Advanced Data Structures

Johannes Fischer

WS 2012/13

1 Compressed Suffix Arrays

We will show in this section that $O(n \log \sigma)$ bits suffice also for representing A. The price of this compressed suffix array is that the time for retrieving an entry from A is not constant any more, but rises from O(1) to $O(\log^{\epsilon} n)$, for some arbitrarily small constant $0 < \epsilon \leq 1$.

1.1 Recommended Reading

- K. Sadakane New Text Indexing Functionalities in the Compressed Suffix Arrays. J. Algorithms 48(2): 294-313 (2003).
- G. Navarro and V. Mäkinen: *Compressed Full-Text Indexes*. ACM Computing Surveys 39(1), Article no. 2 (61 pages), 2007. Sect. 4.4, 4.5, 7.1.

1.2 The ψ -Function

The most important component of the compressed suffix array (abbreviated as CSA henceforth) is a function ψ that allows us to "jump one character forward" in the suffix array.

Definition 1. Define ψ : $[1, n] \rightarrow [1, n]$ such that $\psi(i) = j \Leftrightarrow A[j] = A[i] + 1$, where position n + 1 is interpreted as the first position in T (read text circularly!).

Example 1.

Note the similarity of the ψ -function to suffix links in suffix trees: both "cut off" the first character of the corresponding substring.

Function ψ is *increasing* in areas where the corresponding suffixes start with the same character. For instance, in Ex. 1 we have that all suffixes from A[2,9] start with letter A; and indeed, $\psi[2,9] = [7,9,10,12,13,14,16]$ is increasing. This is summarized in the following lemma.

Lemma 1. If i < j and $T_{A[i]} = T_{A[j]}$, then $\psi(i) < \psi(j)$.

This lemma will be used in Sect. 1.6 to store ψ in a space-efficient form.

1.3 The Idea of the Compressed Suffix Array

We now present the general approach to store A in a space-efficient form. Instead of storing every entry in A, in a new bit-vector $B_0[1, n]$ we mark the positions in A where the corresponding entry in A is even:

$$B_0[i] = 1 \Leftrightarrow A[i] \equiv 0 \pmod{2}$$
.

Bit-vector B_0 is prepared for O(1) RANK-queries. We further store the ψ -values at positions i with $B_0[i] = 0$ in a new array $\psi_0[1, \lceil \frac{n}{2} \rceil]$. Finally, we store the even values of A in a new array $A_1[1, \lfloor \frac{n}{2} \rfloor]$, and divide all values in A_1 by 2.

Example 2.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
T =	\mathbf{C}	А	\mathbf{C}	А	А	Т	А	\mathbf{C}	А	Т	Т	А	Т	А	\mathbf{C}	\$
A =	16	4	14	2	7	12	5	9	15	3	1	8	13	6	11	10
$B_0 =$:1	1	1	1	0	1	0	0	0	0	0	1	0	1	0	1
$\psi_0 =$					12		14	16	1	2	4		3		6	
$A_1 =$	8	2	7	1	6							4		3		5

Now, the three arrays, B_0 , ψ_0 and A_1 , completely substitute A: to retrieve value A[i], we first check if $B_0[i] = 1$. If so, we know that A[i]/2 is stored in A_1 , and that the exact position in A_1 is given by the number of 1-bits in B_0 up to position *i*. Hence, $A[i] = 2A_1[\text{RANK}_1(B_0, i)]$.

If, on the other hand, $B_0[i] = 0$, we follow $\psi(i)$ in order to get to the position of the (A[i] + 1)st suffix, which must be even (and is hence stored in A_1). The value $\psi(i)$ is stored in ψ_0 , and its position therein is equal to the number of 0-bits in B_0 up to position *i*. Hence, $A[i] = A[\psi_0(\text{RANK}_0(B_0, i))] - 1$, which can be calculated be the mechanism of the previous paragraph.

As we shall see later, ψ_0 can be stored very efficiently (basically using $O(n \log \sigma)$ bits). Hence, we have almost halved the space with this approach (from $n \log n$ bits for A to $\frac{n}{2} \log \frac{n}{2}$ for A_1).

1.4 Hierarchical Decomposition

We can use the idea from the previous section recursively in order to gain more space: instead of representing A_1 plainly, we replace it with bit-vector B_1 , array ψ_1 and A_2 . Array A_2 can in turn be replaced by B_2, ψ_2 , and A_3 , and so on. In general, array $A_k[1, n_k]$, with $n_k = \frac{n}{2^k}$, implicitly represents T's suffixes that are a multiple of 2^k , in the order as they appear in the original array $A_0 := A$.

Example 3.

 A_k can be seen as a suffix array of a new string T^k , where the *i*'th character of T^k is the concatenation of 2^k characters $T_{i2^k...(i+1)2^k-1}$ (we assume that T is padded with sufficiently enough s-characters). This means that the alphabet for T^k is Σ^{2^k} , i.e., all 2^k -tuples from Σ .

Example 4. $A_2 = [4, 1, 3, 2]$ can be regarded as the suffix array of

$$T^{2} = \underbrace{(AATA)}_{T_{1}^{2}} \underbrace{(CATT)}_{T_{2}^{2}} \underbrace{(ATAC)}_{T_{3}^{2}} \underbrace{(\$\$\$)}_{T_{4}^{2}} .$$

This way, on level k we only store B_k and ψ_k . Only on the last level h we store A_h . We choose $h = \lceil \log \log_\sigma \frac{n}{\log n} \rceil$ such that the space for storing A_h is

$$O(n_h \log n_h) = O(n_h \log n) = O\left(\frac{n}{2^h} \log n\right) = O\left(\frac{n \log \sigma}{\log \frac{n}{\log n}} \log n\right) = O(n \log \sigma) \text{ bits.}$$

However, storing B_k and ψ_k on all h levels would take too much space. Instead, we use only a *constant* number of $1 + \frac{1}{\epsilon}$ levels, namely 0, $h\epsilon$, $2h\epsilon$, ..., h (constant $0 < \epsilon \leq 1$).

Example 5.

Hence, bit-vector B_k has a '1' at position *i* iff $A_k[i]$ is a multiple of $2^{h\epsilon+k}$. Given all this, we have the following algorithm to compute A[i], to be invoked with lookup(i, 0).

Algorithm 1: function lookup(i, k)

```
 \begin{array}{l} \textbf{if } k = h \textbf{ then} \\ | \quad \text{return } A_h[i]; \\ \textbf{end} \\ \textbf{if } k = \omega_k \textbf{ then} \\ | \quad \text{return } n_k; \\ \textbf{end} \\ \textbf{if } B_k[i] = 1 \textbf{ then} \\ | \quad \text{return } 2^{h\epsilon} \texttt{lookup}(\texttt{RANK}_1(B_k, i), k + h\epsilon); \\ \textbf{else} \\ | \quad \text{return } \texttt{lookup}(\psi_k(\texttt{RANK}_0(B_k, i), k)) - 1; \\ \textbf{end} \end{array}
```

Here, ω_k stores the position of the last suffix, i.e., $A_k[\omega_k] = n_k$. Checking if $i = \omega_k$ is necessary in order to avoid following ψ_k from the last suffixes to the first, because this would give incorrect results.

Example 6. $A[15] = 100 \exp(15, 0) = 100 \exp(\psi_0(11), 0) - 1 = 100 \exp(6, 0) - 1 = 2^2 100 \exp(3, 2) - 1 = 2^2 (100 \exp(\psi_2(2), 2) - 1) - 1 = 2^2 (100 \exp(1, 2) - 1) - 1 = 2^2 (4 - 1) - 1 = 11$

To analyze the running time of the lookup-procedure, we first note that on every level k, we need to follow ψ_k at most $2^{h\epsilon}$ times until we hit a position i with $B_k[i] = 1$ (second case of the last if-statement). Because the number of "implemented" levels, $1 + \frac{1}{\epsilon}$, is constant (remember ϵ is constant!), the total time of the lookup-procedure is

$$O\left(2^{h\epsilon}\right) = O\left(\left(2^{\log\log_{\sigma}n}\right)^{\epsilon}\right) = O\left(\log_{\sigma}^{\epsilon}n\right) ,$$

which is sub-logarithmic for $\epsilon < 1$.

1.5 Elias-Codes

For coding the ψ -values in a space efficient form, we will use *Elias-\gamma* and *Elias-\delta* codes, which we present in this section. Let us write $(x)_2$ for the *binary* representation of integer $x \ge 1$. Also $(x)_1$ denotes the *unary* representation of x, which consists of x - 1 0's, followed by a single 1. For example, $(5)_2 = 101$ and $(5)_1 = 00001$.

The Elias- γ code of a number x, denoted by $(x)_{\gamma}$, is defined as follows: first, write the length of the binary representation of x in unary, i. e., write bits $(|(x)_2|)_1$. Then append the bits from $(x)_2$, with the first (leftmost) '1' being omitted. For example, the first five γ -codes (representing the numbers $1, 2, \ldots, 5$) are 1, 010, 011, 00100 and 00101. The length in bits is

$$|(x)_{\gamma}| = \underbrace{\lfloor \log x \rfloor + 1}_{\text{unary part}} + \underbrace{\lfloor \log x \rfloor}_{\text{binary part}} .$$

The δ -code is obtained in a similar manner, but instead of encoding $|(x)_2|$ in unary, we encode it with the γ -code. That is, we first write $(|(x)_2|)_{\gamma}$, and then append $(x)_2$, again with the trailing '1' being omitted. Examples of δ -codes are shown in the following table.

Example 7.

x	$(x)_{\delta}$	x	$(x)_{\delta}$
1	1	9	00100001
2	0100	10	00100010
3	0101	11	00100011
4	01100	12	00100100
5	01101	13	00100101
6	01110	14	00100110
7	01111	15	00100111
8	00100000	16	001010000

The size of the δ -code is

$$\begin{aligned} |(x)_{\delta}| &= |(\lfloor \log x \rfloor + 1)_{\gamma}| + \lfloor \log x \rfloor \\ &= (\lfloor \log (\lfloor \log x \rfloor + 1) \rfloor + 1) + \lfloor \log (\lfloor \log x \rfloor + 1) \rfloor + \lfloor \log x \rfloor \\ &= \lfloor \log x \rfloor + 2 \lfloor \log (\lfloor \log x \rfloor + 1) \rfloor + 1 \text{ bits.} \end{aligned}$$

1.6 Storing ψ

Let us first concentrate on level 0, i. e., on storing ψ_0 . From Lemma 1, we know that ψ is piecewise increasing in areas A[l, r] where the suffixes start with the same character (i. e., where $T_{A[i]} = T_{A[j]}$ for all $i, j \in [l, r]$). Let [l, r] be one such area. Instead of storing $\psi_0[l, r]$ plainly, we first compute the differences $\Delta_0[i] = \psi_0[i] - \psi_0[i-1]$ for $l < i \leq r$. This produces a list of positive integers from the range [1, n], which will be encoded space-efficiently in a subsequent step. In general, we define

$$\Delta_0[i] = \begin{cases} \psi_0[i] - \psi_0[i-1] & \text{if } T_{A_0[i]} = T_{A_0[i-1]}, \\ \psi_0[i] & \text{otherwise.} \end{cases}$$

Example 8.

$$\Delta_0 \!=\! \overset{\scriptscriptstyle 1}{9} \overset{\scriptscriptstyle 2}{1} \overset{\scriptscriptstyle 3}{2} \overset{\scriptscriptstyle 4}{2} \overset{\scriptscriptstyle 5}{2} \overset{\scriptscriptstyle 6}{2} \overset{\scriptscriptstyle 7}{|} \overset{\scriptscriptstyle 8}{1} \overset{\scriptscriptstyle 9}{2} \overset{\scriptscriptstyle 10}{|} \overset{\scriptscriptstyle 11}{1} \overset{\scriptscriptstyle 12}{|} \overset{\scriptscriptstyle 8}{3} \overset{\scriptscriptstyle 9}{2} \overset{\scriptscriptstyle 10}{1} \overset{\scriptscriptstyle 11}{1} \overset{\scriptscriptstyle 12}{9}$$

These Δ -values are now encoded with Elias δ -code; the resulting bit stream is called S_0 .

Example 9.

In general, because A_k can be regarded as the suffix array of a text T^k , we can compress ψ_k on levels k > 0 by the same mechanism, i.e., by using Elias δ -codes on the list of differences of consecutive ψ_k -values. We therefore define

$$\Delta_k[i] = \begin{cases} \psi_k[i] - \psi_k[i-1] & \text{if } T^k_{A_k[i]} = T^k_{A_k[i-1]}, \\ \psi_k[i] & \text{otherwise.} \end{cases}$$

How can we decompress the ψ_k -values from the stream S_k of δ -encoded Δ_k -values? For this purpose we store $\psi_k[i]$ explicitly if either position *i* marks the beginning of a new character in T^k (second case in the definition of Δ_k), or if the length of the encoded bit-stream since the last sampled ψ_k -value exceeds $s = \frac{\log n}{2}$ bits. To implement this, we introduce three new arrays:

- 1. D_k is a bit vector such that $D_k[i] = 1$ iff $\psi_k[i]$ is sampled. D_k is enhanced with data structures for constant-time RANK and SELECT queries.
- 2. R_k is an array that stores the sampled values of ψ_k . All ψ_k -values stored in R_k are removed from the bit-stream S_k (they need not to be stored twice!).
- 3. P_k is a bit stream of the same size as S_k and marks those positions in S_k with a '1' where a δ -encoded Δ_k -value starts. P_k is prepared for O(1) SELECT₁-queries. Then SELECT₁(P_k, i) points to the *i*'th Δ_k -value $S_k[i]$.

Example 10. Assuming s = 5, we have the following structures:

We can decode $\psi_k[i]$ as follows. First compute the number of sampled Δ_k -values up to position i by $y = \text{RANK}_1(D_k, i)$. Then check if $\Delta_k[i]$ is represented explicitly $(D_k[i] = 1)$, and return $R_k[y]$ in this case. Otherwise $(D_k[i] = 0)$, compute the greatest index j such that ψ_k is sampled by $j = \text{SELECT}_1(D_k, y)$. The result is then $R_k[y] (= \Delta_k[j])$, plus the sum of the (i - j) values $\Delta_k[j + 1], \ldots, \Delta_k[i]$ that follow $\Delta_k[j]$ in S_k . Note that $D_k[j + 1] = 0$, and that the 0's in D_k corresponds to the 1's in P_k . As $\Delta_k[j+1]$ is the z'th encoded Δ_k -value in S_k , with $z = \text{RANK}_0(D_k, j + 1)$.

1) = $j + 1 - \text{RANK}_1(D_k, j+1) = j + 1 - y$, we thus go to position SELECT₁(P_k, z) in S_k , from where we decode the values $\Delta_k[j+1], \ldots, \Delta_k[i]$, and return $R_k[y] + \sum_{l=j+1}^i \Delta_k[l]$ as the result $\psi_k[i]$. This decoding is possible because the δ -code is prefix-free (no codeword is a prefix of a different codeword).

To compute this sum in O(1) time, we use again the *Four-Russians-Trick*: in a global lookuptable G, for all bit-vectors V of length s and all positions $i \in [1, s]$, G[V][i] stores the answer to $\sum_{j=1}^{i} y_j$, if we interpret V as a sequence of δ -encoded values y_1, y_2, \ldots . Note that some values in G are undefined, because not at all positions $i \in [1, s]$ there ends a δ -encoded value in V, and not all bit-vectors V represent a correct sequence of δ -codes, but these values will never be accessed by the algorithm.

Example 11.

G:							s = 5
V	1	2	3	4	5		
00000	-	-	-	-	-	-	
•							
10100	1	3	-	-	-		
•							
11111	1	2	3	4	5		

1.7 Space Analysis

We now analyze the space requirement of the compressed suffix array. Recall that on level k < h, we store bit-vectors B_k , D_k , S_k , and P_k (plus some data structures for RANK and SELECT), and array R_k . On level h, we only store A_h , which needs $O(n \log \sigma)$ bits. Thus it remains to be shown that an level k < h the space is $O(n \log \sigma)$ bits. Then the total space on all $1 + \frac{1}{\epsilon}$ levels is $O(\frac{1}{\epsilon}n \log \sigma)$ bits.

The bit-vectors B_k and D_k are certainly of size O(n) bits each, as they are never longer than n, the length of the text. Actually, the *total* size of all B_k 's can be bounded by 2n bits, because the length of the B_k -vectors is at least halved from one level to the next:

$$\sum_{k=0}^{h-1} |B_k| = \sum_{k=0}^{h-1} n_k = \sum_{k=0}^{h-1} \frac{n}{2^k} = n \sum_{k=0}^{h-1} \frac{1}{2^k} \le n \sum_{k=0}^{\infty} \frac{1}{2^k} = 2n .$$

The total size of the D_k 's is even smaller. Together with the data structures for constant-time RANK- and SELECT-queries, the space for all B_k 's and D_k 's can be upper bounded by 4n + o(n) bits in total.

Let us now analyze the space for the bit-stream S_k on a fixed level k < h. For simplicity, we assume that S_k stores all Δ_k -values, also those that are stored explicitly in R_k and thus deleted from S_k . Let n_k^c denote the number of positions in ψ_k corresponding to suffixes that start with the same character $c \in \Sigma^{2^k}$, and let $\Delta_k^c[1, n_k^c]$ denote the corresponding sub-array in Δ_k . Thus, by Lemma 1, S_k stores at most σ^{2^k} increasing sequences from the range $[1, n_k]$, each encoded by δ -codes of the differences Δ_k . Therefore, the space is

$$\begin{split} |S_k| &= \sum_{c \in \Sigma^{2^k}} \sum_{i=1}^{n_k^c} \left(\lfloor \log \Delta_k^c[i] \rfloor + 2\lfloor \log \left(\lfloor \log \Delta_k^c[i] \rfloor + 1 \right) \rfloor + 1 \right) \\ &= \sum_{c \in \Sigma^{2^k}} \sum_{i=1}^{n_k^c} \left(\lfloor \log \Delta_k^c[i] \rfloor + 2 \log \log \Delta_k^c[i] \right) + O(n_k) \\ &\leq \sum_{c \in \Sigma^{2^k}} \sum_{i=1}^{n_k^c} \left(\log \frac{n_k}{n_k^c} + 2 \log \log \frac{n_k}{n_k^c} \right) + O(n_k) \\ &= \sum_{c \in \Sigma^{2^k}} n_k^c \left(\log \frac{n_k}{n_k^c} + 2 \log \log \frac{n_k}{n_k^c} \right) + O(n_k) \\ &\leq \sum_{c \in \Sigma^{2^k}} n_k^c \left(\log \sigma^{2^k} + 2 \log \log \sigma^{2^k} \right) + O(n_k) \\ &= \left(\log \sigma^{2^k} + 2 \log \log \sigma^{2^k} \right) \sum_{c \in \Sigma^{2^k}} n_k^c + O(n_k) \\ &= \left(2^k \log \sigma + 2 \log 2^k \log \sigma \right) \frac{n_k}{2^k} + O(n_k) \\ &= \left(2^k \log \sigma + 2 \log 2^k \log \sigma \right) \frac{n_k}{2^k} + O(n_k) \\ &= n \log \sigma + O(n \log \log \sigma) \text{ bits.} \end{split}$$

Here, both inequalities follow from the fact that the sum of logarithms is largest when the values are spread evenly over the interval: if $\sum_{i=1}^{m} x_i \leq x$ for a sequence of m real numbers with $x_i \geq 1$ for all i, then $\sum_{i=1}^{m} \log x_i \leq \sum_{i=1}^{m} \log \frac{x}{m}$. Because P_k is of the same size as S_k , we can upper bound the space for P_k (including the

data-structure for SELECT) by $O(n \log \sigma)$ bits.

Finally, the array R_k of sampled values consist of

$$\begin{aligned} |R_k| &= \left(\underbrace{|\Sigma^{2^k}|}_{\text{new cha-}} + \underbrace{\frac{|S_k|}{\log n}}_{\text{length ex-}} \right) \times \underbrace{\log n_k}_{\text{value from}} \\ &= \left(\sigma^{2^k} + \frac{n\log\sigma}{\log n} \right) \log n_k \\ &\leq O\left(\left(\sigma^{2^h} + \frac{n\log\sigma}{\log n} \right) \log n \right) \\ &= O\left(\left(\left(\frac{n}{\log n} + \frac{n\log\sigma}{\log n} \right) \log n \right) \right) \\ &= O\left(\left(\left(\frac{n}{\log n} + \frac{n\log\sigma}{\log n} \right) \log n \right) \right) \\ &= O(n\log\sigma) \text{ bits.} \end{aligned}$$

We summarize this section in a final theorem:

Theorem 2. The suffix array A of a text of length n over an alphabet of size σ can be stored in $O\left(\frac{1}{\epsilon}n\log\sigma\right)$ bits such that retrieving an arbitrary entry A[i] from the suffix array with $1 \le i \le n$ takes $O(\log^{\epsilon} n)$ time.