
Advanced Data Structures

Johannes Fischer

WS 2012/13

1 Compressed Suffix Arrays

We will show in this section that O(n log σ) bits suffice also for representing A. The price of this
compressed suffix array is that the time for retrieving an entry from A is not constant any more,
but rises from O(1) to O(logε n), for some arbitrarily small constant 0 < ε ≤ 1.

1.1 Recommended Reading

• K. Sadakane New Text Indexing Functionalities in the Compressed Suffix Arrays. J. Algo-
rithms 48(2): 294-313 (2003).

• G. Navarro and V. Mäkinen: Compressed Full-Text Indexes. ACM Computing Surveys 39(1),
Article no. 2 (61 pages), 2007. Sect. 4.4, 4.5, 7.1.

1.2 The ψ-Function

The most important component of the compressed suffix array (abbreviated as CSA henceforth) is
a function ψ that allows us to “jump one character forward” in the suffix array.

Definition 1. Define ψ: [1, n]→ [1, n] such that ψ(i) = j ⇔ A[j] = A[i] + 1, where position n+ 1
is interpreted as the first position in T (read text circularly!).

Example 1.

T=C A C A A T A C A TT A T A C $
A=16 4 14 2 7 12 5 9 15 3 1 8 13 6 11 10
ψ=11 7 9 10 12 13 14 16 1 2 4 8 3 5 6 15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Note the similarity of the ψ-function to suffix links in suffix trees: both “cut off” the first
character of the corresponding substring.

Function ψ is increasing in areas where the corresponding suffixes start with the same character.
For instance, in Ex. 1 we have that all suffixes from A[2, 9] start with letter A; and indeed, ψ[2, 9] =
[7, 9, 10, 12, 13, 14, 16] is increasing. This is summarized in the following lemma.

Lemma 1. If i < j and TA[i] = TA[j], then ψ(i) < ψ(j).

This lemma will be used in Sect. 1.6 to store ψ in a space-efficient form.

1

1.3 The Idea of the Compressed Suffix Array

We now present the general approach to store A in a space-efficient form. Instead of storing every
entry in A, in a new bit-vector B0[1, n] we mark the positions in A where the corresponding entry
in A is even:

B0[i] = 1⇔ A[i] ≡ 0 (mod 2) .

Bit-vector B0 is prepared for O(1) rank-queries. We further store the ψ-values at positions i with
B0[i] = 0 in a new array ψ0[1, dn2 e]. Finally, we store the even values of A in a new array A1[1, bn2 c],
and divide all values in A1 by 2.

Example 2.

T= C A C A A T A C A TT A T A C $
A= 16 4 14 2 7 12 5 9 15 3 1 8 13 6 11 10
B0=
ψ0=
A1=

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 1 1 1 0 1 0 0 0 0 0 1 0 1 0 1
12 14 16 1 2 4 3 6

8 2 7 1 6 4 3 5

Now, the three arrays, B0, ψ0 and A1, completely substitute A: to retrieve value A[i], we first
check if B0[i] = 1. If so, we know that A[i]/2 is stored in A1, and that the exact position in A1 is
given by the number of 1-bits in B0 up to position i. Hence, A[i] = 2A1[rank1(B0, i)].

If, on the other hand, B0[i] = 0, we follow ψ(i) in order to get to the position of the (A[i] + 1)st
suffix, which must be even (and is hence stored inA1). The value ψ(i) is stored in ψ0, and its position
therein is equal to the number of 0-bits inB0 up to position i. Hence, A[i] = A[ψ0(rank0(B0, i))]−1,
which can be calculated be the mechanism of the previous paragraph.

As we shall see later, ψ0 can be stored very efficiently (basically using O(n log σ) bits). Hence,
we have almost halved the space with this approach (from n log n bits for A to n

2 log n
2 for A1).

1.4 Hierarchical Decomposition

We can use the idea from the previous section recursively in order to gain more space: instead of
representing A1 plainly, we replace it with bit-vector B1, array ψ1 and A2. Array A2 can in turn
be replaced by B2, ψ2, and A3, and so on. In general, array Ak[1, nk], with nk = n

2k
, implicitly

represents T ’s suffixes that are a multiple of 2k, in the order as they appear in the original array
A0 := A.

2

Example 3.

T= C A C A A T A C A TT A T A C $
A= 16 4 14 2 7 12 5 9 15 3 1 8 13 6 11 10

ψ0=

B0=

A1=8 2 7 1 6 4 3 5

ψ1=1 2 6 5

B1=1 1 0 0 1 1 0 0

A2=4 1 3 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 1 1 1 0 1 0 0 0 0 0 1 0 1 0 1

12 14 16 1 2 4 3 6

level 0

level 1

etc.

Ak can be seen as a suffix array of a new string T k, where the i’th character of T k is the
concatenation of 2k characters Ti2k...(i+1)2k−1 (we assume that T is padded with sufficiently enough

$-characters). This means that the alphabet for T k is Σ2k , i. e., all 2k-tuples from Σ.

Example 4. A2 = [4, 1, 3, 2] can be regarded as the suffix array of

T 2 = (AATA)︸ ︷︷ ︸
T 2
1

(CATT)︸ ︷︷ ︸
T 2
2

(ATAC)︸ ︷︷ ︸
T 2
3

($$$$)︸ ︷︷ ︸
T 2
4

.

This way, on level k we only store Bk and ψk. Only on the last level h we store Ah. We choose
h = dlog logσ

n
logne such that the space for storing Ah is

O (nh log nh) = O (nh log n) = O
(n

2h
log n

)
= O

(
n log σ

log n
logn

log n

)
= O(n log σ) bits.

However, storing Bk and ψk on all h levels would take too much space. Instead, we use only a
constant number of 1 + 1

ε levels, namely 0, hε, 2hε, . . . ,h (constant 0 < ε ≤ 1).

3

Example 5.

T= C A C A A T A C A TT A T A C $
A0=16 4 14 2 7 12 5 9 15 3 1 8 13 6 11 10

ψ0= 9 10 12 14 16 1 2 4 3 5 6 15

B0=

A2= 4 1 3 2

ψ2= 4 1 3

B2= 1 0 0 0

A4= 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0

n=16

h=4

ε= 1
2

Hence, bit-vector Bk has a ’1’ at position i iff Ak[i] is a multiple of 2hε+k.
Given all this, we have the following algorithm to compute A[i], to be invoked with lookup(i, 0).

Algorithm 1: function lookup(i, k)

if k = h then
return Ah[i];

end
if k = ωk then

return nk;
end
if Bk[i] = 1 then

return 2hεlookup(rank1(Bk, i), k + hε);
else

return lookup(ψk(rank0(Bk, i), k))− 1;
end

Here, ωk stores the position of the last suffix, i. e., Ak[ωk] = nk. Checking if i = ωk is necessary
in order to avoid following ψk from the last suffixes to the first, because this would give incorrect
results.

Example 6. A[15] = lookup(15, 0) = lookup(ψ0(11), 0)−1 = lookup(6, 0)−1 = 22lookup(3, 2)−
1 = 22(lookup(ψ2(2), 2)− 1)− 1 = 22(lookup(1, 2)− 1)− 1 = 22(4− 1)− 1 = 11

To analyze the running time of the lookup-procedure, we first note that on every level k, we
need to follow ψk at most 2hε times until we hit a position i with Bk[i] = 1 (second case of the
last if-statement). Because the number of “implemented” levels, 1 + 1

ε , is constant (remember ε is
constant!), the total time of the lookup-procedure is

O
(

2hε
)

= O
((

2log logσ n
)ε)

= O (logεσ n) ,

which is sub-logarithmic for ε < 1.

4

1.5 Elias-Codes

For coding the ψ-values in a space efficient form, we will use Elias-γ and Elias-δ codes, which we
present in this section. Let us write (x)2 for the binary representation of integer x ≥ 1. Also
(x)1 denotes the unary representation of x, which consists of x− 1 0’s, followed by a single 1. For
example, (5)2 = 101 and (5)1 = 00001.
The Elias-γ code of a number x, denoted by (x)γ , is defined as follows: first, write the length of the
binary representation of x in unary, i. e., write bits (|(x)2|)1. Then append the bits from (x)2, with
the first (leftmost) ’1’ being omitted. For example, the first five γ-codes (representing the numbers
1, 2, . . . , 5) are 1, 010, 011, 00100 and 00101. The length in bits is

|(x)γ | = blog xc+ 1︸ ︷︷ ︸
unary part

+ blog xc︸ ︷︷ ︸
binary part

.

The δ-code is obtained in a similar manner, but instead of encoding |(x)2| in unary, we encode it
with the γ-code. That is, we first write (|(x)2|)γ , and then append (x)2, again with the trailing ’1’
being omitted. Examples of δ-codes are shown in the following table.

Example 7.

x

1
2
3
4
5
6
7
8

(x)δ

1
0100
0101
01100
01101
01110
01111
00100000

x

9
10
11
12
13
14
15
16

(x)δ

00100001
00100010
00100011
00100100
00100101
00100110
00100111
001010000

The size of the δ-code is

|(x)δ| = |(blog xc+ 1)γ |+ blog xc
= (blog (blog xc+ 1)c+ 1) + blog (blog xc+ 1)c+ blog xc
= blog xc+ 2blog (blog xc+ 1)c+ 1 bits.

1.6 Storing ψ

Let us first concentrate on level 0, i. e., on storing ψ0. From Lemma 1, we know that ψ is piecewise
increasing in areas A[l, r] where the suffixes start with the same character (i. e., where TA[i] = TA[j]

for all i, j ∈ [l, r]). Let [l, r] be one such area. Instead of storing ψ0[l, r] plainly, we first compute
the differences ∆0[i] = ψ0[i]− ψ0[i− 1] for l < i ≤ r. This produces a list of positive integers from
the range [1, n], which will be encoded space-efficiently in a subsequent step. In general, we define

∆0[i] =

{
ψ0[i]− ψ0[i− 1] if TA0[i] = TA0[i−1],

ψ0[i] otherwise.

5

Example 8.

∆0= 9 1 2 2 2 1 1 2 3 2 1 9
1 2 3 4 5 6 7 8 9 10 11 12

These ∆-values are now encoded with Elias δ-code; the resulting bit stream is called S0.

Example 9.

S0 = 00100001 1 0100 0100 0100 1 1 0100 0101 0100 1 0010001

∆0 = 9 1 2 2 2 1 1 2 3 2 1 9

In general, because Ak can be regarded as the suffix array of a text T k, we can compress ψk
on levels k > 0 by the same mechanism, i. e., by using Elias δ-codes on the list of differences of
consecutive ψk-values. We therefore define

∆k[i] =

{
ψk[i]− ψk[i− 1] if T kAk[i] = T kAk[i−1],

ψk[i] otherwise.

How can we decompress the ψk-values from the stream Sk of δ-encoded ∆k-values? For this
purpose we store ψk[i] explicitly if either position i marks the beginning of a new character in
T k (second case in the definition of ∆k), or if the length of the encoded bit-stream since the last
sampled ψk-value exceeds s = logn

2 bits. To implement this, we introduce three new arrays:

1. Dk is a bit vector such that Dk[i] = 1 iff ψk[i] is sampled. Dk is enhanced with data structures
for constant-time rank and select queries.

2. Rk is an array that stores the sampled values of ψk. All ψk-values stored in Rk are removed
from the bit-stream Sk (they need not to be stored twice!).

3. Pk is a bit stream of the same size as Sk and marks those positions in Sk with a ’1’ where
a δ-encoded ∆k-value starts. Pk is prepared for O(1) select1-queries. Then select1(Pk, i)
points to the i’th ∆k-value Sk[i].

Example 10. Assuming s = 5, we have the following structures:

ψ0 = 9 10 12 14 16 1 2 4 3 5 6 15
∆0 = 9 1 2 2 2 1 1 2 3 2 1 9
D0 = 1 0 0 1 0 1 0 0 1 0 0 1

R0 = 9 14 1 3 15
P0 = 11000 1000 11000 10001
S0 = (00100001) 10100 (0100) 0100 (1) 10100 (0101) 01001 (00100001)

1 2 3 4 5 6 7 8 9. . .

We can decode ψk[i] as follows. First compute the number of sampled ∆k-values up to position
i by y = rank1(Dk, i). Then check if ∆k[i] is represented explicitly (Dk[i] = 1), and return
Rk[y] in this case. Otherwise (Dk[i] = 0), compute the greatest index j such that ψk is sampled
by j = select1(Dk, y). The result is then Rk[y] (= ∆k[j]), plus the sum of the (i − j) values
∆k[j + 1], . . . ,∆k[i] that follow ∆k[j] in Sk. Note that Dk[j + 1] = 0, and that the 0’s in Dk

corresponds to the 1’s in Pk. As ∆k[j+1] is the z’th encoded ∆k-value in Sk, with z = rank0(Dk, j+

6

1) = j+ 1−rank1(Dk, j+ 1) = j+ 1− y, we thus go to position select1(Pk, z) in Sk, from where
we decode the values ∆k[j + 1], . . . ,∆k[i], and return Rk[y] +

∑i
l=j+1 ∆k[l] as the result ψk[i].

This decoding is possible because the δ-code is prefix-free (no codeword is a prefix of a different
codeword).

To compute this sum in O(1) time, we use again the Four-Russians-Trick : in a global lookup-
table G, for all bit-vectors V of length s and all positions i ∈ [1, s], G[V][i] stores the answer to∑i

j=1 yj , if we interpret V as a sequence of δ-encoded values y1, y2, Note that some values in
G are undefined, because not at all positions i ∈ [1, s] there ends a δ-encoded value in V , and not
all bit-vectors V represent a correct sequence of δ-codes, but these values will never be accessed by
the algorithm.

Example 11.

V

00000
·
·
·

10100
·
·
·

11111

1 2 3 4 5

- - - - -

1 3 - - -

1 2 3 4 5

G: s = 5

1.7 Space Analysis

We now analyze the space requirement of the compressed suffix array. Recall that on level k < h, we
store bit-vectors Bk, Dk, Sk, and Pk (plus some data structures for rank and select), and array
Rk. On level h, we only store Ah, which needs O(n log σ) bits. Thus it remains to be shown that
an level k < h the space is O(n log σ) bits. Then the total space on all 1 + 1

ε levels is O
(

1
εn log σ

)
bits.

The bit-vectors Bk and Dk are certainly of size O(n) bits each, as they are never longer than
n, the length of the text. Actually, the total size of all Bk’s can be bounded by 2n bits, because
the length of the Bk-vectors is at least halved from one level to the next:

h−1∑
k=0

|Bk| =
h−1∑
k=0

nk =
h−1∑
k=0

n

2k
= n

h−1∑
k=0

1

2k
≤ n

∞∑
k=0

1

2k
= 2n .

The total size of the Dk’s is even smaller. Together with the data structures for constant-time
rank- and select-queries, the space for all Bk’s and Dk’s can be upper bounded by 4n+o(n) bits
in total.

Let us now analyze the space for the bit-stream Sk on a fixed level k < h. For simplicity, we
assume that Sk stores all ∆k-values, also those that are stored explicitly in Rk and thus deleted
from Sk. Let nck denote the number of positions in ψk corresponding to suffixes that start with

the same character c ∈ Σ2k , and let ∆c
k[1, n

c
k] denote the corresponding sub-array in ∆k. Thus,

7

by Lemma 1, Sk stores at most σ2k increasing sequences from the range [1, nk], each encoded by
δ-codes of the differences ∆k. Therefore, the space is

|Sk| =
∑
c∈Σ2k

nck∑
i=1

(blog ∆c
k[i]c+ 2blog (blog ∆c

k[i]c+ 1)c+ 1)

=
∑
c∈Σ2k

nck∑
i=1

(blog ∆c
k[i]c+ 2 log log ∆c

k[i]) +O(nk)

≤
∑
c∈Σ2k

nck∑
i=1

(
log

nk
nck

+ 2 log log
nk
nck

)
+O(nk)

=
∑
c∈Σ2k

nck

(
log

nk
nck

+ 2 log log
nk
nck

)
+O(nk)

≤
∑
c∈Σ2k

nck

(
log σ2k + 2 log log σ2k

)
+O(nk)

=
(

log σ2k + 2 log log σ2k
) ∑
c∈Σ2k

nck +O(nk)

=
(

2k log σ + 2 log 2k log σ
)
nk +O(nk)

=
(

2k log σ + 2 log 2k log σ
) n

2k
+O(nk)

= n log σ +O(n log log σ) bits.

Here, both inequalities follow from the fact that the sum of logarithms is largest when the values
are spread evenly over the interval: if

∑m
i=1 xi ≤ x for a sequence of m real numbers with xi ≥ 1

for all i, then
∑m

i=1 log xi ≤
∑m

i=1 log x
m .

Because Pk is of the same size as Sk, we can upper bound the space for Pk (including the
data-structure for select) by O(n log σ) bits.

Finally, the array Rk of sampled values consist of

|Rk| = (|Σ2k |︸ ︷︷ ︸
new cha-

racter

+
|Sk|
log n︸ ︷︷ ︸

length ex-
ceeds s bits

)× log nk︸ ︷︷ ︸
value from

[1, nk]

=

(
σ2k +

n log σ

log n

)
log nk

≤ O

((
σ2h +

n log σ

log n

)
log n

)
= O

((
n

log n
+
n log σ

log n

)
log n

)
= O(n log σ) bits.

8

We summarize this section in a final theorem:

Theorem 2. The suffix array A of a text of length n over an alphabet of size σ can be stored in
O
(

1
εn log σ

)
bits such that retrieving an arbitrary entry A[i] from the suffix array with 1 ≤ i ≤ n

takes O(logε n) time.

9

