Sanders: Algorithm Engineering April 22, 2025 QQ(IT 1

Algorithm Engineering
Basic Toolbox Algorithms and Data
Structures

Peter Sanders
What are the fastest implemented Algorithms
for the most basic algorithms:

lists, sorting, priority queues, sorted sequences, hash tables,
graph algorithms?

Sanders: Algorithm Engineering April 22, 2025 & (IT)
Useful Previouis Knowledge

L] Algorithmen I

L] Algorithmen II

[| some computer architecture
L] passive knowledge of C/C++

Vertiefungsgebiet: Algorithmik

Sanders: Algorithm Engineering april 22, 2025

Material

[| Slides

L] Scientific papers
lecture homepage

| Basics: algorithms textbooks,
z.B. Sanders et al., Cormen et al.

[| Mehlhorn Naher: The LEDA Platform of Combi

and Geometric Computing.

[] Catherine McGeoch, A Guide to Experimental
Algorithmics

| perhaps materials from a new book “Algorithm
Engineering” Sanders et al.

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Kurt ichom
Wlartin Dietelelbinger

Sequential
and Parallel
Algorithmsand
Data Structures

Sanders: Algorithm Engineering april 22, 2025 ﬂ(IT
Exercises

Karlsruhe Institute of Technology

L] overall 20% of the grade
] taught by Stefan Hermann and Sasch Witt

[| detals later

Sanders: Algorithm Engineering April 22, 2025 QQ(IT 5

Uberblick

What 1s Algorithm Engineering, Modelle, . ..

First Steps: Arrays, verkettete Listen, Stacks, FIFOs,. ..
Sorting

Priority Queues

Sortes sequences

Hash tables

Minimum spanning trees

L O O O o O O

[]

Shortest paths

Methodology: mostly in digressions

Sanders: Algorithm Engineering April 22, 2025 QQ(IT 6

Algorithmics

= the systematic design of efficient software and hardware

computer science

algorithmics m efficient

theoretical
[p211o0Id

Sanders: Algorithm Engineering april 22, 2025 ﬂ(l'l' 7

Theory Practice Other

Disciplines

77
S e SCa/e)

- -
S~

4

I o

c

D

®

o)

)

%)

‘»

=

©

C

<
Performance Applications Pub//'oa {
Guarantees Cy It On

Sanders: Algorithm Engineering april 22, 2025 ﬂ(l'l' 8

] bridge gaps
betwee theory and practice

] integrate
interdisziplinary

Research .
Algorithm

Engineering

Sanders: Algorithm Engineering April 22, 2025 QQ(IT

Gaps Between Theory & Practice

Theory —— Practice
simple Vi appl. model complex
simple % machine model real
complex algorithms simple
advanced W data structures arrays,. ..
worst case| 14X | | complexity measure inputs
asympt. o) efficiency 42% constant factors

Sanders: Algorithm Engineering April 22, 2025 &(IT "
Algorithmics as Algorithm Engineering

algorithm (models }
engineering
design]
?
[analysis] ? [experiments]
dedyction ?
performance
guarantees

Sanders: Algorithm Engineering April 22, 2025 &(IT .
Algorithmics as Algorithm Engineering

algo_rlthm_ (models J
engineering *
/(design
, falsiflable
[analysis hypotheses experimentsj
: Induction
dedtictlon f
performance Implementation
guarantees

Sanders: Algorithm Engineering April 22, 2025 &(IT -
Algorithmics as Algorithm Engineering

i I

algorithm (realistic J

: . models
engineering *

/(real. design
falsifiable

[real. analyéis hypotheses experiments]

: Induction
dedtictlon
implementation

performance
guarantees

Sanders: Algorithm Engineering April 22, 2025 &(IT »
Algorithmics as Algorithm Engineering

/ ' realistic)
algo_rlthm_ (models J |
engineering inputs

* benchmarks
/(design l
| falsifiable
([analysis hypotheses experiments
: Induction
dedtictlon ¢
performance Implementation
guarantees 6

algorithm
libraries

Sanders: Algorithm Engineering april 22, 2025

-

~

libraries

algorithm Gﬁ;‘gztlisc }
ngineerin Inputs
ehgineering ‘ Lbenchmarks Q
/(design %
| falsifiable L 4 —
([analysis hypotheses | experiments 8
. Induction —t
dedtictlon % . O
performance] Implementation appl. engin. AT
guarantees | *
algorithm W

14

Sanders: Algorithm Engineering April 22, 2025 ﬂ(IT

G l eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

] bridge gaps between theory and practice
| accelerate transfer of algorithmic results into applications

L] keep the advantages of theoretical treatment:
generality of solutions and
reliabiltiy, predictabilty from performance guarantees

Algorithm
Engineering

Sanders: Algorithm Engineering april 22, 2025

Bits of History

1843— Algorithms in theory and practice
1950s,1960s Still infancy
1970s,1980s Paper and pencil algorithm theory.
Exceptions exist, e.g., [J. Bentley, D. Johnson]
1986 Term used by [T. Beth],
lecture “Algorithmentechnik™ in Karlsruhe.
1988— Library of Efficient Data Types and
Algorithms (LEDA) [K. Mehlhorn] e
1990— DIMACS Implementation Challenges [D. Johnson]
1997— Workshop on Algorithm Engineering
~ ESA applied track [G. [taliano]
1997 Term used in US policy paper [Aho, Johnson, Karp, et. al]
1998 Alex workshop in Italy ~ ALENEX

Sanders: Algorithm Engineering April 22, 2025 QQ(IT 17

Why this Lecture?

L1 Every computer scientist knows some textbook algorithms

~» wir can start directly with algorithm engineering
[| Many applications profit
] Tt 1s striking that there 1s so much new research possible

| | Basis for bachelor and master theses

Sanders: Algorithm Engineering April 22, 2025 QQ(IT 18

Was this Lecture is NOT:

Not Rehashed Algorithms I/1I etc.

] Basic lectures often oversimplify
L] Sometimes advanced algorithms
L] Steeper learning curve
| Implementation details

| Emphasis on experiments

Sanders: Algorithm Engineering april 22, 2025 QQ(IT 19

Was this Lecture is NOT:

Not a Theory Lecture

L] few proofs

| actual performance before asymptotics

Sanders: Algorithm Engineering April 22, 2025

Was this Lecture is NOT:

Not an Implementation Lecture

L] Some algorithm analysis,. . .

L] Little software engineering

Karlsruhe Institute of Technology

Sanders: Algorithm Engineering April 22, 2025 QQ(IT 21

Digression: Machine Models

RAM/von Neumann Model

Analysis: count machine instructions O(1) registers

load, store, arithmetics, branches,. .. LU
1 word = O(log n) bit

L] simple
freely programmable
large memory

] very successful

| increasingly unrealistic
because real hardware
gets more and more complex

Sanders: Algorithm Engineering April 22, 2025 QQ(IT 22

The External Memory Model

registers
M: Fast memory of size M ?&U/
B: Block size 1 word
capacity M

freely programmable

j B words

‘ large memory

Analysis: count (only?) block accesses (I/0s)

Sanders: Algorithm Engineering April 22, 2025

AT -

Interpretation of the External Memory Model

external memory

Caches

large memory
M
B

disk(s)
main memory

disk block (MBytes!)

possibly also two cache levels.

Variant: SSDs

main memory

one cache level

cache block (16-256) bytes

Sanders: Algorithm Engineering April 22, 2025 QQ(IT 24

More Model Aspekts

| Instruktion parallelism (Superscalar, VLIW,
EPIC,SIMD.. . .)

| Pipelining
[] Cost of branch misprediction?

| Multilevel caches (currenly 3 levels) ~~ “cache oblivious
algorithms”

| Parallel processors, multithreading

[| Communication networks

Sanders: Algorithm Engineering April 22, 2025 QQ(IT 25

1 Arrays, Linked Lists and

derived data structures

Bounded Arrays

builtin data structure

size must be known 1n advance

Sanders: Algorithm Engineering April 22, 2025 & (IT o6
Unbounded Array

e.g., std::vector
pushBack: append element
popBack: remove last element

Idea: double when space runs out
half when space gets wasted

If we do that right, n pushBack/popBack operations need time
O (n)

Algorithmese: pushBack/popBack have constant amortized
complexity.

What can go wrong?

Sanders: Algorithm Engineering april 22, 2025

Doubly Linked Lists

N
v
-

L

ttttttttttttttttttttttttttttt

Sanders: Algorithm Engineering April 22, 2025

he Institute of Technology

Class Item of Element // one link in a doubly linked list

¢ : Element Tt I e :
F---o-- S |
next : Handle // & e - &
< t . [. < . :
prev : Handle ShEEEES < =1 = ,
invariant next—prev=prev—r-next=this
Trick: Use a dummy header
r--- - -~ 7
I J_ |
Fo- - -
- ‘ } > ‘ . ‘7
(e =t
L - - — - - — _

Sanders: Algorithm Engineering April 22, 2025

Procedure splice(a,b,t : Handle)
assert b is not before a At g/? (a,...,b)

/
//Cut out {a,...,b) d a b b
a' = a—prev D e g T el B g =
b’ := b—next
a' —next := b’ //
/ / — o— > ® i —
b' —prev :=a /[19—+ —e —e
t a b t'
//insert (a,...,b) after ¢
/ o o—— o &
t' := t—next [[= [o —e —e
b—next :=t’ I/
*—] e | > ® > @]
a—prev :=t /[~ 1= —e —e
t —next:=a Il
/ D I e D i
t' —prev:=b /[~—t0«—+—e —e e

Sanders: Algorithm Engineering april 22, 2025 &(IT 30
Singly Linked Lists

(i)

L —_ — =

Comparison with doubly linked lists:
[] Less space
L] Space often implies time

L] More restrictected, e.g., no delete

] Weird API, e.g., delete After

Sanders: Algorithm Engineering April 22, 2025 ﬂ (IT .
Memory Management for Lists

| can easily cost 90 % of running time!

[| Rather move elements between (Free)lists rather than actual

mallocs

[]

Allocate many items at once

[]

Free together at the end?

| “parasitar’” storage. e.g., graphs:
node array. Each node stores a ListItem
~~ note partition can be represented as sth like linked lists
~~ MST, shortest path

Challenge: garbage collection, many data types

~~ also a software engineering problem not here

Sanders: Algorithm Engineering april 22, 2025

Example: Stack

Karlsruhe Institute of Technology

2 1 2
¢ I
SList B-Array | U-Array
dynamic + — +
space waste pointer too big? | too big?
free?
time waste cache miss + copy
worst case time (+) + —

Was that 1t?

Every implementierung has serious weaknesses?

32

Sanders: Algorithm Engineering April 22, 2025 & (IT 3
The Best From Both Worlds

hybrid

dynamic i
space waste n/B+B
time waste +

worst case time +

Sanders: Algorithm Engineering april 22, 2025 &(IT 34
A Variant Karlsruhe Institute of Technology

Directory |
L | [=" |

B Elemente

— Reallocations at the top level ~» not worst case constant

time

+ Indexed access to S|i] in constant time

Sanders: Algorithm Engineering April 22, 2025 QQ(IT 35

Beyond Stacks stack
L1 < L >
FIFO queue
——> Od-- ——
deque
< || > -0 < o S
popFront pushFront pushBack popBack

FIFO: BArray — cyclic array

Exercise: An array, that supports “[1]” in constant time and
insert/delete in time &'(+/n)

Exercise: An external stack, that supports n push/pop operations
with &' (n/B) 1/Os

Sanders: Algorithm Engineering april 22, 2025

Exercise: complete table for hybrid data structures

vervollstindigen

Karlsruhe Institute of Technology

Sanders: Algorithm Engineering April 22, 2025 QQ(IT 37

Operation | List Slist UArray CArray | explanation of ‘*’
-] n n 1 1

E 1 1 1 not with inter-list splice
first 1 1 1

last 1 1 1

insert 1 1* n n insertAfter only
remove 1 1* n n removeAfter only
pushBack 1 1 1* 1* amortized
pushFront 1 1 n 1" amortized
popBack 1 n 1™ 1™ amortized
popFront 1 1 n 1* amortized

concat 1 1 n n

splice 1 1 n n

findNext,... | n n n* n* cache efficient

Sanders: Algorithm Engineering April 22, 2025 ﬂ(IT 38
What is Missing?

Facts Facts Facts

Measurements for
| Different implementation variants
| Different architectures
| Different input sizes
| Effects on actual applications
| Plots for all that
| Interpretation, possibly building a theory

Exercise: scan and array versus randomly allocated linked list

Sanders: Algorithm Engineering April 22, 2025 QQ(IT 39

Algorithm Engineering
A Detailed View
Using Sorting as Guiding Example

Sanders: Algorithm Engineering april 22, 2025 & (IT 40
Sorting

Permute n elements of an array a such that

all] <a|2] <--- <aln

Efficient sequential, comparison based algorithms take time

O(nlogn)

\ 4

Sanders: Algorithm Engineering april 22, 2025 &(IT 41

Sorting — Model

tttttttttttttttttttttttttttttt

Comparison arbitrary
based e.g. integer

Oy AN

true/false full iInformation

Sanders: Algorithm Engineering april 22, 2025

Why Sorting?

Teaching perspective:

L] simple

| surprisingly nontrivial

| computer scientists know the basics
Application Perspective:

[] Build index data structures

] Process objects in well defined order

] Group similar objects

~~ Bottleneck 1n many applications

Karlsruhe Institute of Technology

(

Sanders: Algorithm Engineering april 22, 2025 &(IT 43
by
algorithm {ﬁg‘gztl'; }
engineerin INputs
J d * Lbenchmarks
design >%
©
falsifiable —
[analysis hypotheses experiments }0— 8
. iInduction —t
deduction . e
\ - >
performancej appl. engin. /W
guarantees ' &
algorithm 7 -
libraries —

Sanders: Algorithm Engineering April 22, 2025 & (IT 14
Realistic Models =S\

Theory —— Practice

simple £ appl. model -complex

- =
simple machine model | =4 real

[| Careful refinements

L] Try to preserve (partial) analyzability / simple results

Sanders: Algorithm Engineering April 22, 2025 QQ(IT 45

Advanced Machine Models

RAM / von Neumann PRAM / shared memory

registers 1 2 D
?ﬂw ?U %U oo %U

CO :>
freely programmable

exhibit parallelism

Sanders: Algorithm Engineering April 22, 2025 QQ(IT 46

Distributed Memory [1]

o

also consider communication

Sanders: Algorithm Engineering april 22, 2025 QQ(IT 47

Parallel Disks 2]

=
OO TR

Sanders: Algorithm Engineering april 22, 2025 &(IT 48

Set Associative Caches ?\4 ‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ 3]

B cache
__— cache sets

|:::::| |ZZZZZ| AN I |a:2

cache lines of the memory main memof

Sanders: Algorithm Engineering april 22, 2025

Branch Prediction

?&f

)

Karlsruhe Institute of Technolo

4]

Sanders: Algorithm Engineering April 22, 2025 &(IT

. . multicore MPI
® OO0 disks

Sanders: Algorithm Engineering april 22, 2025

Graphics Processing Units

SEOmeEry
A &

2 (1Y (Y X nh H h I'I rlh 2 1 H 4 rm I 13 'n H rq b h
12 R N3 (3 203 (3 Hrﬂﬂ'lri ﬂlﬂ
¥ H;i 203 (3 I"I FI!'I rm H I"i

(3 3R (3 (3 FHr FIRKI

FIFIFIFIFIFIFD I'lI'lI'll I'I'Ilb}I'I' II'I'IIII‘}II*III'}I

3 [3RE Y (X rl h H iH gy » 3 G2 2 3
3 a2 2 1P ¥ o 1 GRa D 3
2 2 a3 - 1y ﬂrir-l rmrl

¥ e RE IRy - 1W¥ ﬂFI : (3 OR2 O 13
FIF R)

I-I‘}Il'}I'I FEFIFEIFD

b
b

AIT

Karlsruhe Institute of Technology

[6]

Sanders: Algorithm Engineering april 22, 2025 &(IT 52

] design / analyze one aspect at a time
| hierarchical combination

] autotuning ?

Comparison arbitrary
based e.g. integer W %\—/ %\—/ %\—/ @
— < — EEERNE] —
25y T A AMAL 1 2 s =] —— cache sets
true/false full information Bl Ll Jla=2

Or: Model Agnostic Algorithm Design

(

Sanders: Algorithm Engineering april 22, 2025 &(IT 53
by
algorithm Gﬁggzﬁ'g }
engineerin INputs
J d * Lbenchmarks
design »%
©
falsifiable —
[analysis hypotheses experiments }0— 8
. iInduction —t
deduction . e
- >
performancej appl. engin. /W
guarantees ' &
algorithm 7 -
libraries —

Sanders: Algorithm Engineering april 22, 2025 &(IT 54

Design

Karlsruhe Institute of Technology

of algorithms that work well in practice
L] simplicity
L] reuse
| constant factors

L] exploit easy instances

Sanders: Algorithm Engineering april 22, 2025 ﬁ(IT 55

tttttttttttttttttttttttttttttt

Design — Sorting

L] simplicity

L] reuse disk scheduling, prefetching,

load balancing, sequence partitioning [7, 2, 8, 5]

[] constant factors detailed machine model-
(caches, TLBs, registers, branch prediction, ILP) [9, 4]

[| instances randomization for difficult instances [2, 5]

Sanders: Algorithm Engineering April 22, 2025 QQ(IT 56

Example: External Sorting [10]
n: input size registers
| LU
M: 1nternal memory size fast memory
B: block size capacity M

freely programmable

] E

large memory

Sanders: Algorithm Engineering april 22, 2025 QQ(IT 57

Procedure externalMerge(a, b, ¢ :File of Element)
X := a.readElement /[l Assume emptyFile.readElement= oo
y := b.readElement
for j:=1to |a|+|b| do

if x <y then c.writeElement(x); x := a.readElement
else c.writeElement(y); v := b.readElement
d X

C

Sanders: Algorithm Engineering april 22, 2025

External Binary Merging

read file a: ~ |a|/B.
read file b: ~ |b|/B.
write file ¢: = (|a| + |b|)/B.

overall:
_Jal+ b

ttttttttttttttttttttttttttttt

Sanders: Algorithm Engineering April 22, 2025 & (IT 59
Run Formation

Sort input pieces of size M

M
f |:O |:M |:2M
| run sort:; internal
t 1=0 =M I=2M

I/0s: =~ 22
B

Sanders: Algorithm Engineering april 22, 2025 &(IT 60
Sorting by External Binary Merging

make things_ as_sinple_as _possible bu t_no_sinpler

> formRuns < > formRuns < > formRuns < > formRuns <

__aeghikmmst _ aaeil npsss _ _aaeil npsss __ ei |l mopr st
merge merge
____aaaeeghi i kKl mmpsssst _____Dbbeei il | moopprssstu
merge
aaabbeeeeghiii i kl | | mmmnoopppr sssssssttu
Procedure externalBinaryMergeSort /l 1/0s: ~
run formation /Il 2n/B
while more than one run left do Il ﬂog z\iﬂ X
merge pairs of runs // 2n/B

n n
tput remaini // :2—(1 [1 —D
output remaining run Y - + |log v

Sanders: Algorithm Engineering april 22, 2025 & (IT 61
Example Numbers: PC 2019

n =24 Byte (2 TB) ,i.e., 4 TB HDD capacity
M = 2°* Byte (16 GB)

B =2%? Byte (4 MB)

one I/O needs 27> s (31.25 ms)

time :2% (1 + [log]\%D 277
=2.219.(147)-27s =2%s~ 18h

Idea: 8 passes ~~ 2 passes

Sanders: Algorithm Engineering april 22, 2025 ﬂ(l'r 62

ttttttttttttttttttttttttttttt

Multiway Merging

Procedure multiwayMerge(ay, ..., ay, c :File of Element)
fori:=1tokdo x;:=a;.readElement
for j:=1to Y%, |a;| do
find i € 1..k that minimizes x;// no I/Os!, O (logk) time
c.writeElement(x;)

X; .= a;.readElement

internal buffers

Sanders: Algorithm Engineering April 22, 2025 ﬂ (IT 63
Mlﬂtiway Merging — Analysis fffffffffffffffffffffffffffff

intelf'nal buffers

I/Os: read file a;: = |a;|/B.
write file c: ~ Y+, |a;|/B
overall:

~ 2

constraint: We need k + 1 buffer blocks, i.e., k+1 <M /B

Sanders: Algorithm Engineering April 22, 2025 ﬂ(IT 64
Sorting by Multiway-Merging
] sort [n/M] runs with M elements each 2n/B 1/0s

[J merge M /B runs at a time 2n/B 1/Os

[| until a single run remains X {log M/B 1‘%} merging phases

2
overall sort(n) := En (1 + {logM/B %D 1/Os

make things_ as sinple as _possible bu t _no_sinpler
D formRuns) formRuns () formRuns () formRuns
_aeghikmmst _ aaeil npsss _ aaeil npsss el l mopr st
multi merge
aaabbeeeeghii i1 kl I mmmnooppprsssssssttu

Sanders: Algorithm Engineering April 22, 2025 ﬂ (IT 6
External Sorting by Multiway-Merging

More than one merging phase?:

Not for the hierarchy main memory, hard disk.
>4000 ~207

~ N 7 N\

M~ RAM Euro/bit

reason: — > :
B Platte Euro/bit

Currently 4000 > 207

Sanders: Algorithm Engineering April 22, 2025 ﬂ (IT 66
More on Multiway Mergesort — Parallel Disks

[] Randomized Striping [2]
[| Optimal Prefetching [2]
] Overlapping of I/O and Computation [7]
D N 1
@)
Q ~ read buffers
le) Y ch
©
\E || Lmems - | 2
—=. —h =] D
5| |8 = overlap buffers = - |/
g . N o ®
=h | & =1
) = =
5 g 5
N — L= | k |
== =D blocks oG

| |
—ping disk scheduling overlap-

(

Sanders: Algorithm Engineering april 22, 2025 &(IT 67
by
algorithm Gﬁggzﬁ'g }
engineerin INputs
J d * Lbenchmarks
design >%
©
falsifiable —
[analysis hypotheses experiments }0— 8
. iInduction —t
deduction . e
- >
performancej appl. engin. /W
guarantees ' &
algorithm 7 -
libraries —

Sanders: Algorithm Engineering april 22, 2025

Analysis

[] Constant factors matter
[] Beyond worst case analysis

| Practical algorithms might be difficult to analyze

(randomization, meta heuristics,. . .)

Karlsruhe Institute of Technology

Sanders: Algorithm Engineering April 22, 2025 &(IT

tttttttttttttttttttttttttttttt

Analysis — Sorting

LN

] Y

Veﬁjew

overlap

k)

=z
91LIM
yolajald
W

I I N

~7
[] Constant factors matter (1+o0(1))xlower bound

[2, 5] I/Os for parallel (disk) external sorting
[] Beyond worst case analysis adaptive sorting

| Practical algorithms might be difficult to analyze Open:
[2] greedy algorithm for parallel disk prefetching
[Knuth@48]

(

Sanders: Algorithm Engineering april 22, 2025 &(IT 70
by
algorithm Gﬁggzﬁ'g }
engineerin INputs
J d * Lbenchmarks
design >%
©
falsifiable —
[analysis hypotheses experiments }0— 8
. iInduction —t
deduction . e
\ - >
performancej appl. engin. /W
guarantees ' &
algorithm 7 -
libraries —

Sanders: Algorithm Engineering april 22, 2025

Implementation

sanity check for algorithms !

Karlsruhe Institute of Technology

overlap

EIET

Challenges
Semantic gaps:
. N
Abstract algorithm -
o —
©
C++... \| g @ T2
= - || & 1>
© i
hardware -
N —

Small constant factors:

compare highly tuned competitors

JE)

Sanders: Algorithm Engineering april 22, 2025 QQ(IT 72

Example: Inner Loops Sample Sort 4]

template <class T>
vold findOraclesAndCount (const Tx const a,

const int n, const int k, const Tx const s,

Oraclex const oracle, 1int* const bucket) {

{ for (int 1 = 0; 1 < n; 1++)
int J = 1;
while (3 < k) { //é e

) = Ixe w fali) > sl3l); f//794 * dedsmnsy
| /2 %3 3
int b = Jj-k; S/uz\?ﬂ_ </ o Vh_deuamm
bucket [b]++; sS4 |54])5| |5 6| |77
oracle[i] = b; </ N> /N> </ \> </\> decisions
} J L J L L buckets
L

Sanders: Algorithm Engineering april 22, 2025

Example: Inner Loops Sample Sort

template <class T>

vold findOraclesAndCountUnrolled ([...]){

for (int 1 = 0;
int 3 = 1;
J = Jx2 + (alil
J = J*2 + (ali]
J = Jx2 + (al[1i]
J = J*2 + (ali]
k

1 < nj;

vV V V V

1++)

>

Karlsruhe Institute of Technolo

4]

splitter

array index

+1\ decisions

S6 3

S/*Z \>+1 < *2
S1/4 53335 S5 6 S7)7
> < /R> </\>

I

L

> decisions
\+1

decisions
buckets

Sanders: Algorithm Engineering april 22, 2025 &(IT 74

Example: Inner Loops Sample Sort [4]
template <class T>
vold findOraclesAndCountUnrolled2 ([...]) {

for (int i = n & 1; i < n; i+=2) {\

int 30 = 1; int 31 = 1;

T ail0 = al[i]; T ail = al[i+l];
70=750%2+ (a10>s[3J07]) ; J1=731*x2+ (a1l>s[]J1]);
70=750%2+ (a10>s[3J07]) ; J1=731*x2+ (a1l>s[]J1]);
70=750%2+ (a10>s[3J01]); J1=731*x2+ (a1l>s[]J1]);
70=70%2+ (a10>s[3j0]); J1=71x2+(ail>s[J1]);
int b0 = j0-k; int bl = jl-k;
bucket [bO] ++; bucket [b1l]++

oracle[1] = Db0; oracle[i+1l] = Dbl;

(

Sanders: Algorithm Engineering april 22, 2025 &(IT 75
by
algorithm Gﬁggzﬁ'g }
engineerin INputs
J d * Lbenchmarks
design >%
©
falsifiable —
[analysis hypotheses experiments }0— 8
. iInduction —t
deduyction . e
-)
performancej appl. engin. /W
guarantees ' &
algorithm 7 -
libraries —

Sanders: Algorithm Engineering April 22, 2025 & (IT iy

| central for AE 1n science
reproducibility, careful comparisons, careful preparation of

evidence
also important in applications — just more informal
careful planning

careful interpretation

1 O O O

close AE cycle fast

Sanders: Algorithm Engineering april 22, 2025

Experiments

[] sometimes a good surrogate for analysis
[] too much rather than too little output data
| reproducibility (10 years!)

[] software engineering

Karlsruhe Institute of Technology

Sanders: Algorithm Engineering april 22, 2025 QQ(IT 78

Example, Parallel External Sorting 7
sort 100GiB per node

4000

3000 |- . y/////f
/V/v/v/#%

é 2000 @/ %{_\IL M = |
worst case input ——
1000 L worst case input, randomized —<— |

random input ——
random input, randomized —=—

O |
1 2 4 8 16 32 64

nodes

(

Sanders: Algorithm Engineering april 22, 2025 &(IT 79
by
algorithm Gﬁggzﬁ'g }
engineerin INputs
J d * Lbenchmarks
design >%
©
falsifiable —
[analysis hypotheses experiments }0— 8
. iInduction —t
deduction . e
\ - >
performancej appl. engin. /W
guarantees ' &
algorithm W -
libraries —

Sanders: Algorithm Engineering april 22, 2025 &(IT 80

Algorithm Libraries — Challenges

arlsruhe Institute of Technology

[] software engineering ,e.g2. CGAL [www.cgal.org]
| standardization, e.g. java.util, C++ STL and BOOST
] performance > generality > simplicity
| applications are a priori unknown

STL-user layer Streaming layer

| result checking, verification

i : vector, stack, set . . ,
Containers: tS5 4l ete, map Pipelined sorting,

Algorithms: sort, for_each, merge zero-|/O scanning
“ \{;7 % \fg

f)
Block management layer

<
> typed block, block manager, buffered streams,
|_

block prefetcher, buffered block writer

(Extensions

Parallel STL Algorithms

Asynchronous I/O primitives layer

files, I/O requests, disk queues,
completion handlers

Sanders: Algorithm Engineering april 22, 2025

Example: External Sorting

p
Streaming layer

STL-user layer

Containers: _Vvector, stack, set
Algorithms: sort for_each, merge

priorify_queuel map Pipe”ﬂed SOFTing,

L zero—1/O scanning

R

4)
Block management layer)
typed block, block manager, buffered streams,

9 pblock prefetcher, buffered block writer J
€ Asynchronous 1I/O primitives layer)
files, 1/O requests, disk queues,
completion handlers
\ =

Linux
Windows
Mac, ...

(

Sanders: Algorithm Engineering april 22, 2025 &(IT 82
by
algorithm realistic
neerin models inputs
ngineeri
<ng J * Lbenchmarks
design >%
. ©
falsifiable —
[analysis hypotheses experiments }0— 8
. Induction —
deduction o
v appl. engin b=
performancej ' T
guarantees ' &
algorithm 7 -
libraries —

Sanders: Algorithm Engineering april 22, 2025 &(IT 83
Problem Instances

Benchmark instances for NP-hard problems gt TS
1 TSP =
L] Steiner-Tree
L1 SAT
L] set covering
L] graph partitioning
[]

have proved essential for development of practical algorithms

Strange: much less real world instances for polynomial
problems (MST, shortest path, max flow, matching...)

Sanders: Algorithm Engineering April 22, 2025 ﬂ (IT "
Example: Sorting Benchmark (Indy) 513

100 byte records, 10 byte random keys, with file I/O

Category data volume performance | improvement
GraySort 100 TB 564 GB / min 17 %
MinuteSort 955 GB 955 GB / min > 10x
JouleSort 1 000 GB | 13 400 Recs/Joule 4 x
JouleSort 100 GB | 35 500 Recs/Joule 3
JouleSort 10 GB | 34 300 Recs/Joule 3

Also: PennySort

itute of Tec

AT °

Ka

inplace multiway mergesort, exact splitting

rlsru

Sanders: Algorithm Engineering april 22, 2025

GraySort

Infiniband switch
400 MB / s node all-all

16 GB
RAM

Xeon

Sanders: Algorithm Engineering April 22, 2025 ﬂ(IT

ruhe Institute of Techno

JouleSort T

|:| Intel Atom N33
L] 4GB RAM

L] 4%x256 GB
SSD (SuperTaler§

AlgOI‘Ithm similar to

0000 LZESE

pnnn T

o
——

O HSZXDSLd 1
N TV rs

Sanders: Algorithm Engineering april 22, 2025

2 Sorting

tttttttttttttttttttttttttttttt

Sanders: Algorithm Engineering April 22, 2025

Sorting Work in my Group

Karlsruhe Institute of Technology

Model mmerge | sample s | quicks. | radixs.
GPU [14] [14]
distributed memory 5] [15,16] | [17, 16]

cache 8] (4, 18] [19]
parallel disks (7] [20]

branch mispredictions [4, 18] 21, 22]

parallel string s. (23, 24] (25, 23] | [25, 23] | [25, 23]
massively parallel [15] [15, 16] | [16, 26]

Sanders: Algorithm Engineering aprit 22, 2025 & (IT %0
Sorting — Overview Karlsruhe Institute of Technology

[] You think you understand quicksort?
[] Avoiding branch mispredictions: Super Scalar Sample Sort

| (Parallel disk) external sorting. Perhaps not in detail this
year

Sanders: Algorithm Engineering April 22, 2025 ﬂ (IT %
Quicksort

Function quickSort(s : Sequence of Element) : Sequence of Element
if |s| < 1 then return s // base case
pick p € s uniformly at random /l pivot key
a:=(ecs:e<p)
b:=(ecs:e=p)
c:=(eE€s:e>p)
return concatenate(quickSort(a), b, quickSort(c))

Sanders: Algorithm Engineering april 22, 2025 &(IT 91
Engineering Quicksort

L] array

L] 2-way-Comparisons

[]

sentinels for inner loop

[]

inplace swaps

[]

Recursion on smaller subproblems
— O'(logn) additional space

[]

break recursion for small (20—100) inputs, insertion sort

(not one big insertion sort)

Sanders: Algorithm Engineering April 22, 2025 QQ(IT 92

Procedure gSort(a : Array of Element; ¢,r: N) // Sort all..r]
while r — ¢ > ng do // Use divide-and-conquer

j := pickPivotPos(a,l,r)
swap(all],alj]) // Helps to establish the invariant

p =all]
=0,]:=r
repeat /Il a: ¢ i— r

while a|i] < p do i++ // Scan over elements (A)
while a|j| > p do j—— // on the correct side (B)
if i < j then swap(alil,alj]); i++ ; j——

until i > j // Done partitioning
if i < HT” then gSort(a,?, j); £ :=j
else qSort(a,i,r) ;r:=i

insertionSort(a|l..r|) // faster for small r — ¢

Sanders: Algorithm Engineering april 22, 2025 &(IT 93
Picking Pivots Painstakingly — Theory @

“How branch mispredictions affect quicksort™ [21]
probabilistically: Expected 1.4nlogn element comparisons
median of three: Expected 1.2nlogn element comparisons

perfect: — nlogn element comparisons

(approximate using large samples)

Practice

3GHz Pentium 4 Prescott, g++

Sanders: Algorithm Engineering april 22, 2025 &(IT 94

uhe Institute of Techn

Picking Pivots Painstakingly — Instructions

out sort Instructions / n Ig n for algs: random pivot - median of 3 - exact median - skewed pivot n/10 - n/11

12 T] T T T T T T
random pivot —+— | | |

median of 3

exact median ---%--
4 skewed pivot n/10 - £ § §
. skewed pivot n/Z1 | | | | |
N o P ey g g oo T .
R e T 3 3 : : 1 3
g | :
: By 1 s
1 B N 1
| | - B Heee B B il
O o P P P e .
- | | | | | | |
C
{8
]
[y
(@]
o
2 9
i)
=
(&)
>
=
0
£

Sanders: Algorithm Engineering april 22, 2025 &(IT 95

Karlsruhe Institute of Technology

Picking Pivots Painstakingly — Time

out sort Seconds / n Ig n for algs: random pivot - median of 3 - exact median - skewed pivot n/10 - n/11

8.4

| | I I I I I
random pivot —+— | | | | |
median of 3
exact median ---%--
g2 L skewed pivot n/10 &0 _
' ewed pivot n/11 |
g IO *
g |
2 s
= B
(@]
o s s : s ! ! s
g 7.6 K e T e e .
] [s : s s s s s
) . ;
o :
= .
G N ; 3 3 3 3 3
R /) S R T ;,Jﬂ'fi'—'fffii'ffi; rrrrrrrrrrrrrrrrrrrrrrrr e oo S RS -
Y e e o R -
R,
A R s S ot s L -
1 SR D] & B
‘ : : : f : : oo i
6.8 ! ! ! ! ! ! !
10 12 14 16 18 20 22 24 26

Sanders: Algorithm Engineering april 22, 2025 &(IT 96

uhe Institute of Techn

Picking Pivots Painstakingly — Branch Misses

out sort Branch misses / n Ig n for algs: random pivot - median of 3 - exact median - skewed pivot n/10 - n/11

0.5 I) I ! ! ! ! !
random pivot —+— | | | | |
median of 3 ‘ ‘ ‘ ‘ §
exact median ---%-- : : e S oo K- R K---ooo *
0.48 I- skewed pivot n/10 & VRIS SEEE R T S 7]
skewed pivot nf11 .- -m----- K : :
0.46 -
owl e _—— —_]
= | | | | | | |
R S R o R -
o : : : : : : :
o i i i i i i i
o
@ : : : : : : :
9 0.4 [P R e e]
R} : : : : : : :
5 : : : : : : :
K] e —e——— e e e e -
5 El
0.36 _E """""""""" """""""""" """"""""""""" """"""""""""" """""""""""" I
% B %
O N XS BN R SRR O S RN .
0.34 : : : N = N - : :
; ; : [SR JR £ S ¢ N
| | | | 1 1 o TEee
0.32 [o e . e g e -
0 ; ; ; ; ; ; ;
10 12 14 16 18 20 22 24 26

Sanders: Algorithm Engineering april 22, 2025 QQ(IT 97

Can We Do Better? Previous Work
Integer Keys

+ Can be 2 — 3 times faster than quicksort
— Naive ones are cache 1nefficient and slower than quicksort

— Simple ones are distribution dependent.

Cache efficient sorting

k-ary merge sort
[Nyberg et al. 94, Arge et al. 04, Ranade et al. 00, Brodal et al.

04]

+ Faktor logk less cache faults
— Only = 20 % speedup, and only for laaarge inputs

Sanders: Algorithm Engineering April 22, 2025 ﬂ (IT o8
Can We Do Better? Subsequent Work

Blockquicksort: Avoiding branch mispredictions in quicksort
[27] (arx1v version 1S titled “BlockQuicksort: How Branch
Mispredictions don’t affect Quicksort”

Sanders: Algorithm Engineering april 22, 2025 QQ(IT

Sample Sort
Function sampleSort(e = (ey,...,e,),k)
if nn/k is “small” then return smallSort(e)
let S = (S1,...,S4_1) denote a random sample of e
sort §
(S0581,82y+nsSk—1,5k):=
(=0,84:,82a5 -+ - S(k—1)a») binary
fori:=1tondo Search?
find j € {1,.. 4 55 g

>7
suchthats] 1<e,<s]|_| u u |_|
place e; in bucket b
return concatenate(sampleSort(by), . ..,sampleSort(by)) buckets

Sanders: Algorithm Engineering april 22, 2025 ﬂ(l'l' 100
Why Sample Sort?

| traditionally: parallelizable on coarse grained machines
+ Cache efficient ~ merge sort
— Binary search not much faster than merging

— complicated memory management

Super Scalar Sample Sort
] Binary search — implicit search tree
L Eliminate all conditional branches

~» Exploit instruction parallelism

~~ Cache efficiency comes to bear

L] “steal” memory management from radix sort

Sanders: Algorithm Engineering april 22, 2025 ﬂ(l'l' 101

Karlsruhe Institute of Technology

Classifying Elements

Ii= <Sk/27 Sk/4553k/455k/8y53k/8955k/857k /85 - -)

fori:=1tondo ///
ji=1 /341 SPIIter o rray index
repeat logk times //unroll 5/ B >+Sl decisions
Jji=2j+ ((li > Zj) < /%*{2 \ >+1 < 523 \>+1 decisions
==kt >1(4 53355 %5 6 S7)7
}b]’| ++ </\> </\N> </\ > </\> decisions
oracle|i]:= j // oracle J L

iD=

| interleave for-loop iterations (unrolling \ software pipelining)

Now the compiler should:

[] use predicated instructions

Sanders: Algorithm Engineering april 22, 2025

AT ™
t emp :l— a-t e < C l a S S T > Karlsruhe Institute of Technology

vold findOraclesAndCount (const Tx const a,

const int n, const int k, const T* const s,

int* const bucket) {
{ for (int 1 = 0; 1 < n; i++)
int J = 1;

Oraclex const oracle,

while (3 < k) {

j = jx2 + (alil > sl[3]);
}

int b = 3-k;
bucket [b] ++;
oracle[1] = b;

Sanders: Algorithm Engineering april 22, 2025 & (IT 103
Predication

Hardware mechanism that allows instructions to be
conditionally executed

] Boolean predicate registers (1-64) hold condition codes

| predicate registers p are additional inputs of predicated

instructions [/
At runtime, / 1s executed 1f and only 1f p 1s true

Avoids branch misprediction penalty

+ 4+ O

More flexible instruction scheduling
— Switched off instructions still take time
— Longer opcodes

— Complicated hardware design

Sanders: Algorithm Engineering April 22, 2025 ﬂ (IT 104
Example (IA-64)

Translation of: if (rl >1r2)r3 =13 +4

With a conditional branch: Via predication:
cmp.gt p6,p/=rl,r2 cmp.gt p6,p/=rl,r2
(p7) br.cond .label (p6) add r3=4,r3
add r3=4,r3
.label:

Other Current Architectures:

Conditional moves only

Sanders: Algorithm Engineering April 22, 2025 ﬂ (IT 105
Unrolling (k = 16)

template <class T>
volid findOraclesAndCountUnrolled ([...]) {
for (int i = 0; 1 < nj; 1++)
int 3 =
j = 3«2
j = %2

vV V V V

J o= Jx2
int b =
bucket [b

1
n
n
J o= Jx2 4
n
J
]
oracle[1]

Sanders: Algorithm Engineering april 22, 2025 &(IT 106
More Unrolling k = 16, n even -

template <class T>
vold findOraclesAndCountUnrolled2 ([...]) {
for (int 1 = n & 1; 1 < n; 1i+=2) {\

int 30 = 1; int J1 = 1;

T ai0 = af[i]; T ail = a[i+1];
70=30%2+ (ai0>s[j01]); J1=71%x2+(ail>s[J1l]);
70=7J0x2+ (a10>s[30]1); Jl1=31lx2+(ail>s[]J1]);
70=7J0x2+ (a10>s[30]1); Jl1=3lx2+(ail>s[]J1]);
70=30%2+ (ai0>s[j01]); J1=71%x2+(ail>s[J1l]);
int b0 = j0-k; int bl = jl-k;
bucket [bO] ++; bucket [b1]++

oracle[1] = Db0; oracle[i1+1] = bl;

Sanders: Algorithm Engineering april 22, 2025 ﬂ(l'l' 107

Distributing Elements i

fori:=1tondo &

Bloracle[i]]++ =

0l
Why Oracles?
move

N BLIZ T[]
L] simplifies memory management RN
L] no overflow tests or re-copying s
| simplifies software pipelining °)
| separates computation and memory access aspects
L] small (n bytes)
| sequential, predictable memory access
| can be hidden using prefetching / write buffering

Sanders: Algorithm Engineering april 22, 2025 &(IT 108

template <class T> void distribute (
const T const a0, Tx const al,
const 1int n, const int k,

const Oracle*x const oracle, i1nt* const bucket)

{ for (int i = 0, sum = 0; 1 <= k; 1i++) /{
int t = bucket[1]; Dbucket[1] = sum; sum += t;
}
for (int 1 = 0; 1 < n; i++) {

al [bucket [oracle[i]]++] = a0[i];

Sanders: Algorithm Engineering April 22, 2025 & (IT 109
Experiments: 1.4 GHz Itanium 2

[] restrict keyword from ANSI/ISO C99
to indicate nonaliasing

L] Intel’s C++ compiler v8.0 uses predicated instructions
automatically

Profiling gives 9% speedup
k = 256 splitters
Use stl:sort from g++ (n < 1000)!

insertion sort for n < 100

o o O O

Random 32 bit integers in [0, 10°]

Sanders: Algorithm Engineering April 22, 2025 & (IT o
Comparison with Quicksort

8 | | | | | |
L _
— 6 —]
(7)) I i { } i | u
<,
c O 7
%
- I
o 3 7
£
o 2 _]
1 GCC STL gsort —+— —
SSS-Ssort ---%--
O | | | | | |
4096 16384 65536 218 020 5,22 524

n

Sanders: Algorithm Engineering April 22, 2025 ﬂ(l'l' 111
Breakdown of Execution Time

6 | | | | | |
Total ——
findBuckets + distribute + smallSort —->~-:
5 | findBuckets + distribute ---¥--- 4

findBuckets ----f3----

AN
]

N

time / n log n [ns]
w

1

0 | | | | | |
4096 16384 65536 218 220 22 %4

Sanders: Algorithm Engineering April 22, 2025 ﬂ (IT 1o
A More Detailed View

dynamic dynamic

instr. | cycles | IPC small n | IPC n = 2%

findBuckets,
1 x outer loop | 63 11 5.4 4.5

distribute,

one element 14 4 3.5 0.8

Sanders: Algorithm Engineering April 22, 2025 &(I 113

Karlsruhe Institute of Technology

Comparison with Quicksort Pentium 4
14 | | |

[[

Intel STL ——
GCC STL —->-
sss-sort -- K- -

12

10 _

(7p)

<,

c 8 | -

(@))]

IS

= 6i"%\X---><———gg—:ae-—.—.gg——><———><———><——><———><——e

Q 7 - Tt -

L 4 |]
2 | _
0 | | | | |
4096 16384 65536 218 220 22 %4

n

Problems: few registers, one condition code only, compiler needs “help”

Sanders: Algorithm Engineering April 22, 2025

time / n log n [ns]

itute of Technology

Breakdown of Execution Time Pentium4

findBuckets + distribute + smallSort -->--
findBuckets + distribute ---%--- _|

[[
Total —— —

findBuckets ----fd----

6 _
5 F //X______X \)(___>I<,/’X——— ——

X~

4 _
-

3 |- g X%

2%' \%,’ E} ______

B | e R !
1+ el —
0 | | | | |
4096 16384 65536 018 220 222 224

114

Sanders: Algorithm Engineering April 22, 2025

Karlsruhe Institute of Technology

Analysis

mem. acc.pranches data dep.| I/Os |registers instructions
k-way distribution:
$SS-SOrt nlogk | O(1) | O(n) |>3.5n/B3xunroll O(logk)
1S%0 nlogk | 0(1) | O(n) | 4n/B PBxunroll O(logk)
quicksort logk Ivls,| 2nlogk | nlogk |0'(nlogk) 2%logk 4 o(1)
k-way merging:
memory nlogk | nlogk |0 (nlogk) 2n/B 7 O (logk)
register 2n nlogk |0(nlogk) 2n/B k O (k)
funnel k% 2nlog, k| nlogk |O(nlogk)| 2n/B |2k'+2| O(K)

Sanders: Algorithm Engineering april 22, 2025 QQ(IT 116

Conclusions

[] sss-sort up to twice as fast as quicksort on Itanium
[1 comparisons # conditional branches
| algorithm analysis 1s not just instructions and caches

More results: GPU-Sample-Sort 1s (was) best comparison based

sorting algorithm on graphics hardware
[Leischner/Osipov/Sanders 2009]

Parallel String Sample-Sorting 1s best string sorting algorithm
[Bingmann/Sanders 2013]

AMS Sort scales to 21° PEs [AxtmannBSS SPAA 2015]

Sanders: Algorithm Engineering April 22, 2025 ﬂ (IT 117
Criticism I

Why only random keys?

Answer I

Sample sort hardly depends on input distribution

Sanders: Algorithm Engineering April 22, 2025 ﬂ (IT s
Criticism I’

What if there are many equal keys?
They all end up 1n the same bucket

Answer I’

Its not a bug its a feature:

s; = S;i+1 = -+ = s indicates a frequent key!

Set s; := max {x € Key : x < s;},

(optional: drop s;42,...5;)

Now bucket i + 1 need not be sorted!

Exercise: Explain how to support equality buckets using a single
additional comparison per element.

Sanders: Algorithm Engineering april 22, 2025 QQ(IT 119

Criticism I1

Quicksort 1s mnplace

Answer 11

inplace super scalar sample sort [18].

Sanders: Algorithm Engineering april 22, 2025 ﬂ(l'l' 120

Karlsruhe Institute of Technology

Inplace Super Scalar Sample Sort

Input [T N NN B TEFTTEEE

Classification 1

N W

Permutation l

Cleanup l

Sanders: Algorithm Engineering april 22, 2025 ﬂ(l'l' 121

Karlsruhe Institute of Technology

Inplace Super Scalar Sample Sort

6‘/ 2 S ey T o R R 5g—PS—B— D53 pa— P4 —— PR
N = pogd '
|£| e
i
-
o —— |S%0
O 3
= —— 5°_sort
fe
o —— BlockQ
- .
‘= —+— DualPivot
)
E —#— std-sort
c
-
ae
0 | | 1 | |
210 215 220 225 230

ltem count n

Sanders: Algorithm Engineering april 22, 2025 ﬂ(l'l' 122
Why is inplace faster

[] memory management

] allocation misses

[| associativity misses

] oracles

versus writing all the data one additional times

Sanders: Algorithm Engineering aprit 22, 2025 ﬂ (IT 123
Future Work

] better small case sorter for arbitrary keys/comparators
(for small numbers, SIMD, sorting networks etc. give good
base case sorters)

SIMD-instructions for distribution
multilevel cache-aware or cache-oblivious generalization

thorough testing ~~ verification? or back to simplicity?

I O O O

Save a pass for S%o using virtual memory tricks (remap
rather than move blocks)

Sanders: Algorithm Engineering April 22, 2025 ﬂ (IT 124
Externes Sortieren

n: input size registers

| LU
M: size of fast memory 1 word
B: block size capacity M

freely programmable

j B words

large memory

Sanders: Algorithm Engineering april 22, 2025 QQ(IT 125

Procedure externalMerge(a, b, ¢ :File of Element)
X := a.readElement /[l Assume emptyFile.readElement= oo
y := b.readElement
for j:=1to |a|+|b| do

if x <y then c.writeElement(x); x := a.readElement
else c.writeElement(y); v := b.readElement
d X

C

Sanders: Algorithm Engineering april 22, 2025 ﬂ(l'l' 126
External (binary) Merging— I/0O-Analysis

Datei a lesen: ||a|/B| < |a|/B+1.
Datei b lesen: | |b|/B| < |b|/B+1.
Datei ¢ schreiben: |(|a|+ |b])/B| < (|la|+|b|)/B+ 1.
All together:
3y lal bl lal+ 1o
B
Constraint: We need 3 buffer blocks, 1.e., M > 3B.

o

o
b y

Sanders: Algorithm Engineering April 22, 2025 ﬂ (IT 127
Run Formation

Sortiere Eingabeportionen der Grofle M

M
| run sort:; internal
t =0 =M I=2M

I/0s: =~ 22
B

Sanders: Algorithm Engineering april 22, 2025 &(IT 128
Sortieren durch Externes Binires Mischen

make things_ as_sinple_as _possible bu t_no_sinpler

> formRuns < > formRuns < > formRuns < > formRuns <

__aeghikmmst _ aaeilnpsss _ _aaeil npsss __ eil moprst
merge merge
____aaaeeghi i kl mmpsssst _____bbeei il | moopprssstu
merge
aaabbeeeeghiiii Kkl Il mmmnooppprsssssssttu
Procedure externalBinaryMergeSort /l 1/0s: ~
run formation /Il 2n/B
while more than one run left do Il ﬂog %W X
merge pairs of runs /l 2n/B

n n
tput remaini #E:2% (14 log|)
output remaining run) B + |log V;

Sanders: Algorithm Engineering aprit 22, 2025 ﬂ (IT 199
Zahlenbeispiel: PC 2007

n =23 Byte
M = 23! Byte
B =2%Y Byte

I/O braucht 276 s
Zeit: 2% (1 n [k)gﬁ%b —2.28.(147).2765 =210 s~ 18 h
Idee: 8 Durchliaufe ~~ 2 Durchlaufe

Sanders: Algorithm Engineering april 22, 2025 ﬂ (IT 130
Z.ahlenbeispiel: PC 2007 — 2019 e e

n — 238—4l Byte

M = 231234 Byte

B — 22022 Byte

I/O braucht 27 s

Zeit: 2% (1 n [1ogA%D —2.218.(147).2 55 =295~ 73 h

Sanders: Algorithm Engineering april 22, 2025 ﬂ(l'l' 131

Karlsruhe Institute of Technology

Mehrwegemischen

Procedure multiwayMerge(ay, ..., ay,c :File of Element)
fori:=1tokdo x;:=a;.readElement
for j:=1to Y |a;| do
find i € 1..k that minimizes x;// no I/Os!, O (logk) time
c.writeElement(x;)

X; .= a;.readElement

intefnal buffers

Sanders: Algorithm Engineering april 22, 2025 ﬂ(l'l' 132

Karlsruhe Institute of Technology

Mehrwegemischen — Analyse

intetf'nal buffers

I/Os: Datei g; lesen: = |a;|/B.
Datei ¢ schreiben: ~ Y~ |a;| /B ~
Insgesamt:

Bedingung: Wir brauchen k Pufferblocke, d.h., k < M /B.

Interne Arbeit: (benutze Priorititsliste !)

k
% logkz |a;]
i=1

Sanders: Algorithm Engineering April 22, 2025 QQ(IT 133

Sortieren durch Mehrwege-Mischen
] Sortiere [n/M | runs mit je M Elementen 2n/B 1/0s

[] Mische jeweils M /B runs 2n/B 1/Os

[] bis nur noch ein run iibrig ist X {log M/B A%W Mischphasen

2
Insgesamt sort(n) := En (1 + {logM/B %D 1/Os

make things_ as sinple as _possible bu t _no_sinpler
D formRuns) formRuns () formRuns () formRuns
_aeghikmmst _ aaeil npsss _ aaeil npsss el l mopr st
multi merge
aaabbeeeeghii i1 kl I mmmnooppprsssssssttu

Sanders: Algorithm Engineering April 22, 2025 ﬂ(l'l' 134
Sortieren durch Mehrwege-Mischen o

Interne Arbeit:

(_ phases \
run formation v p A ~
—~
0| nlogM + nlogE {logM/B]\%—‘ = O'(nlogn)
N —
\ PQ access per phase)

Mehr als eine Mischphase?:

Nicht fiir Hierarchie Hauptspeicher, Festplatte.
>4000 <1000
=
M RAM Euro /bit

Grund —
"¢ B~ Platte Buro /bit

16GB 88/16GB
2019: 1858 — 4096 > T7er ~ 207

Sanders: Algorithm Engineering April 22, 2025 ﬂ (IT 135
Mehr zu externem Sortieren IT

7(?)
Untere Schranke ~ "

[Aggarwal Vitter 1988]

2
Obere Schranke ~ D_rl; (1 + {log M/B %D I/Os (erwartet)

fir D parallele Platten
[Hutchinson Sanders Vitter 2005, Dementiev Sanders2003]

(1 + {logM/B]\%D I/Os

Offene Frage: deterministisch?

Sanders: Algorithm Engineering april 22, 2025 ﬂ(l'l' 136

Sorting with Parallel Disks
I/0 Step := Access to a single physical block per disk

Theory: Balance Sort [Nodine Vitter 93]. ?_/

Deterministic, complex
o)

Karlsruhe Institute of Technology

asymptotically optimal

Multiway merging
“Usually” factor 10? less 1/Os. independent disks
[Vitter Shriver 94]

Not asymptotically optimal. 42 %

Basic Approach: Improve Multiway Merging

Sanders: Algorithm Engineering april 22, 2025 ﬂ(l'l' 137

Striping (Emulated disk)

logical block

Karlsruhe Institute of Technology

physical blocks

That takes care of run formation

and writing the output T |
' internal buffers

But what about merging?

277

Sanders: Algorithm Engineering april 22, 2025 ﬂ(l'l' 138

Karlsruhe Institute of Technology

Naive Striping

Run single disk merge-sort on striped logical disk:

2n n

Theory: @(logM/B) worse when D ~ M /B

Practice: 2 — 3 passes 1n some cases

internal buffers

Sanders: Algorithm Engineering april 22, 2025 ﬂ(l'l' 139

Karlsruhe Institute of Technology

Prediction

[Folklore, Knuth]
Smallest Element
of each block
triggers fetch.

prediction sequence

controls

tch buffers

Prefetch buffers R

allow parallel access

N prefe

HE HE EE BB
of next blocks FES B2 BE BB |
HE HE EE BB

Sanders: Algorithm Engineering april 22, 2025 ﬂ (IT
Warmup: Multihead Model T
g 0 . prediction sequence
fin NN mN SN B
& é controls
M 2
Multihead Model I TE T T
[Aggarwal Vitter 88] T T T

D prefetch buffers yield an optimal algorithm

2
sort(n) := D—Z (1 + {logM/B]\%D I/Os

140

Sanders: Algorithm Engineering april 22, 2025 ﬂ(l'l' 141
Bigger Prefetch Buffer

Karlsruhe Institute of Technology

prefetch buffers

prediction sequence

Dk ~~ good deterministic performance

¢ (D) would yield an optimal algorithm.
Possible?

Sanders: Algorithm Engineering april 22, 2025 ﬂ(l'l' 142

Karlsruhe Institute of Technology

Randomized Cycling

[Vitter Hutchinson 01]
Block i of stripe j goes to disk 7;(i) for a rand. permutation 7;

prefetch buffers

prediction sequence

Good for naive prefetching and Q (Dlog D) buffers

Sanders: Algorithm Engineering april 22, 2025 ﬂ(l'l' 143

Buffered Writing st

[S-Egner-Korst SODAOO, Hutchinson-S-Vitter ESA 01]
Sequencef blocks Z

write whenever otherwise, output Theorem:
one of W one block from Buffered Writing
buffers is free [each nonempty queu 1s optimal

randomized
mapping

Y DR A I But
WID how good 1s optimal?
1]12 D

Theorem: Rand. cycling achieves efficiency 1 — &'(D/W).

Analysis: negative association of random variables,
application of queueing theory to a “throttled” Alg.

Sanders: Algorithm Engineering april 22, 2025 ﬂ(l'l' 144
Optimal Offline Prefetching

Karlsruhe Institute of Technology

Theorem:
For buffer size W:

3 (offline) prefetching schedule for X with T input steps
~
3 (online) write schedule for X with T output steps

inputstep8 76 54321

.r glplo|l |i |f
order of reading >
@: o

>R order of writing _
. mik |j dic|bla

outputstepl 2 3456 7 ¢

rlglplonmil |kfj [i (hig|f |e|d]c |b

e
lalnd

Sanders: Algorithm Engineering april 22, 2025 ﬂ(l'l' 145
Optimal Offline Prefetching -

Theorem:

For buffer size W':

3 (offline) prefetching schedule for X with T input steps
<~

3 (online) write schedule for X with T output steps

input step8 7 6 54 3 2 .

r

.
order of reading z _[g
= 2
rqponmlkjihgfedcba:ng .n
S
R .. n
2 *rder of writing m

.m

outputstepl 2 3456 7

Sanders: Algorithm Engineering april 22, 2025 ﬂ(l'l' 146
Optimal Offline Prefetching -

Theorem:

For buffer size W':

3 (offline) prefetching schedule for X with T input steps
<~

3 (online) write schedule for X with T output steps

Input step8 7 6 54 3 2 .

I

order of reading > Jq

= &
rqponmlkjihgfedcba:ng .n

>‘-2|
2 order &f writing K . -
m

outputstepl 2 3456 7

Sanders: Algorithm Engineering april 22, 2025 ﬂ(l'l' 147
Optimal Offline Prefetching -

Theorem:

For buffer size W':

3 (offline) prefetching schedule for X with T input steps
<~

3 (online) write schedule for X with T output steps

Input step8 7 6 54 3 2 .

- @ EE
order of reading 2 _ IR
= T
rqponmlkjihgfedcba%g .n h
>-1|
2 orderofw*ng i .mkj

outputstepl 2 3456 7

Sanders: Algorithm Engineering april 22, 2025 ﬂ(l'l' 148
Optimal Offline Prefetching

Karlsruhe Institute of Technology

Theorem:

For buffer size W':

3 (offline) prefetching schedule for X with T input steps
<~

3 (online) write schedule for X with T output steps

Input step8 7 6 54 3 2 .

e

order of reading 2 ?

= ::Ue
rlglpjonimil ki |i [higfJe]djc|bla|=ki> .n h |9

>2|
>R order of writing i . T
miK |J

outputstepl 2 3456 7

Sanders: Algorithm Engineering april 22, 2025

Optimal Offline Prefetching

Theorem:

For buffer size W:

AT °

Karlsruhe Institute of Technology

3 (offline) prefetching schedule for X with T input steps

-

3 (online) write schedule for X with T output steps

Input step8 7 6 54 3 2 .

 (@eees
order of reading 2 _[f
< Ele
r Jafpfoinimil kjj fi [higf Je]dfc[bla] =k .n hlgle
B
>R order of writing i :
@

outputstepl 2 3456 7

Sanders: Algorithm Engineering april 22, 2025 ﬂ(l'l' 150
Optimal Offline Prefetching

Karlsruhe Institute of Technology

Theorem:
For buffer size W:

3 (offline) prefetching schedule for X with T input steps
~
3 (online) write schedule for X with T output steps

input step8 7 6 54 3 2 .

.mkj dic

outputstepl 2 3456 7

rigiplo|l |i

order of reading >

rigjplonmiik] |i hig|f |eld|c |b

e
Jaynd
Ol |—™ T

>R order of writing

Sanders: Algorithm Engineering april 22, 2025 ﬂ(l'l' 151
Optimal Offline Prefetching

Karlsruhe Institute of Technology

Theorem:
For buffer size W':
3 (offline) prefetching schedule for X with T input steps

<~
3 (online) write schedule for X with T output steps

Input step8 7 6 54 3 2 .

5 .rqpolif

order of reading 2 [
@:
.mkj dic|b

outputstepl 2 3456 7

a

rgfploinmi k] i |hig|f |el|d|c |b

V Q
Jaynd

>R order of writing

Sanders: Algorithm Engineering april 22, 2025 ﬂ(l'l' 152
Optimal Offline Prefetching

Karlsruhe Institute of Technology

Theorem:

For buffer size W':

3 (offline) prefetching schedule for X with T input steps
<~

3 (online) write schedule for X with T output steps

Inputstep8 76 54321

.r glplofl [i |f
order of reading >
| @ e
order of writing _

. mik |j dic (b la

outputstepl 2 3456 7 ¢

rigjplofn|mil (k| {i (hi|g]|f |[e|d]|c |b

I
1aind

Sanders: Algorithm Engineering april 22, 2025 ﬂ(l'l' 153

Synthesis -
Multiway merging

+ prediction [60s Folklore]
+optimal (randomized) writing [S-Egner-Korst SODA 2000
+randomized cycling [Vitter Hutchinson 2001 |
+optimal prefetching [Hutchinson-S-Vitter ESA 2002]

~+ (14+o0(1))-sort(n) I/Os
~“answers” question in [Knuth 98];
difficulty 48 on a 1..50 scale.

Sanders: Algorithm Engineering april 22, 2025

We are not done yet!

o o 0o o O @O

Internal work

Overlapping I/0 and computation
Reasonable hardware

Interfacing with the Operating System
Parameter Tuning

Software engineering

Pipelining

Karlsruhe Institute of Technology

Sanders: Algorithm Engineering april 22, 2025 ﬂ(l'l' 155

Karlsruhe Institute of Technology

Key Sorting

The I/0 bandwidth of our machine is about 1/3 of its main
memory bandwidth

~ If key size < element size

sort key pointer pairs to save memory bandwidth during run
formation

a 1 0 4 C 1 d D €

extract
T4 T 1% A=A T
SOt nermut

Sanders: Algorithm Engineering april 22, 2025

he Institute of Technology

Tournament Trees for Multiway Merging

Assume k = 2X runs

K level complete binary tree

I eaves: smallest current element of each run

Internal nodes: loser of a competition for being smallest

Above root: global winner

1
2

A

i

5

deleteMin+
InsertNext

>

A

i~ M

13
\

Sanders: Algorithm Engineering april 22, 2025 &(IT 157
Why Tournament Trees
L] Exactly logk element comparisons

| Implicit layout in an array ~~» simple index arithmetics
(shifts)

| Predictable load instructions and index computations
(Unrollable) inner loop:
for (int 1= (winnerIndex+kReg)>>1; 1>0; i>>=1) {

currentPos = entry + 1i;
currentKey = currentPos—->key;

if (currentKey < winnerKey) {

currentIndex = currentPos—->1index;
currentPos—->key = winnerKey;
currentPos—->index = winnerlIndex;
winnerKey = currentKey;

winnerIndex = currentIndex; }}

Sanders: Algorithm Engineering april 22, 2025 &(IT 158
Overlapping I/0 and Computation

] One thread for each disk (or asynchronous 1/O)

| Possibly additional threads

| Blocks filled with elements are passed by references
between different buffers

Sanders: Algorithm Engineering april 22, 2025 & (IT 150
Overlapping During Run Formation

First post read requests for runs 1 and 2

Thread A: Loop { wait-read i; sort i; post-write i }; sorting thread

Thread B: Loop { wait-write i; post-read i +2}; prefetch thread

control flow in thread A control flow in thread B
—> —

time

1 2 3 4 k-1 k
read © SO 1/O
1 2 I 3 I 4 I k-1 I k bound
sort case
1 i 2 3 4 k-1 wk

read © 3 4 <1 k compute
1 2 3 4 \ k-1 k bound
write 11 2 3 4 e K

write

Sanders: Algorithm Engineering april 22, 2025

Overlapping During Merging

Bad example:

Karlsruhe Institute of Technology

18-12

35714

§B—1g|...

18-12

35714

5B-1g|...

Sanders: Algorithm Engineering April 22, 2025 ﬂ (IT (61
Overlapping During Merging

N
|2 1
s IS read buffers -
O — = @
\ % __ %:3 k+O(D) (Qg CBD
® - || & > overlap buffers Q
O : - o ®
=1 " o -
) =4 =
JISIE
\/:; :>>ow| K | K |
|| — ?(l: > merging
—ping disk scheduling overlap-

I/O Threads: Writing has priority over reading

Sanders: Algorithm Engineering april 22, 2025 ﬂ (IT .
I/0 bound case: prefetch thread never blocks

y = # of elements

Q
=
. : r

merged during O | BI3DB e e |
(b ; : ;
one 1/0 step. > - E ;
CIEJ kB+2DB+y| bl_ockmg--/~
n | 5 ?
I/O bound ~~ 1 5/% 5 :
DB : | |
y > 5 % kB+2DB e - output -~
< DB > E 5 E
Y= O KB+DB+Y | fychy |t ;
§= 1 ' 1

2
GC) E E E
KBH+DB 1o |

- : E E W

Q

[3)

H

DB-y DB 2DB-y 2DB
#elements in output buffer

Sanders: Algorithm Engineering april 22, 2025 ﬂ(IT

Compute bound case:
The merging thread
never blocks

Karlsruhe Institute of Technology

kB+3DB

UOCkVCK\\\

kB+2DB A

KB+DB [
KB+2y [~

kB+y

#elements in overlap+merge buffers

=~
(9]

‘DB 2DB-y2DB
#elements in output buffers

Sanders: Algorithm Engineering april 22, 2025 ﬂ(l'l' 164

Karlsruhe Institute of Technology

Hardware (mid 2002)

2X Xeon

Linux 4 Threads

ZSOOX64 Mb/s
S

(2 x 2GHz Xeon x 2 Thread Intel
Several 66 MHz PCI-buses DDR
(SuperMicro P4ADPE3) o CATTRSEL L
2X64x66 Mb/s
Several fast IDE controllers PCl-Busses
: 4x2x100 Controller

(4 x Promise Ultral00 TX2) MB/s) |

) Channe
Many fast IDE disks s 00 OODL 8%80
(8x IBM IC35L080AVVAQ7MBIsE o s i 5 i 5 551 GB

cost effective I/O-bandwidth (real 360 MB/s for ~ 3000)€

Sanders: Algorithm Engineering April 22, 2025 QQ(IT 165

Hardware (end 2009) geschitzt

Linux

(2 x 2.4 GHz Xeon E5530 x 4 Cores x 2 Threads)
PCle x8 SATA controller

16-24 1.5 TByte SATA disks

(8 x IBM IC35L080AVVAQ07)

24 GByte RAM

cost effective I/O-bandwidth (real 2 GB/s for =~ 6000)€

Sanders: Algorithm Engineering April 22, 2025 QQ(IT 166

Hardware 2015 geschatzt

~3000 Euro for 32 512 GB SATA SSDs a 93 Euro:
~» 16TB capacity, and
~~ 16GB/s read bandwidth ?

64 GB/RAM 800 Euro
500 Euro Motherboard
2x8 cores Intel Xeon E5-2603v3 (a 200 Euro)

Sanders: Algorithm Engineering April 22, 2025 QQ(IT 167

Hardware 2017 geschatzt

~2000 Euro for 4 1'TB M.2 SSD a 500 Euro:
~» 4TB capacity, and
~~ 14GB/s read bandwidth ?

128 GB/RAM 1000 Euro
2x6 cores Intel Xeon E5-2603vv (a 240 Euro)

Sanders: Algorithm Engineering April 22, 2025 QQ(IT 168

Hardware 2019 geschitzt

~1720 Euro for 8 2TB M.2 SSD a 215 Euro:
~» 16TB capacity, and
~ 14.4GB/s read bandwidth ?

128 GB/RAM 550 Euro
8 cores AMD EPYC 7251 (555 $)

Sanders: Algorithm Engineering april 22, 2025

Software Interface

Goals: efficient 4+ simple + compatible

STL-user layer

Streaming layer

- . vector, stack, set
Containers: priority_queue, map

Algorithms: sort, for_each, merge

Pipelined sorting,
zero—-1/O scanning

-

Block management layer

~

w/Z

block prefetcher, buffered block writer

\&

<
>< typed block, block manager, buffered streams,
|_

(Asynchronous I/O primitives layer

completion handlers

L files, /O requests, disk queues,

169

Sanders: Algorithm Engineering april 22, 2025

Default Measurement Parameters

t := number of available buffer blocks
Input Size: 16 GByte

Element Size: 128 Byte 400x64 Mb/s

Keys: Random 32 bit integers
Run Size: 256 MByte

Block size B: 2 MByte 4x2x100
MB/s

Compiler: g++ 3.2 -06 8y A5

3
Prefetch Buffers: 2D+ 10 (t—w—2D)

2X64x66 Mb/s

.........

.........

Intel

Chipset

........

......

......

AT 7

Karlsruhe Institute of Technology

2X Xeon
4 Threads

1GB
DDR
RAM

PCIl-Busses

....................

...................

..................

Sanders: Algorithm Engineering April 22, 2025 ﬂ (IT 171
Element sizes (16 GByte, 8 disks)

400 | | | | |
T —+— run formation

350 —-—X--" merging —
--¥--- 1/O wait in merge phase
-3+ 1/O wait in run formation phase

300

250

200

time [s]

150

100

50

0 === L------- K M i |

16 32 64 128 256 512 1024
element size [byte]

parallel disks ~~ bandwidth “for free” ~~ internal work, overlapping are relev

Sanders: Algorithm Engineering April 22, 2025 ﬂ (I 7
Earlier Academic Implementations

uhe Institute of Technology

Single Disk, at most 2 GByte, old measurements use artificial M

800 | | | | |
| —+— LEDA-SM
700 --xX-- TPIE _ _
- - X- -+ <stxx|> comparison based
600 -
o 500
()
E 400 |-
5
® 300 [
2008 - - - - - ______ N2
100 [—
0 | | | | |
16 32 64 128 256 512 1024

element size [byte]

Sanders: Algorithm Engineering April 22, 2025 QQ(IT 173

Earlier Acad. Implementations: Multiple Disks

616 I I I I I
500 —+— LEDA-SM Soft-RAID —
200 -->~- TPIE Soft-RAID N
- - ¥- - <stxxI> Soft-RAID
30 00 0~ T E]---- <stxx|>]
200 _
D,
(D]
= (e Xl
s w00(~ TTTT R __ 7
7 i ~—
75 3 ¥
.. Ko Krmmmmm - X
50 | e -
40 - ~
B
gg B | | | o 1T Lo N
16 32 64 128 256 512 1024

element size [byte]

Sanders: Algorithm Engineering April 22, 2025 ﬂ (IT 174
What are good block sizes (8 disks)?

26 | | | | |
128 GBytes 1x merge —+—
1 128 GBytes 2x merge —-->--
24 16 GBytes ---K-- 7]
22 _S
{7} X - K==~
= T
fe) N
» 20 —
=)
o
E 18 —
16 —
14 |- T K
NS D
12 | | | | |
128 256 512 1024 2048 4096 8192

block size [KByte]

B 1s not a technology constant

Sanders: Algorithm Engineering April 22, 2025 ﬂ(l'l' 175
Optimal Versus Naive Prefetching

Total merge time

[[[[X

1 176 read buffers —+— //|
—_ 112 read buffers -->--/
X 48 read buffers -- K-/’
(@))
=
5 of /-
2 K= XX = =
@ S ¢ ——--=XT
S X
g
'© -1 - —
c
2 X
(D) f
O 1
o 2
qu) %“%
S

3 | | KooKk g oxex
0 20 40 60 80 100

fraction of prefetch buffers [%]

Sanders: Algorithm Engineering April 22, 2025

AT

Impact of Prefetch and Overlap Buffers

merging time [s]

140

135

130

125

120

115

[[[[[[[
no prefetch buffer —+—

heuristic schedule -->--

\>|<———>r<___ e s SN VR

16

48

64 80 96 112 128 144 160172

number of read buffers

176

Sanders: Algorithm Engineering April 22, 2025

Karlsruhe Institute of Technology

Tradeoff: Write Buffer Size Versus Read Buffer

Size

merge time [s]

145

140

135

130

125

120

115

110

0

50

100
number of read buffers

150

200

Sanders: Algorithm Engineering April 22, 2025

Scalability

sort time [ns/byte]

Karlsruhe Institute of Technology

128-byte elements —+—
512-byte elements --><-—
4N/DB|bqu /Os ---%--

16

32 64
input size [GByte]

128

178

Sanders: Algorithm Engineering April 22, 2025 QQ(IT 179

Discussion

O 0O 0O o O

[]

Theory and practice harmonize

No expensive server hardware necessary (SCSI.,...)
No need to work with artificial M

No 2/4 GByte limits

Faster than academic implementations

(Must be) as fast as commercial implementations but with

performance guarantees

Blocks are much larger than often assumed. Not a
technology constant

Parallel disks ~~
bandwidth “for free” ~» don’t neglect internal costs

Sanders: Algorithm Engineering april 22, 2025 QQ(IT 180

More Parallel Disk Sorting?

Pipelining: Input does not come from disk but from a logical
input stream. Output goes to a logical output stream
~~ only half the I/Os for sorting
~~ often no I/Os for scanning todo: better overlapping
Parallelism: This 1s the only way to go for really many disks
Tuning and Special Cases: ssssort, permutations, balance work
between merging and run formation?. ..
Longer Runs: not done with guaranteed overlapping, fast
internal sorting !
Distribution Sorting: Better for seeks etc.?
Inplace Sorting: Could also be faster

Determinism: A practical and theoretically efficient algorithm?

Sanders: Algorithm Engineering April 22, 2025 QQ(IT 181

Procedure formLongRuns
q,q : PriorityQueue
for i :=1to M do g.insert(readElement)
invariant |¢| + |¢'| =M
loop
while g £ 0
writeElement(e:= g.deleteMin)
if input exhausted then break outer loop
if ¢/:= readElement < e then ¢'.insert(¢’)
else g.insert(¢’)
=95 q:=0
output ¢ in sorted order; output ¢’ in sorted order

Knuth: average run length 2M
todo: cache-effiziente Implementierung

Sanders: Algorithm Engineering april 22, 2025 ﬂ(l'l' 182

3 Priority Queues (insert, deleteMin
Binary Heaps best comparison based “flat memory” algorithm

+ On average constant time for insertion

+ On average logn + (1) key comparisons per delete-Min
using the “bottom-up” heuristics [Wegener 93].

— =~ log(n/M) block accessem Cache
per delete-Min f{%ﬂ

Sanders: Algorithm Engineering april 22, 2025 ﬂ(l'l' 183

Karlsruhe Institute of Technology

Bottom Up Heuristics

AN 2\ AN A
7/ 2\9 / 6\ 7/2\973/% / ZK M6

8 4 9O 8 6
delete Min sift down hole
O(1) log(n) 7/
compare swap move AN
//6 O 8
sift up
Factor two faster O(1) / 2\

than naive implementation average /A\ / h
/7 9 8

Sanders: Algorithm Engineering April 22, 2025 ﬂ (IT 184
Der Wettbewerber fit gemacht:

int 1=1, m=2, t = al[l]l;
m+= (m '= n && a[m] > a[m + 1]1);
1if (t > alm]) |
do { ali] = alm];
i = m;
m = 2+%1;
1f (m > n) break;
m+= (m !'= n && a[m] > alm + 1]);
} while (t > a[m]);
ali]l = t;}

Keine signifikanten Leistungsunterschiede auf meiner Maschine
(heapsort von random integers)

Sanders: Algorithm Engineering april 22, 2025 ﬂ(IT

Karlsruhe Institute of Technology

Vergleich

Speicherzugriffe: &'(1) weniger als top down.

O (logn) worst case. bei effizienter Implementierung

Elementvergleiche: =~ logn weniger fiir bottom up (average

case) aber die sind leicht vorhersagbar

Aufgabe: siftDown mit worst case logn + &'(loglogn)
Elementvergleichen

185

Sanders: Algorithm Engineering April 22, 2025 ﬂ (IT 126
Heapkonstruktion

Procedure buildHeapBackwards
for i := |n/2| downto 1 do siftDown (i)

Procedure buildHeapRecursive(i : N)
if 4i < n then
buildHeapRecursive(2i)
buildHeapRecursive(2i + 1)
siftDown (i)

Rekursive Funktion fiir gro3e Eingaben 2x schneller!
(Rekursion abrollen fiir 2 unterste Ebenen)

Aufgabe: Erklarung

Sanders: Algorithm Engineering April 22, 2025 ﬂ(l'l' 187
MittelgroBe PQs — km < M? /B Einfiigungen

1

2| ...

K

sorted
m sequences

B

AN

PO

K—Mmer

ti
o B

Insert: Anfangs in insertion buffer.
Uberlauf —

sort; flush; kleinster Schliissel in merge-PQ

Delete-Min: deleteMin aus der PQ mit kleinerem min

Sanders: Algorithm Engineering April 22, 2025 & (IT
Analyse — I/OS Karlsruhe Institute of Technolo

deleteMin: jedes Element wird < 1x gelesen, zusammen mit B

anderen — amortisiert 1/B penalty fiir insert.

sorted
1 |2 ... [kl| m sequences

B

TR o R

PO

188

Sanders: Algorithm Engineering April 22, 2025 ﬂ (IT 20
Analyse — Vergleiche (MabB fiir interne Arbeit)

deleteMin: 14 &'(max(logk,logm)) = &' (logm)
genauere Argumentation: amortisiert 1 4 logk bei
geeigneter PQ

msert: ~ mlogm alle m Ops. Amortisiert logm

Insgesamt nur log km amortisiert !

sorted
1 |2 ... [kl| m sequences

B

ST B

PO

group 3

Sanders: Algorithm Engineering april 22, 2025 N e T 190
L = external Q(IT
arge mm swapped

group 2
Queues — cached D

[Sanders 00] group 1

k
X
Il II ‘I 1l (2| ... [k||m |1
T 1 7T

%
k—mer T,
group- group- group-
buffer m buffer m buffer
R-merge

insert:

deletion buffer Jm’ ?/minsertion buffer

insert buffer full — merge ins-buf with del-buf-group-buf-1.
m’ smallest into deletion buffer, next m into group buffer one,
rest into group 1.

group full — merge group; shift into next group.

merge invalid group buffers and move them into group 1.

Sanders: Algorithm Engineering april 22, 2025

group 3

Large 1 eXteI’na|
mm swapped group 2
Queues = cached =
[Sanders 00] group 1 ‘
X
l I l 1l (2| ... [kl m |1
T T T _T
k—mer T,
group-— group-— group-—
buffer m buffer m buffer
R-merge
]
deletion buffer |1 ™ FF——minsertion buffer

Delete-Min:
Refill. m" < m. nothing else

Karlsruhe Institute of Technology

191

Sanders: Algorithm Engineering april 22, 2025 ﬂ(l'l' 192

Karlsruhe Institute of Technology

Example

Merge 1nsertion buffer, deletion buffer, and leftmost group
buffer

Insert(3) Vi upw VI (Ul |w

S| |n| |t S| [n| |t

re (m P rl M [P

gl |c| |o ql |c| |o

K| [1] [f] [I h x| (K] [I] [f] [I h
g II = Ig II

Sanders: Algorithm Engineering april 22, 2025 ﬂ(l'l' 193

Karlsruhe Institute of Technology

Example

Merge group 1

—~Q|—X

——] o=l <

Sanders: Algorithm Engineering april 22, 2025 ﬂ(l'l' 194

Karlsruhe Institute of Technology

Example
Merge group 2
vl (u] |w n|opP
s| |n| |t m |19
kK| [r] [M [P k | Lr
I 19 (€] |© J | | s| W
x gl |1 h x g h| [t{uv
f | f C
I I

Sanders: Algorithm Engineering april 22, 2025 ﬂ(l'l' 195

Example St
Merge group buffers
n| o P op
m q g
K I Lr)
J | S S
X ; h UL tfuv
f C
| |

Sanders: Algorithm Engineering april 22, 2025 ﬂ(IT

Karlsruhe Institute of Technology

Example

DeleteMin ~~ 3; DeleteMin ~~ a;

196

—Wn|[™ Q|0

—Wn|[™ Q|0

Sanders: Algorithm Engineering april 22, 2025

Example
DeleteMin ~~ b
nlopP
mi (g
K I Lr
d J il sl [w
x b g hl [tluv
b f C
[| |

L

tttttttttttttttttttttttttttttt

197

——|3>

—+Wn|[T Q|0

Sanders: Algorithm Engineering april 22, 2025 ﬂ(l'l' 198

Karlsruhe Institute of Technology

Analysis

[J I insertions, buffer sizes m = @(M)

] merging degree k = ©@(M/B)

block accesses: sort(/)+*“small terms”

key comparisons: [logl + “small terms

(on average)

Other (similar, earlier) [Arge 95, Brodal-Katajainen 98, Brengel
et al. 99, Fadel et al. 97] data structures spend a factor > 3 more
I/Os to replace I by queue size.

Sanders: Algorithm Engineering April 22, 2025 ﬂ (IT 100
Implementation Details

] Fast routines for 2—4 way merging keeping smallest
elements 1n registers

[] Use sentinels to avoid special case treatments (empty
sequences, ...)

[| Currently heap sort for sorting the insertion buffer

[k # M /B: multiple levels, limited associativity, TLB

Sanders: Algorithm Engineering april 22, 2025 ﬂ(l'l'
Experiments .
Keys: random 32 bit integers
Associated information: 32 dummy bits
Deletion buffer size: 32 Near optimal
Group buffer size: 256 : performance on

Merging degree k: 128 all machines tried!
Compiler flags: Highly optimizing, nothing advanced

Operation Sequence:
(Insert-DeleteMin-Insert)" (DeleteMin-Insert-DeleteMin)Y

Near optimal performance on all machines tried!

200

Sanders: Algorithm Engineering April 22, 2025

MIPS R10000, 180 MHz

Ty I I
£ - - bottom up blnary heap ’b
- - >|< ~ bottom up aligned 4-ary heap o
> 150 B+ sequence heap —
% .Q/' ¥ *
E 100%-%h—%_—%__%__%_—é__é(’—;éx N
+ foof -0 e e
e

E g EE
> 50| e O A e |
I
)
©
= 0 l l l l l L

1024 4096 16384 65536 218 020 22,523

N

Sanders: Algorithm Engineering April 22, 2025

Ultra-Spareclli, 300 MHz

(T(deleteMin) + T(insert))/log N [ns]

160

140

120

o

o
S
o

N
o
I

20

0

[[| [
bottom up binary heap --© --
bottom up aligned 4-ary heap ---X--
sequence heap -

256

1024 4096 16384 65536 218

N

Sanders: Algorithm Engineering April 22, 2025

Alpha-21164, 533 MHz
140 | | | T | | 1
bottom up binary heap --© --
T 150 L bottom up aligned 4-ary heap ---%--- _
A= sequence heap - Jo)
Z Nea
S 100 - o -
= @_/Q/' o X
2 80 /@'“@/‘@/ ¥) 1
= o K
= BRSO kX
v B0 g, TR Kk A 4
= RE
S Hdegog o
Q 40 S o —
2 N
[
2
b 20 1
0 | | | | | | | 1
256 1024 4096 16384 65536 218 20 522,523

N

Sanders: Algorithm Engineering April 22, 2025

(T(deleteMin) + T(insert))/log N [ns]

Pentium 11, 300 MHz
[[I [[1
bottom up binary heap --© --
200 - bottom up aligned 4-ary heap ---%--]
sequence heap -3
150 - 3]
_ ¥ -
R KooK Koy K o
o-©0"°
100 o O —
11 SO
¢ -0 - B-g-Q - g__
-] E}BB e a
50 =
0 | | | | | ||
1024 4096 16384 65536 2! 220 222 923

N

Sanders: Algorithm Engineering April 22, 2025

Core2 Duo Notebook, 1.??? GHz

25 | I | | | 5@
bottom up binary heap --©-- PR
) sequence heap -3 ©
-~ 20 - ! =
o ‘/
ke /
5 15 | O -
m /
= /
=
+ /
| _O--6_. _ —
./-E\ 10(9_@/8- @ @"'@—-‘@""@’ ‘@
= [H---.. R -
0] gL S R e DO
5 B o = N M
o) 5 | —
2
c
0 | | | | | | |
1024 4096 16384 65536 28 220 2% 2%3

N

Sanders: Algorithm Engineering April 22, 2025

AIT ™

AMD Ryzen 1800X, 16MB L3, 3.6 GHz, 2017

| | | | | I
10 | bottom up binary heap —+—
sequence heap --—+---

(T(deleteMin) + T(insert))/log N [ns]

0 | | | | | | |
1024 4096 16384 216 518 520 522 524

Sanders: Algorithm Engineering April 22, 2025

(insert (deleteMin insert)*)"
(deleteMin (insert deleteMin)*)"

[[[
s=0, binary heap
s=0, 4-ary heap —#—-

s=0 --©--
s=1 -- K- -

128 | s=4 —+—
5=16 —-X-—

(T(deleteMin) + T(insert))/log N [ns]

256 1024 4096 16384 65536

N

218

222 223

Sanders: Algorithm Engineering April 22, 2025 & (IT 208
Methodological Lessons

If you want to compare small constant factors in execution time:

[] Reproducability demands publication of source codes
(4-ary heaps, old study in Pascal)

] Highly tuned codes in particular for the competitors
(binary heaps have factor 2 between good and naive
implementation).

How do you compare two mediocre implementations?

] Caretul choice/description of inputs
[] Use multiple different hardware platforms

L] Augment with theory (e.g., comparisons, data
dependencies, cache faults, locality effects ...)

Sanders: Algorithm Engineering April 22, 2025 & (IT 200
Open Problems

| Dependence on size rather than number of insertions
Parallel disks
Space efficient implementation

Multi-level cache aware or cache-oblivious variants

I O O O

Eliminate branch mispredictions

new: Master thesis v. d. Griin: did that vor insertion buffer,
first results on PQs based on distribution principle and the
inner loop of super scalar sample sort

Sanders: Algorithm Engineering april 22, 2025 gg(lT 210

4

[]

oo o o o O

van Emde-Boas Search Trees

Store set M of K = 2%-bit integers.

later: associated information

K =1 or |M| = 1: store directly b il

K':=K/2
M;:= {x mod 2K : x div 2K =
root points to nonempty M;-s

topt ={i: M; £0}

insert, delete, search in &'(logK) time

Sanders: Algorithm Engineering April 22, 2025 QQ(IT 211
Locate |

[fminxeM:y<x
Function locate(y : N) : ElementHandle
if y > max M then return // precomputed!
if K = 1 then return locatelLocally(y)
if M = {x} then return x
(i, /)= (y div 2572y mod 2K/?)
if M; =0V j > maxM,; then
i:= top.locate(i + 1)
J:= minM,; // precomputed!
else j:= M;.locate(j)
return i25X/2 + j

Sanders: Algorithm Engineering april 22, 2025

AT

Comparison with Comparison Based Search Trees
Ideally: logn ~~ loglogn

Problems: | | | , , | T
. B ,)K”’
Many special i xS
case tests & ¥
2 - // X oH
. S = -
High space & ¥ =
. 2 1000 |- ¥ _ g .
consumptiong N S .
@) _ ,'_B" i
ge) i j
E /“/ % i
5 1 afl T
) _ S J
= RN .
= orig-STree —+—
[_,E---;—' X l
[]-"E"'i;k[,%' STL map ---X---
s (2,16)-tree -3
100 X | | | | | | |
256 1024 4096 16384 65536 218 020 522,23

n

Sanders: Algorithm Engineering april 22, 2025 gg(lT 213

Efficient 32 bit Implementation

top 3 layers of bit arrays

0 63

095

13 63 65535

hash table hash table

\

Sanders: Algorithm Engineering april 22, 2025 QQ(IT 214

Layers of Bit Arrays

i) = 1iff M; £ 0
t2[i] = t1[32i) Vel [32i+ 1]V -+ - vV [32i + 31]
i) = 2[320) V2[32i + 1]V - - - V 12[32i + 31]

Sanders: Algorithm Engineering april 22, 2025 ﬂ(l'l' 215

Efficient 32 bit Implementation

Karlsruhe Institute of Technology

Break recursion after 3 layers

O 63

@ En

hash table
hash table

m‘é

' hash table

Sanders: Algorithm Engineering april 22, 2025 ﬂ(l'l' 216

Efficient 32 bit Implementation

Karlsruhe Institute of Technology

root hash table root array

0 63
0 3132 63 4095 0 3132 63 4095
0 ;13; 63 iii35 0 ;13; 63 iii35
Level 1 —root 535 Level 1 —root
Bits 31-16 Bits 31-16
nt (EgE nll | Ege
Bits 15-8 Bits 15-8
Level 2 Level 2

Bits 15-8|

[T - 171 B 155 ([T 1T -1
hash table _ hash table
Level 3 hash table ‘

Bits 7-0 i :
hash table hash table

hash table ‘

¥

Bits 7-0

Sanders: Algorithm Engineering April 22, 2025

Efficient 32 bit Implementation

Tuned small hash tables with 8-bit keys:

[| Tabulate hash function (256 entries)
— very fast

[| Make i1t a random permutation

— reduces collisions

Karlsruhe Institute of Technology

Sanders: Algorithm Engineering april 22, 2025 ﬂ(IT

Efficient 32 bit Implementation

Karlsruhe Institute of Technology

Sorted doubly linked lists for associated information and range

queries

Sanders: Algorithm Engineering april 22, 2025

a b f Technology

Example |
63 t3
> M={1,11,111,1111,111111}
3 t
| T T T T T 1T 1T 1T 1 I2IOI4-I7 root_top
01 32 t1
65535
00da 0000000 POODO|AQAOGMOO0O00AA | DOO--- ooq)oom)ooc 00Q0
root
2 hash
v 0
1..11141 | L2
t% 32 _
oI B EELH E E . S S - - MO —{1,11,111,1111}
O 4
t2 0 hash
00 1.11 —
. | Mog={1,11,111} L3
t%)o 32
4 ...4-4 | ---l | | | 4?4' ---l
L L1 i I B
/ Mo#{111ThM; ={111111}

1 11 11 111 111111 Element List

219

Sanders: Algorithm Engineering April 22, 2025 ﬂ (IT
Locate High Level

[/return handle of minx e M 1y < x
Function locate(y : N) : ElementHandle
if y > max M then return oo
[:=y[16..31] /l Level 1

if r[i] = nil Vy > max M; then return min M, jocq (4 1)
if M; = {x} then return x

j:=yl8..15] /l Level 2
if r;|j| = nil Vy > max M;; then return min/, 11 Jocate(j+1)

l
if M;; = {x} then return x

return r;; [tl Jlocate(y|0..7])] // Level 3

Sanders: Algorithm Engineering April 22, 2025 ﬂ (IT 1
Locate in Bit Arrays

//find the smallest j > i such that *[j] = 1

Method locate(i) for a bit array * consisting of 7 bit words

//n =32 for ¢!, 12, tl-l, tl.lj; n =64 fort>: n =8 for tl-z, tl-zj
assert some bit in X to the right of i is nonzero
Jji:=idivn // which word?
a:=t"nj.nj+n—1]
seta|(imodn)+1.n—1|tozero //n—1---imodn---0
if a = O then

j :=t*"1locate(j)

a:=t"nj.nj+n—1]

return nj + msbPos(a) // e.g. floating point conversion

Sanders: Algorithm Engineering April 22, 2025

Random Locate

Time for locate [ns]

1001?’ /

i | -
\.~~ /

| n =N B

orig-STree —+—
LEDA-STree —->--

STL map --%K--
(2,16)-tree -

S‘Il'ree — -

256 1024 4096 16384 65536 218
n

220 222223

Sanders: Algorithm Engineering april 22, 2025 QQ(IT 223

Random Insert

4000 I I I I I I
3500 P
/x/
3000 o
R
o
— 2500 ,
g o B
£ 2000 y A
S ..
) B -
£ R
1500 Nz
1000
X
m X”;—/' orig-STree —+—
500 [H------... i o - LEDA-STree -->--
O L P STLmap ---X---
R g @ |
®--0 (2,16)-tree &
STree —H—-
0]]]]]]]
1024 4096 16384 65536 218 220 2?2 23

Sanders: Algorithm Engineering April 22, 2025 QQ(IT 224

Delete Random Elements

5500 I I I I I I I
5000
4500 ./
/x/
4000 L
X
= 3500 L
2 ¥
w ,
T 3000 5
[¢D) -
o
S 2500
o y_
£ L
2000 2
—-"’5 g
a-- ¥
1500 BT
1000)
orig-STree —+—
LEDA-STree —->--
500 - STLmap --*--
g (2,16)-tree -3
STree —H—-
0 | | | | | | |
1024 4096 16384 65536 218 220 222 23

Sanders: Algorithm Engineering april 22, 2025
Open Problems
| Measurement for “worst case” inputs

[| Measure Performance for realistic inputs
— [P lookup etc.
— Best first heuristics like, e.g., bin packing

| More space efficient implementation

L] (A few) more bits

Karlsruhe Institute of Technology

225

Sanders: Algorithm Engineering april 22, 2025 ﬂ(l'l' 226

5 H I [J Karlsruhe Institute of Technology

“to hash” =~ “to bring into complete disorder”

paradoxically, this helps us to find things
more easily!

store set M C Element.
key(e) is unique for e € M.
support dictionary operations in &'(1) ti

M insert(e : Element): M :=MU{e}
M .remove(k : Key): M :=M\{e},e=k
M find(k : Key): return e € M with e = k; L if none present

(Convention: key is implicit), e.g. e = k iff key(e) = k)

Sanders: Algorithm Engineering April 22, 2025 QQ(IT 227

More Hash Table Operations

insertOrUpdate(e,u): If element ¢’ with key(e) = key(€’) is already
present then update it to u(e’, e)

build: from given elements

doAll: Iterate through all elements in the set, possibly updating or
deleting them.

also init, find, contains, size, sample, clear, join, set operations.
Bulk operations can be faster and more cache efficient.

Deprecated: exposing buckets.

Sanders: Algorithm Engineering April 22, 2025 ﬂ (IT 258
An (Over)optimistic approach

A (perfect) hash function & h =
maps elements of M to

unique entries of table ¢[0..m — 1], i.e.,
t|h(key(e))] = e s

|
\|

Sanders: Algorithm Engineering april 22, 2025 ﬂ(l'l' 229
Collisions

Karlsruhe Institute of Technology

perfect hash functions are difficult to obtain

Example: Birthday Paradoxon

Sanders: Algorithm Engineering april 22, 2025 ﬂ(l'l' 230
Collision Resolution

Karlsruhe Institute of Technology

for example by closed hashing

entries: elements ~~» sequences of elements

Sanders: Algorithm Engineering april 22, 2025 QQ(IT 231

Hashing with Chaining

Implement sequences in closed hashing by singly linked lists
insert(e): Insert e at the beginning of ¢[h(e)|. constant time

remove(k): Scan through ¢]A(k)]. If an element e with h(e) = k is
encountered, remove it and return.

find(k) : Scan through ¢|h(k)].
If an element e with i(e) = k is encountere

return 1t. Otherwise, return L.

O(|M|) worst case time for

remove and find

Sanders: Algorithm Engineering april 22, 2025 QQ(IT 232

Hashing with Linear Probing

Open hashing: go back to original 1dea.
Elements are directly stored in the table.
Collisions are resolved by finding other entries.

linear probing: search for next free place by scanning the table.

Wrap around at the end. h 7m

L] simple

\\[

L space efficient atl

[| cache efficient

Sanders: Algorithm Engineering April 22, 2025 ﬂ (IT 533
The Easy Part

Class BoundedLinearProbing(m,m’ : N; h: Key — 0..m — 1)
t=[L,..., 1] : Array [0..m+m' — 1] of Element
invariant Vi : t[i| # | = Vje {h(t]i])..i—1}:t]li] # L

Procedure insert(e : Element) h =
for i := h(e) to oo while t[i| Z/1 do™;
assert i <m+m' — 1
ti] :==e

Function find(k : Key) : Element M
for i := h(e) to o while ¢|i| # > do
if ¢[i] = k then return ¢|i|
return |

Sanders: Algorithm Engineering April 22, 2025 QQ(IT 234
Remove N

example: t =[..., x ,y,z,...], remove(x)

h(z)
invariant Vi : t|i| # L = Vje {h(t]i])..i— 1} :t]i] # L
Procedure remove(k : Key)
for i := h(k) to oo while k =~ t|i] do // search k
if 7[i] = | then return // nothing to do
// we plan for a hole at i.
for j:=i+ 1 to oo whilez|j| # L do
// Establish invariant for 7| j|.
if 1(z]j]) <ithen
tli] :==t[]] // Overwrite removed element
=] // move planned hole
tli] ==L // erase freed entry

Sanders: Algorithm Engineering april 22, 2025 QQ(IT 235

Robin Hood Hashing

like linear probing but keep elements sorted by their hash

function value.
Advantage: Minimizes maximum search distance.

Disadvantage: More expensive insertion

Sanders: Algorithm Engineering April 22, 2025 QQ(IT 236

AE Details of Linear Probing

] Usually wrap-around rather than m’ “blind” elements.

[] We need a specialized empty element . There are tricks to
circumvent that

| Imsert and unsuccesstul find are slow for high load factors o

T~ ~ 14— 2
fall’\’2 1 —a

= keep o small when space 1s not at a premium

L] That may be add odds with a fast clear operation. There are
tricks to circumvent that.

| Also careful when table 1s supposed to fit into cache.

Sanders: Algorithm Engineering aprii 22, 2025 ﬂ (IT 237
More Hashing Issues

| High probability and worst case guarantees
~» more requirements on the hash functions

L] Space efficiency I: Avoid empty cells, pointers, ...

[]

Space efficiency II: Succinctness — approach lower bound

[]

Adaptive space: space efficiency at all times as the table
grows or shrinks

Referential integrity — allow pointers to elements
Concurrent access
Memory hierarchies

Fast, provably effective hash functions

L1 O O O O

Resilience agains DoS attacks? Encryption?

Sanders: Algorithm Engineering April 22, 2025 QQ(IT 238

Space Efficient Hashing
with Worst Case Constant Access Time
Represent a set of n elements (with associated information)

using space (1 + €)n.
Support operations insert, delete, lookup, (doall) efficiently.

Assume a truly random hash function

Sanders: Algorithm Engineering april 22, 2025 ﬂ(l'l' 239

Related Work it

G
Uniform hashing: hy h, hs

o | =

Expected time ~

Dynamic Perfect Hashing, 10 1N |

[Dietztelbinger et al. 94] °

. | | |
Worst case constant time °
for lookup but € 1s not small. B °

Approaching the Information Theoretic Lower Bound:
[Brodnik Munro 99,Raman Rao 02]

Space (1 + o(1))xlower bound without associated information
[Pagh O1] static case.

Sanders: Algorithm Engineering april 22, 2025 ﬂ(l'l' 240

Cuckoo Hashing

Karlsruhe Institute of Technology

[Pagh Rodler O1] Table of size 2 + €.
Two choices for each element.

Insert moves elements;

rebuild 1f necessary.

Very fast lookup and insert.
Expected constant insertion time.

x :
! --M-ﬂ-/ ale

Sanders: Algorithm Engineering april 22, 2025 ﬂ(l'l' 241

H-ary Cuckoo Hashing |23

Karlsruhe Institute of Technology

H choices for each element.
Worst case H probes for delete and lookup.]

Task: maintain perfect matching

in the bipartite graph

(L = Elements, R = Cells, E = Choices),
e.g., insert by BFS of random walk.

Sanders: Algorithm Engineering april 22, 2025 & (IT ™
EXp eriments Karlsruhe Institute of Technology

5 , . | |

€ * #probes for insert

space utilization

Sanders: Algorithm Engineering april 22, 2025 ﬂ(l'l' 243

Blocked Cuckoo Hashing LY,

Map elements to H blocks of size B.
B

- —

Better space and cache efficiency

Sanders: Algorithm Engineering april 22, 2025 QQ(IT 244

Threshold Values

HB|1 2 3 4 5. 6 7 8
215 897 959 980 .989 .994 .996 .998
3918 988 .997 .9992
41.977 998 .9998 .99997

Sanders: Algorithm Engineering April 22, 2025 QQ(IT 245

Random Walk Based insert(x)

pick any hash function 4;
repeat patience times
k:= h,‘ (x)
if (k| has a free slot then store x there; return
swap x and ¢|k]||j] for random j € 0..B— 1
pick a random A&; with h;(x) #£ k
give up // exception, rehash or grow table

Karlsruhe Institute of Technology

Sanders: Algorithm Engineering april 22, 2025

Cuckoo Insert Example

Sanders: Algorithm Engineering April 22, 2025 QQ(IT 247

BFS Based insert(x)

Use BFS to find shortest path to a free slot.
Variant: Only store queue of explorable blocks without

removing duplicates (rare anyway)
+ Less write operations

+ Allows optimal exploitation of space (without duplicate
removal)

— Additional space for maintaining search frontier

Sanders: Algorithm Engineering April 22, 2025 QQ(IT 248

Blocking and Backyards

Consider Cuckoo Hashing with H = 1. How to insert when a
block 1s full? Idea: bump something to another level of the data

structure — the backyard
h: a—g h—-n o—u v-z

t:[@alg[TTifo[r] ||

h
backyard m

Sanders: Algorithm Engineering april 22, 2025 ﬂ(l'l' 249
Fingerprints

Karlsruhe Institute of Technology

In a block of size B, use ~ log B hash bits of each elements as
fingerprint — say 8 bits.

Bit-parallel or SIMD-parallel search in fingerprints accelerates

uJJIJl_‘?ng;erprint

search.

Sanders: Algorithm Engineering April 22, 2025 QQ(IT 250

Succinct Hash Tables

Simplification for now:
[] Keys are random

] No associated information
(Easy to add back. Just messes up notation here.)

Information theoretic lower bound for storing n elements from a

U U
log () ~ nlog — bits.
n

n

domain of size U

Sanders: Algorithm Engineering April 22, 2025 & (IT o5
Quotienting for “Succinctization” =~

Suppose also for now that there are no hash collisions
(h 1s perfect).

Store x div m in t|x mod m)|.

Retrieve x = t|ilm +i.

Sanders: Algorithm Engineering Apri 22, 2025 & (IT -
Allowing Collisions

Derive “some” information from storage location.

Blocks and Backyards: With M blocks,
store x div M somewhere 1n block x mod M (or bump).
Yields logM = log 7 bits of quotient information.

Slick Hash: (see below) Similar to Blocking.

Cuckoo Hashing: Use H-partite hashing with on subtable of size
7 for each hash function. Continue as above. Yields log 7%
bits of quotient information.

Linear Probing: Cleary’s trick [29]. Use 2—3 bits per table entry
of metadata to track hash values of stored elements.
(also 1n “Quotient Filters™ [30, 31])

Sanders: Algorithm Engineering April 22, 2025 ﬂ (IT)53

Rather than a hash function 4,

use an invertible pseudorandom permutation 7.

For blocked case:

Store 7(x) div M in block 7(x) mod M.

Retrieve x = £~ (ym + i) for a value y stored somewhere in
block i.

Sanders: Algorithm Engineering April 22, 2025 & (IT)54
FaSt PSBlldOI‘and()m Pel'mlltations

Linear congruential:
7t(x):= ax+ c mod U for a relatively prime to U.

71 (y) =a!(y — ¢) where a is a multiplicative inverse of a
(can be computed using the Extended Euclidian Algorithm).

Sanders: Algorithm Engineering April 22, 2025 & (IT
Feistel Permutations T

Consider a hash function 4 : Z,, — Z,, and
my, : Lo — Z,p with m,(x,y) = (y,x+ h(y) mod u) .

ﬂTh_l : Z,p — 7,2 with n}l_l(y,z) = (z—h(y),y) mod u) .

(32, 33, 34]: Chaining 4 Feistel permutations or
linearoFeisteloFeistelolinear 1s cryptographically safe if the As
are cryptographically safe.

f[%) y[%

Sanders: Algorithm Engineering april 22, 2025 ﬂ(l'l' 256
Combining Succinctness and Fingerprints

OTT71TT1]

Tt

e

guotient remainder

Permutations allow us to use a part of the keys as fingerprint.
—=-No space overhead for fingerprints.

Sanders: Algorithm Engineering april 22, 2025 QQ(IT 257

Adaptive Growing (and Shrinking)

Idea: use only little more space then necessary to store the
elements, any time.

see separate slides

Sanders: Algorithm Engineering April 22, 2025 QQ(IT 258

Possible Mini-Projects

Concentrate on space-efficient Slick

Concentrate on fast (unsuccessful) search for Slick
Concentrate on fast build for Slick

Concentrate on fast insert for Slick (SIMD instructions?)
Concentrate on fast backyard cleaning for Slick
Rudimentary succinct Slick?

Rudimentary adaptively growing Slick?

O o o o o o O

Cuckoo with large B and fast fingerprint-based search?
Also Succinct?

[]

Bumbed Robin-Hood Hashing

Sanders: Algorithm Engineering April 22, 2025 ﬂ (IT 55
|:| Bumped BlOCk HaShing Karlsruhe Institute of Technology

L] Linear Cuckoo Hashing

L] ...; your idea here

Sanders: Algorithm Engineering April 22, 2025 ﬂ (IT 260
Summary Hashing

Versatile data structure
Often performance critical
Various space-time-simplicity tradeoffs

Shopping list (considered harmful?)

O O O 0O

Also relevant: Special cases and relaxation — Retrieval,

perfect static hashing, approximate membership filters
(AMQs aka Bloom filters)

| Still active area of research (SIMD; GPU, succinct,
adaptive growing, special cases...)

Sanders: Algorithm Engineering April 22, 2025 & (IT 61
6 Minimum Spanning Trees

undirected Graph G = (V, E).

nodes V,n=1V|,e.g.,V=1{1,...,n}
edgesec€ E,m = |E
edge weight c(e), c(e) € R,.

, two-element subsets of V.

G is connected, 1.e., d path between any two nodes.

Find a tree (V,T) with minimum weight } .7 ¢(e) that connects
all nodes.

Sanders: Algorithm Engineering april 22, 2025 &(IT 262
Basics: Edge property and cycle property
Jarnik-Prim Algorithm
Kruskals Algorithm

Comparison

[]

[]

[]

| Filter-Kruskal
[]

| (Advanced algorithms using the cycle property)
[]

External MST

Sanders: Algorithm Engineering April 22, 2025 ﬂ (IT 263
Applications Karlsruhe Institute of Technology
[] Clustering

] Subroutine in combinatorial optimization, e.g., Held-Karp
lower bound for TSP.
Challenging real world instances???

] Image segementation — [Diss. Jan Wassenberg]

Anyway: almost 1deal “fruit fly” problem

Sanders: Algorithm Engineering April 22, 2025 ﬂ (IT 64
Selecting and Discarding MST Edges

The Cut Property

For any S C V consider the cut edges
C={{uv}€eE:ucSvev\Ss}
The lightest edge in C can be used in an MST.

The Cycle Property 1)=2

The heaviest edge on a cycle 1s not needed for an M?ﬁlﬁg 2
NG

Sanders: Algorithm Engineering april 22, 2025 ﬂ(l'l' 265

uuuuuuuuuuuuuuuuuuuu

1957]

Idea: grow a tree

T:=0

S:= {s} for arbitrary start node s

repeat n — 1 times
find (u,v) fulfilling the cut property for S
S:=SuU{v}
T:=TU{(u,v)}

Sanders: Algorithm Engineering April 22, 2025 ﬂ(l'l'
Implementation Using Priority Queues
Function jpMST(V, E, w) : Set of Edge
dist=|eo, ... o] : Array |1..n]// dist|v] is distance of v from the tree
pred : Array of Edge// pred|v] is shortest edge between S and v
g : PriorityQueue of Node with dist|-] as priority
dist[s| :=0; q.insert(s) for any s € V
fori:=1ton—1do do
u := q.deleteMin() // new node for S
dist[u| :=0
foreach (u,v) € E do
if c((u,v)) < dist[v] then
dist[v] := c((u,v)); pred|v] := (u,v)
if v € g then g.decreaseKey(v) else g.insert(v)
return {pred|v| : v eV \ {s}}

Sanders: Algorithm Engineering april 22, 2025 QQ(IT 267

Graph Representation for Jarnik-Prim

We need node — incident edges

1 N 5=n+1
VII I3T517]9;
El21(4 (1 [3[2[4] 113
cl5 19151717121 219
1 m 8=m+1

+ fast (cache efficient)
+ more compact than linked lists
— difficult to change

— Edges are stored twice

Sanders: Algorithm Engineering april 22, 2025 ﬂ(l'l' 268
Analysis

1 &(m—+ n) time outside priority queue

[] n deleteMin (time &'(nlogn))

] &'(m) decreaseKey (time ¢'(1) amortized)

~» O'(m+ nlogn) using Fibonacci Heaps

practical implementation using simpler pairing heaps.

But analysis 1s still partly open!

Sanders: Algorithm Engineering April 22, 2025 ﬂ (IT 260
Kruskal’s Algorithm [1956]

T:=0 // subforest of the MST
foreach (u,v) € E in ascending order of weight do
if # and v are 1n different subtrees of 7" then
T :=TU{(u,v)} // Join two subtrees
return 7'

Sanders: Algorithm Engineering April 22, 2025 ﬂ(l'l' 270
Union-Find Datenstruktur

Verwalte Partition der Menge 1..n, d. h., Mengen (Blocks)

M;i,. .. ,M; mit '
MU~ UM = 1 A

\V/i#jIMiﬂMj:@
Class UnionFind(n : N)

Procedure union(i,j : 1..n) @ @

join the blocks containing i and j to a single block. ¥ union
Function find(i : 1..n) : 1..n

return a unique identifier for the block containing i.

Sanders: Algorithm Engineering April 22, 2025 ﬂ(l'l' 271
Union-Find Datenstruktur — Erste Version

Class UnionFind(n : N)
parent=(1,2,....,n) : Array [1..n] of 1..n : ?@
n

invariant parent-refs lead to unique Partition-Reps

Function find(i : 1..n) : 1..n _ ,
| parent|[i]

if parent|i| = i then return i *-0--—@)
else return find(parent|i])

Sanders: Algorithm Engineering April 22, 2025 ﬂ(IT
Union-Find Datenstruktur — Erste Version

Class UnionFind(n : N)
parent=(1,2,...,n) : Array |1..n| of 1..n ?@
N

invariant parent-refs lead to unique Partition-Reps

Function find(i : 1..n) : 1..n _ _
| parent[i]

if parent|i| = i then return i o-0+—8¢)
else return find(parent|i])

Procedure link(i, j : 1..n)
assert i and j are representatives of different blocks

s, AR

Procedure union(i, j : 1..n)
if find(i) # find(j) then link(find(7), find(;

Sanders: Algorithm Engineering april 22, 2025 &(IT 273
Union-Find Datenstruktur — Erste Version =~

Analyse:
-+: union braucht konstante Zeit

—: find braucht Zeit ®(n) im schlechtesten Fall ! | parent[i]
o0

—¢)

zu langsam.

Idee: find-Pfade kurz halten

Sanders: Algorithm Engineering April 22, 2025

Pfadkompression

Class UnionFind(n : N)
parent=(1,2,....,n) : Array [1..n] of 1..n

Function find(i : 1..n) : 1..n
if parent|i] = i then return i

else i’ := find(parent[])

parent[i] := i’
return 7’

Sanders: Algorithm Engineering April 22, 2025 ﬂ (IT 575
Union by Rapnk et sty

Class UnionFind(n : N)
parent=(1,2,....,n) : Array [1..n] of 1..n ? @@
2 N

rank=(0,...,0) : Array [1..n] of 0..logn

Procedure link(i, j : 1..n)
assert i and j are representatives of dlfferent blocks

if rank[i| < rank|j| then parent|i| 8 > ﬁ
else
FERrS
if rank|i| = rank|j| then rank|i]++

Sanders: Algorithm Engineering April 22, 2025 ﬂ(l'l' 276
Space Efficient Union by Rank B

Class UnionFind(n : N) // Maintain a partition of 1..n
parent=n+1,...,n+ 1] : Array [1..n] of 1..n+ [logn|
Function find(i: 1..n) : 1..n @_@

if parent|i| > n then return i
else i’ := find(parent[]) (4) (3
parent[i] := 7 parent:
return ;/ Y hr:g\%
Procedure link(i, j : 1..n) i 212 i f f

assert i and j are leaders of different subsets

if parent|i] < parent|j] then parent|[i] := j

else if parent|i| > parent|j| then parent|j| := i

else parent|j| :=i; parent|i|++ // next generation
Procedure union(i, j) if find(i) # find(j) then link(find (i), find(j))

Sanders: Algorithm Engineering April 22, 2025

Kruskal Using Union Find

T : UnionFind(n)
sort £ 1n ascending order of weight
kruskal(E)

Procedure kruskal(F)
foreach (u,v) € E do
u':= T.find(u)
v':=T.find(v)
if ' # ' then
output (u,v)
T .link(u' V")

Karlsruhe Institute of Technology

Sanders: Algorithm Engineering april 22, 2025

Graph Representation for Kruskal

Just an edge sequence (array) !
+ very fast (cache efficient)
+ Edges are stored only once

~~ more compact than adjacency array

Karlsruhe Institute of Technology

Sanders: Algorithm Engineering april 22, 2025 ﬂ(l'l' 279

Karlsruhe Institute of Technology

Analysis

O (sort(m) +ma(m,n)) = O(mlogm) where « is the inverse
Ackermann function

Sanders: Algorithm Engineering april 22, 2025 QQ(IT 280

Kruskal versus Jarnik-Prim I

| Kruskal wins for very sparse graphs
] Prim seems to win for denser graphs

L1 Switching point is unclear
— How 1s the input represented?

— How many decreaseKeys are performed by JP?
(average case: nlog ”> [Noshita 85])

— Experimental studies are quite old [Moret Shapiro 911,
use slow graph representation for both algs,

and artificial inputs

see attached slides.

Sanders: Algorithm Engineering April 22, 2025 ﬂ(l'l' 281
6.1 Filtering by Sampling Rather Than Sorting

R:=random sample of r edges from E

F :=MST(R) // Wlog assume that F spans V
L:=0 /l “light edges” with respect to R
foreach e € £ do // Filter

C := the unique cycle in {e} UF
if e 1s not heaviest in C then
L:=LU{e}
return MST((LUF))

Sanders: Algorithm Engineering April 22, 2025 ﬂ (IT »9)
60 1) 1 AnalySiS Karlsruhe Institute of Technology

[Chan 98, KKK 95]

Observation: e € L only if e € MST(RU{e}).
(Otherwise e could replace some heavier edge in F).

Lemma 1. E[|[LUF|] < ™2

Sanders: Algorithm Engineering April 22, 2025 ﬂ (IT -93
MST Verification by Interval Maxima

[| Number the nodes by the order they were added to the MST
by Prim’s algorithm.

L1 w; = weight of the edge that inserted node 1i.

[] Largest weight on path(u,v) = max{w; :u < j <v}.

0 1 4 3 5 8 0 1 4 3 5 8

Sanders: Algorithm Engineering april 22, 2025 QQ(IT 284

Interval Maxima

Preprocessing: build =
9

8|98 | 98|98 | 75| 75| 75| 56| 34 520 794 77 7Y 7¢r 77 80Level3

nlogn size array

Presuf 98 | 98| 98| 98 | 15| 65| 75 75 77 74 77T 41 6R 74 76 80Level 2

88 | 88| 30| 98| 65 65| 75| 75 52| 52 74 77 T4 74 76 8OLevell

88 | 56| 30| 98 | 15| 65| 75| 56| 34| 52 77 41 62 74 76 80 LevelO

To find maxali..j]: 5 ;
] Find the level of the LCA: /= [log, (i j)].
] Return max(PreSuf|/][i], PreSuf[¢]|j]).

1 Example: 26 =010¢110=100= ¢ =2

Sanders: Algorithm Engineering April 22, 2025 ﬂ(l'l' 285
A Simple Filter Based Algorithm

Choose r = /mn.

We get expected time

mn
T = Tpim(vmn) + O (nlogn +m) + Tpyim (—==)

/mn
= Tprim (vmn) + O (nlogn+m)

= O (nlogn+ vmn)+ O(nlogn-+m)
———
o(nlogn+ m)

The constant factor in front of the m 1s very small.

Sanders: Algorithm Engineering april 22, 2025

Results

Karlsruhe Institute of Technology

10 000 nodes, SUN-Fire-15000, 900 MHz UltraSPARC-II1+

Time per edge [ns]

600

500

400

300
200
100

0

- Worst Case Graph

Prim ——
FiIFer

%---

010203040506070809 1

Edge density

Sanders: Algorithm Engineering april 22, 2025

Results

Karlsruhe Institute of Technology

10 000 nodes, SUN-Fire-15000, 900 MHz UltraSPARC-II1+

Time per edge [ns]

°00 " Randorh GfapH

500
400
300
200
100

0

~ Prim —+—

FiIFer

%---

010203040506070809 1

Edge density

Sanders: Algorithm Engineering april 22, 2025 ﬂ(l'l' 288

Results - B
N Prim (Scalar) —+— _ 10 000 nodes
1400 I-Max (Scalar) ----e--- ’
Prim (Vectorized) ------ NEC SX-5
n I-Max (Vectorized) ----&--. _ :
1200 Vector Machine
—_ “worst case”
2 1000 k-
) k-
3
S 800 -
= 5
o S
o 600 -
= o
= o
e
400 "“\o---_. 7]
200 + “~- -
A~ TTo-A
A A, A A a
O | | | | | | | | |

0.102030405060.70809 1
Edge density

Sanders: Algorithm Engineering April 22, 2025 ﬂ (IT 289
Edge Contraction

Let {u,v} denote an MST edge.

Eliminate v:

forall (w,v) € E do
E :=E\ (w,v)U{(w,u)}// but remember original terminals

7 (was {2,3})

Sanders: Algorithm Engineering April 22, 2025 & (IT 260
BOI‘UVka,S NOde RedllCtiOl'l Algorithm Karlsruhe Institute of Technology

For each node find the lightest incident edge.
Include them into the MST (cut property)
contract these edges,

Time &' (m)

At least halves the number of remaining nodes

Sanders: Algorithm Engineering april 22, 2025 &(IT 291
6.2 Simpler and Faster Node Reduction

for i := n downto n' + 1 do
pick a random node v
find the lightest edge (u,v) out of v and output it
contract (u,v)

E|degree(v)] < 2m/i
2m 1 1

Z 72m< Z — Z T)zZm(lnnlnn')Zmln%

n'<i<n 0<i<n 0<i<n/ !

(117 (was {2,3})
/ output {1,2} ’ ‘ output {2 3}9 (was {1.4})
5 (43 7

Sanders: Algorithm Engineering April 22, 2025 ﬂ (IT .
6.3 Randomized Linear Time Algorithm

1. Factor 8 node reduction (3 x Boruvka or sweep algorithm)
O(m+n).

2. R<= m/2 random edges. O(m-+n).
3. F <= MST(R) [Recursively].
4. Find light edges L (edge reduction). &' (m+n)

E[IL[] < 2% — n/4

5. T <= MST(LUF) [Recursively].

T(n,m)<Tn/8m/2)+T(n/8 n/4)+c(n+m)
T (n,m) < 2c(n+ m) fulfills this recurrence.

Sanders: Algorithm Engineering April 22, 2025 ﬂ (IT 203
6.4 External MSTs i

Semiexternal Algorithms

Assume n < M — 2B:
run Kruskal’s algorithm using external sorting

Sanders: Algorithm Engineering April 22, 2025 & (IT 204
Streaming MSTs

If M is yet a bit larger we can even do it with m/B 1/Os:

T:=0 // current approximation of MST
while there are any unprocessed edges do

load any ®(M) unprocessed edges E’

T:=MST(TUE") // for any internal MST alg.

Corollary: we can do 1t with linear expected internal work

Disadvantages to Kruskal:
Slower 1n practice

Smaller max. n

Sanders: Algorithm Engineering April 22, 2025 ﬂ (IT 205
General External MST

while n > M — 2B do
perform some node reduction

use semi-external Kruskal

m/n I *.
n

n'<m

Theory: &'(sort(m)) expected I/Os by externalizing the linear
time algorithm.
(1.e., node reduction + edge reduction)

Sanders: Algorithm Engineering april 22, 2025 QQ(IT 296

External Implementation I: Sweeping
7 : random permutation V — V
sort edges (u,v) by max(7w(u),(v))
for i := n downto ' + 1 do
pick the node v with (v) =i

find the lightest edge (u,v) out of v and output it
contract (u,v)

sweep line
—=

Problem: how to implement relinking?

output

\’ie.l,ink

relink

Sanders: Algorithm Engineering april 22, 2025 &(IT 297
Relinking Using Priority Queues
Q: priority queue // Order: max node, then min edge weight
foreach ({u,v},c) € E do Q.insert(({zw(u),n(v)},c,{u,v}))
current :=n+ 1
loop

({u,v},c,{ug,vo}) := Q.deleteMin()

if current# max {u, v }then sweep ling

é

output
if current= M + 1 then return N\

_ \h\zelink
output {ug,vo},c @j :
current := max {u,v}

connect := min{u, v} relink

else Q.insert(({min{u,v},connect},c,{ug,vo}))

~ sort(10mIn §7) I/Os with opt. priority queues [Sanders 00]
Problem: Compute bound

Sanders: Algorithm Engineering April 22, 2025 &(IT 208
Sweeping Wlth linear internal WOl'k

() Assume m = ¢ (M?*/B)
[] k= ©®(M/B) external buckets with n/k nodes each
[1 M nodes for last “semiexternal” bucket

] split current bucket into

internal buckets for each node
current externakternal semiexterne

e
(e 000000000000
Sweeping: U S L y | q | q |
Scan current internal bucket twice:

H
1. Find minimum H %
internal

2. Relink

New external bucket: scan and put in internal buckets

Large degree nodes: move to semiexternal bucket

Sanders: Algorithm Engineering April 22, 2025 ﬂ (IT 599
Experiments RS

Instances from “classical” MST study [Moret Shapiro 1994]

| sparse random graphs

2X Xeon

[] metric graph
random geometric graphs 4 Threads

400x64 Mb/s

L] grids Intel 1GB

E7500 @ DDR

O (sort(m)) 1/Os Chipset [~ RAM
for planar graphs by 2x64x66 Mbl/s " PCl-Busses

.
R, AT EN

4x2x100

removing parallel edges! Y5/ Lk Controller

. ol Channels

Other instances are rather dense Bxad So88 Criurn 8x80

Sanders: Algorithm Engineering April 22, 2025 QQ(IT 300

Karlsruhe Institute of T

m=2n

6 I 1 I 1 1 1 I LI 1 1 I LI 1 1 I LI 1 1 I LI 1 1 I LI 1 1 I LI 1 1
Kruskal —+—
Prim —->-- K
random ---X--
5 |- geometric - L
grid —#—- x
o
4 - . —
- A TR
ﬁ /,/ . ‘M
= o 2 R
- 3 F 'I,./"/ ‘i
= .’/
---------- :'_’@k'_”_ﬂ_ﬂw-%/
X Qﬁ-—'-;--l '''' -
2 N7 —
1l +——7"
1 - —_
I 1 I 1 1 1 I Ll 1 1 I Ll 1 1 I Ll 1 1 I Ll 1 1 I Ll 1 1 I Ll 1 1
5 10 20 40 80 160 320 640 1280 2560

m /1 000 000

Sanders: Algorithm Engineering april 22, 2025 QQ(IT 301

Karlsruhe Institute of T

m = 4n

6 I 1 I 1 1 1 I LI 1 1 I LI 1 1 I LI 1 1 I LI 1 1 I LI 1 1 I LI 1 1
Kruskal ——
Prim -->--)
random ---X---
5 |- geometric - -
?K’
4 ,'I —_
) =N
= e
£
= 3r ' .
...... =0
------------------- g ii.---X
2 E% _____ B_>K - oK -
- X .
1T | | —
I 1 I 1 1 1 I | 1 1 I Ll 1 1 I | 1 1 I Ll 1 1 I Ll 1 1 I Ll 1 1
5 10 20 40 80 160 320 640 1280 2560

m /1 000 000

Sanders: Algorithm Engineering april 22, 2025 QQ(IT 302

m % 8n Karlsruhe Institute of T
6 I 1 I 1 1 1 I LI 1 1 I LI 1 1 I LI 1 1 I LI 1 1 I LI 1 1 I LI 1 1
Kruskal ——
Prim —-->--
random ---K--
5 |- geometric -3 -
K
4 [
B in
= /.
3T 7
2= gz B R -
E;K‘ """ _E'%K """"" E% E%
1= | —+ -
K ————- X
I 1 I 1 1 1 I 1Ll 1 1 I | 1 1 I 1Ll 1 1 I | 1 1 I | 1 1 I | 1 1
5 10 20 40 80 160 320 640 1280 2560

m /1 000 000

Sanders: Algorithm Engineering april 22, 2025 &(IT 303
[| Edge reduction helps for very dense, “hard” graphs

] A fast and simple node reduction algorithm
~ 4x less I/0s than previous algorithms

[| Refined semiexternal MST, use as base case

L] Simple pseudo random permutations (no I/Os)
[A fast implementation

] Experiments with (at that time) huge graphs (up to
n = 4-10’ nodes)

External MST is feasible

Sanders: Algorithm Engineering April 22, 2025 ﬂ (IT 204
Conclusions

] Even fundamental, “simple” algorithmic problems

still raise interesting questions

| Implementation and experiments are important and were

neglected by parts of the algorithms community

] Theory an (at least) equally important, essential component
of the algorithm design process

Sanders: Algorithm Engineering April 22, 2025 QQ(IT 305

Open Problems
[] New experiments for (improved) Kruskal versus
Jarnik-Prim
] Realistic (huge) inputs

| Parallel and/or external algorithms
Matthias Schimek just did this

[| A practical linear time Algorithm

| Implementations for other graph problems

Sanders: Algorithm Engineering April 22, 2025 ﬂ(l'l' 306

More Algorithm Engineering on Graphs

| Parallel algorithms

| Graph partitioning ~~ KaHiP

| Hypergraph partitioning ~~ KaHyPar
| Graph generators ~~ KaGen

| Independent sets

L Route planning

Sanders: Algorithm Engineering april 22, 2025 ﬂ(l'l' 307

Karlsruhe Institute of Technology

Maximal Flows

Theory: O (mA log(n?/m)logU) binary blocking
flow-algorithm mit A = min{ml/ 2, n2/3 } [Goldberg-Rao-97].
Problem: best case ~ worst case

[Hagerup Sanders Tratf WAE 98]:
| Implementable generalization
L] best case < worst case

| best algorithms for some “difficult” instances

Sanders: Algorithm Engineering april 22, 2025 ﬂ(IT
More On Experimental Methodology o

Scientific Method:

[] Experiment need a possible outcome that falsifies a
hypothesis

[| Reproducible
— keep data/code for at least 10 years

4 N

— clear and detailed algorithm ‘
T . ' ' inputs |
description in papers / TRs ~ ©9"e¢"9 benchmarks ¥
/(design %
— share instances and code V iasitiable ¢ =1
[analysis hypotheses experiments }0— 8
: induction —
deduyction o
berformance ‘ implementation ¢ appl. engin. a
guarantees v
algorithm |
libraries | e

. /

Sanders: Algorithm Engineering april 22, 2025 ﬂ(l'l' 309

Karlsruhe Institute of Technology

Quality Criteria

| Beat the state of the art, globally — (not your own toy codes
or the toy codes used 1n your community!)
L] Clearly demonstrate this !

— both codes use same data ideally from accepted
benchmarks (not just your favorite data!)

— comparable machines or fair (conservative) scaling

— Avoid uncomparabilities like: “Yeah we are worse but
twice as fast”

— real world data wherever possible
— as much different inputs as possible

— 1ts fine 1f you are better just on some (important) inputs

Sanders: Algorithm Engineering April 22, 2025 QQ(IT 310

Not Here but Important

| describing the setup
] finding sources of measurement errors

| reducing measurement errors (averaging, median,unloaded
machine. . .)

[] measurements in the creative phase of experimental
algorithmics.

Sanders: Algorithm Engineering April 22, 2025 QQ(IT

The Starting Point

L] (Several) Algorithm(s)

1 A few quantities to be measured: time, space, solution
quality, comparisons, cache faults,. .. There may also be

measurement errors.

[| An unlimited number of potential inputs. ~» condense to a
few characteristic ones (size, |V|, |E|, ... or problem

instances from applications)

Usually there is an abundance of data (was: # many other

sciences)

311

Sanders: Algorithm Engineering april 22, 2025 & (IT 210
The Process

Waterfall model?
1. Design

2. Measurement
3. Interpretation

Perhaps the paper should at least look like that.

Sanders: Algorithm Engineering april 22, 2025 ﬂ (IT 213
The Process

| Eventually stop asking questions (Advisors/Referees listen
)

] build measurement tools

[| automate (re)measurements

| Choice of experiments driven by risk and opportunity

| Distinguish mode

explorative: many different parameter settings, interactive,
short turnaround times

consolidating: many large instances, standardized
measurement conditions, batch mode, many machines

Sanders: Algorithm Engineering april 22, 2025 QQ(IT 314

Of Risks and Opportunities

Example: Hypothesis = my algorithm 1s the best
big risk: untried main competitor
small risk: tuning of a subroutine that takes 20 % of the time.

big opportunity: use algorithm for a new application

~> NEew Input instances

Sanders: Algorithm Engineering April 22, 2025 ﬂ (IT 315
Presenting Data from Experiments in

Algorithmics

Restrictions

] black and white ~~ easy and cheap printing
(Now: Few colors, distinguishable on different beamers or
screen, 1deally readable when printed b/w)

L] 2D (stay tuned)
[| no animation

[| no realism desired

Sanders: Algorithm Engineering April 22, 2025 ﬂ (IT 216
Basic Principles

[] Minimize nondata ink

(form follows function, not a beauty contest,. . .)
[] Letter size ~ surrounding text
L] Avoid clutter and overwhelming complexity
1 Avoid boredom (too little data per m?).

[| Make the conclusions evident

Sanders: Algorithm Engineering April 22, 2025 QQ(IT 317

Tables

+ easy
— easy ~» overuse
accurate values (£ 3D)

more compact than bar chart

+ 4+

good for unrelated instances (e.g. solution quality)
— boring
— no visual processing

rule of thumb that “tables usually outperform a graph for small
data sets of 20 numbers or less” [Tufte 83]

Curves 1n main paper, tables in appendix?

Sanders: Algorithm Engineering april 22, 2025 ﬂ(l'l' 318

2D Figures

Karlsruhe Institute of Technology

default: x = input size, y = f(execution time)

Sanders: Algorithm Engineering april 22, 2025

x AXxIs

Choose unit to eliminate a parameter?

*

*

*

improvement min(T {,T)/T «

1.8

1.7

1.6

1.5

1.4

1.3

1.2

1.1

AT 7

Karlsruhe Institute of T

1 1 I 1
P=64
P=1024
P=16384

100

1000

it

10000

100000

length £ fractional tree broadcasting. latency 7o + k

1e+06

Sanders: Algorithm Engineering april 22, 2025

x AXxIs

logarithmic scale?

*

*

*

improvement min(T {,T)/T «

1.8

1.7

1.6

1.5

1.4

1.3

1.2

1.1

AT 7

Isruhe Institute of Te

vl
P=64
P=1024
P=16384

yes 1f x range 1s wide

100

1000

it

10000

100000

1e+06

Sanders: Algorithm Engineering April 22, 2025

x AXxIs

logarithmic scale, powers of two (or v/2)

1024 4096 16384 65536 218

) I I I I

2 - - bottom up binary heap 45
— - >|< - bottom up aligned 4-ary heap o

o 150 [7 (- sequence heap) _
’?S o x

g /,'g%/%

= 100;.;__%__%_>|é xx %/@, -
+ g o-0 -0 OTEr

~ E| ----- =

= Eee 3 EEES S oy

= 50 I ™
@

3

- 0 ! ! ! ! ! |

N

with tic marks, (plus a few small ones)

Technology

321

Sanders: Algorithm Engineering april 22, 2025 QQ(IT 322

gnuplot
set xlabel "N"
set ylabel " (time per operation)/log N [ns]"

set
set
set
set
set
set

set

plot

xtics (256, 1024, 4096, 16384, 65536, "27{18}" 262144
size 0.66, 0.33

logscale x 2

data style linespoilnts

key left

terminal postscript portrait enhanced 10

output "rl10000timenew.eps"
[1024:10000000][0:220]\

"h2r10000new.log" using 1:3 title "bottom up binary heap

"h4r10000new.log" using 1:3 title "bottom up aligned 4-a

"knrl0000new.log" using 1:3 title "sequence heap" with 1

Sanders: Algorithm Engineering april 22, 2025

Data File

256 703.125 87.89060

512 729.167 81.0185
1024 768.229 76.8229
20438 830.078 75.4616
4096 346.354 70.5295
8192 878.906 67.6082
16384 915.527 65.3948
32763 925.7 61.7133
65536 946.045 59.1273
131072 971.476 57.1457
2062144 1009.62 56.0902
524288 1035.69 54.51
1048576 1055.08 52.7541
2097152 1113.73 53.0349
4194304 1150.29 52.2859
8388608 1172.62 50.9836

Karlsruhe Institute of Technology

Sanders: Algorithm Engineering april 22, 2025

x AXxIs

linear scale for ratios or small ranges (#processor,. . .)

Time per edge [ns]

I I X T

Karlsruhe Institute of Technology

600 [T
500
400
300

200 —
100 Prim —+— 7
Filter ---x---
O | | | | | | | | |

01 02030405060.70809 1

Edge density

Sanders: Algorithm Engineering April 22, 2025

x AXxIs

An exotic scale: arrival rate 1 — € of saturation point

average delay

8

AT -

Karlsruhe Institute of T

| | | | | | X | |
—--X--- nonredundant
--X--- mirror
[- ring shortest queue X u
—-#—- ring with matching %
6 --© —-- shortest queue g _
5 />< ,)K/
X .
e ¥
4 X K N
/)(>|é/
3 >< ’%)K —
g ey
2 = A0 6-0-0-0-09
IO SR 2 O-60-0-0-00
,%j/gﬂ-ﬁg-%e 6
1[“# | | | | | | | |
2 4 6 8 10 12 14 16 18 20

Sanders: Algorithm Engineering April 22, 2025 QQ(IT

y AXIS
Avoid log scale ! scale such that theory gives ~ horizontal lines
) I I I I
ﬁ --O--- bottom up binary heap »b
- - >|< - bottom up aligned 4-ary heap o
> 150 8- sequence heap > .
O ’
= K
2 2K
E 100 =
= T *-oxx x—%--é_gﬁ(
+ -8 e-0 -9 O
E e S S = -
= 50t THeEegegegegeg
ko
Q
=
- 0 ! ! ! ! ! L
1024 4096 16384 65536 28 220 22,23

N
but give easy interpretation of the scaling function

Sanders: Algorithm Engineering april 22, 2025

y AXis

give units

Karlsruhe Institute of Technology

Iy I I I

ﬁ - - bottom up blnary heap »b

- - >|< - bottom up aligned 4-ary heap o

o 150 B+ sequence heap o .

= o K

= R

E 100 %—%~~>|é"}K‘"%"*"%"—é{";@“ N

-0 -0 O YT

+ P B

= | A =

s sof 78885005

©

Q

©

- 0 | | | | | L
1024 4096 16384 65536 218 220 522,23

N

Sanders: Algorithm Engineering April 22, 2025

y AXis

start from O if this does not waste too much space

(T(deleteMin) + T(insert))/log N [ns]

Karlsruhe Institute of Technology

I I I I
--O--- bottom up binary heap ,b
- >|< - bottom up aligned 4-ary heap o
150 L 8- sequence heap > .
/'/ ~>K/
/'/CD ,~>K/
. ;K’
100)?%%%%%%—% -
PG oo e
= =
50 Hef-8egegegeoge =
0]]]]]]]
1024 4096 16384 65536 218 020 22,23
N

you may assume readers to be out of Kindergarten

Sanders: Algorithm Engineering April 22, 2025

y AXis

clip outclassed algorithms

average delay

8 1 | ! | | N G |
—--X--- nonredundant ,
--3--- mirror X
7 [8- ring shortest queue X u
—-#—- ring with matching %
6 --© —-- shortest queue g _
X
5 />< ,)K/
X e
X *
4 />< %% X —
/)(K
3 — >< >K’,>K —
s ,~>K/ = e R o
2 b X § i:ﬁ:ﬂj“ﬁﬂgiiﬁ
_/ K - o o - O- o -O-0--0- U~
,%:Q/QE—%-E-%G ©
1[“# | | | | | | | |
2 4 6 8 10 12 14 16 18 20

Sanders: Algorithm Engineering april 22, 2025

y AXis

AT 7

Karlsruhe Institute of T

vertical size: weighted average of the slants of the line segments
in the figure should be about 45°[Cleveland 94]

1.8
1.7
yu
5 18
=
LF 15
c
£
E 14
=
(O]
1.3
(]
>
(@)
s 12
E
1.1
1

1 1 I 1
P=64
P=1024
P=16384

1 1 I 1
7’

100

1000

kit

10000

100000

1le+06

Sanders: Algorithm Engineering april 22, 2025

y AXis

AT

Karlsruhe Institute of T

graph a bit wider than high, e.g., golden ratio [Tufte 83]

1-8 || I I II I 1 II
P=64
| - P=1024
. L P=16384
|_
A 1.6
=
* ‘_' 15 -
-
= /
E 14 s
£ 13} S
G>J p
(@]
5 12}
E
1.1
1 II [II

100 1000

it

10000

100000

1e+06

Sanders: Algorithm Engineering april 22, 2025 QQ(IT 332

Multiple Curves

+ high information density
+ better than 3D (reading off values)
— Easily overdone

<7 smooth curves

Sanders: Algorithm Engineering April 22, 2025

Reducing the Number of Curves

use ratios

AT 7

Karlsruhe Institute of T

1-8 || I I II I 1 II
P=64
| - P=1024
. L P=16384
|_
A 1.6
=
x ‘_' 15 -
-
= ,/
E 14 s
£ 13} S
G>) p
(@]
5 12}
E
1.1
1 II [II
10 100 1000

it

10000

100000

1e+06

Sanders: Algorithm Engineering april 22, 2025 & (IT 234
Reducing the Number of Curves

omit curves
| outclassed algorithms (for case shown)

| equivalent algorithms (for case shown)

Sanders: Algorithm Engineering April 22, 2025

Reducing the Number of Curves

Karlsruhe Institute of T

ﬂ(lT 335

split into two graphs

8 I I I I I

X | |
—--X--- nonredundant ,
--3--- mirror X
7 [8- ring shortest queue X u
—-#—- ring with matching %
6 --© —-- shortest queue g _
, K
8 X x X
S S X X -
> X o X
E ’ }K’/
g I X 7 ~
© X %%
3 — /X/ ’%)K —
x’x X R .
2 , - _ . _ ©-0-49
J X - - LO-0--60-0 o -0
jﬁg@fﬁ-ﬁgge S
1[“# | | | | | | | |
2 4 6 8 10 12 14 16 18 20

Sanders: Algorithm Engineering april 22, 2025

Reducing the Number of Curves

split into two gr‘gphls

average delay

1.8

1.6

1.4

1.2

Ka

rlsruhe Institute of

I I I I I I I o

--© -- shortest queue oY
---A- - hybrid o © A
—<— lazy sharing o) A-DTS

— —--w¥-- matching O =

=

| | | | | | | | |
2 4 6 8 10 12 14 16 18

1/e

20

arlsruhe Institute o

Sanders: Algorithm Engineering April 22, 2025 ﬂ (IT 137
Keeping Curves apart: smoothing

8 I I

[[[[X I I
—--X--- nonredundant ,
-- K-~ mirror X
7 [8- ring shortest queue X —
—-#—- ring with matching %
6L —©— shortest queue . _
~ XK
E /X)K”}K .
S 2 X ¥ -
S P "
© / «
s 4T X - _
©)(v N
3 B /X/ ,>K">K ‘_H
X g
2EX o x g ‘*E:%Eg—g—g_ggji - ©-0-9
’ /jj/@ﬁ—% & -0-©
1"’# | | | | | | | |

Sanders: Algorithm Engineering April 22, 2025 QQ(IT 338

Keys

8 1 | ! | | N G |
—--X--- nonredundant g
--3--- mirror X
7 [8- ring shortest queue X u
—-#—- ring with matching %
6 --© —-- shortest queue N _
, K
T X K
8 5| % X -
> X s¢ - K
© g N
g I X x ~
©)(¢ X
3 — /X/ ’%)K —
< - gy
2 - - = e o-00-©0-09
) X _ ool 0-6-0-0©-0 €
,%’Q/QE—%-E-%G ©
1[“# | | | | | | | |
2 4 6 8 10 12 14 16 18 20
1/e

same order as curves

Sanders: Algorithm Engineering april 22, 2025 &(IT 339
Keys

place in white space

2 I

| I I I I I ©
--© —- shortest queue Q/é ©
---Ac- - hybrid o © A
—<— lazy sharing o -
1.8 - --w-- matching < P
oY

1.6

1.4

average delay

1.2

2 4 6 8 10 12 14 16 18 20
1/¢

consistent in different figures

Sanders: Algorithm Engineering april 22, 2025 ﬂ(l'l' 340
Todsunden

Karlsruhe Institute of Technology

1. forget explaining the axes

2. connecting unrelated points
by lines

3. mindless use/overinterpretation § &

of double-log plot
cryptic abbreviations

microscopic lettering

AN

excessive complexity

7. pie charts

Sanders: Algorithm Engineering April 22, 2025 ﬂ (IT o
Arranging Instances

| bar charts
| stack components of execution time

| careful with shading

preprocessing
phase 1

] phase 2
Bl postprocessin

Sanders: Algorithm Engineering april 22, 2025

Arranging Instances

scatter plots

n / active set size

1000

100

10

n/m

I LA
f T
_ + .
- + -
= —|_ -

4+
3 + e+ T E
C + + :
B 4 + -
_ + + 4
- _|___l:'__ _
_ + -
o
f + f
[[L_L L1 III [[L1l III [[L_L L1 III [
1 10 100 1000

Technology

342

Sanders: Algorithm Engineering April 22, 2025 QQ(IT 343

Measurements and Connections

| straight line between points do not imply claim of linear

interpolation
| different with higher order curves

] no points imply an even stronger claim. Good for very

dense smooth measurements.

Sanders: Algorithm Engineering april 22, 2025 QQ(IT 344

Grids and Ticks

L] Avoid grids or make it light gray
] usually round numbers for tic marks!

[| sometimes plot important values on the axis

Sanders: Algorithm Engineering April 22, 2025 ﬂ (IT 245
Representing Distributions

e.g., when measurements are repeated. Levels of “Escalation”

| Just Average or Median
[1 Average/Median and Min/Max or empirical variance
[| Box-Whisker-Plot: Median, Quartile, “Whiskers”, outlier

[] Violin plot or histogram

unterer unteres oberes oberer
"Whisker" Quatrtil Median Quartil "Whisker"

AusreiBBer |
—

-15 -10 -5 0 5

Sanders: Algorithm Engineering april 22, 2025 QQ(IT 346

3D

— you cannot read off absolute values
— 1Interesting parts may be hidden

— only one surface

+ good impression of shape

| Perhaps good in an interactive context?

Sanders: Algorithm Engineering april 22, 2025 ﬂ(l'l' 347

Caption

Karlsruhe Institute of Technology

what 1s displayed
how has the data been obtained

surrounding text has more.

Sanders: Algorithm Engineering April 22, 2025 QQ(IT 348

Check List

| Should the experimental setup from the exploratory phase
be redesigned to increase conciseness or accuracy’?

] What parameters should be varied? What variables should
be measured? How are parameters chosen that cannot be
varied?

[]

Can tables be converted into curves, bar charts, scatter plots
or any other useful graphics?

Should tables be added 1n an appendix or on a web page?
Should a 3D-plot be replaced by collections of 2D-curves?

Can we reduce the number of curves to be displayed?

1 O O O

How many figures are needed?

Sanders: Algorithm Engineering April 22, 2025 ﬂ(l'l' 349
[] Scale the x-axis to make y-values independent of some

parameters”?

] Should the x-axis have a logarithmic scale? If so, do the
x-values used for measuring have the same basis as the tick

marks?

] Should the x-axis be transformed to magnify interesting
subranges?

[]

Is the range of x-values adequate?

| Do we have measurements for the right x-values, 1.e.,

nowhere too dense or too sparse?

] Should the y-axis be transformed to make the interesting
part of the data more visible?

] Should the y-axis have a logarithmic scale?

Sanders: Algorithm Engineering April 22, 2025 ﬂ(l'l' 350

[] Is it be misleading to start the y-range at the smallest
measured value?

L] Clip the range of y-values to exclude useless parts of
curves?

Can we use banking to 45°?
Are all curves sufficiently well separated?

Can noise be reduced using more accurate measurements?

1 O O O

Are error bars needed? If so, what should they indicate?
Remember that measurement errors are usually not random
variables.

] Use points to indicate for which x-values actual data is
available.

| Connect points belonging to the same curve.

Sanders: Algorithm Engineering April 22, 2025 ﬂ(l'l' 351
[] Only use splines for connecting points if interpolation is

sensible.

[] Do not connect points belonging to unrelated problem

instances.

[]

Use different point and line styles for different curves.

[| Use the same styles for corresponding curves in different
graphs.

| Place labels defining point and line styles in the right order

and without concealing the curves.
] Captions should make figures self contained.

] Give enough information to make experiments

reproducible.

Sanders: Algorithm Engineering april 22, 2025 QQ(IT 352

Comparing Apples and Oranges

In optimization problems we compare
running time and solution quality

for many different instances.

What 1s the better algorithm???

L] Do it separately

L] Quality and running time at once?

Sanders: Algorithm Engineering april 22, 2025 ﬂ(l'l' 353

rrrrrrrrr \@stitute of Techgology

Performance Profiles (Hypergraph Partitioning)

=
L
= 1.00- S B AP ——
L 0.90 - e R
VI 0.80 - el /
S i S f !
£ 070 // ;
S 0.60 - Whor g p
< 0.50- S - gl I
g 0404 . LS .
% 0304 .70 557 '
2 0201 .7, ;
§ 01047 -f
R L i e i AR A
= 1 1.05 1.1 15 210100 inf.
T
—KaHyPar-MF — -PaToH-D --- HYPE
-+ - hMetis-R -— PaToH-

hMetis-K ~ — Zoltan-AlgD

Sanders: Algorithm Engineering april 22, 2025 ﬂ(l'l' 354

Karlsruhe Institute of Technology

Corresponding running times

— 15000 -
~— 10000

5000 - ey
2500 - P
1000 -

2350 -
50 -

Running Time

Sanders: Algorithm Engineering april 22, 2025 &(IT 355
Quallty and running time at once?

We solve a special case:
| Times not too far apart
] Restarts or other means of varying time help

Idea: give both algorithms the same amount of time

Sanders: Algorithm Engineering April 22, 2025 ﬂ (IT 156
Virtual instances

Compare some repetitions of algorithms A and B.
Yields several virtual instances

] Sample one repetition of each algorithm. Wlog assume
th > tp.

L1 Sample (without replacement) additional repetitions of
algorithm B until the total running time accumulated for
algorithm B exceeds t}‘.

L] Accept the last sample with probability

| .
ty— Li<i<tlp
7

Return first result for A and best result for B

Sanders: Algorithm Engineering april 22, 2025 QQ(IT 357

Applied to multi-threaded graph partitioning
® hgt-KaHIP 79 e Mt-Metis 79

1 - best / cut

| l
0 5000 10000

virtual instances

Sanders: Algorithm Engineering April 22, 2025 ﬂ(l'l' 358
Literatur

[1] Peter Sanders, Sebastian Schlag, and Ingo Miiller. Communication efficient algorithms for fundamental big data
problems. In IEEE Int. Conf. on Big Data, 2013.

Karlsruhe Institute of Technology

[2] D. A. Hutchinson, P. Sanders, and J. S. Vitter. Duality between prefetching and queued writing with parallel disks. SIAM
Journal on Computing, 34(6):1443-1463, 2005.

[3] K. Mehlhorn and P. Sanders. Scanning multiple sequences via cache memory. Algorithmica, 35(1):75-93, 2003.

[4] P. Sanders and S. Winkel. Super scalar sample sort. In 12th European Symposium on Algorithms, volume 3221 of LNCS,
pages 784-796. Springer, 2004.

[5S] M. Rahn, P. Sanders, and J. Singler. Scalable distributed-memory external sorting. In 26th IEEE International Conference
on Data Engineering, pages 685-688, 2010.

[6] N. Leischner, V. Osipov, and P. Sanders. GPU sample sort. CoRR, abs/0909.5649, 2009. submitted for publication.

[7] R.Dementiev and P. Sanders. Asynchronous parallel disk sorting. In 15th ACM Symposium on Parallelism in
Algorithms and Architectures, pages 138—148, San Diego, 2003.

[8] J. Singler, P. Sanders, and F. Putze. MCSTL: The multi-core standard template library. In 13th Euro-Par, volume 4641 of
LNCS, pages 682-694. Springer, 2007.

[9] U. Meyer, P. Sanders, and J. Sibeyn, editors. Algorithms for Memory Hierarchies, volume 2625 of LNCS Tutorial.
Springer, 2003.

[10] K. Mehlhorn and P. Sanders. Algorithms and Data Structures — The Basic Toolbox. Springer, 2008.

[11] R. Dementiev, L. Kettner, and P. Sanders. STXXL: Standard Template Library for XXL data sets. Software Practice &
Experience, 38(6):589-637, 2008.

[12] David A. Bader, Henning Meyerhenke, Peter Sanders, and Dorothea Wagner, editors. 10th DIMACS Implementation
Challenge — Graph Partitioning and Graph Clustering, volume 588 of Contemporary Mathematics. AMS, 2013.

Sanders: Algorithm Engineering April 22, 2025 ﬂ(IT

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]
[24]

itute of Technolg

A. Beckmann, U. Meyer, P. Sanders, and J. Singler. Energy-efficient sorting using solid state disks. In"15t Thternational

Green Computing Conference, pages 191-202. IEEE, 2010.

N. Leischner, V. Osipov, and P. Sanders. GPU sample sort. In 24th IEEE International Parallel and Distributed Processing

Symposium, 2010. see also arXiv:0909.5649.

Michael Axtmann, Timo Bingmann, Peter Sanders, and Christian Schulz. Practical massively parallel sorting. In 27th
ACM Symposium on Parallelism in Algorithms and Architectures, (SPAA), 2015.

Michael Axtmann and Peter Sanders. Robust massively parallel sorting. In 19th Workshop on Algorithm Engineering and

Experiments (ALENEX), pages 83-97. SIAM, 2017.

P. Sanders and T. Hansch. On the efficient implementation of massively parallel quicksort. In G. Bilardi, A. Ferreira,
R. Liiling, and J. Rolim, editors, 4th International Symposium on Solving Irregularly Structured Problems in Parallel,
number 1253 in LNCS, pages 13-24. Springer, 1997.

Michael Axtmann, Sascha Witt, Daniel Ferizovic, and Peter Sanders. In-place parallel super scalar samplesort (ipsssso).
In 25th European Symposium on Algorithms (ESA), 2017.

Peter Sanders and Jan Wassenberg. Engineering a multi-core radix sort. In Euro-Par, volume 6853 of LNCS, pages
160-169. Springer, 2011.

P. Sanders, S. Egner, and J. Korst. Fast concurrent access to parallel disks. In 11th ACM-SIAM Symposium on Discrete
Algorithms, pages 849-858, 2000.

K. Kaligosi and P. Sanders. How branch mispredictions affect quicksort. In 14th European Symposium on Algorithms
(ESA), volume 4168 of LNCS, pages 780-791, 2006.

Jan Wassenberg, Mark Blacher, Joachim Giesen, and Peter Sanders. Vectorized and performance-portable quicksort.
Softw. Pract. Exp., 52(12):2684-2699, 2022.

Timo Bingmann, Andreas Eberle, and Peter Sanders. Engineering parallel string sorting. Algorithmica, pages 1-52, 2015.

Timo Bingmann, Peter Sanders, and Matthias Schimek. Communication-efficient string sorting. In 35th IEEE
International Parallel and Distributed Processing Symposium (IPDPS), 2020.

359

Sanders: Algorithm Engineering April 22, 2025 ﬂ(l'l' 360

Karks, [nstit

[25] Timo Bingmann and Peter Sanders. Parallel string sample sort. In 21st European Symposium on Algotithime (ESAY,”
volume 8125 of LNCS, pages 169-180. Springer, 2013.

[26] M. Axtmann, A. Wiebigke, and P. Sanders. Lightweight mpi communicators with applications to perfectly balanced
quicksort. In 33rd IEEE International Parallel and Distributed Processing Symposium (IPDPS), pages 254-265, May
2018.

[27] Stefan Edelkamp and Armin Weif3. Blockquicksort: Avoiding branch mispredictions in quicksort. Journal of
Experimental Algorithmics (JEA), 24:1-22, 2019.

[28] D. Fotakis, R. Pagh, P. Sanders, and P. Spirakis. Space efficient hash tables with worst case constant access time. Theory
of Computing Systems, 38(2):229-248, 2005.

[29] J. G. Cleary. Compact hash tables using bidirectional linear probing. IEEE Transactions on Computers, C-33(9):828-834,
1984.

[30] Michael A Bender, Martin Farach-Colton, Rob Johnson, Russell Kraner, Bradley C Kuszmaul, Dzejla Medjedovic, Pablo
Montes, Pradeep Shetty, Richard P Spillane, and Erez Zadok. Don’t thrash: How to cache your hash on flash. Proc.
VLDB Endow., 5(11):1627-1637, 2012.

[31] Tobias Maier, Peter Sanders, and Robert Williger. Concurrent expandable AMQs on the basis of quotient filters. In 18th
Symposium on Experimental Algorithms (SEA), LIPIcs, 2020.

[32] Michael Luby and Charles Rackoff. How to construct pseudorandom permutations from pseudorandom functions. SIAM
Journal on Computing, 17(2):373-386, 1988.

[33] M. Naor and O. Reingold. On the construction of pseudorandom permutations: Luby-Rackoff revisited. Journal of
Cryptology: the journal of the International Association for Cryptologic Research, 12(1):29-66, 1999.

[34] Yuriy Arbitman, Moni Naor, and Gil Segev. Backyard cuckoo hashing: Constant worst-case operations with a succinct
representation. In 2010 IEEE 51st Annual symposium on foundations of computer science, pages 787-796. IEEE, 2010.

