
Fortgeschrittene Datenstrukturen — Vorlesung 5

Stephan Erb

17.11.2011

1 Fusion Trees

A fusion tree [FW93] is an integer data structure for fast predecessor and successor queries. It
requires O(n) space and supports queries within O(logw n), where n is a number of elements from
a universe U = [0, u− 1] = [0, 2w − 1].

The following discussion is restricted to static fusion trees which support neither insert nor
delete. It shall furthermore be noted that fusion trees have a theoretical interest only, as the
involved constant factors preclude practicality [FW93].

1.1 Top-Level Idea

Essentially, a fusion tree is a B-tree with branching factor b = w
1
5 and height Θ(logw n). It is used

to realize predecessor and successor queries via top down traversals, by finding the virtual insertion
position for the queried element q. This is analogous to the implementation on top of balanced
binary trees.

...

...

...

...log
w

1
5
n = Θ(logwn) n

b = w
1
5

Figure 1: Structure of a fusion tree

Given the height of such a tree and the desired runtime of O(logw n), a traversal may only
spend O(1) time at each node. This poses the following challenges:

• The b = w
1
5 keys of a node, each of size w, have to be compressed. They have to fit into a

machine word of Θ(w) bits, as otherwise, those cannot even be read in O(1).

We will achieve this using so-called sketches (see section 1.2).

1

• The sketch(q) of a queried element q has to be compared to the compressed keys of a node, in
order to determine where to proceed the top-down traversal. This comparison has to happen
in O(1) time.

We will perform this comparison simultaneously for all keys using bit-parallel computations
(see section 1.5).

• The sketch(q) has to be computable in O(1) time.

We will achieve this using a clever definition of sketch and multiplications (see section 1.4).

1.2 Fusion Tree Nodes

The keys of a node x0 < x1 < ... < xb−1 can be embedded into a tree that is labeled according to
their binary representation:

x0

10

0 1

1

1

x1

1

x2

0 1

1

x3

1

1

Number
Sketch

0101
00

0111
01

1101
10

1111
11

w

Figure 2: Keys in a trie. Branching nodes are marked in blue.

Nodes with more than one child are branching nodes. Being part of a trie, these nodes represent
the so-called important bits of our keys. Only these bits are required to differentiate all keys of a
node. Their indices are b0 < b1 < ... < br−1. Given that at most b−1 branching nodes are required

to differentiate b keys within a trie, the number of important bits is bounded by r < b = w
1
5 .

The notion of important bits allows us to define a compression function for keys:

Definition 1. A sketch restricts an element to the important bits at the positions b0 to br−1:

sketch(xi) = sketch(

w−1∑
j=0

2jxij) =

r−1∑
j=0

2jxibj

• sketch preserves the order of keys: iff x0 < ... < xb−1 then sketch(x0) < ... < sketch(xb−1).

• b sketches can be fused1 into one machine word of size Θ(w): b · r ≤ b2 = w
2
5 .

Sketches are stored alongside of the original keys. An example can be found in figure 2.

1thus the name of this data structure

2

1.3 Querying Nodes

Given that sketches are solely based on the important bits of the keys, an additional important bit
may be required to distinguish an arbitrary element q. For example, given the trie illustrated in
figure 2, sketch(1010) = 11 would lead to the wrong conclusion that q fits in between x2 and x3.
Thus:

sketch(xi) < sketch(q) ≤ sketch(xi+1) ; xi < q ≤ xi+1

Fortunately, sketch(q) is still sufficient to overcome this problem and to compute the correct
predecessor and successor keys for q:

Let xi and xi+1 be the neighbors of q according to sketch. The path to q within the trie will at
least deviate from one of the paths to these elements. Such a point of deviation corresponds to the
longest common prefix (LCP) of the paths in question. Thus, y = max{LCP (q, xi), LCP (q, xi+1)}
yields the deepest node2 where the path to q deviates from the paths to xi and xi+1.

Importantly, y can never be a branching node. Otherwise, the corresponding bit would have
been included in the sketch and prevented sketch(q) from falling in between the sketches of the
particular xi and xi+1 in the first place.

There are two problematic cases depending on q being in the right or left subtree of y:

e

1

1

1

...

1

q e

0

0

0

...

0

y

q

b)a)

xi+1 xi

1
y

0

Figure 3: Problematic cases of how q might relate to its neighbors.

We use an element e to resolve those cases. There can be no other key between e and q, as
otherwise y would have to be a branching node.

Predecessor case: e = y011...1 is the right-most element in the left subtree of y. It is the
predecessor of q if it exists; otherwise, it has the same predecessor.

Successor case: e = y100...0 is the left-most element in the right subtree of y. It is the successor
of q if it exists; otherwise, it has the same successor.

A query for sketch(e) yields the true neighbor keys of q. No recursion or further special case
handling is required, as e is defined relative to y and therefore does not suffer from the same problem

2it can also be computed via the most significant bit: max{msb(q XOR xi),msb(q XOR xi+1)}

3

as q. For example in the successor case, sketch(e) = sketch(y10...0) equals the smallest sketch in
the right subtree of y. Due to the construction of y, this can only be the sketch of the successor
key we were looking for. The case is illustrated in figure 4.

1

x2

0 1

1

x3

1

1

1101
10

1111
11

eq

1010
11

1100
10

x0

0

0 1

1

1

x1

1

Number
Sketch

0101
00

0111
01

y

incorrect

Figure 4: An example of the query problem.

Re-using the idea from y-fast trees, we can use a double linked list to navigate between prede-
cessor and successor keys. Knowing both these keys, we can proceed with the top-down traversal.

1.4 Computation of Sketches

We know the important bit positions and want to calculate the sketch of a given q. We have to
perform this in O(1) time. It is therefore not possible to just iterate over these positions to extract
the corresponding bits.

Actually, computing sketch(q) in O(1) time is difficult. We will therefore resort to a relaxed
definition of sketch and a clever use of multiplication with a precomputed mask m:

Definition 2. An appSketch restricts an element to the important bits at the positions b0 to br−1.
Those bits may be separated by 0’s. The number of 0’s is given by m.

appSketch(q) = appSketch(

w−1∑
i=0

2iqi) =
r−1∑
i=0

2bi+miqbi � m0 + b0

Computation of appSketch(q):

1. Mask out all bits at non-important bit positions:

q′ = q AND
r−1∑
i=0

2bi =
r−1∑
i=0

2biqbi

2. Redistribute the important bits using a multiplication:

appSketch(q)′ = q′ ·m = q′ ·
r−1∑
j=0

2mj =
r−1∑
i=0

r−1∑
j=0

2bi+mjqbi

4

3. Drop multiplication results we are not interested in:

appSketch(q)′′ = appSketch(q)′ AND
r−1∑
i=0

2bi+mi =
r−1∑
i=0

2bi+miqi

4. Right shift by m0 + b0 to remove unnecessary trailing zeros.

With an appropriate m we will still be able to fuse all w
1
5 keys into a single machine word Θ(w).

We will prove that it is always possible to find such an m. We have to pre-compute it, and it has
to satisfy the following criteria:

1. No collisions: bi +mj = bk +ml iff i = k and j = l.
2. Bit order preserved: b0 +m0 < b1 +m1 < ... < br−1 +mr−1.

3. Sketch compact enough: (br−1 +mr−1)− (b0 +m0)︸ ︷︷ ︸
distance between first and last bit

≤ r4 = w
4
5 .

A sketch consists of r terms bi +mi. To achieve a maximal spread of r4, each of the terms may
deviate at most r3 from the preceding term bi−1 +mi−1.

We approach constraints 1 and 3 as follows:

bi +mj 6≡ bk +ml mod r3 ∀i 6= k ∧ j 6= l

When there is only one term (one bi and one mj), the condition is trivially satisfied. Now
assume by induction that we have already found m′0 < m′1 < ... < m′t−1 for a t < r. To find m′t,
we have to avoid the existing terms realized by the other mi’s:

m′t 6= m′l + bk − bi ∀l,k.i with 0 ≤ l < t and 0 ≤ i, k < r

Hence, we must avoid t · r · r ≤ (r − 1)r2 choices. These are less than our r3 available choices
for the placement of an important bit within a sketch. We can therefore always find a suitable m.

We can calculate a m′i in order, starting with 0. An example of this approach is illustrated in
table 1.

b0 = 0 b1 = 61 b2 = 63

m′0 = 0 0 7 9

m′1 = 1 1 8 10

m′2 = 4 4 11 13

Table 1: The table contains the values bi+m
′
j(mod 27) that we have to avoid for r = 3 and the given

important bits bi. The table is filled row-wise. Values for a m′i are tested in consecutive
order. In the given example m′2 = 2 and m′2 = 3 had to be skipped because they lead to
collisions.

Due to the modulo operation such an m′ might not satisfy the order-preserving property of the
important bits. This can be corrected by scaling the placement of an important bit with its index:

mi = m′i + (w − bi + ir3 rounded down to be a multiple of r3)

= m′i + (b(w − bi + ir3)/r3c · r3)

5

A sketch then requires r · r3 space and important bits fall into consecutive, non-overlapping
blocks:

w + r3(i− 1) ≤ mi + bi < w + r3i

Let us reconsider the example from table 1 for w = 64 and calculate the final m:

m0 = m′0 + (b(w − b0 + 0r3)/r3c · r3)

= 0 + (b(64− 0)/r3c · r3) = 54

m1 = m′1 + (b(w − b1 + 1r3)/r3c · r3)

= 1 + (b(64− 61 + 27)/r3c · r3) = 28

m2 = m′2 + (b(w − b2 + 2r3)/r3c · r3)

= 4 + (b(64− 63 + 54)/r3c · r3) = 58

We observe that we now satisfy all constraints, including the second one:

b0 +m0 < b1 +m1 < b2 +m2 ⇔ 54 + 0 < 28 + 61 < 58 + 63

1.5 Comparison of Sketches

The idea outlined in section 1.3 requires us to find xi and xi+1 for a given q so that appSketch(xi) <
appSketch(q) ≤ appSketch(xi+1). To compare an appSketch(xi) with appSketch(q), we subtract
them and inspect the carry/sign bit. Counting all comparisons won by appSketch(q) will give us
its rank within the ordered sketches of a node. To perform all these subtractions in constant time,
we fuse all sketches into a single machine word and issue a single, bit-parallel subtraction.

appSketch(q)×
r4+1 bits︷ ︸︸ ︷
00...01

r4+1 bits︷ ︸︸ ︷
00...01 ...

r4+1 bits︷ ︸︸ ︷
00...01︸ ︷︷ ︸

b terms

= 0appSketch(q)0appSketch(q)...0appSketch(q)︸ ︷︷ ︸
0appSketch(q) repeated b times

(
1appSketch(x0)...1appSketch(xb−1)

)
−
(

0appSketch(q)...0appSketch(q)
)

=

r4+1 bits︷ ︸︸ ︷
c0...... ...

r4+1 bits︷ ︸︸ ︷
cb−1......︸ ︷︷ ︸

b terms

We can AND this expression with a mask to zero all non-interesting bits, so that only the first
bit of each term remains.r4+1 bits︷ ︸︸ ︷

c0...... ...

r4+1 bits︷ ︸︸ ︷
cb−1......︸ ︷︷ ︸

b terms

AND

(
b−1∑
i=0

2i(r
4+1)+r4

)
=

r4+1 bits︷ ︸︸ ︷
c00...0 ...

r4+1 bits︷ ︸︸ ︷
cb−10...0︸ ︷︷ ︸

b terms

For these bits we know that

ci =

{
0 if appSketch(xi) < appSketch(q)
1 if appSketch(xi) ≥ appSketch(q)

Sketches preserve order. Instead of counting all ci = 0, we can resort to finding the most
significant bit in the result term. It represents the index of the first sketch(xi) that is larger than
sketch(q).

6

2 Finding the Most Significant Bit

The most significant bit (msb) in a binary number corresponds to the left-most 1. There are
different ways to compute it, for example:

1. In O(1) time with a special operation supported by most modern processors (e.g., BSR (bit
scan reverse) on x86).

2. In O(logw) time using a binary search over the word. Depending on the existence of 1’s in
the first half, the search is continued in the first or second half. See listing 1.

Algorithm 1: msb(x)

begin
λ← 0
for k = log(w)− 1 downto 0 do

z ← x� 2k // Discard right half

if z 6= 0 then
λ← λ+ 2k

x← z // Continue search in left half

end

end
return λ

end

3 Predecessor Data Structures Revisited

Van Emde Boas trees and y-fast tries perform well and improve on binary search trees when the
number of elements is sufficiently large with regard to the size of the universe (i.e., logn� logw).

Fusion trees are designed for the case when the universe is large with regard to the number of
elements. In particular, they can find predecessor / successors in O(logw n) = O(logn

logw) time.

w

n

use vEB trees

use fusion trees w = 2
√
logn

Depending on the actual value of n and w, we can choose the right structure (vEB or fusion
tree) and achieve O(min{logw, logw n}) time. Because the two terms are equal when w = 2

√
logn,

the minimum will never be greater than O(
√

log n).

7

References

[Dem03] E. Demaine. Fusion trees. Lecture Notes on Advanced Data
Structures, Lecture 4, MIT, Spring 2003. Available online at
http://courses.csail.mit.edu/6.897/spring03/scribe notes/L4/lecture4.pdf.

[Dem10] E. Demaine. Fusion trees. Lecture Notes on Advanced Data
Structures, Lecture 10, MIT, Spring 2010. Available online at
http://courses.csail.mit.edu/6.851/spring10/scribe/lec10.pdf.

[FW93] M.L. Fredman and D.E. Willard. Surpassing the information theoretic bound with fusion
trees. Journal of Computer and System Sciences, 47(3):424–436, 1993.

8

