {w, v1, . . . , v`} to
Pj. Note that sending v1, . . . , v` is redundant, as Pj knows all vertices in N+

u (G)∩ Vj, as u is a
ghost vertex of Pj and its neighborhood is contained in the local graph Gj. Therefore we omit
all local vertices Vj from a neighborhood being sent to Pj, i.e. Pi sends S := N+

u (∂G) \ Vj to
Pj.
As discussed before, the vertices omitted are required by the surrogate approach, but Pj can
reconstruct them from the local neighborhood of ghost vertex u.

4.2.2. Reducing the Number of Messages

Arifuzzaman et al. give no details whether PATRIC-NO uses synchronous or asynchronous
sending operations. We use asynchronous sending to prevent blocking. Instead of sending
each neighborhood individually, we reduce the number of messages being sent by collecting all
messages from Pi designated for a processor Pj in a single send buffer Bj and transmit all send
buffers in a batched manner.
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u v1 v2 v3 v`· · ·

w

Pi

Pk
Pj

Figure 4: This example graph contains ` Type-3-triangles, which are all found by processor
Pj. The surrogate approach from [6] prevents that N+

u is sent to Pj for each edge
(u, vi). The neighborhood is only sent when processing (u, v1). Upon receiving the
neighborhood, Pj extracts each vi from the neighborhood and intersects N+

u and N+
vi
.

To reduce the message volume, v1, . . . , v` may be omitted from the message. The
vertices vi then have to be extracted from the ghost neighborhood N+

v (Gj).

Let v1, v2 ∈ Vi be vertices whose neighborhood is sent to Pj. As N+
v1

:= {u1, . . . , uk} and
N+
v2

:= {w1, . . . , w`} have arbitrary size, we separate the neighborhoods using a sentinel element
⊥. Then send buffer Bj contains the following:

Bj = {v1, u1, . . . , uk,⊥, v2, w1, . . . , w`,⊥, . . .}

A receiver Pj may then separate the neighborhood by splitting the set at ⊥.
Using this approach, the send buffers grow over time, which is not favorable if the memory
available per processor is limited. We therefore introduce an additional mechanism. If the size
of a message buffer Bj exceeds a certain threshold, we use a single asynchronous send to empty
the buffer.
To ensure that new messages may be added to Bj while the send operation has not completed
yet we use double buffering: For each target processor Pj we maintain two buffers Bj, B

′
j. If

a new neighborhood has to be sent to Pj, we add it to Bj. If the size of Bj exceeds the
threshold, we swap Bj and B′j and send B′j to Pj. New messages for Pj are added to Bj. If
Bj overflows, while the sending of B′j has not completed yet, we block until it has finished. To
avoid deadlocks, each processor continuously checks for incoming messages during the global
phase.
When each processor has added all its messages to the buffers (and possibly already sent some
due to overflowing buffers), we perform a globally synchronized message exchange. Because
each processor usually only sends messages to a small subset of communication partners, we
use a Sparse-All-To-All operation [28] instead of a full All-To-All. More precisely, each processor
sends direct messages to all communication partners asynchronously, and checks for incoming
messages until sending has completed. If a processor has completely sent all messages, it hits a
non-blocking barrier and continues to check for messages until all other processors have reached
the barrier. Pseudocode for this operation is given in Algorithm 6.
As a threshold we use the maximum out-degree ∆ := maxv∈V |N+

v (G)|. Exchanging this thresh-
old between all processors requires an additional AllReduce operation after the preprocessing
phase. For readability reasons we omit the double buffering in the pseudocode.

Combining all building blocks discussed in this section, we obtain Algorithm 7. Recall that
Vi is the local vertex set of Pi, ∂Vi is the set of all ghost vertices of Pi and Vi is the union of
both sets.
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4.2 Algorithmic Description

Algorithm 6: Sparse-All-To-All
Input: messages to send S0, S1, . . . , Sp−1
Output: received messages R0, R1, . . . , Rp−1

1 foreach i = 0, . . . p− 1 do
2 if Si 6= ∅ then
3 send_async(Si, Pi)

4 repeat
5 if message M from Pj available then
6 Rj ←M

7 until all messages sent
8 b← non_blocking_barrier()
9 repeat
10 if message M from Pj available then
11 Rj ←M

12 until b reached by all processors

Algorithm 7: CETRIC
/* preprocessing */

1 for v ∈ Vi do N+
v ← {u ∈ Nv | u � v}

2 for v ∈ ∂Vi do N+
v ← {u ∈ Vi | v ∈ Nu ∧ u � v}

3 for v ∈ Vi do sort_by_id(N+
v )

/* local phase */
4 Ti ← 0
5 for v ∈ Vi do
6 for u ∈ N+

v do
7 if u ∈ Vi then
8 S ← N+

v ∩N+
u

9 Ti ← Ti + |S|

10 for v ∈ Vi do N+
v ← N+

v \ Vi // remove internal edges
/* global phase */

11 for v ∈ Vi with N+
v 6= ∅ do

12 for u ∈ N+
v do

13 j ← rank(u)
14 if N+

v not sent to Pj yet then
15 M ′ ← {(v,N+

v \ Vj}
16 Mj ←Mj ∪M ′

17 forall the Mj 6= ∅ do
18 send Mj to Pj
19 while receive (v,N) do
20 for u ∈ N+

v do
21 S ← N+

u ∩N
22 Ti ← Ti + |S|

23 return Reduce(Ti, SUM)
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v0 v1 v2 v3
3 3 3 3
3 6 9 12

v0

v1

v3

v2

c(v)
C(v)

(a) Initially V0 = {v0, v1}, V1 = {v2, v3}
PATRIC’s load balancing gives V0 =
{v0}, V1 = {v1, v2, v3}

v0 v1 v2 v3 v4
0 7 11 12 10
0 0 7 18 30

v1

v2 v5

v3 v4

c(v)
C(v)

(b) Initially V0 = {v0, v1}, V1 = {v2}, V2 =
{v3}, V3 = {v4}
CETRIC’s load balancing gives V0 =
{v0, v1, v2}, V1 = {v3}, V2 = {}, V3 = {v4}

Figure 5: Problems of the load balancing scheme.

4.2.3. Load Balancing

Our load balancing scheme is based on PATRIC-NO. We assign cost c(v) to each vertex v ∈ V
and redistribute the vertices such that each Vi is a consecutive set of vertices, all sets Vi are
disjoint and the vertices are globally ordered. The load balancing algorithm tries to redistribute
vertices such that cost is equally balanced among processors, i.e. c(Vi) := ∑

v∈Vi
c(v) ≈ c(V )

p
.

We make minor adaptations to the load balancing procedure from PATRIC-NO as it contains
some uncertainties. The first minor problem is that the recursive scan described in [3] is not
able to locate boundary vertices which are the first vertex in their partition. This can easily
be fixed by adding a sentinel vertex in front of the local vertex set.
In addition, the load balancing scheme does not achieve perfect balance even if it is possible.
Consider the example given in Figure 5a. Assume that the graph is a complete graph with four
vertices and we use the vertex degree as a cost function. The graph is distributed among two
processors such that V0 = {v0, v1}, V1 = {v2, v3}. This would also be an optimal assignment
with respect to the cost function.

Then α =
∑

v∈V
c(v)

p
= 6, so v1 is a boundary vertex and the load balancing from PATRIC-NO

would assign work of cost c(V0) = 3 and c(V1) = 9. We see that work of at most size α is
assigned to a single processor, which overloads the last processor Pp−1.
We solve this problem by adapting the load balancing procedure to assign work of at least size
α. To achieve this we use an exclusive prefix sum over the vertex cost instead of an inclusive
one. We set C(0) = 0 and C(v) = ∑v−1

i=0 c(i) for v ∈ V \ {0} and assign a vertex v to processor
Pj, where j = bC(v)

α
c. In our example this now gives a balanced partition.

The Load Balancing Scheme Based on our modifications discussed above we obtain the
following load balancing procedure.
(i) calculate c(v) for each v ∈ Vi
(ii) calculate the local inclusive prefix sum Clocal(v) for each v ∈ Vi and determine C(Vi).
(iii) calculate the exclusive prefix sum S(0) = 0, S(i) = ∑p−1

i=0 Clocal(Vi−1) for i > 0 using a
parallel prefix sum operation
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4.2 Algorithmic Description

(iv) set C(v0) = S(i) for the first vertex in Vi and C(v) = S(i) + Clocal(v − 1) for all other
local vertices

(v) Pp−1 determines α = dC(n)+c(n)
p
e and broadcasts it

(vi) Pi sends v ∈ Vi to Pj, where j = bC(v)
α
c

Limits of 1D partitioning A shortcoming of this partitioning scheme is that it may not deal
with single vertices where the vertex cost exceeds α. Consider a complete graph with five
vertices, given in Figure 5b. Here we use the IDPD cost function (defined below) and four
processors. The initial partitioning is V0 = {v0, v1}, V1 = {v2}, V2 = {v3}, V3 = {v4} and
α = 40

4 = 10. We now employ our modified load balancing scheme. We see that vertices
v0, v1 and v2 get assigned to P0. v3 gets assigned to P1, but due to its high cost, the following
processor P2 gets no vertices. Something similar may be observed using PATRIC-NO, where the
resulting partition is V0 = {v0, v1}, V1 = {v2}, V2 = {}, V3 = {v3, v4}. Here the situation gets
even worse, because P3 has to deal with two high cost vertices.
Reassigning other vertices to the processor without work does not give any benefit, as the
running time of the algorithm is still dominated by the high cost vertex.
To avoid the imbalance caused by high cost vertices, we considered a tree-based approach,
which distributes the neighborhood of high cost vertices among several other processors. More
precisely, we rely on partial 2D partitioning, while the main algorithm previously discussed uses
1D partitioning. 1D partitioning only distributes the vertex set among processors and does not
subdivide the neighborhood of a single vertex, while 2D partitioning distributes the vertices
and neighborhoods among processors. Our main idea is to split the neighborhood of high cost
vertices and distribute it among multiple proxy processors which have an empty local vertex set
using a binomial broadcast tree. A processor which sends the neighborhood of a local vertex
to a high cost vertex then has to split the message and send the parts to the proxy processors
of the high cost vertex. Preliminary experiments using a single-level broadcast tree showed
that the additionally introduced communication and management overhead did not pay off for
a better load balance, which is why we only use the 1D partitioning scheme discussed in detail
above for our algorithm.
For our experiments we use the cost functions from PATRIC and PATRIC-NO which we repeat
here for clarity.

c(v) =
∑
u∈N+

v

d+
v + d+

u (DPD)

and
c(v) =

∑
u∈N−v

d+
v + d+

u (IDPD)

Arifuzzaman et al. evaluated many other cost functions, but show that for PATRIC the cost
function DPD achieves the best load balance on networks with skewed degree distributions [5].
For PATRIC-NO they introduce IDPD. In combination with PATRIC-NO this cost function
outperforms DPD [6]. They further show that IDPD exactly measures the cost for local set
intersection, but they do not account for communication cost.
This it not easily achievable, as for estimating communication cost we need to identify whether
a neighbor of a local vertex is a ghost vertex or not, which is in turn dependent on the resulting
partition.
We tried an iterative load balancing scheme, which executed a second load balancing phase
after the edge removal step of CETRIC’s local phase, but preliminary experiments showed that
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this does not improve the load balancing and introduces a high running time overhead.
For CETRIC IDPD does not give an exact measure of the required local work. We still consider
it a good heuristic and use it together with DPD in our experiments. Preliminary experiments
using other cost functions from [5] showed that both cost functions do not only work best for
PATRIC and PATRIC-NO, but also for our algorithm.
Our implementation is able to redistribute the graph by sending messages, instead of relying
on the availability of the whole graph in the file system of each core of the machine. Relying
on the filesystem is not practical, as memory bandwidth may be by a magnitude lower than
communication bandwidth, as already discussed in Section 3.2.2.

4.2.4. Implementation Details

In this paragraph we give an insight on some selected details of our implementation, which
we omitted in the previous description of CETRIC for brevity, but still have an impact on the
performance of the algorithm.

Graph Datastructures Each processor Pi stores its local graph Gi using the adjacency array
format discussed in Section 2.1 using unsigned 64-Bit integers to represent vertex and edge IDs.
Each processor stores the index of the first local vertex and all vertex IDs are translated to local
vertex IDs in the range 0, . . . , Vi− 1 to allow for accessing neighborhoods using a single level of
indirection. For local vertices, the global vertex ID may be obtained by adding the index of the
first local vertex, the global vertex IDs for ghost vertices are stored explicitly together with the
processor the ghost belongs to. Each processor additionally maps the global ID of each ghost
vertex to the local ID using a hashmap.
Orienting the input graph with respect to ≺ is achieved by scanning over each local neighbor-
hood with a procedure similar to the bucket assignment of inplace quicksort [47], which reorders
the array slice representing the neighborhood such that it first contains all incoming and then
all outgoing neighbors. For each vertex we store the index in this slice where the first outgoing
neighbor is located.
To allow for fast edge removal in the local phase, we additionally store the current degree of each
local vertex, while the first_out array stores the initial degree. The neighborhood of a vertex v
then consists only of vertices head[first_out[v]] . . . head[first_out[v] + degree[v]]. For
removing all internal edges of v, we copy all neighbors which are ghosts to the front of the
array slice using a single linear scan and update the degree. For a local vertex which is not an
interface vertex, i.e. has no ghost neighbors, we can remove all internal edges by setting the
degree to zero.
We do not actually free the memory for incoming neighbors and deleted edges, as this would
require memory reallocations.

Set Intersections When processing an edge (u, v) we provide two implementation variants for
the set intersection. The first variant is identical to the one used in EdgeIterator and PATRIC-NO
and uses Sorted Merge Intersection (see Algorithm 2).
The second variant is inspired by K3 by Ortmann et al. [41]. As for each local vertex u, we
intersect N+

v with N+
u for each u ∈ N+

v , Sorted Merge Intersections scans N+
v each time. To

prevent this, we use a bit-vector of size |Vi| to mark all vertices in N+
v and while scanning

w ∈ N+
u simply check whether w is marked. After processing N+

v we reset all flags. For details
see Algorithm 4. We call this variant Flag Intersection.
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4.3. Theoretical Analysis

In this section, we compare the asymptotic running time and communication volume of our
algorithm to PATRIC-NO and show how our algorithm is able to reduce the communication
volume.
Let Ei := {(v, u) | v ∈ Vi, u ∈ N+

v ∩ Vi} be the set of all directed edges on processor Pi, where
both endpoints are local to Pi.
In addition, we define the cut of a vertex v ∈ Vi as the set of edges Cv := {(v, u) | u ∈
Nv ∩ {V \ Vi}}. The set of outgoing cut edges is defined as C+

v := {(v, u) ∈ Cv | v ≺ u}, i.e.
all cut edges directed away from Pi, and the set of incoming cut edges is defined analogously
as C−v := Cv \ C+

v .
We further define the outgoing cut with respect to another processor Pj as C+

v (j) := {(v, u) ∈
C+
v | u ∈ Vj}. Then c+

u := |C+
u | and c+

u (j) := |C+
u (j)|.

We write C+
Vi

:= ⋃
v∈Vi

C+
v and C−Vi

:= ⋃
v∈Vi

C−v for the overall cut of processor Pi, and define
c+
Vi

= |C+
Vi
| accordingly. Note, that always c+

u ≤ d+
u for u ∈ V .

4.3.1. Local Work

Using the notations introduced above, we first analyze the local work of a single processor Pi
using PATRIC-NO and compare it to the local work of CETRIC. For our analysis we assume
that both algorithms use Sorted Merge Intersection for intersecting neighborhoods and only
focus on the operations required for set intersections.
When either of the algorithms considers an edge (v, u) ∈ Ei, the procedure is identical to
EdgeIterator. The neighborhoods N+

v and N+
u are intersected using Sorted Merge Intersection,

which has to traverse both neighborhoods. The running time of set intersection is therefore
bounded by d+

v + d+
u .

PATRIC-NO For ease of analysis we divide PATRIC-NO into two phases similar to CETRIC.
We run the iteration over all edges in lines 2-3 of Algorithm 5 twice. The first iteration is the
local phase and we only execute the local triangle counting from lines 4-6, the global phase
consists of the second iteration executing the else-branch and performs message receiving and
handling.
PATRIC-NO’s local phase iterates over all edges in Ei and C+

Vi
and processes the edges in Ei.

For cut edges in C+
Vi

it does not perform any local work, but only sends messages to neighboring
PEs. We omit the work required for building messages in the global phase from our analysis.
Therefore the local phase’s running time is bounded by ∑(v,u)∈Ei

(d+
v + d+

u ) + c+
Vi
.

For each incoming cut edge (v, u) ∈ C−Vi
, the algorithm receives a message containing N+

u and
intersects it with N+

v .
This gives the following total required local work for PATRIC-NO∑

(v,u)∈Ei

(
d+
v + d+

u

)
+ c+

Vi
+

∑
(v,u)∈C−Vi

(
d+
v + d+

u

)

CETRIC The main idea of CETRIC is to reduce the communication volume by counting
Type-1 and Type-2 triangles without communication, which results in smaller messages between
communication partners. To achieve this, our algorithm requires more local work than PATRIC-
NO.
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In addition to intersecting the neighborhoods of the endpoints of each edge in Ei, our algorithm
also does the same for each cut edge (v, u) ∈ Cv. Recall that from the view point of Pi, u is
a ghost vertex and local to another processor Pj and Pi only has access to edges in C+

u (i).
Therefore processing a cut edge is bounded by d+

v + c+
u (i).

The local work of CETRIC’s local phase is then bounded by∑
(v,u)∈Ei

(
d+
v + d+

u

)
+

∑
(v,u)∈CVi

(
d+
v + c+

u (i)
)
.

During the global phase, Pi receives messages from other processors Pj. Similar to PATRIC-NO,
for each incoming cut edge Pi has to perform a set intersection, but due to the edge removals
after the local phase, the size of the sets is reduced. For each incoming cut edge (v, u) ∈ C−Vi

,
the partial neighborhood received from u does only consist of cut edges and therefore only has
size c+

u . The neighborhood reduction discussed in Section 4.2.1 omits all cut edges which are
directed towards Pi, therefore reducing the size of the received neighborhood to c+

u −c+
u (i). Due

to the edge removal, the neighborhood size of v is also reduced to c+
v .

The local work of the global phase is then given by∑
(v,u)∈C−Vi

(
c+
v + c+

u − c+
u (i)

)
.

Combining both phases of CETRIC we get∑
(v,u)∈Ei

(
d+
v + d+

u

)
+

∑
(v,u)∈CVi

(
d+
v + c+

u (i)
)

+
∑

(v,u)∈C−Vi

(
c+
v + c+

u − c+
u (i)

)

=
∑

(v,u)∈Ei

(
d+
v + d+

u

)
+

∑
(v,u)∈C+

Vi

(
d+
v + c+

u (i)
)

+
∑

(v,u)∈C−Vi

(
d+
v + c+

u (i)
)

+
∑

(v,u)∈C−Vi

(
c+
v + c+

u − c+
u (i)

)

=
∑

(v,u)∈Ei

(
d+
v + d+

u

)
+

∑
(v,u)∈C+

Vi

(
d+
v + c+

u (i)
)

+
∑

(v,u)∈C−Vi

(
d+
v + c+

v + c+
u

)

We see that CETRIC’s local phase is more work-intensive, as it has to find all Type-1 and
Type-2 triangles by also iterating over the partial neighborhoods of ghost vertices. While
PATRIC-NO does no local work on examining a cut edge during the local phase, our algorithm
intersects the neighborhoods of both endpoints of each cut edge. This gives an additional work
of ∑(v,u)∈C+

Vi

(d+
v + c+

u (i)).

When the outgoing cut size c+
v of a vertex v ∈ V is small compared to the out-degree d+

v our
algorithm reduces the amount of work required for processing incoming messages.

To give a crude estimation how the local work of both algorithms compares if the graph has
small cuts compared to the degree of cut vertices, we assume that c+

v + c+
u ≤ min{d+

u , d
+
v } for

each cut edges (v, u) ∈ CVi
. Because the global phase works on the cut graph, we save on

local work for processing incoming messages. Instead of ∑(v,u)∈C−Vi

(d+
v + d+

u ) the last term is∑
(v,u)∈C−Vi

(d+
v + c+

v + c+
u ) for CETRIC. Under our assumption, this yields a reduction in work

required for the global phase.
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4.3.2. Communication Volume

We consider the total size of messages sent to communication partners by a single processor Pi.
Recall that we call this the communication volume, i.e. the number of vertices a processor sends
to other PEs. We omit the communication required for load balancing and graph orientation,
as they are the same for PATRIC-NO and CETRIC.

PATRIC-NO For each outgoing cut edge (v, u) ∈ C+
Vi
, PATRIC-NO has to send the whole

neighborhood N+
v to the processor Pj that u is local to. Recall that rank(u) defines the

processor index the vertex u is local to, i.e. rank(u) = j if and only if u ∈ Vj. If we send N+
v

to the processor with index rank(u) for each outgoing cut edge (v, u) ∈ C+
Vi

this would yield a
communication volume of ∑(v,u)∈C+

Vi

d+
v .

The surrogate approach ensures that N+
v is only sent once to Pj, which means that the first

cut edge to Pj acts as a surrogate for all c+
v (j) other cut edges to Pj and the communication

volume is reduced.
Therefore the communication volume of Pi using PATRIC-NO is given by

∑
(v,u)∈C+

Vi

d+
v

c+
v (rank(u)) .

CETRIC After the local phase of CETRIC all internal edges are removed from the graph and
the resulting graph only consists of cut edges. Therefore for each outgoing cut edge (v, u) ∈ C+

Vi
,

we only send a small fraction of v’s neighborhood to Pj, which has size c+
v . If neighborhood

reduction is used, we can exclude c+
v (j) additional neighbors of v.

This gives a communication volume of

∑
(v,u)∈C+

Vi

c+
v − c+

v (rank(u))
c+
v (rank(u)) .

As c+
v ≤ d+

v , we see that our algorithm is able to reduce the overall communication volume.
The volume is only dependent on the cut size of the graph. If a graph is distributed among
processors such that the cut of a vertex is a lot smaller than its outgoing degree, the resulting
reduction in communication volume is high. While the local work required is still higher than
for PATRIC-NO, we expect our algorithm to outperform PATRIC-NO in practice, as interprocess
communication is more time-intensive due to network latency than local computation. We
therefore expect the additional local work to pay off.
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5. Experimental Evaluation
In this section, we evaluate our algorithm in practice. While we have already shown in theory
that CETRIC reduces the communication volume, we investigate the impact on running time
on actual data. For that purpose we compare CETRIC to PATRIC-NO and discuss the scaling
behavior and impact of load balancing in detail using up to 4096 PEs on the SuperMUC-NG.
Note that Arifuzzaman et al. previously only conducted experiments using up to 1000 PEs for
PATRIC-NO [5].
In the following, we give details of our methodology. In Section 5.1 we discuss additional
improvements CETRIC introduces besides the main communication reduction, while Section 5.2
shows how our algorithm improves upon PATRIC-NO on a large variety of real-world networks
and generated instances. Section 5.3 summarizes our experiments.

Experimental Setup We implemented CETRIC in C++. Our implementation is available at
https://github.com/niklas-uhl/parallel-triangle-counting. We conduct our experi-
ments using two different machines. For a smaller number of processors we use a dual-socket
Intel Xeon CPU E5-2683 v4 (2.1 GHz) shared memory machine, with a total of 32 cores and
512GB of DDR4-PC2133 RAM. With hyperthreading enabled we use up to 64 logical cores.
The system runs Ubuntu 20.04.2 LTS with kernel version 5.4.0-70-generic. We call this system
M1.
For experiments with a large number of processors we use the thin nodes of the SuperMUC-NG
supercomputer at the Leibniz Supercomputing Center. The thin nodes consist of 8 islands and
a total of 6336 nodes. Each node consists of an Intel Skylake Xeon Platinum 8174 processor
with 48 cores. The available memory per core is limited to 2GB. Each node runs the SUSE
Linux Enterprise Server (SLES) operating system.
Our code is compiled using optimization level -O3. On the shared memory machine we use
g++-9.3.0 and OpenMPI 4.0.3, on the SuperMUC-NG we use g++-9.2.0 and Intel MPI 2019
compiled with gcc.
The authors of PATRIC-NO do not provide an implementation of their algorithm, therefore we
use our own tuned implementation, which includes our message buffering scheme, adapted load
balancing and optionally may use Flag Intersection and neighborhood reduction as described
before. As this reduces the differences between PATRIC-NO and CETRIC implementation wise,
it allows for a more direct comparison of both competitors.

Datasets We evaluate CETRIC on a large variety of real-world and synthetic instances. All
instances are listed in Table 2. We visualize the degree distribution of all instances in Ap-
pendix A.
We use live-journal and orkut from the SNAP dataset [35], a complete snapshot of follower
relationships of the twitter network [33]1 and wiki-links-en and friendster from the KONECT
collection [32]2. We further include large web graphs from the Laboratory for Web Algorithmics
dataset collection (LWA), namely uk-2007-05 and webbase-2001 [13, 12]3.
The uk-2007-05 graph has a size of 50 GB and consists of over 3 billion edges and is the
largest real-world graph used in our experiments. It is the result of a crawl of the .uk domain.
webbase-2001 has been originally obtained from the 2001 crawl performed by the WebBase
crawler. While having more vertices than uk-2007-05, it only has around 855 million edges.

1available for download at http://an.kaist.ac.kr/traces/WWW2010.html
2available for download at http://konect.cc
3available for download at http://law.di.unimi.it/datasets.php
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instance n m memory source graph family
live-journal 4,847,571 42,851,237 691 MB SNAP [35] social
orkut 3,072,441 117,185,083 1.8 GB SNAP [35] social
twitter 41,652,230 1,202,513,046 19 GB [33] social
wiki-links-en 13,593,032 334,591,525 5 GB KONECT [32] web
friendster 68,349,466 2,586,147,869 28 GB KONECT [32] social
uk-2007-05 105,896,555 3,301,876,564 50 GB LWA [13, 12] web
webbase-2001 118,142,155 854,809,761 14 GB LWA [13, 12] web
europe 18,029,721 22,217,686 477MB DIMACS [20] road
usa 23,947,347 28,854,312 623MB DIMACS [20] road

Table 2: Real-world graph instances used in our experiments.

We use road networks of europe and usa made available during the DIMACS challenge on
shortest paths [20]. Road networks typically have low average degree and a uniform degree
distribution.
Whenever the graphs are directed, we interpret each edge as undirected. We remove vertices
with no neighbors from the input.
For generating synthetic instances we use the distributed graph generation framework KaGen4
and generate 2D random geometric graphs (RGG) and random hyperbolic graphs (RHG). The
RGG generator works by placing n vertices at uniform random locations in the unit plane.
Two vertices are adjacent if their euclidean distance is less than a given radius r. We set
r = rcoeff

√
lnn
n

with rcoeff = 0.55 as this ensures that the graph is almost always connected [4]
and is used by Funke et al. [25]. We write RGG(n, rcoeff) to identify an RGG graph with given
number of vertices and radius.
The RHG model places vertices randomly on a disk with fixed radius, such that many vertices
are concentrated around the center. Two vertices are adjacent if their hyperbolic distance is
below a certain threshold. The generated graphs follow a power-law degree distribution and
may be parameterized using the power-law exponent γ, the desired average degree d and the
number of vertices n. We use the parameters used in [25] and set d = 16 and use γ ∈ {2.8, 3.0}.
We write RHG(n, d, γ) to identify an RGG graph with given number of vertices, average degree
and power-law exponent γ.
The graph generators from KaGen work without communication and partition the vertex set
of the generated graph and already contain locality. We therefore do not use our load balanc-
ing scheme in conjunction with synthetic instances, but rely on the partitioning provided by
the generators. This maintains locality of the input and allows us to evaluate our algorithm
independent of load balancing.
We further use the recursive matrix graph model (R-MAT) by Chakrabarti et al. [16]. It is well
known, as it is used in the popular Graph 500 benchmark [54] for generating large instances. An
R-MAT graph with n vertices andm edges is generated by recursively subdividing the adjacency
matrix into four equally sized sectors, where the four sectors are assigned probabilities a, b, c, d
with a+ b+ c+ d = 1. Each edge is sampled independently by descending into any of the four
sectors with the assigned probability. This is repeated recursively until the sector has size 1.
We use the generator from [30] and the parameters from the Graph 500 benchmark, i.e. a =
0.57, b = 0.19, c = 0.19, d = 0.05 and set m = 16 · n.

4https://github.com/sebalamm/KaGen [25]
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5 Experimental Evaluation

Methodology If not stated otherwise, we measure running time of PATRIC-NO and CETRIC
after load balancing has been performed because the load balancing phase of both algorithms
is identical. Our measurements include the preprocessing, local and global phase for CETRIC
and preprocessing and the single main phase for PATRIC-NO. We call this the algorithm core.
On each processor we measure the execution time of all phases combined using MPI_Wtime and
report the maximum over all processors. For fine granular per processor measurements we use
std::chrono::high_resolution_clock from the C++ standard library.
We measure communication volume by counting the number of vertices a single processor Pi
sends to its communication partners and report the total sum over all processors. This includes
sentinel elements sent. We only count vertices sent during the main phase of the algorithms,
i.e. do not include communication required during the load balancing and preprocessing phase
and do not include the cost for the final reduction operation, because the phases are identical
for PATRIC-NO and CETRIC. Preliminary experiments have shown that the additional com-
munication volume from these phases is smaller than the communication volume of the global
phase on most large instances. Our analysis therefore only focuses on communication during
the core algorithm.
To get a better understanding of how much each algorithm phase contributes to the running
time, we refer the reader to Appendix B.
We consider two base algorithms in our experiments, PATRIC-NO and CETRIC. We further
evaluate our tuned implementation of PATRIC-NO, which includes Flag Intersection and neigh-
borhood reduction discussed in Sections 4.2.4 and 4.2.1. We call this variant PATRIC-NO+.
For comparability reasons, all algorithm variants use our message buffering scheme from Sec-
tion 4.2.2. For all experiments on real-world data, we use the load balancing procedure discussed
in Section 4.2.3 and use either DPD or IDPD as cost functions. For graphs generated using
distributed graph generators, we use the vertex partition provided by the generator and skip
the load balancing step.

5.1. Preliminary Experiments

Besides the main idea of CETRIC, avoiding communication for counting Type-2 triangles, our
algorithm introduces three other building blocks of a scalable distributed triangle counter. The
first one is the reduction of message sizes by omitting locally available information, the second
idea is to use a bit-vector for consecutive set intersections with one fixed set, as this prevents
scanning over the same set multiple times. As a third technique, we propose aggregating
multiple messages designated for a single processor in message buffers, which reduces the total
number of messages and saves on startup overhead. These building blocks may also be directly
incorporated in PATRIC. In this section, we evaluate the impact of these techniques on message
volume and running time and how they improve CETRIC.

5.1.1. Neighborhood Reduction and Set Intersection

As discussed before, we can further reduce the amount of data being sent between processors
during the global phase. Instead of sending N+

u (∂G) to Pj, we omit all vertices local to Pj and
only send N+

u (∂G)− Vj.
Additionally, we discussed two variants of how the neighborhood intersection in CETRIC may
be performed in Section 4.2.4. The first variant, Sorted Merge Intersection, works similar to
the merge phase of merge sort and for each intersection performs a simultaneous linear scan
over both sets and is also used in EdgeIterator and PATRIC.
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Figure 6: Communication volume and running time of CETRIC-IDPD with neighborhood re-
duction and different implementation variants of set intersection using 64 to 1024 PEs
of the SuperMUC-NG.

We propose a second variant called Flag Intersection inspired by K3, which marks the vertices
of one neighborhood using a bit-vector and for the other neighborhood only checks for each
element if the flag is set. This reduces the time required for set intersection if the first set is
fixed and intersected with multiple other sets, as we only have to scan over the second set.
Using CETRIC with IDPD as cost function for load balancing we report the communication
volume per PE and the running time with and without using neighborhood reduction and for
the implementation variants of the set intersection. We show the results for the real-world
instances uk-2007-05, webbase-2001 and europe in Figure 6, but observed similar results for
other instances.
On the considered instances, neighborhood reduction reduces the communication volume by
20− 36% on average, but only on europe this results in a lower running time.
Flag Intersection does not change the communication volume, but halves the running time on
uk-2007-05 and webbase-2001. On europe Flag Intersection only slightly affects the running
time. We assume that this is due to the low degree of road networks.
Even though in our experiments neighborhood reduction does not influence the running time,
we assume that its effects become visible on distributed memory machines with lower commu-
nication bandwidth than the SuperMUC-NG.
Based on these results we use neighborhood reduction and Flag Intersection for the rest of the
experiments in this section and all following experiments in combination with CETRIC.
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5.1.2. Message Buffering

In Section 4.2.2 we introduced the concept of message buffering. Each processor aggregates all
messages designated for processor Pj in a message buffer Bj, instead of immediately sending
them. By sending multiple messages in a batch, we only need to account for communication
startup overhead once per batch instead of for each single message. A shortcoming of this
approach is that additional memory is required to store the message buffers. As discussed
before, we address this by emptying buffers if their capacity exceeds a certain threshold.
Message buffering has almost no effect if executed on a shared memory machine, because mes-
sage exchange happens in memory, and the message startup overhead is low. On a distributed
system the startup overhead is higher, because it is dependent on the network bandwidth.
In Figure 7 we show the impact of message buffering on uk-2007-05 using CETRIC and IDPD
as cost function. We compare the total number of messages sent for increasing number of
processors using no buffering, as suggested for PATRIC-NO in [5], using a threshold of ∆ =
maxv∈V |N+

v (G)|, and using a threshold of ∞. Based on our previous experiments we use
neighborhood reduction and Flag Intersection.
Our experiments support the assumption that message buffering may significantly reduce the
number of messages and also has a direct impact on the total running time. For example, if
the threshold is set to ∆ using 512 PEs, the number of required messages is reduced by 99%
compared to the algorithm without buffering. The resulting reduction in running time is 10%.
Especially with increasing number of processors, using buffering with a threshold of ∆ clearly
outperforms that variant without buffering.
If the threshold is set to∞, the total number of messages is bounded by O(p2) as each processor
sends at most one message to each other processor in a globally synchronized communication
step (see Algorithm 6 for details). The dotted line in Figure 7 indicates p2. We see that
the number of messages for a threshold of 0 is close to this bound using 64 PEs, but with
increasing number of processors does not grow as fast as p2. This does not only reduce the
message startup overhead. If messages may be sent at any time, each processor has to check
for messages continuously, which introduces further latency. If communication only happens in
a single globally synchronized step, this checking may be omitted. This does not come for free,
as the large buffers require lots of memory.
We observed similar results on other graph instances.
As the per core memory on the SuperMUC-NG is limited to 2GB, we use ∆ as a buffering
threshold for the rest of our experiments. For a fair comparison, we use the same buffering
scheme and threshold for all algorithms.

5.2. Scaling Experiments

We analyze the scalability of our algorithm in terms of strong and weak scaling. For strong
scaling experiments we choose an input instance with fixed and measure the running time
over all processors with increasing number of processors. Weak scaling measures the variation
of running time for a fixed problem size per PE, i.e. we scale the problem size proportional
to the number of processors. We first focus on strong scaling experiments using real-world
and synthetic graph instances in Section 5.2.1 using up to 4096 PEs. For the weak scaling
experiments in Section 5.2.2 we use inputs with up to 232 vertices on 4096 PEs.
Based on our preliminary results in Section 5.1 we use CETRIC in conjunction with neigh-
borhood reduction and Flag Intersection. We also use message buffering with the buffering
threshold set to ∆ = maxv∈V |N+

v (G)|. To allow for a fair comparison of the algorithms in-
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Figure 7: Total number of messages and resulting running time of CETRIC-IDPD on uk-2007-05
for different buffering thresholds on the SuperMUC-NG.

dependently of the buffering scheme, we use the same buffering approach for PATRIC-NO and
PATRIC-NO+.

5.2.1. Strong Scaling

We first give a brief overview of our algorithm performance by comparing it to PATRIC-NO on
the shared memory machine M1 using up to 64 PEs. After that we perform a more in-depth
evaluation on several selected instances using the SuperMUC-NG with up to 4096 PEs. This
includes a thorough discussion on load balancing, scalability and on the several improvements
techniques introduced by our algorithm.
We evaluate our algorithm by comparing its communication volume and running time to
PATRIC-NO. We performed our initial experiments on the shared memory machine using 2
to 64 PEs. The following plots show the average communication per PE on the left, the total
running time of the algorithm core (all phases excluding load balancing) is shown on the right.
We evaluate all algorithms using IDPD and DPD as cost functions. We use three families of
real-world instances: social networks, web graphs and road networks.
Figure 8 shows our results for social networks. At a first glance we notice that the development
of communication volume is similar for all instances. We see that on all inputs our algorithm is
able to reduce the communication volume. Using 2 PEs, the volume is reduced by up to 95%
on twitter, with similar reduction on other instances. With increasing number of processors
the amount of reduction decreases, but we still achieve an average reduction of 30− 37% over
all measured values. More importantly, CETRIC is also faster than PATRIC-NO in most cases.
Again considering twitter as an example, we achieve a running of time 623s using 32 PEs, which
is a reduction by 25% compared to PATRIC-NO using the same number of processors.
On live-journal we see that CETRIC outperforms PATRIC-NO up to 8 PEs, but then the com-
petitor catches up. We further see that IDPD does not scale as well as DPD. On orkut our
algorithm hits a scaling wall at 64 PEs. We will focus on these two instances more in detail
below.
The reduction of the communication volume also has a direct influence on running time, even
though on the shared memory machine communication latency is a lot lower, because no net-
working is required. While Arifuzzaman et al. intensively discuss different cost functions, on
lower number of processors and large graphs, the difference is negligible. Especially using up
to 8 cores, which is typical for end user systems, CETRIC greatly improves the running time.
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On all social instances our algorithm reduces the communication by a high margin for up to 32
PEs, but then the difference between CETRIC and PATRIC-NO becomes small.
Figures 9 and 10 show our results on web graphs and road networks. Here we see, that our
algorithm performs even better than on social instances. On uk-2007-05 the communication
volume is reduced by 86% on average, the running time is reduced by 60% on average. On
uk-2007-05 and webbase-2001 CETRIC clearly outperforms PATRIC-NO. On these instances, we
also see that the cost function has almost no influence on communication volume and running
time. Only on wiki-links-en when using more than 32 PEs, PATRIC-NO catches up with our
algorithm.
On road networks, our algorithm clearly outperforms PATRIC-NO in terms of communication
volume and running time. On europe the choice of cost function again has almost no effect,
while on usa the cost function IDPD leads to large variances in running time with increasing
number of processors.
In the following we provide a more detailed discussion of our algorithm and take a closer look at
load balancing and scalability with a higher number of PEs as well as including PATRIC-NO+
in our experiments.
We focus on the large web graphs uk-2007-05 and webbase-2001, the road networks and live-
journal and orkut. We evaluate the scaling behavior of these graph families and of additional
generated graphs from 64 to up to 4096 cores on the SuperMUC-NG. To give a better under-
standing of how good CETRIC works, we further compare to PATRIC-NO+ which is our tuned
variant of PATRIC. Due to the memory limitations of SuperMUC-NG (2GB per core), we were
not able to conduct these experiments on large social networks such as twitter, as they produce
large amounts of intermediate data to represent ghost vertices and their neighborhoods, such
that the local data structures do not fit into a single core’s main memory.

Web Graphs We now give a detailed comparison of CETRIC, PATRIC-NO and PATRIC-NO+
on uk-2007-05 and webbase-2001. Recall that uk-2007-05 is the largest instance used in our
experiments. We evaluate our algorithm and its competitors on these two graphs.
Figure 11 reports the results of our strong scaling experiments on both graphs. Considering
uk-2007-05 we see that for both cost functions, CETRIC is able to reduce the communication
volume compared to PATRIC-NO. For IDPD the communication volume is reduced by 40%
on average, for DPD even by 50%. Using 64 PEs and IDPD as cost function, we are able
to reduce the volume by 77% and the amount of reduction decreases with increasing number
of processors. Still, using 2048 PEs, CETRIC-IDPD requires 10% less communication than
PATRIC-NO-IDPD. This may be explained by the fact that the number of cut edges increases
when the graph is distributed among a larger number of processors. As CETRIC achieves
its communication reduction by omitting non-cut edges from the messages, its impact on the
communication volume becomes less if the cut size increases.
We included PATRIC-NO+ in our experiments because it incorporates neighborhood reduction
and Flag Intersection into the algorithm by Arifuzzaman et al. [6]. This allows us to investigate
the impact of CETRIC’s main idea, avoiding communication for Type-2 triangles independent
of other improvements included in our algorithm.
While the neighborhood reduction from PATRIC-NO+ slightly lowers the volume, we see that
CETRIC outperforms it in terms of communication volume and running time.
We achieve the best running time on uk-2007-05 using 512 PEs and CETRIC-IDPD, where the
running time is 25 seconds. Compared to that, PATRIC-NO using the same cost function takes
31 seconds.
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Figure 10: Strong scaling on road networks using 2 to 64 PEs on M1.

Up to a processor count of 512 PEs, CETRIC-IDPD clearly outperforms its competitors. With
higher number of processors, all configurations using IDPD hit a scaling wall.
Further investigations have shown that this is due to a load imbalance. Using 4096 PEs there
is one PE which dominates the running time, caused by a single vertex located on it.
This vertex has high degree but is also adjacent to more high degree vertices. Recall that the
vertex cost is defined as c(v) = ∑

u∈N−v d
+
u +d+

v using IDPD. The considered problematic vertex
has both high in-degree and is adjacent to vertices with high out-degree on their own, which
results in a high cost. As discussed before in Section 4.2.3, the load balancing procedure treats
each vertex as an atomic task and assigns it to a PE Pi. Besides the problematic vertex this PE
only gets assigned a small number of low cost vertices. Therefore, almost all neighbors of the
problematic vertex are ghost vertices and the processor Pi sends and receives a large number
of messages due to its high degree.
The problem is depicted in Figure 12. For each PE Pi we measure the accumulated cost
c(Vi) = ∑

v∈Vi
c(v) using IDPD as cost function c(v). Recall that the goal of the load balancing

scheme is to achieve c(Vi) ≈ α := C(v)
p

local cost. For each PE we report the imbalance, i.e. the
relative error ε =

∣∣∣1− C(Vi)
α

∣∣∣ of the actual accumulated cost of the PE compared to the desired
cost α. The left y-axis of each subplot describes this error, the right y-axis shows the message
volume sent by each processor. The left plot shows the results for 512 PEs, the right plot for
4096 PEs. We see that in the case of 4096 PEs the processor with index 3162 has a send volume
which is by a factor of 775 higher than the average send volume per PE. This imbalance causes
scalability issues. We notice that this correlates with the imbalance error. For 512 PEs we see
that the imbalance does not occur.
Surprisingly, using DPD for load balancing, the scaling behavior is a lot better. As DPD
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underestimates the actual cost required for processing the problematic vertex, it adds additional
vertices to the processor Pi. Therefore the vertex has fewer ghost vertices as neighbors, which
leads to less communication involving Pi. This means that DPD trades off imbalance in terms
of local work for less communication. Due to network latency this results in better scalability.
While DPD does not achieve a balance in terms of local work, it does not isolate the problematic
vertex and the processor where it is located receives fewer messages which prevents a scaling
bottleneck.
For 1024 to 4096 PEs PATRIC-NO+-DPD outperforms CETRIC-DPD. This is caused by the
final Sparse-All-To-All operation (see Section 4.2.4) which takes longer for CETRIC than for
PATRIC-NO+, despite CETRIC’s lower communication volume, but we could not identify the
cause of that.
Our results on webbase-2001 are similar. CETRIC reduces the message volume by around 50%
on average, which results in outperforming PATRIC-NO in terms of running time. The algorithm
variants using IDPD again perform better than those using DPD on up to 512 PEs, but then
hit a scaling wall as already discussed for uk-2007-05. From 512 PEs onward, CETRIC-DPD is
the best algorithm configuration. PATRIC-NO+ is outperformed by all other configurations.
The details of the balancing issue are shown in Figure 12. Again, a single PE causes a high
imbalance. Opposed to uk-2007-05 the overloaded PE does not have a high amount of outgoing
messages, but receives many messages.
As discussed before in Section 4.2.3 we experimented with several load balancing approaches
which try to offload the work from the problematic processors, but they only resulted in a
higher overall running time, without affecting the scalability.
Still, our experiments suggest that by combining the cost functions IDPD and DPD we can
deal with the scaling issues we encountered. Figure 12 shows that if a processor has a send or
receive volume which is by magnitudes higher than the average, the imbalance ε =

∣∣∣1− C(Vi)
α

∣∣∣
is also high.
Because both cost functions are dependent on the out-degree of the neighbors of a vertex, we
can compute both functions during load balancing without sacrificing running time. By default,
using IDPD is desired, but if we detect a high imbalance ε for a single processor, we switch to
DPD.

Road Networks We evaluate our algorithm on road networks of Europe and the USA. Road
networks are very sparse, almost planar and have low average degree, as can also be seen in
the degree distribution plots in Appendix A. We therefore expect these networks to have a
low number of triangles and especially few Type-3 triangles. As our algorithm only requires
communication for these triangles, we expect it to outperform PATRIC-NO. Figure 13 shows
our results.
On europe we see that triangle counting is generally really fast due to the sparseness of the
graph. PATRIC-NO takes only 0.3 seconds using 64 cores. We further notice that the overall
communication volume is very low.
For example, live-journal and usa both require around 600-700MB of memory, but the required
communication volume for live-journal using 1024 PEs is by a factor of 14 higher than for the
similarly sized road network.
The communication reduction employed by PATRIC-NO+ already reduces the message volume
by one third, but this does not pay off in terms of running time. Only CETRIC is able to
significantly beat the competitors in terms of communication volume and running time.
On usa the major reduction in communication volume does not come from CETRIC’s two-phase
approach but from neighborhood reduction, as the resulting message volume is nearly the same
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using 512 and 4096 cores on the SuperMUC-NG. The imbalance is defined as
ε =

∣∣∣1− C(Vi)
α

∣∣∣, where α = C(V )
p

.

for PATRIC-NO+ and CETRIC. As a result, the running time performance of all algorithms is
nearly the same.
Road networks generally have small cuts, and together with the low degree there do not exist
many vertices which can be removed from the transmitted neighborhoods by CETRIC.
We further notice that the choice of cost function has no impact on performance, neither for
PATRIC-NO nor for CETRIC. Figure 14 shows the per processor time required for local work on
europe. We see that it is evenly distributed for both cost functions. A reason for this is the
degree distribution of the graph. As the degree is evenly distributed, the same holds for the
required amount of local work per vertex and the estimated cost, which leads to an even work
distribution for both cost functions. The same applies to usa.

Social Networks From the graph family of social networks we further investigate live-journal
and orkut. In our previous experiments on the shared memory machine (see Figure 8) we
noticed that CETRIC was able to greatly reduce the communication volume, but its impact
reduced with increasing number of processor. Now considering our measurements for more
than 64 PEs on the SuperMUC-NG in Figure 15, we see that CETRIC only slightly reduces the
communication volume. Opposed to web graphs, using DPD as cost function yields a better
running time.
Additionally, the indirection introduced by neighborhood reduction and Flag Intersection seems
to slow down our algorithm on these instances, making it even slower than PATRIC-NO. We
therefore disabled neighborhood reduction and Flag Intersection. This variant’s (listed as
CETRIC-plain) running time is almost identical to PATRIC-NO.
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Figure 16: Strong scaling on RGG(226, 0.55) using 64 to 4096 PEs on the SuperMUC-NG.

The social instances have different structural properties than web graphs like uk-2007-05 and
webbase-2001. Taking a closer look at the degree distributions in Appendix A, we see that all
graphs have a skewed degree distribution and the web graphs are even larger. Still, the degree
distribution for live-journal and orkut is more skewed, meaning that the graphs only have a very
small number of high degree vertices, while the web graphs have more high degree vertices.
We therefore assume that our algorithm does not work well on graphs with a very skewed degree
distribution.

Synthetic Instances For strong scaling experiments we use the RGG and RHG generators
from [25]. As stated before, we do not employ load balancing but rely on the vertex partition
provided by the distributed generator.
Figure 16 shows our results using the 2D Random Geometric Graph (RGG) model with n = 226

vertices and r = 0.55
√

lnn
n
. We see that CETRIC clearly outperforms PATRIC-NO and PATRIC-

NO+. It reduces the communication volume by 70% and the running time by 48% on average
compared to PATRIC-NO+. For 512 PEs the running time is even reduced by 60%.
CETRIC’s good performance may be explained with the structure of the generated graphs. The
RGG generator divides the 2D unit plane into equally sized cells. As vertices are adjacent if
they lie in a circle with radius r, this leads to a very small number of Type-3 triangles. For
example, using the given generator configuration using 4096 cores, the graph contains a total
of 1.9 billion triangles, but only 144, 000 are Type-3 triangles. Therefore CETRIC may remove
a large number of edges from the graph after the local phase and only has to send a fraction of
the data PATRIC-NO requires. PATRIC-NO finds 25.4 million of the 1.9 billion triangles based
on communicating with neighbors.
We also use the Random Hyperbolic Graph (RHG) model for evaluating CETRIC.We set d = 16
and choose γ ∈ {3.0, 2.8}. For a lower value of γ the vertices become more concentrated at the
center of the disk.
In Figure 17 we compare CETRIC to PATRIC-NO in terms of communication volume and running
time. We generate instances with n = 226 and n = 228 vertices. For both values for γ and
graph sizes, CETRIC reduces the communication volume by over 70%, regardless of the number
of PEs. The running time is reduced by 40% on average, but with increasing number of PEs,
CETRIC’s lead in running time becomes lower.
For γ = 3.0 both CETRIC and PATRIC-NO scale well with increasing number of PEs, but
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Figure 17: Strong scaling on RHG(n, 16, γ) using 64 to 4096 PEs on the SuperMUC-NG. Note
that for γ = 2.8 we use a logarithmic scale for readability.

for γ = 2.8 the scalability of both algorithm becomes worse, but CETRIC still outperforms
PATRIC-NO. We assume that the larger number of vertices around the center increases the cut
size, which increases the communication volume. This also leads to very high commmunication
volume for 64 PEs. For readability reasons, we use a logarithmic scale for γ = 2.8.
We omit PATRIC-NO+ from the results, as it performed worse than PATRIC-NO.

5.2.2. Weak Scaling

For our weak scaling experiments we use the distributed RGG and RHG generators from [25]
introduced above.

Random Geometric Graphs For the RGG generator, we set the radius to r = rcoeff
√

lnn
n
/
√
p,

where p is the number of PEs and rcoeff ≥ 0.55. According to Funke et al. [25] this ensures
that the graph is almost always connected and that the graph size per PE stays constant with
increasing number of PEs. We noticed that for rcoeff = 0.55 the graph contains a very small
number of triangles, which is why we set the radius slightly higher.
Figure 18 shows our result with for n

p
= 220 vertices per PE. Under weak scaling, the commu-

nication volume decreases with the number of PEs, but the running time stays constant. We
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Figure 18: Weak scaling on RGG(220 · p, rcoeff) using the SuperMUC-NG.

see that CETRIC reduces the communication volume by one third compared to PATRIC-NO and
reduces the running time by 95%.
For rcoeff = 0.6 we do not report results for more than 1024 PEs. Due to memory limitations
of the SuperMUC-NG we were not able to generate these instances in a reasonable time.

Random Hyperbolic Graphs For the RHG generator, we again set the number of vertices
per PE to n

p
= 220. As before we use the parameters from [25] and set d = 16 and choose

γ ∈ {3.0, 2.8}. Recall that for a lower value of γ the vertices become concentrated around the
center.
Our results in Figure 19 show that CETRIC also scales better than PATRIC-NO in a weak
scaling setting. For γ = 3.0 our algorithm reduces the required communication volume by 80%
on average, the running time is reduced by 37%.
For γ = 2.8 our algorithm also clearly outperforms its competitor. The achieved volume
reduction is 78%, but the reduction in running time is lower than for γ = 3.0, by 20% compared
to PATRIC-NO. For 4096 PEs the running time is almost the same. As already mentioned for
the strong scaling experiments, we assume that this is due to the larger cut of the graph.

R-MAT We also discuss the weak scaling behavior on R-MAT graphs. We use the parame-
terization from the Graph 500 benchmark as described above. Due to memory limitations of
the used machine, we only used n

p
= 214 vertices per PE. Due to these limitations we only show

results for up to 2048 PEs, for the variants using DPD we could not report results for 2048 PEs
due to memory constraints. Because there exists no R-MAT generator which prepartitions the
graph, we use our load balancing mechanism for PATRIC-NO and CETRIC.
The results in Figure 20 show that both PATRIC-NO and CETRIC do not scale well on R-MAT
graphs and CETRIC only achieves a slight reduction in communication volume. As already
observed for the social instances in Section 5.2.1, the additional indirection introduced by
neighborhood reduction and Flag Intersection slows down CETRIC.
We therefore also include CETRIC-plain. This algorithm configuration achieves a similar running
time compared to PATRIC-NO but does not benefit from neighborhood reduction. IDPD as cost
functions yields the best results.
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5.3 Conclusion

R-MAT graphs have a very skewed degree distribution. The experiments on social instances in
Section 5.2.1 already showed that CETRIC and PATRIC-NO do not scale well on these instances
and that CETRIC only slightly reduces the communication volume. We experience the same
behavior on the synthetic instances.

5.3. Conclusion

Our experiments have shown that CETRIC reduces the communication volume of PATRIC by
almost 50% on average on real-world instances, which results in a reduced running time by one
third on average, especially when using up to 512 PEs.
Our algorithm works particularly well on web graphs. They have a skewed degree distribution
but still contain many high degree vertices and have a high locality, which allows our algorithm
to greatly reduce the communication volume.
On graphs representing social networks our algorithm reduces the communication volume by
an average of 40%, and reduces the running time by the same amount when using up to 64
PEs, but with increasing number of processor it does not improve much upon PATRIC-NO,
because with increasing cut size our algorithm only slightly reduces the communication volume
compared to the competitor.
CETRIC clearly outperform PATRIC-NO on synthetic graphs with high locality and small cuts,
as this allows for a communication reduction of 70%.
While we achieve the lowest running times using IDPD as cost function, we uncover scaling
issues related to IDPD using more than 512 PEs. It leads to isolated vertices which cause a
single PE having to send and receive many messages, which in turn results in a communication
bottleneck.
These imbalances may be detected by measuring load imbalance with respect to the cost func-
tion. While DPD does not work as well as IDPD on a smaller number of PEs, it is less sensitive
to imbalance. By detecting imbalances and balancing load according to DPD if they occur, we
can tame the scalability issues.
While our algorithm scales better than PATRIC-NO on Random Geometric Graphs and Random
Hyperbolic Graphs, it does not give any benefit over the competitor in scaling experiments on
R-MAT graphs, where both algorithm show poor weak scaling behavior.
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6 Message Compression with Bloom Filters

6. Message Compression with Bloom Filters

Bloom filters may be used to represent sets in a compressed form and allow for membership
queries with a certain false positive rate.
This makes them suitable for lowering the required communication volume of our algorithm.
We describe two variants of CETRIC which use Bloom filters, an exact algorithm and an ap-
proximation algorithm.
In Section 6.1 we give an introduction to Bloom filter and Section 6.2 describes our extensions
of CETRIC which incorporate Bloom filters.

6.1. Introduction to Bloom Filters

A Bloom filter is a space-efficient probabilistic set data structure that supports membership
queries which has been first introduced by Burton H. Bloom [11]. The membership query using
a Bloom filter allows for false positives, i.e. if the query returns true for an element x this
may be wrong with a certain probability, but if the query returns false we can be sure that the
element is not contained in the set.
Using a Bloom filter, a set S := {x1, . . . , xn} of n elements may be represented using a bit-
vector b of m bits and the data structure uses k independent hash functions h1, . . . , hk which
map to the range {0, . . . ,m − 1}. Initially, all bits in b are set to zero. If an element x is
inserted into the filter, hi(x) is evaluated and the corresponding bit b[hi(x)] is set to one for
each i = 1, . . . , k.
To check if an element x is contained in S, we evaluate each hash function. If b[hi(x)] = 1 for
each i = 1, . . . , k, we assume that x ∈ S, if not x /∈ S.
Under the assumption that all hash functions are perfectly random, the false positive rate may
be determined. We assume that all elements have been inserted into the Bloom filter. Then
according to Broder and Mitzenmacher [15] the false positive rate q is given by

(
1−

(
1− 1

m

)kn)k
≈
(
1− e−kn/m

)k

Given the size n of the set and the size m of the bit-vector, the optimal number of hash
functions kopt = m

n
ln 2 minimizes the false positive probability, to

(
1
2

)kopt . To achieve a fixed
false positive rate q, we can therefore set k to kopt and m to

m = − n ln q
(ln 2)2

A number of Bloom Filter variants exist. Counting Bloom filters allow for element deletion
using a small counter for each hash value. Mitzenmacher [37] introduces compressed Bloom
filters, which are Bloom filters optimized for compression. Applications of Bloom filters include
speeding up join operations in databases [15] and distributed web caching [24].
For a more detailed overview of Bloom filters we refer the reader to Tarkoma et al.’s survey
paper [53].
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6.2. Combining CETRIC with Bloom Filters

The compact representation of Bloom filters predestines them for applications in distributed
memory algorithms, because they allow for compression of messages.
The integration of Bloom filters into CETRIC to reduce message size is straightforward. Instead
of sending neighborhoods as vertex sets, we represent the neighborhoods by using Bloom filters.
When Pi has to send N+

v of a vertex v to processor Pj, it constructs a Bloom Filter of size
m using k hash functions. We discuss later how these parameters are chosen. Pi then inserts
each element in N+

v into the Bloom filter and sends the resulting filter to processor Pj. We
see that these modifications only impact the global phase of CETRIC, the local phase remains
unchanged.

6.2.1. Exact Algorithm

Upon receiving a neighborhood N+
v represented as a Bloom filter Pj handles it the same way

as in CETRIC, by iterating over each vertex u ∈ N+
v ∩ Vj (recall that this partial neighborhood

is locally available to Pj) and checking for each w ∈ N+
u whether w is contained in the Bloom

filter. Opposed to plain CETRIC, we can now not be sure whether the triangle {v, u, w} exists,
because w may be a false positive. Only processor Pi knows if actually w ∈ N+

v .
Therefore we need an additional algorithm phase, which filters false positives from the potential
triangles. We call this the filter phase.
This can be done by collecting all potential triangles and sending them to the processor with
index rank(v). This processor then checks if the edge (v, w) exists and counts the triangle.
Using this approach, the filter phase requires a communication volume of at least 3 ·T (3), where
T (3) is the number of Type-3 triangles in the graph.
If we only want to know the number of triangles, it suffices to request the edge query for (v, w)
together with the number of potential triangles dependent on the existence of the edge to Pi.

Bloom Filter Parameterization Recall that the false positive rate q of a Bloom filter of size
m using k hash functions which stores a neighborhood of size n is given by

q =
(

1−
(

1− 1
m

)kn)k
≈
(
1− e−kn/m

)k
If the main goal is to save communication during the global phase, we can set m to a constant
fixed size and choose k = kopt = m

n
ln 2 as this minimizes the false positive rate. Each neigh-

borhood may then be represented using constant space m. Note that with increasing size of
the neighborhood, the false positive rate also increases, which in turn leads to an increasing
communication volume.
It may therefore be favorable to use a fixed false positive rate q instead, choose k optimally
as above and then choose m = − n ln q

(ln 2)2 . The communication volume of the filter phase is then
expected to be 3 · (1 + q)T (3). Further experimental evaluation is required to find an optimal
parameter set.

Preliminary Results Due to time constraints, we were not able to evaluate the exact algorithm
in practice, but preliminary experiments have shown that this approach is only feasible for
graphs with a low number of Type-3 triangles. Consider the first column of Figure 21. We see
that on webbase-2001 the lower bound on communication required for the filter phase, 3 · T (3),
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exceeds the communication volume of CETRIC’s global phase by a magnitude. This suggests
that an algorithm with an additional filter phase would be much slower than CETRIC. We
observed similar results for the other graph instances.
Only on road networks such as europe the number of Type-3 triangles is low and we expect an
implementation of the Bloom filter algorithm to outperform CETRIC.

6.2.2. Approximation Algorithm

If we are willing to sacrifice an exact result for reduction of communication volume, we can
skip the communication intensive filter phase and instead exploit the probabilistic features of
Bloom filters.
If we choose a fixed false positive rate q and choose the Bloom filter parametersm and k accord-
ingly for each message, we can use CETRIC together with Bloom filters as an approximation
algorithm, which counts all Type-1 and Type-2 triangles exactly and gives an approximation
of the number of Type-3 triangles.
Again the main idea is straightforward. We use the Bloom filter algorithm from above. From
the correctness of CETRIC’s local phase follows that the number of Type-1 and Type-2 triangles,
T (1) and T (2) is exactly determined by the local phase, i.e. Tlocal = T (1) + T (2). The global
phase counts Tglobal triangles, but each of these triangles is a false positive with probability q.
The expected number of false positives is therefore qTlocal. This gives an approximated total
number of triangles Tapprox = Tlocal + (1− q)Tglobal.
The algorithm avoids the cost-intensive filter phase and is especially useful if the correctness of
the result is mostly important for Type-1 and Type-2 triangles.
To achieve a fixed false positive rate q the size of the Bloom filters may not be constant, but
instead we chose k and m to minimize the false positive rate with respect to the message size
using the formula given above. This also gives us a minimal sizem of the Bloom filter to achieve
the desired false positive rate and therefore minimizes the communication volume.

Preliminary Results Due to time constraints we do not evaluate the approximative approach
in depth. Our implementation uses boost::dynamic_bitset to represent Bloom filters and
SpookyHash5 as a hash function.
We show our preliminary results in Figure 21. We use CETRIC without Bloom filters and the
variant with Bloom filters using the optimal number of hash functions kopt and the optimal
size m (BLOOM-kopt) and 2 hash functions (BLOOM-2) for a fixed false positive rate of 1% as
algorithm configurations. In the first column we report the total communication volume of the
global phase, in the second column the running time of the algorithm and the relative error for
the number of triangles ε =

∣∣∣1− Tapprox
T

∣∣∣ in the right column.
We see that by using Bloom filters the communication volume is reduced. On webbase-2001
using kopt the volume is reduced even further, but this does not pay off in terms of running
time. Both configurations with Bloom filters are slower than CETRIC without delivering an
exact result. Constructing the Bloom filters takes a lot longer than building message buffer
without using compression and the achieved reduction in communication volume does not pay
off. Using k = 2 hash functions the running time is lower and from 128 PEs onward the relative
error stays almost constant, while for k = kopt it even exceeds the false positive rate of 1%.
On europe the Bloom filter algorithms are faster than CETRIC and using k = kopt the relative
error stays low. Especially for small numbers of PEs, when the graph also has very few Type-3
triangles the error is low.

5https://burtleburtle.net/bob/hash/spooky.html
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6.2 Combining CETRIC with Bloom Filters

Our results suggest that the Bloom filter approach only works well on graphs with a low number
of Type-3 triangles, where it also gives good approximations. We still expect that careful tuning
of the Bloom filter construction may make the algorithm usable on other instances.
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Figure 21: Preliminary experiments with Bloom filters on the SuperMUC-NG. The left col-
umn shows the total communication volume of the global phase, the middle col-
umn the running time and right column the relative error of the approximation
ε =

∣∣∣1− Tapprox
T

∣∣∣ for a false positive rate q = 0.01.
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7. Conclusion

In this thesis, we proposed CETRIC, a message-passing-based parallel triangle counting algo-
rithm designed for distributed memory systems. It builds on the algorithm by Arifuzzaman et
al. [5] which is the only message-passing based distributed memory triangle counting algorithm
to our knowledge.
We are able to reduce the amount of data which is sent between processors compared to
their approach by exploiting locally available information. More precisely, our algorithm only
requires communication for counting triangles where each endpoint is located on a different
processor. We therefore can reduce the input after counting all local triangles and execute the
communication-intensive distributed triangle counting procedure only on the graph consisting
of cut edges. In addition, we suggest several other improvement techniques for faster paral-
lel triangle counting. This includes faster set intersection by using bit-vectors and message
buffering.
We show that our technique reduces the communication volume in theory and practice. We
experimentally evaluated our algorithm by comparing its performance to Arifuzzaman et al.’s
algorithm using up to 4096 PEs of the SuperMUC-NG and a large variety of real-world and
synthetic graph instances. Previously, the competitor has only been tested using up to 1000
PEs and smaller input instances.
The experiments show, that our approach is able to reduce the communication required for
exchanging neighborhoods for triangle counting by almost 50% on average on real-world in-
stances, which results in a running time reduced by one third. Our algorithm outperforms the
competitor on most real-world instances. On synthetic instances generated using the RGG and
RHG model our algorithm performs even better due to the high locality and small cut size of
the generated graphs. In general, our algorithm seems to work especially well on real-world
networks which have a skewed degree distribution but still have many high degree vertices. In
these cases the load balancing scheme of our algorithm is able to redistribute work evenly and
we can greatly reduce the communication volume. In addition, our algorithm works well if the
input is distributed among processors such that the cut is small, as this allows for reducing the
communication volume even further. On social networks, our algorithm especially outperforms
the competitor when using up to 64 PEs, but still reduces communication volume and running
time with higher number of processors.
Additionally, we uncover scaling issues of the competitor algorithm which also apply to our
algorithm. On instances with a skewed degree distribution the 1D partitioning scheme used
in both algorithms leads to imbalances, which hinder scalability with increasing number of
processors. We provide a heuristic which relies on ideas from Arifuzzaman et al.’s load balancing
that allows to tame the imbalances.
We also suggest two variants of our algorithm, which use Bloom filters to represent neighbor-
hoods in a compressed form. This allows to reduce the communication in the main phase of
the algorithm, but comes at the cost of false positives. Therefore additional communication is
required to filter false positives, which only pays off if the graph has a low number of triangles
which are located on three distinct PEs.
For other graph instances, Bloom filters become useful if we discard the requirement of exactly
counting triangles. Parameterizing the Bloom filters such that they achieve a fixed false positive
rate, we can approximate the number of cut triangles, while still counting other triangles exactly
and skipping the false positive filtering. Due to time constraints we do not provide a fine-
tuned implementation of these variants, but based on preliminary results we expect a good
performance for a careful implementation.
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7 Conclusion

Future Work As already suggested, focusing on implementation details of CETRIC combined
with Bloom filters promises good results.
There also exist further directions for optimizing CETRIC and providing a more detailed anal-
ysis.
Instead of interleaving communication and local work, our algorithm works in two phases. It
will be interesting to investigate how this improves cache locality and which role it plays in
making CETRIC fast.
Our current implementation uses point-to-point communication, which makes sense if each PE
only has a limited number of communication partners. If the graph contains vertices which are
connected to many other PEs, other communication schemes may be favorable.
The major achievement of CETRIC is that it reduces the required communication volume, but
preliminary experiments on neighborhood reductions suggest that this does not always lead
to a reduction in running time. We assume that due to the high communication bandwidth
of the SuperMUC-NG saving communication does not always directly translate to running
time reduction. We expect our algorithm to be even faster compared to PATRIC-NO on a
machine with lower communication speed, because the running time is dominated even more
by communication.
Our experiments have shown that the load balancing scheme still leaves room for improvement.
On the one hand, it may be interesting to investigate additional alternative cost functions which
aim at minimizing communication volume. On the other hand, we see that 1D partitioning
hits a scaling wall on graph instances with a skewed degree distribution. Therefore revisiting
2D partitioning may be necessary. Another alternative approach would be the use of dynamic
load balancing instead of static load balancing.
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A Degree Distribution of Real-World Instances

A. Degree Distribution of Real-World Instances
In Figure 22 we visualize the degree distribution of the real-world instances used in our ex-
periments, summarized in Table 2. For each instance we plot the frequency of each degree
value in the graph interpreted as an undirected input. We further show the distribution of the
out-degree and in-degree of each instance after the graph has been oriented according to the
degree-based total ordering ≺ introduced in Section 3.1.

Figure 22: Degree distribution of real-world instances listed in Table 2. We consider the input
graph as undirected and define the out- and in-degree with respect to the degree-
based total ordering ≺ introduced in Section 3.1. The dashed vertical line indicates
the average degree davg.
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B Detailed Timing for Algorithm Phases

B. Detailed Timing for Algorithm Phases
In this section we show the running time for the phases of each algorithm configuration. For
CETRIC, we split the algorithm core in the local and global phase, while PATRIC uses a single
phase. We report the results for the web, road and social graph instances discussed in detail
in Section 5.2.1 in Figure 23. For live-journal and orkut we use CETRIC without neighborhood
reduction and Flag Intersection based on the result from Section 5.2.1.
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Figure 23: Running time of the algorithm phases. The configurations from left to right are
CETRIC-DPD, PATRIC-NO-DPD, CETRIC-IDPD and PATRIC-NO-IDPD.
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C. Kernelization-based Approximative Sequential Triangle
Counting

At an early stage of this work, we considered using kernelization for approximative triangle
counting. Kernelization relies on reducing the input problem until a small, easily solvable
subproblems, the kernel remains. While preliminary experiments suggest that the algorithm is
slower than other approximation algorithms in practice, we still provide some insights on our
algorithm here for reference.
The key idea is to iteratively remove vertices with degree 0, 1 and 2 from the input and count the
triangles incident on such vertices. If all low degree vertices have been removed, we apply the
coloring step from the approximation algorithm by Pagh and Tsourakakis [42] (see Section 3.3)
and only keep monochromatic edges.
From the resulting graph, we again remove all low degree vertices and repeat this procedure
until no vertex is left.
The algorithm may be implemented using a priority queue of all vertices Q order by increasing
degree. Pseudocode is listed in Algorithm 8.

Algorithm 8: Color-and-Reduce
1 T ← 0
2 Q← {v ∈ V, sorted by increasing degree}
3 round← 0
4 while Q 6= ∅ do
5 v ← Q.popMin()
6 if dv = 1 then
7 {u} ← Nv

8 Q.decreaseKey(u)
9 G← G− v
10 else if dv = 2 then
11 {u,w} ← Nv

12 if {u,w} ∈ E then
13 T ← T +N2∗round

14 Q.decreaseKey(u)
15 Q.decreaseKey(w)
16 G← G− v
17 else
18 for v ∈ V do
19 c(v)← random({0, 1})
20 d′v ← dv

21 E ← {{u, v} ∈ E | c(u) = c(v)}
22 for v ∈ V do
23 while d′v < dv do
24 Q.decreaseKey(u)

25 round← round + 1
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