Advanced Data Structures

Lecture 00: Course Overview
Florian Kurpicz
Organizational Matters

Lectures
- Monday 14:00–15:30 (50.34, 236)
- lecture only

Project (mandatory)
- topics will be handed out 03.05.2023
- coding project and small presentation
- 20% of the final grade
- requires additional registration

Oral Exam
- 20 minutes
- 80% of the final grade
- pizza marks content not relevant for exam

Office Hours (Room 208)
- Monday 15:45–16:30 (lecture period)
- by appointment (otherwise)
Organizational Matters

Lectures
- Monday 14:00–15:30 (50.34, 236)
- lecture only

Project (mandatory)
- topics will be handed out 03.05.2023
- coding project and small presentation
- 20% of the final grade
- requires additional registration
Organizational Matters

Lectures
- Monday 14:00–15:30 (50.34, 236)
- lecture only

Project (mandatory)
- topics will be handed out 03.05.2023
- coding project and small presentation
- 20 % of the final grade
- requires additional registration

Oral Exam
- 20 minutes
- 80 % of the final grade
- pizza marks content not relevant for exam
Organizational Matters

Lectures
- Monday 14:00–15:30 (50.34, 236)
- lecture only

Project (mandatory)
- topics will be handed out 03.05.2023
- coding project and small presentation
- 20 % of the final grade
- requires additional registration

Oral Exam
- 20 minutes
- 80 % of the final grade
- pizza marks content not relevant for exam

Office Hours (Room 208)
- Monday 15:45–16:30 (lecture period)
- by appointment (otherwise)
Materials

Slides
- published before the lecture
 (https://ae.iti.kit.edu/4719.php)
- or in ILISA
- before means like 10 to 15 minutes before

Recordings
- recordings exist online
 (https://youtube.com/@kurpicz)
- new topics will be recorded
Materials

Slides
- published before the lecture (https://ae.iti.kit.edu/4719.php)
- or in ILISA
- before means like 10 to 15 minutes before

Recordings
- recordings exist online (https://youtube.com/@kurpicz)
- new topics will be recorded

Additional Material
- references to literature included
- most likely no script
- MIT course (some topics match)
<table>
<thead>
<tr>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trees/Graphs</td>
</tr>
<tr>
<td>- bit vectors and succinct trees</td>
</tr>
<tr>
<td>- dynamic bit vectors and succinct trees</td>
</tr>
<tr>
<td>- succinct graphs</td>
</tr>
<tr>
<td>Integers</td>
</tr>
<tr>
<td>- range minimum queries (lowest common ancestor queries)</td>
</tr>
<tr>
<td>- predecessor queries</td>
</tr>
<tr>
<td>- vEB-tree and fusion trees</td>
</tr>
<tr>
<td>External Memory</td>
</tr>
<tr>
<td>- cache-oblivious B-trees</td>
</tr>
<tr>
<td>- buffer trees and EM lookup</td>
</tr>
<tr>
<td>Strings</td>
</tr>
<tr>
<td>- string B-trees and suffix arrays</td>
</tr>
<tr>
<td>- compressed suffix array and suffix tree</td>
</tr>
</tbody>
</table>
Trees/Graphs
- bit vectors and succinct trees
- dynamic bit vectors and succinct trees
- succinct graphs

External Memory
- cache-oblivious B-trees
- buffer trees and EM lookup

Integers
- range minimum queries (lowest common ancestor queries)
- predecessor queries
- vEB-tree and fusion trees

Strings
- string B-trees and suffix arrays
- compressed suffix array and suffix tree
Gap Between Theory and Practice (Lecture AE Sanders)

Different Viewpoints

<table>
<thead>
<tr>
<th>Theory</th>
<th>Practice</th>
</tr>
</thead>
<tbody>
<tr>
<td>simple</td>
<td>complex</td>
</tr>
<tr>
<td>simple</td>
<td>real</td>
</tr>
<tr>
<td>complex</td>
<td>simple</td>
</tr>
<tr>
<td>advanced</td>
<td>arrays, ...</td>
</tr>
<tr>
<td>worst case</td>
<td>inputs</td>
</tr>
<tr>
<td>asymptotic</td>
<td>constant factors</td>
</tr>
</tbody>
</table>

- **Theory**
 - Application model
 - Machine model
 - Algorithms
 - Data structures
 - Complexity measure
 - Efficiency

- **Practice**
 - Application model
 - Machine model
 - Algorithms
 - Data structures
 - Complexity measure
 - Efficiency

Key Terms
- Simple application model
- Complex machine model
- Real algorithms
- Arrays, ...
- Worst case complexity measure
- Asymptotic efficiency