
Fortgeschrittene Datenstrukturen — Vorlesung 3

Florian Merz

February 2, 2012

1 Hashing

1.1 Perfect Hashing

1.2 Cuckoo Hashing

1. . . .

2. . . .

3. We analyze this case by counting the number of 2-cycles subgraphs of the cuckoo graph, from
which we derive the probability that this case occurs.
Let again h1(x1), . . . , h1/2(xt) denote a walk of length t, this time containing exactly two
cycles and stopping when the second loop occurs. First, what is the number of ”topologies”
for such walks?

Look at the following picture:

h1(x) = h1(x1)

2nd loop ends: t posibilities

2nd loop starts: ALWAYS xt!

1st loop ends: ≤ t posibilities

1st loop starts: ≤ t possibilities

Hence, there are at most t3 ”topologies”. For any of the t possibilities, apart from the first,
we can choose one of the n elements from S (disregarding the fact that not every choice is
valid). Hence, there are at most t3nt−1 walks that start with x and contain exactly 2 cycles
(and end with the 2nd cycle).

In order to embed these walks in the two hash tables, we have to choose a hash value h.(xi)
for all 2 ≤ i ≤ t; this can be done in mt−1 different ways. In total, there are at most

t3nt−1mt−1

1

different length-t walks in the cuckoo graph (starting at h1(x)) containing 2 cycles and ending
in the 2nd cycle.

Now the probability of arbitrary but fixed such walks on t elements from S is at most 1
m2t :

P[h1(x1) = i1 ∧ h2(x1) = j1︸ ︷︷ ︸
1st edge (i1,j1)

∧ · · · ∧ h1(xt) = it ∧ h2(xt) = jt︸ ︷︷ ︸
last edge(it,jt)

]

=P[h1(x1) = i1 ∧ · · · ∧ h1(xt) = it] · P[h2(x1) = j1 ∧ · · · ∧ h2(xt) = jt]

≤ 1

mt
· 1

mt
(by properties of (1, log n)-universal hashing)

=
1

m2t

Hence, the probability of being in case 3 is, at most

∑
t = 36 logn

t3nt−1mt−1

m2t

=
∑

t = 36 logn
t3nt−1

mt+1

=
1

mn

6 logn∑

t=3

t3
(n
m

)t

=
1

mn

∑

t≥1
t3
(n
m

)t

︸ ︷︷ ︸
=O(1) since n

m
= 1

2

=O(
1

n2
).

This is the probability of a rehash in case 3.

Summarizing all three cases, we see that the probability that a single insertion causes a rehash
is O(1

n2). Therefore, the probability that n insertions cause a rehash is O(1
n), so a rehash (on

elements) is successful with probability 1−O(1
n), almost always! So the expected number of trials

is O(1) until the rehash is successful (# trials = 1 + # unsuccessful trials, E[unsuccessful trials] =∑
t≥1 t · 1

nt = n
(n−1)2 = O(1

n)), and the rehash takes O(n) time in expectation.

In total, the amortized time for an insert-operation is

O(1)︸︷︷︸
case 1

2
expected time

+O(
1

n︸︷︷︸
amortized over n elements

· n︸︷︷︸
cost of rebuild in expectation in cases 1−3

) = O(1)

in expectation.

2

2 Predecessor Queries

If searching for an element x /∈ S, hashing schemes only return the answer that x is not in the set.
In some applications it might be interesting to know elements closest to x, either before or after.
These are called predecessors and successors, respectively. They are formally defined by

pred(x) = max{y ∈ S | y ≤ x}, and

succ(x) = max{y ∈ S | y ≥ x}.

In what follows, we assume again that S is a subset of a bounded universe U = {0, 1, . . . , u−1}.
We also assume u = 2w, where w is the bit length of the keys. Note that since S ⊆ U we have
n ≤ u and therefore lg n ≤ w.

2.1 Static Predecessor Queries

As with perfect hashing, assume first that S is static. We introduce a data structure called y-fast
tries that answers predecessor (and successor) queries in O(lg lg u) = O(lgw) time.

Recommended reading:

• D.E. Willard: Log-logarithmic Worst-Case Range Queries are Possible in Space Θ(N). In-
form. Process. Lett. 17(2): 81–84 (1983)

• Script from course ”Advanced Data Structures” at MIT by Erik Demaine and Oren Weimann,
Lecture 12, Spring 2007.
Available online at http://courses.csail.mit.edu/6.851/spring07/scribe/lec12.pdf

The idea is to store the binary representation of the numbers x ∈ S in a binary trie of height
w.

Example: Let u = 16 and S = {2, 5, 7, 12, 13, 15}

0 1

1

1

1 111

11

10

0

0 0

0

⊥ ⊥

w

H0

H1

H2

H3

H4

2 5 7 12 13 15

3

It is actually useful to imagine the trie as embedded into the complete binary trie over the full
universe U , as shown by the gray lines in the example above.

The trie is stored by w hash tables of size O(n) each: on every level l of the trie, a hash
table Hl stores the nodes that are present on that level. Formally, Hl stores all length-l prefixes
of the numbers in S (H0 stores the empty prefix ε). Each internal node stores a pointer to the
minimum/maximum element in its subtree (we could also store these numbers directly at each
node, but if satellite information is attached at the elements in S then a pointer is probably more
useful). Finally, the leaves (= elements in S) are connected in a doubly linked list. If we use perfect
hashing on each level, then the overall space if the data structure is O(nw). This data structure is
called ”x-fast trie” in the literature.

To answer a query pred(x), in the imaginary complete trie we go to the leaf representing x and
walk up until finding a node that is part of the actual trie. Then we have to distinguish between
two cases:

v

x

min

succ(x)pred(x) xpred(x)

v

max

(b) following min-pointer from v
brings us to succ(x). We use the
linked list to find pred(x).

(a) following max-pointer
from v gives pred(x) directly.

As described, the search of x would take O(w) time. To bring this down to O(lgw), we use
binary search on the levels of the trie: first set l ← bw2 c and check if the length-l prefix of x is
stored in Hl. Depending on the outcome of this composition, continue with bw4 c or b3w4 c, and so
on, until finding v in O(lgw) time.

So far we use O(nw) space (for the w hash tables). To bring this down to O(n), we do the
following. Before building the x-fast trie, we group w consecutive elements from S into blocks
B1, . . . , Bdn/we. Formally,

S =
⋃

1≤i≤dn/we

Bi, |Bi| = w for 1 ≤ i ≤ n

w
,

and if x ∈ Bi, y ∈ Bj then x < y iff i < j.
Let mi = max{x ∈ Bi} be a representative of each block. We build the x-fast trie only on the set
{m1,m2, . . . ,mdn/we}, and the Bi’s are stored in sorted arrays.

4

m1 m2 mn/w

B1 B2 Bn/2

x-fast trie
over {mi}
⇒ uses
O(n

w
− w) = O(n)

space

n/w sorted arrays of leght w each

⇒ O(n) space

To answer pred(x), we first use the x-fast trie to find the representative-predecessor mp of x.
Then pred(x) is either mp itself, or it is in Bp+1. For the latter case, we need to binary search Bp+1

for x in additional O(lgw) time.

To answer succ(x), we first use the x-fast trie to find the representative-successor ms of x. Then
succ(x) must be in Bs and can be found by a binary search over Bs.

Example: B1 = {2, 5, 7, 12︸︷︷︸
m1

}, B2 = {13, 15︸︷︷︸
m2

}

1

1

1

1

0

0

2 1275 13 15B1 =

succ(6) pred(14)

= B2

ms

mp

bin search for 6
⇒ succ(6) = 7

bin search for 14
13 < 14⇒ pred(14) = 13

5

Note: The structure is called ”y-fast trie” and can be made dynamic by

(a) using dynamic hashing (e.g. cuckoo hashing) for the x-fast trie,

(b) using balanced search trees of size between 1
2w and 2w instead of sorted arrays, and

(c) not requiring the representative elements be the maxima of the groups, but any element sepa-
rating two consecutive groups.

Then a insertion/deletion first operates on the binary trees and only if the trees become too
big/small we split/merge them and adjust the representatives in the x-fast trie (using O(w) time).
As this adjustment only happens every Θ(w) operations, we got amortized & expected O(lgw) time.
The next section shows how to achieve such times in the worst case.

Summary:

y-fast tries static dynamic

pred(x)/succ(x) O(lg lg n) w.c. O(lg lg n) exp.
insert(x)/delete(x) - O(lg lg n) exp. & am.
preprocessing O(n) exp. -

space O(n) w.c. O(n) w.c.

2.2 Dynamic Predecessors — van Emde Boas Trees

Recommended reading:

• P. van Emde Boas: Preserving Order in a Forest in less than Logarithmic Time. Proc. 16th
anual Symposium on Foundations of Computer Science (FOCS), p. 75–84, 1975.

• T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein. Introduction to Algorithms (3rd ed.).
MIT Press, 2009. Chapter 20.

• André Schulz: Skriptum zur Vorlesung ”Datenstrukturen für Fortgeschrittene” d. Universität
Münster (WS 10/11), VL 19. Available at
http://wwwmath.uni-muenster.de/logik/Personen/Schulz/WS10/VL10.pdf.

We start by defining a bit-vector B of size u such that the i’th bit in B is set iff i ∈ S. We
then divide B into

√
u (conceptual) blocks B0, . . . , B√u of size

√
u each. An additional bit-vector

summary[0,
√
u] marks those blocks that are nonempty: summary[i] = 1 iff Bi contains at least on

1.

Example: Let again u = 16 and S = {2, 5, 7, 12, 13, 15}

B =
0 1 2 3
0 0 1 0
︸ ︷︷ ︸

B0

4 5 6 7
0 1 0 1

︸ ︷︷ ︸
B1

8 9 10 11
0 0 0 0
︸ ︷︷ ︸

B2

12 13 14 15
1 0 1 1

︸ ︷︷ ︸
B3

summary = 1101

6

Searching predecessors/successors can be done by first finding the first nonempty block to the
left of x by scanning summary, and then scanning the corresponding block. Both steps take O(

√
u)

time. Insertions and deletions can be realized in O(1) time: set/delete the corresponding bits in B
and summary.

Observe that taking the square root of u corresponds to halving the number of bits:

lg
√
u = lg 2

1
2
w =

1

2
w

key x =

bw/2c︷ ︸︸ ︷
︸ ︷︷ ︸
high(x)= block nr.

dw/2e︷ ︸︸ ︷
︸ ︷︷ ︸
low(x)= pos. in block

The numbers high(x) and low(x) can be efficiently computed by masking and shift operations
(in O(1) time).

Now observe that finding the first nonempty block to the left of high(x) corresponds to a
predecessor search in the summary vector. Likewise, the scanning of single blocks also corresponds
to a predecessor search. This suggests the use of recursion, as the summary-vector and each block
are only half the original size u.

1: function succ(B, x)
2: inblock-succ ← succ(Bhigh(x), low(x)) . successor in block
3: if inblock-succ 6=⊥ then
4: return inblock-succ + high(x)·

√
|B|

5: else
6: succ-block ← succ(B.summary,high(x))
7: if succ-block =⊥ then
8: return ⊥
9: else

10: return min(Bsucc-block)︸ ︷︷ ︸
⇒store minimum with each block

+succ-block ·
√
|B|

11: end if
12: end if
13: end function

To analyze the running time, observe that there are at most two recursive calls on problems of
size

√
|B|. Hence, the running time is described by the recursion

T (u) = 2T (
√
u) +O(1)

By using the Master Theorem or drawing the recursion tree (w = lg u),

7

w

w/2 w/2

w/4 w/4 w/4 w/4lgw

1

2

4

2lgw

∑
= O(2lgw) = O(w) = O(lg u)

this solves to T (u) = Θ(lg u).
This is too slow! Our aim is to modify the algorithm such that only one recursive call is made,
because the running time is

T ′(u) = T ′(
√
u) +O(1)

= Θ(lg lg u).

8

