Advanced Data Structures

Lecture 01: Bit Vectors

Florian Kurpicz
Bit Vectors

Succinct Data Structures
- represent data structures space efficient
- close to their information theoretical minimum
- using every bit becomes necessary

Succinct Trees
- represent a tree with n nodes using only $2n$ bits
- navigation is possible with additional $o(n)$ bits

- storing a bit vector in practice is tricky
- 1101101 should require only a single byte
Efficient Bit Vectors in Practice (1/3)

- std::vector<char/int/...>
 - easy access
 - very big: 1, 4, ... bytes per bit
Efficient Bit Vectors in Practice (1/3)

std::vector<char/int/...>
- easy access
- very big: 1, 4, ... bytes per bit

std::vector<bool>
- bit vector in C++ (1 bit per byte)
- easy access
- layout depending on implementation
Efficient Bit Vectors in Practice (1/3)

std::vector<char/int/...>
- easy access
- very big: 1, 4, ... bytes per bit

std::vector<bool>
- bit vector in C++ (1 bit per byte)
- easy access
- layout depending on implementation

std::vector<uint64_t>
- requires 8 bytes per bit(?)
- store 64 bits in 8 bytes
- how to access bits
Efficient Bit Vectors in Practice (1/3)

std::vector<char/int/...>
- easy access
- very big: 1, 4, ... bytes per bit

std::vector<bool>
- bit vector in C++ (1 bit per byte)
- easy access
- layout depending on implementation

std::vector<uint64_t>
- requires 8 bytes per bit(?)
- store 64 bits in 8 bytes
- how to access bits

- $i/64$ is position of 64-bit word
- $i\%64$ is position in 64-bit word
Efficient Bit Vectors in Practice (1/3)

\[\text{std::vector<char/int/...>}\]
- easy access
- very big: 1, 4, \ldots\) bytes per bit

\[\text{std::vector<bool>}\]
- bit vector in C++ (1 bit per byte)
- easy access
- layout depending on implementation

\[\text{std::vector<uint64_t>}\]
- requires 8 bytes per bit(?)
- store 64 bits in 8 bytes
- how to access bits

\[i/64\text{ is position of 64-bit word}\]
\[i\%64\text{ is position in 64-bit word}\]
// There is a bit vector
std::vector<uint64_t> bit_vector;

// access i-th bit
uint64_t block = bit_vector[i/64];
bool bit = (block >> (63 - (i % 64))) & 1ULL;
// There is a bit vector
std::vector<uint64_t> bit_vector;

// access i-th bit
uint64_t block = bit_vector[i/64];
bool bit = (block >> (63 - (i % 64))) & 1ULL;

shift bits right

0 1 2 3 4 5 ... 62 63
1 1 1 0 1 0 ... 1 0
// There is a bit vector
std::vector<uint64_t> bit_vector;

// access i-th bit
uint64_t block = bit_vector[i/64];
bool bit = (block >> (63 - (i % 64))) & 1ULL;

<table>
<thead>
<tr>
<th>shift bits right</th>
<th># bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 2 3 4 5 ... 62 63</td>
<td></td>
</tr>
<tr>
<td>1 1 1 0 1 0 ... 1 0</td>
<td></td>
</tr>
</tbody>
</table>

>> 60

| 0 1 2 3 4 5 ... 62 63 |
| 0 0 0 0 0 0 ... 1 0 |
// There is a bit vector
std::vector<uint64_t> bit_vector;

// access i-th bit
uint64_t block = bit_vector[i/64];
bool bit = (block >> (63 - (i % 64))) & 1ULL;

<table>
<thead>
<tr>
<th>Shift bits right</th>
<th># bits</th>
<th>Logical and 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 2 3 4 5 ... 62 63</td>
<td>0 1 2 3 4 5 ... 62 63</td>
<td>0 1 2 3 4 5 ... 62 63</td>
</tr>
<tr>
<td>1 1 1 0 1 0 ... 1 0</td>
<td>0 0 0 0 0 0 ... 1 0</td>
<td>0 0 0 0 0 0 ... 1 0</td>
</tr>
</tbody>
</table>

>>> 60
Efficient Bit Vectors in Practice (3/3)

\[(\text{block} \gg (63-(\text{i}\%64))) \& \text{1ULL};\]
- fill bit vector from left to right

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>...</th>
<th>62</th>
<th>63</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>...</td>
<td>1 0</td>
<td></td>
</tr>
</tbody>
</table>

| 0 | 0 | 0 | 0 | 0 | 0 | ... | 1 0 |

\[(\text{block} \gg (\text{i}\%64)) \& \text{1ULL};\]
- fill blocks in bit vector right to left

<table>
<thead>
<tr>
<th>63</th>
<th>62</th>
<th>...</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 ...</td>
<td>0</td>
<td>1 0</td>
<td>1 1 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| 0 0 ... | 1 1 0 0 1 0 |

assembler code:
- `mov ecx, edi`
- `not ecx`
- `shr rsi, cl`
- `mov eax, esi`
- `and eax, 1`

6/12 2024-04-16 Florian Kurpicz | Advanced Data Structures | 01 Bit Vectors

Institute of Theoretical Informatics, Algorithm Engineering
Efficient Bit Vectors in Practice (3/3)

(block >> (63-(i%64))) & 1ULL;
- fill bit vector from left to right

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>...</th>
<th>62</th>
<th>63</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

| 0 | 0 | 0 | 0 | 0 | 0 | | 1 | 0 |

(block >> (i%64)) & 1ULL;
- fill blocks in bit vector right to left

<table>
<thead>
<tr>
<th>63</th>
<th>62</th>
<th>...</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>...</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

| 0 | 0 | ... | 1 | 1 | 0 | 0 | 1 | 0 |
(block >> (63-(i%64))) & 1ULL;

- fill bit vector from left to right

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>
| 0 | 1 | 2 | 3 | 4 | 5 | ... | 62 | 63
| 1 | 1 | 1 | 0 | 1 | 0 | ... | 1 | 0
| | | | | | | | |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 1 | 0

- assembler code: mov ecx, edi
 not ecx
 shr rsi, cl
 mov eax, esi
 and eax, 1

(block >> (i%64)) & 1ULL;

- fill blocks in bit vector right to left

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>
| 63 | 62 | ... | 5 | 4 | 3 | 2 | 1 | 0
| 0 | 1 | ... | 0 | 1 | 0 | 1 | 1 | 1
| | | | | | | | | |
| 0 | 0 | ... | 1 | 1 | 0 | 0 | 1 | 0

Efficient Bit Vectors in Practice (3/3)

\[(\text{block} >> (63-(i\%64))) \& 1\text{ULL};\]

- fill bit vector from left to right

\[
\begin{array}{cccccccc}
0 & 1 & 2 & 3 & 4 & 5 & \cdots & 62 & 63 \\
1 & 1 & 1 & 0 & 1 & 0 & \cdots & 1 & 0 \\
\end{array}
\]

\[
\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & 0 & \cdots & 1 & 0 \\
\end{array}
\]

- assembler code:
 \[
 \text{mov ecx, edi} \\
 \text{not ecx} \\
 \text{shr rsi, cl} \\
 \text{mov eax, esi} \\
 \text{and eax, 1}
 \]

\[(\text{block} >> (i\%64)) \& 1\text{ULL};\]

- fill blocks in bit vector right to left

\[
\begin{array}{cccccccc}
63 & 62 & \cdots & 5 & 4 & 3 & 2 & 1 & 0 \\
0 & 1 & \cdots & 0 & 1 & 0 & 1 & 1 & 1 \\
\end{array}
\]

\[
\begin{array}{cccccccc}
0 & 0 & \cdots & 1 & 1 & 0 & 0 & 1 & 0 \\
\end{array}
\]

- assembler code:
 \[
 \text{mov ecx, edi} \\
 \text{shr rsi, cl} \\
 \text{mov eax, esi} \\
 \text{and eax, 1}
 \]
Rank Queries on Bit Vectors (1/2)

\[
\text{rank}_\alpha(i) \quad \# \text{ of } \alpha \text{s before } i \\
\text{select}_\alpha(j) \quad \text{position of } j\text{-th } \alpha
\]

0 1 2 3 4 5 6 7 8 9

0 1 1 0 1 1 0 1 0 0
Rank Queries on Bit Vectors (1/2)

\(\text{rank}_\alpha(i) \) # of \(\alpha \)s before \(i \)
\(\text{select}_\alpha(j) \) position of \(j \)-th \(\alpha \)

\(\text{rank}_0(5) \)

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Rank Queries on Bit Vectors (1/2)

\[\text{rank}_\alpha(i) \] \# of \(\alpha\)s before \(i\)

\[\text{select}_\alpha(j) \] position of \(j\)-th \(\alpha\)

rank\(_0\)(5)
Rank Queries on Bit Vectors (1/2)

\(\text{rank}_{\alpha}(i) \) # of \(\alpha \)s before \(i \)

\(\text{select}_{\alpha}(j) \) position of \(j \)-th \(\alpha \)

\(\text{rank}_0(5) \)

\[
\begin{array}{cccccccccc}
0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\
\end{array}
\]
Rank Queries on Bit Vectors (1/2)

\[
\text{rank}_\alpha(i) \quad \# \text{ of } \alpha \text{s before } i \\
\text{select}_\alpha(j) \quad \text{position of } j\text{-th } \alpha \\
\text{rank}_0(5) \\
\text{select}_1(5)
\]

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Rank Queries on Bit Vectors (1/2)

\[\text{rank}_\alpha(i) \# \text{ of } \alpha \text{s before } i \]

\[\text{select}_\alpha(j) \text{ position of } j\text{-th } \alpha \]

- \[\text{rank}_0(5) \]
- \[\text{select}_1(5) \]
Rank Queries on Bit Vectors (1/2)

- \(\text{rank}_\alpha(i) \): # of \(\alpha \)s before \(i \)
- \(\text{select}_\alpha(j) \): position of \(j \)-th \(\alpha \)

Example:

- \(\text{rank}_0(5) \):
 - **Super-block # of 0s w.r.t. BV**
 - **Super-block # of 0s w.r.t. BV**

Diagram:

- **PINGO-Frage**

```plaintext
0 1 1 0 1 1 0 1 0 0
```

- **2**

- **5**
Rank Queries on Bit Vectors (1/2)

\[\text{rank}_\alpha (i) \] \# of \(\alpha \)s before \(i \)

\[\text{select}_\alpha (j) \] position of \(j \)-th \(\alpha \)

\[\text{rank}_0 (5) \]

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
</table>

2

super-block

of 0s w.r.t. BV
Rank Queries on Bit Vectors (1/2)

\(\text{rank}_\alpha(i) \) \# of \(\alpha \)s before \(i \)

\(\text{select}_\alpha(j) \) position of \(j \)-th \(\alpha \)

```
0 1 1 0 1 1 0 1 0 0
```

2

\(\text{rank}_0(5) \)

of 0s w.r.t. super-block

of 0s w.r.t. BV

block

super-block
Rank Queries on Bit Vectors (1/2)

\(\text{rank}_\alpha(i) \) \# of \(\alpha \)s before \(i \)

\(\text{select}_\alpha(j) \) position of \(j\)-th \(\alpha \)

Diagram Description

- **Block**: Represents a group of elements.
- **Super-block**: A larger grouping, typically used for optimization.
- **# of 0s w.r.t. super-block**: Indicates the number of 0s within the super-block.
- **# of 0s w.r.t. BV**: Gives the number of 0s within the entire bit vector.

Example:

- For \(\text{rank}_0(5) \), the diagram shows that there are 2 0s before the 5th position.

PINGO-Frage: 7/12

2024-04-16 Florian Kurpicz | Advanced Data Structures | 01 Bit Vectors

Institute of Theoretical Informatics, Algorithm Engineering
for a bit vector of size n

blocks of size $s = \left\lfloor \frac{\lg n}{2} \right\rfloor$

super blocks of size $s' = s^2 = \Theta(\lg^2 n)$
Rank Queries on Bit Vectors (2/2)

- for a bit vector of size n
- blocks of size $s = \lfloor \frac{\lg n}{2} \rfloor$
- super blocks of size $s' = s^2 = \Theta(\lg^2 n)$

- for all $\lfloor \frac{n}{s'} \rfloor$ super blocks, store number of 0s from beginning of bit vector to end of super-block
- $n/s' \cdot \lg n = O\left(\frac{n}{\lg n}\right) = o(n)$ bits of space
for a bit vector of size n
- blocks of size $s = \lfloor \frac{\lg n}{2} \rfloor$
- super blocks of size $s' = s^2 = \Theta(\lg^2 n)$

for all $\lfloor \frac{n}{s'} \rfloor$ super blocks, store number of 0s from beginning of bit vector to end of super-block
- $n/s' \cdot \lg s' = O\left(\frac{n \lg \lg n}{\lg n}\right) = o(n)$ bits of space

for all $\lfloor \frac{n}{s} \rfloor$ blocks, store number of 0s from beginning of super block to end of block
- $n/s \cdot \lg s = O\left(\frac{n \lg \lg n}{\lg n}\right) = o(n)$ bits of space

query in $O(1)$ time
for a bit vector of size n
blocks of size $s = \lfloor \frac{\lg n}{2} \rfloor$
super blocks of size $s' = s^2 = \Theta(\lg^2 n)$

for all $\lfloor \frac{n}{s'} \rfloor$ super blocks, store number of 0s from beginning of super block to end of block
$n/s \cdot \lg s' = O(\frac{n \lg \lg n}{\lg n}) = o(n)$ bits of space

for all length-s bit vectors, for every position i
store number of 0s up to i
$2^{\frac{\lg n}{2}} \cdot s \cdot \lg s = O(\sqrt{n} \lg n \lg \lg n) = o(n)$ bits of space
Rank Queries on Bit Vectors (2/2)

- for a bit vector of size n
 - blocks of size $s = \left\lfloor \frac{\lg n}{2} \right\rfloor$
 - super blocks of size $s' = s^2 = \Theta(\lg^2 n)$

- for all $\left\lfloor \frac{n}{s'} \right\rfloor$ super blocks, store number of 0s from beginning of super block to end of block
 - $n/s' \cdot \lg s' = O\left(\frac{n \lg \lg n}{\lg n}\right) = o(n)$ bits of space

- for all length-s bit vectors, for every position i
 - store number of 0s up to i
 - $2^{\frac{\lg n}{2}} \cdot s \cdot \lg s = O\left(\sqrt{n} \lg n \lg \lg n\right) = o(n)$ bits of space

- query in $O(1)$ time 📅
 - $\text{rank}_0(i) = i - \text{rank}_1(i)$
Rank Queries on Bit Vectors (1/2)

\(\text{rank}_\alpha(i) \) # of \(\alpha \)s before \(i \)

\(\text{select}_\alpha(j) \) position of \(j \)-th \(\alpha \)

\(\text{rank}_0(5) \)

\(\text{select}_1(5) \)

0 1 1 0 1 1 0 1 0 0

0 1 2 3 4 5 6 7 8 9
Select in $o(n)$ Space and $O(1)$ Time

- $select_0$ in a bit vector of size n that contains k zeros
- PINGO-Frage
Select in $o(n)$ Space and $O(1)$ Time

- $select_0$ in a bit vector of size n that contains k zeros
- **PINGO-Frage**
- naive solutions
 - scan bit vector: $O(n)$ time and no space overhead
 - store k solutions in $S[1..k]$ and

 $select_0(i) = S[i]$ \(\text{if } k \in O(n/\lg n) \text{ this suffice}

if size $\geq \lg n$ store all answers
if size $< \lg n$ store lookup table
Select in $o(n)$ Space and $O(1)$ Time

- $select_0$ in a bit vector of size n that contains k zeros

PINGO-Frage

naive solutions
- scan bit vector: $O(n)$ time and no space overhead
- store k solutions in $S[1..k]$ and
 $select_0(i) = S[i]$ if $k \in O(n/\lg n)$ this suffice

better: k/b variable-sized super-blocks B_i, such that super-block contains $b = \lg^2 n$ zeros

- $select_0(i) = \sum_{j=0}^{\lfloor i/b \rfloor - 1} |B_j| + select_0(B_{\lfloor i/b \rfloor}, i - (\lfloor i/b \rfloor b))$
Select in \(o(n) \) Space and \(O(1) \) Time

- \(\text{select}_0 \) in a bit vector of size \(n \) that contains \(k \) zeros
- PINGO-Frage
- naive solutions
 - scan bit vector: \(O(n) \) time and no space overhead
 - store \(k \) solutions in \(S[1..k] \) and
 \[\text{select}_0(i) = S[i] \quad \text{if } k \in O(n/\lg n) \] this suffice

- better: \(k/b \) variable-sized super-blocks \(B_i \), such that super-block contains \(b = \lg^2 n \) zeros
- \[\text{select}_0(i) = \sum_{j=0}^{[i/b]-1} |B_j| + \text{select}_0(B_{[i/b]}, i - ([i/b]b)) \]

- storing all possible results for the (prefix) sum
- \(O((k \lg n)/b) = o(n) \) bits of space
Select in \(o(n) \) Space and \(O(1) \) Time

- \(\text{select}_0 \) in a bit vector of size \(n \) that contains \(k \) zeros

PINGO-Frage

- naive solutions
 - scan bit vector: \(O(n) \) time and no space overhead
 - store \(k \) solutions in \(S[1..k] \) and
 \(\text{select}_0(i) = S[i] \) if \(k \in O(n / \lg n) \) this suffice

- better: \(k / b \) variable-sized super-blocks \(B_i \), such that super-block contains \(b = \lg^2 n \) zeros

- \(\text{select}_0(i) = \sum_{j=0}^{[i/b]-1} |B_j| + \text{select}_0(B_{[i/b]}, i - ([i/b]b)) \)

- storing all possible results for the (prefix) sum
 - \(O((k \lg n) / b) = o(n) \) bits of space

- select on block depends on size of block

- \(|B_{[i/b]}| \geq \lg^4 n \): store answers naively
 - requires \(O(b \lg n) = O(\lg^3 n) \) bits of space
 - there are at most \(O(n / \lg^4 n) \) such blocks
 - total \(O(n / \lg n) = o(n) \) bits of space
Select in $o(n)$ Space and $O(1)$ Time

- $select_0$ in a bit vector of size n that contains k zeros
- naive solutions
 - scan bit vector: $O(n)$ time and no space overhead
 - store k solutions in $S[1..k]$ and
 $select_0(i) = S[i] \uparrow$ if $k \in O(n/\log n)$ this suffice
- better: k/b variable-sized super-blocks B_i, such that super-block contains $b = \log^2 n$ zeros
 - $select_0(i) = \sum_{j=0}^{[i/b]-1} |B_j| + select_0(B_{[i/b]}; i - ([i/b]b))$
- storing all possible results for the (prefix) sum
 - $O((k \log n)/b) = o(n)$ bits of space
- select on block depends on size of block
 - $|B_{[i/b]}| \geq \log^4 n$: store answers naively
 - requires $O(b \log n) = O(\log^3 n)$ bits of space
 - there are at most $O(n/\log^4 n)$ such blocks
 - total $O(n/\log n) = o(n)$ bits of space
 - $|B_{[i/b]}| < \log^4 n$: divide super-block into blocks
 - same idea: variable-sized blocks containing
 $b' = \sqrt{\log n}$ zeros
 - (prefix) sum $O((k \log n)/b') = o(n)$ bits
 - if size $\geq \log n$ store all answers
 - if size $< \log n$ store lookup table
Lemma: Binary Rank- and Select-Queries

Given a bit vector of size n, there exist data structures that can be computed in time $O(n)$ of size $o(n)$ bits that can answer rank and select queries on the bit vector in $O(1)$ time.
Conclusion and Outlook

This Lecture
- bit vectors
- rank and select on bit vectors

Advanced Data Structures
BV
Conclusion and Outlook

This Lecture
- bit vectors
- rank and select on bit vectors
- efficient bit vectors in practice

Advanced Data Structures
- BV
Conclusion and Outlook

This Lecture
- bit vectors
- rank and select on bit vectors
- efficient bit vectors in practice

Next Lecture
- succinct trees using bit vectors
- navigation in succinct trees