Advanced Data Structures

Lecture 02: Succinct Trees

Florian Kurpicz
Recap: Rank Queries on Bit Vectors (1/2)

\[
\text{rank}_\alpha(i) \quad \# \text{ of } \alpha \text{s before } i \\
\text{select}_\alpha(j) \quad \text{position of } j\text{-th } \alpha
\]

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Recap: Rank Queries on Bit Vectors (1/2)

\[\text{rank}_{\alpha}(i) \text{ # of } \alpha \text{ s before } i \]

\[\text{select}_{\alpha}(j) \text{ position of } j\text{-th } \alpha \]

\[\text{rank}_0(5) \]

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Recap: Rank Queries on Bit Vectors (1/2)

\[\text{rank}_\alpha(i) \] # of \(\alpha \)'s before \(i \)

\[\text{select}_\alpha(j) \] position of \(j \)-th \(\alpha \)

\[\text{rank}_0(5) \]
Recap: Rank Queries on Bit Vectors (1/2)

\[\text{rank}_\alpha(i) \] \# of \(\alpha \)s before \(i \)

\[\text{select}_\alpha(j) \] position of \(j \)-th \(\alpha \)

\[\text{rank}_0(5) \]
Recap: Rank Queries on Bit Vectors (1/2)

\[\text{rank}_\alpha(i) \] # of \(\alpha \)'s before \(i \)

\[\text{select}_\alpha(j) \] position of \(j \)-th \(\alpha \)

\[\text{rank}_0(5) \]
\[\text{select}_1(5) \]

\[\begin{array}{cccccccc}
0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 \\
\end{array} \]
Recap: Rank Queries on Bit Vectors (1/2)

\[\text{rank}_\alpha(i) \] # of \(\alpha \)s before \(i \)
\[\text{select}_\alpha(j) \] position of \(j \)-th \(\alpha \)

\[\text{rank}_0(5) \]
\[\text{select}_1(5) \]
Recap: Rank Queries on Bit Vectors (1/2)

\[
\text{rank}_\alpha(i) \quad \text{# of } \alpha\text{s before } i
\]
\[
\text{select}_\alpha(j) \quad \text{position of } j\text{-th } \alpha
\]

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[\text{rank}_0(5)\]
Recap: Rank Queries on Bit Vectors (1/2)

\[\text{rank}_\alpha(i) \] # of \(\alpha \)s before \(i \)
\[\text{select}_\alpha(j) \] position of \(j \)-th \(\alpha \)

\[\text{rank}_0(5) \]

\[\begin{array}{cccccccccc}
0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\
\end{array} \]
Recap: Rank Queries on Bit Vectors (1/2)

\[\text{rank}_\alpha(i) \] # of \(\alpha \)'s before \(i \)

\[\text{select}_\alpha(j) \] position of \(j \)-th \(\alpha \)

- \(\text{rank}_0(5) \)
- \# of 0s w.r.t. super-block
- \# of 0s w.r.t. BV
Recap: Rank Queries on Bit Vectors (1/2)

\(\text{rank}_\alpha(i) \) \# of \(\alpha \)s before \(i \)

\(\text{select}_\alpha(j) \) position of \(j \)-th \(\alpha \)

\(\text{rank}_0(5) \)

of 0s w.r.t. super-block

of 0s w.r.t. BV

\[
\begin{array}{cccccccccc}
0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\
\end{array}
\]
Lemma: Binary Rank- and Select-Queries

Given a bit vector of size n, there exist data structures that can be computed in time $O(n)$ of size $o(n)$ bits that can answer rank and select queries on the bit vector in $O(1)$ time.
Recap: Rank Queries on Bit Vectors (2/2)

Lemma: Binary Rank- and Select-Queries

Given a bit vector of size n, there exist data structures that can be computed in time $O(n)$ of size $o(n)$ bits that can answer rank and select queries on the bit vector in $O(1)$ time.

Word RAM

- unlimited memory
- words of size w \(w = \Theta \log n \)
- constant time load and store
- constant time bit operations on words
Plan for Today

- represent tree with n nodes using $2n$ bits
- make succinct tree fully-functional using additional $o(n)$ bits
Plan for Today

- represent tree with n nodes using $2n$ bits
- make succinct tree fully-functional using additional $o(n)$ bits

- trees are important
 - searching for keys
 - maintaining directories
 - representations of parsings
 - ...
Plan for Today

- represent tree with n nodes using $2n$ bits
- make succinct tree fully-functional using additional $o(n)$ bits

- trees are important
 - searching for keys
 - maintaining directories
 - representations of parsings
 - ...

- different representations
- supporting different operations
Plan for Today

- represent tree with n nodes using $2n$ bits
- make succinct tree fully-functional using additional $o(n)$ bits

- trees are important
 - searching for keys
 - maintaining directories
 - representations of parsings
 - ...

- different representations
- supporting different operations

Handout
Preliminaries

- A tree is an acyclic connected graph \(G = (V, E) \) with a root \(r \in V \).
- Degree \(\delta \) is the number of children.
- Leaves have degree 0.
- Depth of a node is the length of the path from the root to that node.
Level Ordered Unary Degree Sequence (1/2) [Jac88]

- represent tree level-wise
- use \(\leq 2 \) bits per node

![Example Tree](image)
Level Ordered Unary Degree Sequence (1/2) [Jac88]

- represent tree level-wise
- use ≤ 2 bits per node

Definition: LOUDS

Starting at the root, all nodes on the same depth
- are visited from left to right and
- for node v, $\delta(v)$ 1’s followed by a 0 are appended to the bit vector that contains an initial 10
Level Ordered Unary Degree Sequence (1/2) [Jac88]

- represent tree level-wise
- use ≤ 2 bits per node

Definition: LOUDS

Starting at the root, all nodes on the same depth
- are visited from left to right and
- for node v, $\delta(v)$ 1’s followed by a 0 are appended to the bit vector that contains an initial 10

Lemma: Space Usage of LOUDS

Representing a tree with n nodes requires $2n + 1$ bits using LOUDS
Level Ordered Unary Degree Sequence (1/2) [Jac88]

- represent tree level-wise
- use ≤ 2 bits per node

Definition: LOUDS

Starting at the root, all nodes on the same depth
- are visited from left to right and
- for node v, $\delta(v)$ 1's followed by a 0 are appended to the bit vector that contains an initial 10

Lemma: Space Usage of LOUDS

Representing a tree with n nodes requires $2n + 1$ bits using LOUDS

- write down the LOUDS representation of this example tree
Level Ordered Unary Degree Sequence (2/2)

1011110
Level Ordered Unary Degree Sequence (2/2)

10111001100110

Diagram of a tree with nodes a, b, c, d, e, f, g, h, i, j, k, where each node is labeled with a binary sequence.
Level Ordered Unary Degree Sequence (2/2)

10111001100110011000

```
Level Ordered Unary Degree Sequence (2/2)
```

```
10111001100110011000
```

```
Level Ordered Unary Degree Sequence (2/2)
```

```
10111001100110011000
```

```
Level Ordered Unary Degree Sequence (2/2)
```

```
10111001100110011000
```

```
Level Ordered Unary Degree Sequence (2/2)
```
Level Ordered Unary Degree Sequence (2/2)

10111100110011001100000

Diagram of a level-ordered unary degree sequence.
Level Ordered Unary Degree Sequence (2/2)

ab ch id ejkfg
1011100110011001100000

node start at pertinent 0
What is Fully-Functional?

Operations

- degree 1 is leaf
- i-th child
- parent
- subtree size

![Tree Diagram]
What is Fully-Functional?

Operations
- degree \(i \) is leaf
- \(i \)-th child
- parent
- subtree size
- depth
- lowest common ancestor
- rank (pre- or post-order)
- ...

![Tree Diagram]
Making LOUDS Fully-Functional

- degree of p: $p - \text{select}_0(\text{rank}_0(p)) - 1$

- explanation on the board 📚
Making LOUDS Fully-Functional

- degree of p: $p - \text{select}_0(\text{rank}_0(p)) - 1$
- i-th child of p: $\text{select}_0(\text{rank}_1(\text{select}_0(\text{rank}_0(p)))) + i + 1$

- explanation on the board 📧
Making LOUDS Fully-Functional

- degree of p: $p - \text{select}_0(\text{rank}_0(p)) - 1$
- i-th child of p:
 $$\text{select}_0(\text{rank}_1(\text{select}_0(\text{rank}_0(p)))) + i + 1$$
- parent of p:
 $$\text{select}_0(\text{rank}_0(\text{select}_1(\text{rank}_0(p)))) + 1$$

- explanation on the board 📚
Making LOUDS Fully-Functional

- degree of p: $p - \text{select}_0(\text{rank}_0(p)) - 1$
- i-th child of p:
 $\text{select}_0(\text{rank}_1(\text{select}_0(\text{rank}_0(p)))) + i + 1$
- parent of p:
 $\text{select}_0(\text{rank}_0(\text{select}_1(\text{rank}_0(p)))) + 1$

- explanation on the board

- subtree size
Definition: Balanced String of Parentheses

A string of parentheses is balanced, if for each left parenthesis there exist unique right parenthesis to its right.

- instead of 0 and 1
- use (and)
- requires the same space
- can add relation between parentheses
instead of 0 and 1
use (and)

requires the same space
can add relation between parentheses

Definition: Balanced String of Parentheses
A string of parentheses is balanced, if for each left parenthesis there exist unique right parenthesis to its right.
From Bit Vectors to Parentheses

- instead of 0 and 1
- use (and)

- requires the same space
- can add relation between parentheses

Definition: Balanced String of Parentheses

A string of parentheses is balanced, if for each left parenthesis there exist unique right parenthesis to its right.

- \(\text{findclose}(i) \): find the right parenthesis matching the left parenthesis at position \(i \)
From Bit Vectors to Parentheses

- instead of 0 and 1
- use (and)

- requires the same space
- can add relation between parentheses

Definition: Balanced String of Parentheses

A string of parentheses is balanced, if for each left parenthesis there exist unique right parenthesis to its right.

- \(\text{findclose}(i)\): find the right parenthesis matching the left parenthesis at position \(i\)
- \(\text{findopen}(i)\): find the left parenthesis matching the right parenthesis at position \(i\)
From Bit Vectors to Parentheses

- instead of 0 and 1
- use (and)
- requires the same space
- can add relation between parentheses

Definition: Balanced String of Parentheses

A string of parentheses is balanced, if for each left parenthesis there exist unique right parenthesis to its right.

- \(\text{findclose}(i) \): find the right parenthesis matching the left parenthesis at position \(i \)
- \(\text{findopen}(i) \): find the left parenthesis matching the right parenthesis at position \(i \)
- \(\text{excess}(i) \): find the difference between the number of left and right parentheses before position \(i \)
From Bit Vectors to Parentheses

- instead of 0 and 1
- use (and)

- requires the same space
- can add relation between parentheses

Definition: Balanced String of Parentheses

A string of parentheses is balanced, if for each left parenthesis there exist unique right parenthesis to its right.

- `findclose(i)`: find the right parenthesis matching the left parenthesis at position `i`
- `findopen(i)`: find the left parenthesis matching the right parenthesis at position `i`
- `excess(i)`: find the difference between the number of left and right parentheses before position `i`
- `enclose(i)`: given a parentheses pair with the left parenthesis at position `i`, return the position of the closest left parenthesis belonging to the parentheses pair enclosing it
Definition: Balanced String of Parentheses

A string of parentheses is balanced, if for each left parenthesis there exist unique right parenthesis to its right.

- Instead of 0 and 1, use (and)
- Requires the same space
- Can add relation between parentheses

- \(\text{findclose}(i) \): find the right parenthesis matching the left parenthesis at position \(i \)
- \(\text{findopen}(i) \): find the left parenthesis matching the right parenthesis at position \(i \)
- \(\text{excess}(i) \): find the difference between the number of left and right parentheses before position \(i \)
- \(\text{enclose}(i) \): given a parentheses pair with the left parenthesis at position \(i \), return the position of the closest left parenthesis belonging to the parentheses pair enclosing it

- How can we answer \(\text{excess} \) queries?
From Bit Vectors to Parentheses

- all parentheses operations can be answered in $O(1)$ time using $o(n)$ bits space
- here, a little bit simpler
From Bit Vectors to Parentheses

- all parentheses operations can be answered in $O(1)$ time using $o(n)$ bits space
- here, a little bit simpler

- $\text{excess}(i) = \text{rank}_{(i+1)} - \text{rank}_{(i+1)}$
- $\text{fwd_search}(i, d) = \min\{j > i : \text{excess}(j) - \text{excess}(i - 1) = d\}$
- $\text{bwd_search}(i, d) = \max\{j < i : \text{excess}(i) - \text{excess}(j - 1) = d\}$
all parentheses operations can be answered in $O(1)$ time using $o(n)$ bits space
here, a little bit simpler

\[
\text{excess}(i) = \text{rank} \text{"}{} (i + 1) - \text{rank} \text{"}{} (i + 1)
\]
\[
\text{fwd_search}(i, d) = \min\{j > i: \text{excess}(j) - \text{excess}(i - 1) = d\}
\]
\[
\text{bwd_search}(i, d) = \max\{j < i: \text{excess}(i) - \text{excess}(j - 1) = d\}
\]

\[
\text{findclose}(i) = \text{fwd_search}(i, 0)
\]
\[
\text{findopen}(i) = \text{bwd_search}(i, 0)
\]
\[
\text{enclose}(i) = \text{bwd_search}(i, 2)
\]
From Bit Vectors to Parentheses

- All parentheses operations can be answered in $O(1)$ time using $o(n)$ bits space.
- Here, a little bit simpler

- $$\text{excess}(i) = \text{rank}^{[\cdot]}(i + 1) - \text{rank}^{[\cdot]}(i + 1)$$
- $$\text{fwd_search}(i, d) = \min\{j > i : \text{excess}(j) - \text{excess}(i - 1) = d\}$$
- $$\text{bwd_search}(i, d) = \max\{j < i : \text{excess}(i) - \text{excess}(j - 1) = d\}$$

- $$\text{findclose}(i) = \text{fwd_search}(i, 0)$$
- $$\text{findopen}(i) = \text{bwd_search}(i, 0)$$
- $$\text{enclose}(i) = \text{bwd_search}(i, 2)$$

- Can be answered with a min-max-tree
Definition: Range Min-Max Tree

Given a bit vector B of length n and a block size b, store for each consecutive block (from s to e) of BV

- total excess in block:
 $\text{excess}(e) - \text{excess}(s - 1)$

- minimum left-to-right excess in block:
 $\min\{\text{excess}(p) - \text{excess}(s - 1) : p \in [s, e]\}$

and build a binary tree over these blocks, where each node stores the same total information for blocks in all its leaves.
Definition: Range Min-Max Tree
Given a bit vector B of length n and a block size b, store for each consecutive block (from s to e) of BV
- total excess in block: $excess(e) - excess(s - 1)$
- minimum left-to-right excess in block:
 $\min\{excess(p) - excess(s - 1) : p \in [s, e]\}$
and build a binary tree over these blocks, where each node stores the same total information for blocks in all its leaves

Lemma: Range Min-Max Tree Space
A range min-max tree with block size b for a bit vector of size n requires $n + O((n/b) \log n)$ bits of space
fwdsearch in a Range Min-Max Tree

- scan block
- if not found traverse tree
- identify block in tree
- scan block

Improvements

two level approach

build range min-max trees for chunks of size \(\Theta(\log^3 n) \)
\(O(\log \log n)\) query time inside a chunk

can result in total query time of \(O(\log \log n)\)
Range Min-Max Trees (2/2)

fwdsearch in a Range Min-Max Tree
- scan block
- if not found traverse tree
- identify block in tree
- scan block

- process c bits at a time
- first align with next c bits
- requires $O(c + b/c)$ time
Range Min-Max Trees (2/2)

fwdsearch in a Range Min-Max Tree

- scan block
- if not found traverse tree
- identify block in tree
- scan block

- process c bits at a time
- first align with next c bits
- requires $O(c + b/c)$ time

- going up and down tree in $O(\log(n/b))$ time
- scanning last block requires $O(c + b/c)$ time
fwdsearch in a Range Min-Max Tree

- scan block
- if not found traverse tree
- identify block in tree
- scan block

- process \(c \) bits at a time
- first align with next \(c \) bits
- requires \(O(c + b/c) \) time

- going up and down tree in \(O(\log(n/b)) \) time
- scanning last block requires \(O(c + b/c) \) time

- by choosing \(b = c \log n \) this requires
- \(O(\log n) \) time and
- \(n + O(n/(c \log n)) = n + o(n) \) bits space
Range Min-Max Trees (2/2)

fwdsearch in a Range Min-Max Tree
- scan block
- if not found traverse tree
- identify block in tree
- scan block

- process c bits at a time
- first align with next c bits
- requires $O(c + b/c)$ time

- going up and down tree in $O(\log(n/b))$ time
- scanning last block requires $O(c + b/c)$ time

- by choosing $b = c \log n$ this requires $O(\log n)$ time and
 $n + O(n/(c \log n)) = n + o(n)$ bits space

Improvements
- two level approach
- build range min-max trees for chunks of size
 $\Theta(\log^3 n)$
- $O(\log \log n)$ query time inside a chunk
- can result in total query time of $O(\log \log n)$
Balanced Parentheses (1/2) [MR01]

- represent tree as depth-first traversal
- using balanced parentheses

![Diagram of a tree with nodes labeled a, b, c, d, e, f, g, h, i, j, k, and using parentheses to represent the traversal.](image)
Balanced Parentheses (1/2) [MR01]

- represent tree as depth-first traversal
- using balanced parentheses

Definition: BP
Starting at the root, traverse the tree in depth-first order and append a
- left parenthesis if a node is visited the first time
- right parenthesis if a node is visited the last time

to the bit vector
Balanced Parentheses (1/2) [MR01]

- represent tree as depth-first traversal
- using balanced parentheses

Definition: BP

Starting at the root, traverse the tree in depth-first order and append a
- left parenthesis if a node is visited the first time
- right parenthesis if a node is visited the last time
to the bit vector

Lemma: Space Usage of BP

Representing a tree with n nodes requires $2n$ bits using BP
Balanced Parentheses (1/2) [MR01]

- represent tree as depth-first traversal
- using balanced parentheses

Definition: BP
Starting at the root, traverse the tree in depth-first order and append a
- left parenthesis if a node is visited the first time
- right parenthesis if a node is visited the last time
to the bit vector

Lemma: Space Usage of BP
Representing a tree with n nodes requires $2n$ bits using BP

- write down the BP representation of this example tree
Balanced Parentheses (2/2)

a
(

```
node starts at first parenthesis
subtree structure is encoded in parentheses
```
Balanced Parentheses (2/2)

ab
(())
Balanced Parentheses (2/2)

```
ab cd
(()(())
```
ab cd ef g

(((()(()))))

Balanced Parentheses (2/2)
Balanced Parentheses (2/2)

ab cd ef g h
\((()())(()())())()\)
Balanced Parentheses (2/2)

ab cd ef g h ij k

((()(()()))(()()))

Balanced Parentheses (2/2)

ab cd ef g h ij k

((()(()()))(()()))
Balanced Parentheses (2/2)

- node starts at first parenthesis
- subtree structure is encoded in parentheses

\[
ab \ cd \ ef \ g \ h \ ij \ k
\]
\[
(()(()(()(()))))(()())
\]
Making BP Fully-Functional

- subtree size of p: $\frac{\text{findclose}(p) - p + 1}{2}$

- explanation on the board
Making BP Fully-Functional

- subtree size of p: $\frac{\text{findclose}(p) - p + 1}{2}$
- parent of p: $\text{enclose}(p)$

- explanation on the board
Making BP Fully-Functional

- subtree size of p: $(\text{findclose}(p) - p + 1)/2$
- parent of p: $\text{enclose}(p)$

- explanation on the board

Complicated Constant Time [NS14]
- degree
- i-th child

Diagram:
```
    a
   / \  \\
  b   c
 /\  /  \\
|  | d   e
|  \  |
|   j |
|   / |
| i   |
|\    |
|  g  |
|   f  |
```

```plaintext
ab cd ef g h ij k
(()(()(()()))()(()()))
```
Advantages and Disadvantages of Both Approaches

- LOUDS cannot answer subtree size
- BP cannot easily answer i-th child and degree
- All other operations can be done easily
Definition: DFUDS

Starting at the root, traverse tree in depth-first order and append
- for node v, $\delta(v)$ left parentheses and
- a right parenthesis if v is visited the first time
to the bit vector that initially contains a left parenthesis to make them balanced

Depth First Unary Degree Sequence (1/2) [Ben+05]
Definition: DFUDS

Starting at the root, traverse tree in depth-first order and append

- for node v, $\delta(v)$ left parentheses and
- a right parenthesis if v is visited the first time
to the bit vector that initially contains a left parenthesis to make them balanced.

Lemma: Space Usage of DFUDS

Representing a tree with n nodes requires $2n$ bits using DFUDS.
Definition: DFUDS

Starting at the root, traverse tree in depth-first order and append
- for node v, $\delta(v)$ left parentheses and
- a right parenthesis if v is visited the first time
to the bit vector that initially contains a left parenthesis ϵ to make them balanced.

Lemma: Space Usage of DFUDS

Representing a tree with n nodes requires $2n$ bits using DFUDS.

Write down the DFUDS representation of this example tree.
Depth First Unary Degree Sequence (2/2)

```
(((()))
```

```
node starts at first parenthesis
subtree structure is encoded
/chalkboard-◉eacher

```

```
```

Depth First Unary Degree Sequence (2/2)

```
(((()))
```

![Diagram of a tree structure with nodes labeled a, b, c, d, e, f, g, h, i, j, k. The tree structure is described by the depth first unary degree sequence.](image-url)
Depth First Unary Degree Sequence (2/2)

\[
\begin{array}{c}
\text{a} & \text{bc} \\
\text{(((())))()}
\end{array}
\]
Depth First Unary Degree Sequence (2/2)

```
a b c d
(((())()))
```
Depth First Unary Degree Sequence (2/2)

\[a \ bc \ de \ fg \]
\[(((()()))())() \]
Depth First Unary Degree Sequence (2/2)

\[\text{a} \quad \text{bc} \quad \text{de} \quad \text{fg} \quad \text{h} \quad (\text{((((())(())()))))} \]
Depth First Unary Degree Sequence (2/2)

\[a \ bc \ de \ fghi \ jk \]
\[((((()()))()))())()())

Depth First Unary Degree Sequence (2/2)
Depth First Unary Degree Sequence (2/2)

- Node starts at first parenthesis
- Subtree structure is encoded

```
a bc de fghi jk
((((()))(())(()))(()))
```
Making DFUDS Fully-Functional

- degree of \(p \): \(\text{select}^{-1}(\text{rank}^{-1}(p) + 1) - p \)

- explanation on the board 📧
Making DFUDS Fully-Functional

- degree of \(p \): \(\text{select}''''(\text{rank}''''(p) + 1) - p \)
- \(i \)-th child of \(p \):
 \(\text{findclose}(\text{select}''''(\text{rank}''''(p) + 1) - i) + 1 \)

- explanation on the board 📚
Making DFUDS Fully-Functional

- degree of p: $\text{select}^{-1}(\text{rank}^{-1}(p) + 1) - p$
- i-th child of p: $\text{findclose}(\text{select}^{-1}(\text{rank}^{-1}(p) + 1) - i) + 1$
- parent of p: $\text{select}^{-1}(\text{rank}^{-1}(\text{findopen}(p - 1))) + 1$

- explanation on the board 📚
Making DFUDS Fully-Functional

- degree of p: $\text{select}^{\text{rank}}(p) + 1 - p$
- i-th child of p: $\text{findclose}(\text{select}^{\text{rank}}(p) + 1 - i) + 1$
- parent of p: $\text{select}^{\text{rank}}(\text{findopen}(p - 1)) + 1$
- subtree size of p: $(\text{findclose}(\text{enclose}(p)) - p) / 2 + 1$

- explanation on the board 📚
Conclusion and Outlook

This Lecture
- three succinct tree representations
- different advantages and disadvantages
Conclusion and Outlook

This Lecture
- three succinct tree representations
- different advantages and disadvantages
- min-max-trees
Conclusion and Outlook

This Lecture
- three succinct tree representations
- different advantages and disadvantages
- min-max-trees

Next Lecture
- succinct graphs

