
Fortgeschrittene Datenstrukturen — Vorlesung 6

Schriftführer: Sebastian Schlag

24.11.2011

1 Integer Sorting

The sorting problem of sorting n elements has a tight Θ(n lg n) bound in the comparison model.
In this lecture, we will cover a special case of the general sorting problem, namely integer sorting,
in which we have to sort n w-bit integers.

By working in the RAM model, we assume that the word size of our computer is in Ω(w), so we
can address and manipulate a single key in O(1) time.We will also consider shorter keys of b ≤ w
bits. In general, we use the notation SORT(n,w) for the complexity of sorting n w-bit integers

Section 1.1 provides an overview of different integer sorting algorithms. Section 1.2 will then
cover signature sort, which runs in O(n) expected time for w ≥ lg2+ε n lg lgn.

1.1 Overview

As figure 1 shows it is still an open question if there is a linear time sorting algorithm for w = ω(lg n)
and w = o(lg2+ε n). Currently, the best known algorithm covering this range is due to Han and
Thorup [4].

Radix Sort: O(n)

w = O(lg n)

w � ⌦(lg2+" n)

Signature Sort: O(n)

v.E.B. Sort O(n lg lg n)

n

w

Figure 1: Signature sort, radix sort and v.E.B. sort and their corresponding runtime in respect to
n and w

Following is a list of results on the problem of integer sorting:

• Counting sort runs in SORT(n,w) = O(n + 2w), which is linear for w ≤ lg n.

1

• Radix sort runs in SORT(n,w) = O
(
n · w

lgn

)
, which is linear for w = O(lg n)

• van Emde Boas sort runs in SORT(n,w) = O(n lgw), which is O(n lg lg n) for w = lgO(1) n

and can be improved to O
(
n lg w

lgn

)
(see [5]).

• Han and Thorup [4] present a randomized algorithm for sorting n integers in O(n
√

lg lg n)
expected time.

1.2 Signature Sort

The basic idea of signature sort [1] is to break each integer key into chunks and (similar to fusion
trees) reduce the bit-length of each chunk such that the resulting integers can be sorted in O(n)
time using packed sorting (which is subject of the next lecture).

Let X1, . . . , Xn denote the set of integer keys to be sorted and assume w ≥ lg2+ε n lg lg n. We
begin by conceptually partitioning each key in q chunks of size w

q (see fig. 2). During the analysis
we will impose two requirements on q. At the end of this subsection we will then prove that q can
be chosen such that both requirements are fulfilled.

X1

X2

Xn

...
...

x1,1

x2,1

x1,2

x2,2 x2,q

x1,q

xn,qxn,2xn,1 . . .

. . .

. . .

w
q

|{z}
|{z}

w

Figure 2: Each w-bit key Xi is broken into q chunks of size w
q .

In order to be able to sort these chunks efficiently, we use a universal hash function ha that
maps each chunk to a unique hash-value that is significantly smaller than the original chunk.
The hash-value ha(xi,j) of a chunk xi,j will be called the signature of xi,j . As key Xi consists of
chunks xi,1, . . . , xi,q, we define the concatenated signature ha(Xi) of Xi as the integer obtained by
concatenating the signatures ha(xi,1), . . . , ha(xi,q) (see fig.3).

X1

X2

Xn

...
...

x1,1

x2,1

x1,2

x2,2 x2,q

x1,q

xn,qxn,2xn,1 . . .

. . .

. . .

w
q

|{z}
|{z}

w

...
|{z}

⇥(lg n)

ha(X1)

ha(X2)

ha(Xn)

ha(x1,1)
ha(x1,2) ha(· · ·) ha(x1,q)

Figure 3: Using ha to create the signature ha(Xi) of key Xi and thereby reducing the length of
each key from w bits to Θ(q lg n) bits.

2

Because we want the signatures to be unique, our hash function has to operate injectively on the
set of all n · q chunks occuring in the input keys. Furthermore, we require the length of signature
ha(xi,j) to be in Θ(lg n).

The following class Hk,l of 2-universal hash functions [3] satisfies these requiremens:

Hk,l = {ha|0 ≤ a ≤ 2k ∧ a is odd} where ha is defined by:

ha : {0, . . . , 2k − 1} → {0, . . . , 2l − 1}
ha(x) = (ax mod 2k) div2k−l

Dietzfelbinger et al. [3] prove (see Lemma 2.6) that given integers k and l with 1 ≤ l ≤ k and a set
S of integers in the range {0, . . . , 2k − 1}: If ha ∈ Hk,l is chosen at random, then

Prob(ha is injective on S) ≥ 1− |S|
2

2l
.

Recall that in our case S = n · q is the set of all chunks occuring in the input keys. Without
loss of generality we can assume that q ≤ n and therefore |S| ≤ n2. Thus we can assure that

Prob(ha is not injective on S) ≤ 1

n2

by choosing l = Θ(lg n) appropriately (e.g. l > lg n6 = 6 lg n ∈ Θ(lg n)). Therefore it is ensured
that by choosing ha uniformly at random, we will find an injective hash function in O(1) expected
time with high probability.

Note that at this point, we have reduced the problem of sorting n w-bit integers to that of
sorting n Θ(q lg n)-bit integers.

We now use packed sorting to sort the n length-reduced signatures ha(X1), . . . , ha(Xn) in O(n)
time (see fig. 4). To be able to use this algorithm to sort n b-bit integers, we have to ensure that

b ≤ O
(

w

lg n lg lgn

)
.

In other words: it has to be possible to pack Ω(lg n lg lgn) keys into one word w. This imposes our
first requirement for q, since we want to sort signatures of length b = Θ(q lg n).

X1

X2

Xn

...
...

x1,1

x2,1

x1,2

x2,2 x2,q

x1,q

xn,qxn,2xn,1 . . .

. . .

. . .

w
q

|{z}
|{z}

w

...
|{z}

⇥(lg n)

ha(X1)

ha(X2)

ha(Xn)

ha(x1,1)
ha(x1,2) ha(· · ·) ha(x1,q)

|
{
z
} packed

<< black box >> |
{
z
}

sorting

Y1

...

Y2
...

Yn

Figure 4: Using packed sorting to sort the signatures ha(Xi). The result is the sorted sequence
Y1, . . . , Yn with (Y1 ≤ . . . ≤ Yn).

Let Y1, . . . , Yn now be the signatures in ascending order (Y1 ≤ . . . ≤ Yn) after sorting (see figure
4). Since our only requirement on ha was to be injective (and not neccesarily to be monotonic),

3

signatures are now arranged in a differend order than that required by the original sorting problem.
To solve this, we construct a trie (interpreting each hashed chunk as a character) by adding the
sorted signatures Yi one-by-one from smallest to largest (see figure 6 for an example):

Assuming that we have already built a trie for Y1, . . . , Yi−1, we add Yi as follows:

• At first we compute the longest common prefix (LCP) of Yi−1 and Yi, which corresponds to
the number of equal signature-chunks in Yi−1 and Yi, in O(1). This can be done for example
by taking the most significant bit of (Yi−1 XOR Yi).

• Then we walk up the rightmost path of the trie beginning at leaf Yi−1 in order to find the
insertion point of Yi. There are two possibilities:

(a) There already is a branching node at the LCP. Then Yi is simply added as one of its
children (see fig. 5 (a)).

(b) No branching node exists at the LCP position. In that case, we break up the edge after
the LCP and add a new branching node. The remainder of that edge (which leads to
the subtree that contains Yi−1 as the rightmost leaf) as well as a new edge containing
the different suffix of Yi are added as children to the new branching node (see fig. 5 (b)).

Yi�1

LCP(Yi�1,Yi)

Su�x(Yi)

(a)

Yi

LCP(Yi�1,Yi)

Su�x(Yi)

Yi

(b)

Yi�1

Figure 5: Inserting a new signature Yi. (a) There already is a branching node at the LCP. Then Yi
is simply added as one of its children. (b) A new branching node is added by breaking up an edge
if it does not exist at the correct position. Both the subtree containing Yi−1 as its rightmost leaf
and Yi will be added as children of that node. The different suffixes will be used as edge lables.

It is sufficient to consider only the rightmost path when inserting a signature Yi, because we
add all of them in sorted order (small → large). Therefore, if LCP (Yi−1, Yi) > 0 the branching
node (already existing or not) has to be on the rightmost path. In case of LCP (Yi−1, Yi) = 0 the
new signature will be added as a new child of the root node. The trie can be constructed in O(n)
time, because we add every signature only once at a cost of O(1) for finding the correct insertion
point and O(1) for adding it at that position.

Given this trie, we are now able to acutally sort the original input keys by sorting the edges
of each internal node - using the original chunk values instead of the signature-labels as sort keys
(see figure 6 (c) for an example). Because the order of an edge is determined by the first symbol
on that edge, it is sufficient to use the first chunk as the sort key if an outgoing edge is labled with
more than one chunk.

4

Thus our new sorting problem is to sort tuples of the form (nodeID,original chunk value, edge
index) - one for each edge in the trie. The edge index is used to keep track of the permutation so
that we are able to permute the edges accordingly after sorting.

Because the trie contains O(n) edges, the reduced problem is to sort O(n) keys of size:

O
(

lg n +
w

q
+ lg n

)
= O

(
w

q

)
, since lg n ∈ o(w) by our requirements on w

To do so, we recurse on these O
(
w
q

)
-bit keys, thereby successively reducing their length until it

is possible to use packed sorting as the base case. As we want the overall sorting time to be linear,
we have to ensure that the recursion ends after O(1) steps. This imposes our second requirement
for q.

After the recursion we are able to sort the original edges of the trie according to the results
of the recursive sort-call by scanning through the result-list of sorted edges and permutating the
edges of the trie accodingly. Finally, the sorted sequence of the n input keys can be read off the
trie by a final left-to-right scan in O(n) time.

It remains to be shown that q can be defined such that it fulfills the imposed requirements:

1. q lg n ≤ O
(

w
lgn lg lgn

)
in order to be able to sort the signatures ha(X1), . . . , ha(Xn) in O(n)

time with packed sorting.

2. w
qx ≤ O

(
w

lgn lg lgn

)
: After x recursion steps, the keys have to be small enough in order to be

sorted with packed sorting with x = O(1).

Lemma 1. q = Θ
(

w
lg2 n lg lgn

)
= Θ

(
lg2+ε n lg lgn
lg2 n lg lgn

)
= Θ(lgε n) fulfills the above mentioned require-

ments and leads to a length-reduction by a factor of Θ(lg n lg lg n) in both cases.

Proof. q fulfills requirement 1:

q lg n ≤ O
(

w

lg n lg lgn

)

⇔ lgε n lg n ≤ O
(

lg2+ε n lg lg n

lg n lg lgn

)

⇔ lgε n lg n ≤ O(lg1+ε n)

⇔ lg1+ε n ≤ O(lg1+ε n)

q fulfills requirement 2:

w

qx
= Θ(lg n lg lgn)

⇔ qx = O
(

w

lg n lg lgn

)
= O

(
lg2+ε n lg lg n

lg n lg lg n

)
= O(lg1+ε n)

⇔ x = O
(

lg(lg1+ε n)

lg q

)
= O

(
lg(lg1+ε n)

lg(lgε n)

)
= O

(
1 + ε

ε

)

5

After O
(
1 + 1

ε

)
recursion steps, the keys are small enough to be sorted with packed sorting:

w

q1+
1
ε

≤ O
(

w

lg n lg lgn

)

⇔ w

(lgε n)1+
1
ε

≤ O(lg1+ε n)

⇔ lg2+ε n lg lg n

lg1+ε n
≤ O(lg1+ε n)

⇔ lg n lg lgn ≤ O(lg1+ε n)

In both cases, a length-reduction by a factor of Θ(lg n lg lgn) was sufficient to be able to use packed
sorting in order to sort in O(n) time:

• Using hashing to create signatures reduced the size of a key by a factor of Θ
(
lg2+ε n lg lgn

lg1+ε n

)
=

Θ(lg n lg lg n)

• After a total of O
(
1 + 1

ε

)
recursion steps, the size of a key is also reduced by a factor

O
(

w

q1+
1
ε

)
= Θ

(
lg2+ε n lg lgn

lg1+ε n

)
= Θ(lg n lg lgn)

To sum up, let us recall the different steps of signature sort:

1. Partition each key into q = Θ(lgε n) chunks of size w
q = Θ(lg2 n lg lgn).

2. Create a signature of length Θ (q · lg n) for each key in O(n) time using an injective hash
function ha chosen uniformly at random from the 2-universal class of hash functions H. Since
Hk,l is 2-universal, we are able to find such ha in O(1) expected time.

3. Sort these signatures in O(n) time using packed sorting.

4. Build a trie on the sorted signatures in O(n) time.

5. Recursivly sort the edges of that trie with the original chunk values as input keys. After
O(1 + 1

ε) recursion steps packed sorting will be used as the base case.

6. Permute the edges according to the results from the previous step in O(n).

7. A left-to-right scan through the trie now yields the sorted sequence of the input keys and
takes O(n) time.

Therefore, if w ≥ lg2+ε n lg lg n for some fixed ε > 0, we can sort n w-bit integers in linear
expeced time.

If we had chosen to recurse in the first place (on the chunks of the keys) the number of keys to
recurse on would have been n · q, while the ”trie technique” was able to keep their number linear
in n. By recursing on the original chunks, the running time would follow the recursion

SORT (n,w) = SORT (nq,
w

q
) = O(n · w),

which is even worse than radix sort!

6

101 001

001

101

011

011

100001

X1

X2

X3

X4

{w = 6

{w
q = 3

q = 2

01 10

00

11

10

00 01

10

ha

{

 packed
sorting{00 01

01 10

0010

1110

LCP

0

0

1

1

3

4

5 6

10
|00

01
|10

01

00

11

ha(X3) ha(X1) ha(X2) ha(X4)

011

101

001

011

100

recursively sorting edges using
original chunk values as keys yields result:

1

23

4

5 6

10|00

01|10

01

00

11

ha(X3)ha(X1)ha(X2) ha(X4)

011

101

001

011

100

! X2, X4, X1, X3

(a) (b)

(c)

(d)

2

ha(X1)

ha(X2)

ha(X3)

ha(X4)

ha(X3)

ha(X1)

ha(X2)

ha(X4)

Figure 6: Example of signature sort steps: (a) Breaking keys into chunks and hash them to create
signatures. (b) Use packed sorting to sort signatures. (c) Build trie based on sorted signatures.
Grey boxes show the original chunk value corresponding to the signature chunk. (d) Recusivly sort
edges of the tie using the original chunk values as sort keys. Afterwards, the sorted sequence of the
input keys can be read off the trie.

7

References

[1] Arne Andersson, Torben Hagerup, Stefan Nilsson, and Rajeev Raman. Sorting in linear time?
Proceedings of the twenty-seventh annual ACM symposium on Theory of computing, 7141(7141),
1995. URL http://dl.acm.org/citation.cfm?id=225173.

[2] Erik Demaine. Lecture Notes on Advanced Data Structures - Lecture 13:
Integer Sorting. Theoretical Computer Science, pages 1–7, 2005. URL
http://courses.csail.mit.edu/6.897/spring05/lec/lec13.pdf.

[3] Martin Dietzfelbinger, Torben Hagerup, Jyrki Katajainen, and Martti Penttonen. A
reliable randomized algorithm for the closest-pair problem. J. Algorithms, 25:
19–51, October 1997. ISSN 0196-6774. doi: 10.1006/jagm.1997.0873. URL
http://dl.acm.org/citation.cfm?id=264631.264633.

[4] Yijie Han and Mikkel Thorup. Integer sorting in O (n (log log n)) expected time and linear space.
In Foundations of Computer Science, 2002. Proceedings. The 43rd Annual IEEE Symposium
on, pages 135–144. IEEE, 2002. ISBN 0-7695-1822-2. doi: 10.1109/SFCS.2002.1181890.

[5] David G. Kirkpatrick and Stefan Reisch. Upper bounds for sorting integers on random access
machines. Theor. Comput. Sci., 28:263–276, 1984.

8

