Advanced Data Structures

Johannes Fischer

WS 2012/13

1 Compressed Suffix Arrays

We will show in this section that $O(n \log \sigma)$ bits suffice also for representing A. The price of this compressed suffix array is that the time for retrieving an entry from A is not constant any more, but rises from $O(1)$ to $O\left(\log ^{\epsilon} n\right)$, for some arbitrarily small constant $0<\epsilon \leq 1$.

1.1 Recommended Reading

- K. Sadakane New Text Indexing Functionalities in the Compressed Suffix Arrays. J. Algorithms 48(2): 294-313 (2003).
- G. Navarro and V. Mäkinen: Compressed Full-Text Indexes. ACM Computing Surveys 39(1), Article no. 2 (61 pages), 2007. Sect. 4.4, 4.5, 7.1.

1.2 The ψ-Function

The most important component of the compressed suffix array (abbreviated as CSA henceforth) is a function ψ that allows us to "jump one character forward" in the suffix array.

Definition 1. Define $\psi:[1, n] \rightarrow[1, n]$ such that $\psi(i)=j \Leftrightarrow A[j]=A[i]+1$, where position $n+1$ is interpreted as the first position in T (read text circularly!).

Example 1.

$$
\begin{array}{rlllllllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 131415 & 16 \\
T=\text { C A C A A } & \text { T A A C A T T A T A C } \\
\hline
\end{array}
$$

Note the similarity of the ψ-function to suffix links in suffix trees: both"cut off" the first character of the corresponding substring.

Function ψ is increasing in areas where the corresponding suffixes start with the same character. For instance, in Ex. 1 we have that all suffixes from $A[2,9]$ start with letter A; and indeed, $\psi[2,9]=$ $[7,9,10,12,13,14,16]$ is increasing. This is summarized in the following lemma.

Lemma 1. If $i<j$ and $T_{A[i]}=T_{A[j]}$, then $\psi(i)<\psi(j)$.
This lemma will be used in Sect. 1.6 to store ψ in a space-efficient form.

1.3 The Idea of the Compressed Suffix Array

We now present the general approach to store A in a space-efficient form. Instead of storing every entry in A, in a new bit-vector $B_{0}[1, n]$ we mark the positions in A where the corresponding entry in A is even:

$$
B_{0}[i]=1 \Leftrightarrow A[i] \equiv 0(\bmod 2) .
$$

Bit-vector B_{0} is prepared for $O(1)$ RANK-queries. We further store the ψ-values at positions i with $B_{0}[i]=0$ in a new array $\psi_{0}\left[1,\left\lceil\frac{n}{2}\right\rceil\right]$. Finally, we store the even values of A in a new array $A_{1}\left[1,\left\lfloor\frac{n}{2}\right\rfloor\right]$, and divide all values in A_{1} by 2 .

Example 2.

$$
\begin{aligned}
& 1234 \quad 5 \quad 6 \quad 7 \quad 89910111213141516 \\
& T=\text { CACAA TACATTATAC } \$ \\
& A=16414271259153181361110 \\
& B_{0}=1 \begin{array}{llllllllllllll}
1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0
\end{array} \\
& \psi_{0}=\quad \begin{array}{lllllll}
12 & 14 & 16 & 12 & 4 & 3 & 6
\end{array} \\
& A_{1}=82 \begin{array}{lllllll}
7 & 1 & 6 & 4 & 3 & 5
\end{array}
\end{aligned}
$$

Now, the three arrays, B_{0}, ψ_{0} and A_{1}, completely substitute A : to retrieve value $A[i]$, we first check if $B_{0}[i]=1$. If so, we know that $A[i] / 2$ is stored in A_{1}, and that the exact position in A_{1} is given by the number of 1 -bits in B_{0} up to position i. Hence, $A[i]=2 A_{1}\left[\operatorname{RANK}_{1}\left(B_{0}, i\right)\right]$.

If, on the other hand, $B_{0}[i]=0$, we follow $\psi(i)$ in order to get to the position of the $(A[i]+1)$ st suffix, which must be even (and is hence stored in A_{1}). The value $\psi(i)$ is stored in ψ_{0}, and its position therein is equal to the number of 0 -bits in B_{0} up to position i. Hence, $A[i]=A\left[\psi_{0}\left(\operatorname{RaNK}_{0}\left(B_{0}, i\right)\right)\right]-1$, which can be calculated be the mechanism of the previous paragraph.

As we shall see later, ψ_{0} can be stored very efficiently (basically using $O(n \log \sigma)$ bits). Hence, we have almost halved the space with this approach (from $n \log n$ bits for A to $\frac{n}{2} \log \frac{n}{2}$ for A_{1}).

1.4 Hierarchical Decomposition

We can use the idea from the previous section recursively in order to gain more space: instead of representing A_{1} plainly, we replace it with bit-vector B_{1}, array ψ_{1} and A_{2}. Array A_{2} can in turn be replaced by B_{2}, ψ_{2}, and A_{3}, and so on. In general, array $A_{k}\left[1, n_{k}\right]$, with $n_{k}=\frac{n}{2^{k}}$, implicitly represents T 's suffixes that are a multiple of 2^{k}, in the order as they appear in the original array $A_{0}:=A$.

Example 3.

A_{k} can be seen as a suffix array of a new string T^{k}, where the i^{\prime} th character of T^{k} is the concatenation of 2^{k} characters $T_{i 2^{k} \ldots(i+1) 2^{k}-1}$ (we assume that T is padded with sufficiently enough $\$$-characters). This means that the alphabet for T^{k} is $\Sigma^{2^{k}}$, i. e., all 2^{k}-tuples from Σ.

Example 4. $A_{2}=[4,1,3,2]$ can be regarded as the suffix array of

$$
T^{2}=\underbrace{(\mathrm{AATA})}_{T_{1}^{2}} \underbrace{(\mathrm{CATT})}_{T_{2}^{2}} \underbrace{(\mathrm{ATAC})}_{T_{3}^{2}} \underbrace{(\$ \$ \$ \$)}_{T_{4}^{2}}
$$

This way, on level k we only store B_{k} and ψ_{k}. Only on the last level h we store A_{h}. We choose $h=\left\lceil\log \log _{\sigma} \frac{n}{\log n}\right\rceil$ such that the space for storing A_{h} is

$$
O\left(n_{h} \log n_{h}\right)=O\left(n_{h} \log n\right)=O\left(\frac{n}{2^{h}} \log n\right)=O\left(\frac{n \log \sigma}{\log \frac{n}{\log n}} \log n\right)=O(n \log \sigma) \text { bits. }
$$

However, storing B_{k} and ψ_{k} on all h levels would take too much space. Instead, we use only a constant number of $1+\frac{1}{\epsilon}$ levels, namely $0, h \epsilon, 2 h \epsilon, \ldots, h$ (constant $0<\epsilon \leq 1$).

Example 5.

Hence, bit-vector B_{k} has a ' 1 ' at position i iff $A_{k}[i]$ is a multiple of $2^{h \epsilon+k}$.
Given all this, we have the following algorithm to compute $A[i]$, to be invoked with lookup $(i, 0)$.

```
Algorithm 1: function lookup \((i, k)\)
    if \(k=h\) then
        return \(A_{h}[i]\);
    end
    if \(k=\omega_{k}\) then
        return \(n_{k}\);
    end
    if \(B_{k}[i]=1\) then
        return \(2^{h \epsilon}\) lookup \(\left(\operatorname{RANK}_{1}\left(B_{k}, i\right), k+h \epsilon\right)\);
    else
        return lookup \(\left(\psi_{k}\left(\operatorname{RANK}_{0}\left(B_{k}, i\right), k\right)\right)-1 ;\)
    end
```

Here, ω_{k} stores the position of the last suffix, i. e., $A_{k}\left[\omega_{k}\right]=n_{k}$. Checking if $i=\omega_{k}$ is necessary in order to avoid following ψ_{k} from the last suffixes to the first, because this would give incorrect results.

Example 6. $A[15]=\operatorname{lookup}(15,0)=\operatorname{lookup}\left(\psi_{0}(11), 0\right)-1=\operatorname{lookup}(6,0)-1=2^{2} \operatorname{lookup}(3,2)-$ $1=2^{2}\left(\operatorname{lookup}\left(\psi_{2}(2), 2\right)-1\right)-1=2^{2}(\operatorname{lookup}(1,2)-1)-1=2^{2}(4-1)-1=11$

To analyze the running time of the lookup-procedure, we first note that on every level k, we need to follow ψ_{k} at most $2^{h \epsilon}$ times until we hit a position i with $B_{k}[i]=1$ (second case of the last if-statement). Because the number of "implemented" levels, $1+\frac{1}{\epsilon}$, is constant (remember ϵ is constant!), the total time of the lookup-procedure is

$$
O\left(2^{h \epsilon}\right)=O\left(\left(2^{\log _{\log _{\sigma} n}}\right)^{\epsilon}\right)=O\left(\log _{\sigma}^{\epsilon} n\right)
$$

which is sub-logarithmic for $\epsilon<1$.

1.5 Elias-Codes

For coding the ψ-values in a space efficient form, we will use Elias- γ and Elias- δ codes, which we present in this section. Let us write $(x)_{2}$ for the binary representation of integer $x \geq 1$. Also $(x)_{1}$ denotes the unary representation of x, which consists of $x-10$'s, followed by a single 1 . For example, $(5)_{2}=101$ and $(5)_{1}=00001$.
The Elias- γ code of a number x, denoted by $(x)_{\gamma}$, is defined as follows: first, write the length of the binary representation of x in unary, i. e., write bits $\left(\left|(x)_{2}\right|\right)_{1}$. Then append the bits from $(x)_{2}$, with the first (leftmost) ' 1 ' being omitted. For example, the first five γ-codes (representing the numbers $1,2, \ldots, 5)$ are $1,010,011,00100$ and 00101 . The length in bits is

$$
\left|(x)_{\gamma}\right|=\underbrace{\lfloor\log x\rfloor+1}_{\text {unary part }}+\underbrace{\lfloor\log x\rfloor}_{\text {binary part }} .
$$

The δ-code is obtained in a similar manner, but instead of encoding $\left|(x)_{2}\right|$ in unary, we encode it with the γ-code. That is, we first write $\left(\left|(x)_{2}\right|\right)_{\gamma}$, and then append $(x)_{2}$, again with the trailing ' 1 ' being omitted. Examples of δ-codes are shown in the following table.

Example 7.

x	$(x)_{\delta}$
1	1
2	0100
3	0101
4	01100
5	01101
6	01110
7	01111
8	00100000

x	$(x)_{\delta}$
9	00100001
10	00100010
11	00100011
12	00100100
13	00100101
14	00100110
15	00100111
16	001010000

The size of the δ-code is

$$
\begin{aligned}
\left|(x)_{\delta}\right| & =\left|(\lfloor\log x\rfloor+1)_{\gamma}\right|+\lfloor\log x\rfloor \\
& =(\lfloor\log (\lfloor\log x\rfloor+1)\rfloor+1)+\lfloor\log (\lfloor\log x\rfloor+1)\rfloor+\lfloor\log x\rfloor \\
& =\lfloor\log x\rfloor+2\lfloor\log (\lfloor\log x\rfloor+1)\rfloor+1 \text { bits. }
\end{aligned}
$$

1.6 Storing ψ

Let us first concentrate on level 0 , i. e., on storing ψ_{0}. From Lemma 1 , we know that ψ is piecewise increasing in areas $A[l, r]$ where the suffixes start with the same character (i. e., where $T_{A[i]}=T_{A[j]}$ for all $i, j \in[l, r])$. Let $[l, r]$ be one such area. Instead of storing $\psi_{0}[l, r]$ plainly, we first compute the differences $\Delta_{0}[i]=\psi_{0}[i]-\psi_{0}[i-1]$ for $l<i \leq r$. This produces a list of positive integers from the range $[1, n]$, which will be encoded space-efficiently in a subsequent step. In general, we define

$$
\Delta_{0}[i]= \begin{cases}\psi_{0}[i]-\psi_{0}[i-1] & \text { if } T_{A_{0}[i]}=T_{A_{0}[i-1]} \\ \psi_{0}[i] & \text { otherwise }\end{cases}
$$

Example 8.

These Δ-values are now encoded with Elias δ-code; the resulting bit stream is called S_{0}.

Example 9.

$$
\begin{array}{cccccccccccccc}
\Delta_{0} & = & 9 & 1 & 2 & 2 & 2 & 1 & 1 & 2 & 3 & 2 & 1 & 9 \\
S_{0} & =00100001 & 1 & 0100 & 0100 & 0100 & 1 & 1 & 0100 & 0101 & 0100 & 1 & 0010001
\end{array}
$$

In general, because A_{k} can be regarded as the suffix array of a text T^{k}, we can compress ψ_{k} on levels $k>0$ by the same mechanism, i. e., by using Elias δ-codes on the list of differences of consecutive ψ_{k}-values. We therefore define

$$
\Delta_{k}[i]= \begin{cases}\psi_{k}[i]-\psi_{k}[i-1] & \text { if } T_{A_{k}[i]}^{k}=T_{A_{k}[i-1]}^{k} \\ \psi_{k}[i] & \text { otherwise }\end{cases}
$$

How can we decompress the ψ_{k}-values from the stream S_{k} of δ-encoded Δ_{k}-values? For this purpose we store $\psi_{k}[i]$ explicitly if either position i marks the beginning of a new character in T^{k} (second case in the definition of Δ_{k}), or if the length of the encoded bit-stream since the last sampled ψ_{k}-value exceeds $s=\frac{\log n}{2}$ bits. To implement this, we introduce three new arrays:

1. D_{k} is a bit vector such that $D_{k}[i]=1$ iff $\psi_{k}[i]$ is sampled. D_{k} is enhanced with data structures for constant-time RANK and SELECT queries.
2. R_{k} is an array that stores the sampled values of ψ_{k}. All ψ_{k}-values stored in R_{k} are removed from the bit-stream S_{k} (they need not to be stored twice!).
3. P_{k} is a bit stream of the same size as S_{k} and marks those positions in S_{k} with a '1' where a δ-encoded Δ_{k}-value starts. P_{k} is prepared for $O(1) \operatorname{SELECT}_{1}$-queries. Then $\operatorname{SELECT}_{1}\left(P_{k}, i\right)$ points to the i 'th Δ_{k}-value $S_{k}[i]$.

Example 10. Assuming $s=5$, we have the following structures:

$$
\begin{aligned}
& \psi_{0}=9 \begin{array}{llllllllllll}
9 & 12 & 14 & 16 & 1 & 2 & 4 & 3 & 5 & 6 & 15 \\
\Delta_{0}= & 9 & 1 & 2 & 2 & 2 & 1 & 1 & 2 & 3 & 2 & 1 \\
9
\end{array} \\
& D_{0}=\begin{array}{llllllllll}
1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
1
\end{array} \\
& \\
& R_{0}=9 \\
& \hline
\end{aligned}
$$

We can decode $\psi_{k}[i]$ as follows. First compute the number of sampled Δ_{k}-values up to position i by $y=\operatorname{RANK}_{1}\left(D_{k}, i\right)$. Then check if $\Delta_{k}[i]$ is represented explicitly $\left(D_{k}[i]=1\right)$, and return $R_{k}[y]$ in this case. Otherwise $\left(D_{k}[i]=0\right)$, compute the greatest index j such that ψ_{k} is sampled by $j=\operatorname{SELECT}_{1}\left(D_{k}, y\right)$. The result is then $R_{k}[y]\left(=\Delta_{k}[j]\right)$, plus the sum of the $(i-j)$ values $\Delta_{k}[j+1], \ldots, \Delta_{k}[i]$ that follow $\Delta_{k}[j]$ in S_{k}. Note that $D_{k}[j+1]=0$, and that the 0 's in D_{k} corresponds to the 1 's in P_{k}. As $\Delta_{k}[j+1]$ is the z 'th encoded Δ_{k}-value in S_{k}, with $z=\operatorname{RANK}_{0}\left(D_{k}, j+\right.$

1) $=j+1-\operatorname{RANK}_{1}\left(D_{k}, j+1\right)=j+1-y$, we thus go to position $\operatorname{SELECT}_{1}\left(P_{k}, z\right)$ in S_{k}, from where we decode the values $\Delta_{k}[j+1], \ldots, \Delta_{k}[i]$, and return $R_{k}[y]+\sum_{l=j+1}^{i} \Delta_{k}[l]$ as the result $\psi_{k}[i]$. This decoding is possible because the δ-code is prefix-free (no codeword is a prefix of a different codeword).

To compute this sum in $O(1)$ time, we use again the Four-Russians-Trick: in a global lookuptable G, for all bit-vectors V of length s and all positions $i \in[1, s], G[V][i]$ stores the answer to $\sum_{j=1}^{i} y_{j}$, if we interpret V as a sequence of δ-encoded values y_{1}, y_{2}, \ldots. Note that some values in G are undefined, because not at all positions $i \in[1, s]$ there ends a δ-encoded value in V, and not all bit-vectors V represent a correct sequence of δ-codes, but these values will never be accessed by the algorithm.

Example 11.

$$
G:
$$

V	1	2	3	4	5
00000	-	-	-	-	-
\cdot					
\cdot					
\cdot					
10100	1	3	-	-	-
\cdot					
\cdot					
\cdot					
11111	1	2	3	4	5

1.7 Space Analysis

We now analyze the space requirement of the compressed suffix array. Recall that on level $k<h$, we store bit-vectors B_{k}, D_{k}, S_{k}, and P_{k} (plus some data structures for RANK and SELECT), and array R_{k}. On level h, we only store A_{h}, which needs $O(n \log \sigma)$ bits. Thus it remains to be shown that an level $k<h$ the space is $O(n \log \sigma)$ bits. Then the total space on all $1+\frac{1}{\epsilon}$ levels is $O\left(\frac{1}{\epsilon} n \log \sigma\right)$ bits.

The bit-vectors B_{k} and D_{k} are certainly of size $O(n)$ bits each, as they are never longer than n, the length of the text. Actually, the total size of all B_{k} 's can be bounded by $2 n$ bits, because the length of the B_{k}-vectors is at least halved from one level to the next:

$$
\sum_{k=0}^{h-1}\left|B_{k}\right|=\sum_{k=0}^{h-1} n_{k}=\sum_{k=0}^{h-1} \frac{n}{2^{k}}=n \sum_{k=0}^{h-1} \frac{1}{2^{k}} \leq n \sum_{k=0}^{\infty} \frac{1}{2^{k}}=2 n .
$$

The total size of the D_{k} 's is even smaller. Together with the data structures for constant-time RANK- and SELECT-queries, the space for all B_{k} 's and D_{k} 's can be upper bounded by $4 n+o(n)$ bits in total.

Let us now analyze the space for the bit-stream S_{k} on a fixed level $k<h$. For simplicity, we assume that S_{k} stores all Δ_{k}-values, also those that are stored explicitly in R_{k} and thus deleted from S_{k}. Let n_{k}^{c} denote the number of positions in ψ_{k} corresponding to suffixes that start with the same character $c \in \Sigma^{2^{k}}$, and let $\Delta_{k}^{c}\left[1, n_{k}^{c}\right]$ denote the corresponding sub-array in Δ_{k}. Thus,
by Lemma $1, S_{k}$ stores at most $\sigma^{2^{k}}$ increasing sequences from the range [$1, n_{k}$], each encoded by δ-codes of the differences Δ_{k}. Therefore, the space is

$$
\begin{aligned}
\left|S_{k}\right| & =\sum_{c \in \Sigma^{2^{k}}} \sum_{i=1}^{n_{k}^{c}}\left(\left\lfloor\log \Delta_{k}^{c}[i\rfloor\right\rfloor+2\left\lfloor\log \left(\left\lfloor\log \Delta_{k}^{c}[i\rfloor\right\rfloor+1\right)\right\rfloor+1\right) \\
& =\sum_{c \in \Sigma^{2^{k}}} \sum_{i=1}^{n_{k}^{c}}\left(\left\lfloor\log \Delta_{k}^{c}[i]\right\rfloor+2 \log \log \Delta_{k}^{c}[i]\right)+O\left(n_{k}\right) \\
& \leq \sum_{c \in \Sigma^{2}} \sum_{i=1}^{n_{k}^{c}}\left(\log \frac{n_{k}}{n_{k}^{c}}+2 \log \log \frac{n_{k}}{n_{k}^{c}}\right)+O\left(n_{k}\right) \\
& =\sum_{c \in \Sigma^{2^{k}}} n_{k}^{c}\left(\log \frac{n_{k}}{n_{k}^{c}}+2 \log \log \frac{n_{k}}{n_{k}^{c}}\right)+O\left(n_{k}\right) \\
& \leq \sum_{c \in \Sigma^{2^{k}}} n_{k}^{c}\left(\log \sigma^{2^{k}}+2 \log \log \sigma^{2^{k}}\right)+O\left(n_{k}\right) \\
& =\left(\log \sigma^{2^{k}}+2 \log \log {\sigma^{2}}^{k}\right) \sum_{c \in \Sigma^{2}} n_{k}^{c}+O\left(n_{k}\right) \\
& =\left(2^{k} \log \sigma+2 \log 2^{k} \log \sigma\right) n_{k}+O\left(n_{k}\right) \\
& =\left(2^{k} \log \sigma+2 \log 2^{k} \log \sigma\right) \frac{n}{2^{k}}+O\left(n_{k}\right) \\
& =n \log \sigma+O(n \log \log \sigma) \operatorname{bits.}
\end{aligned}
$$

Here, both inequalities follow from the fact that the sum of logarithms is largest when the values are spread evenly over the interval: if $\sum_{i=1}^{m} x_{i} \leq x$ for a sequence of m real numbers with $x_{i} \geq 1$ for all i, then $\sum_{i=1}^{m} \log x_{i} \leq \sum_{i=1}^{m} \log \frac{x}{m}$.

Because P_{k} is of the same size as S_{k}, we can upper bound the space for P_{k} (including the data-structure for SELECT) by $O(n \log \sigma)$ bits.

Finally, the array R_{k} of sampled values consist of

$$
\begin{aligned}
\left|R_{k}\right| & =(\underbrace{\left|\Sigma^{2^{k}}\right|}_{\begin{array}{c}
\text { new cha- } \\
\text { racter }
\end{array}}+\underbrace{\frac{\left|S_{k}\right|}{\log n}}_{\begin{array}{c}
\text { length ex- } \\
\text { ceeds s bits }
\end{array}}) \times \underbrace{\log n_{k}}_{\begin{array}{c}
\text { value from } \\
{\left[1, n_{k}\right]}
\end{array}} \\
& =\left(\sigma^{2^{k}}+\frac{n \log \sigma}{\log n}\right) \log n_{k} \\
& \leq O\left(\left(\sigma^{2^{h}}+\frac{n \log \sigma}{\log n}\right) \log n\right) \\
& =O\left(\left(\frac{n}{\log n}+\frac{n \log \sigma}{\log n}\right) \log n\right) \\
& =O(n \log \sigma) \text { bits. }
\end{aligned}
$$

We summarize this section in a final theorem:
Theorem 2. The suffix array A of a text of length n over an alphabet of size σ can be stored in $O\left(\frac{1}{\epsilon} n \log \sigma\right)$ bits such that retrieving an arbitrary entry $A[i]$ from the suffix array with $1 \leq i \leq n$ takes $O\left(\log ^{\epsilon} n\right)$ time.

