Recap: Succinct Trees

LOUDS

ab ch id ejkfg
1011100110011001100000

Recap: Succinct Trees
Recap: Succinct Trees

LOUDS

```
ab ch id ejkfg
1011100110011001100000
```

BP

```
ab cd ef g  h ij k
(()(()(()()))()(()()))
```
Recap: Succinct Trees

LUDDS

ab ch id ejkfg
10111100110011001100000

BP

ab cd ef g h ij k
(()(()(()()))()(()()))

DFUDS

a bc de fghi jk
((((()))(()))(()))(()))()}
Examples: Making DFUDS Fully-Functional

- **degree of p:** $\text{select}^{\text{rank}^{\text{rank}^{\text{rank}^{\text{rank}^{\text{rank}^{\text{rank}^{\text{rank}^{\text{rank}^{p}}}+1}-p}}}}}$
- **explanation on the board**
Examples: Making DFUDS Fully-Functional

- **Degree of** \(p \): \(\text{select}^{-1}(\text{rank}^{-1}(p) + 1) - p \)
- **I-th child of** \(p \): \(\text{findclose}(\text{select}^{-1}(\text{rank}^{-1}(p) + 1) - i) + 1 \)

- Explanation on the board 📚
Examples: Making DFUDE Fully-Functional

- degree of \(p \): \(\text{select}^{-1}(\text{rank}^{-1}(p) + 1) - p \)
- \(i \)-th child of \(p \):
 \(\text{findclose}(\text{select}^{-1}(\text{rank}^{-1}(p) + 1) - i) + 1 \)
- parent of \(p \):
 \(\text{select}^{-1}(\text{rank}^{-1}(\text{findopen}(p - 1))) + 1 \)

- explanation on the board 📚
Examples: Making DFUDS Fully-Functional

- degree of p: $\text{select}^-(\text{rank}^-)(p) + 1 - p$
- i-th child of p:
 $\text{findclose}(\text{select}^-)(\text{rank}^-)(p) + 1 - i) + 1$
- parent of p:
 $\text{select}^-\text{rank}^- (\text{findopen}(p - 1))) + 1$
- subtree size of p:
 $(\text{findclose}(\text{enclose}(p)) - p)/2 + 1$

- explanation on the board

degree of p: $\text{select}^-(\text{rank}^-)(p) + 1 - p$

i-th child of p:
$\text{findclose}(\text{select}^-)(\text{rank}^-)(p) + 1 - i) + 1$

parent of p:
$\text{select}^-\text{rank}^- (\text{findopen}(p - 1))) + 1$

subtree size of p:
$(\text{findclose}(\text{enclose}(p)) - p)/2 + 1$

- explanation on the board
Planar Graphs (1/2)

Definition: Planar Graph

A graph \(G = (V, E) \) is planar, if it
- can be drawn on the plane such that
- no edges cross each other

- drawing (planar) embedding of the graph
- not unique

A graph is planar if it has no minor
- \(K_{3,3} \)
- \(K_5 \)
Planar Graphs (2/2)

- embedding is defined by order of neighbors
- this defines faces
- must specify outer face

Now Consider Only
- connected planar graphs with embedding,
- multi-edges, and
- self-loops appear twice in list of edges
Definition: Dual Graph

Given an embedding of a planar graph G, the dual graph G^* of G has

- one node for each face of G and
- one edge e' for each edge e in G such that e' crosses e and is incident to the faces separated by e

- dual graph is unique for the embedding
- dual graph is planar
Spanning Trees

Definition: Spanning Tree

Given a connected graph $G = (V, E)$, a spanning tree is a tree $T = (V, E')$ with $E' \subseteq E$.

- consider spanning tree of planar graph and
- its dual graph
- trees can be represented succinctly
Recap: Balanced Parentheses

Definition: BP

Starting at the root, traverse the tree in depth-first order and append a
- left parenthesis if a node is visited the first time
- right parenthesis if a node is visited the last time
to the bit vector

```
ab cd ef g h ij k
(()(()(()()))()(()()))
```

- \(\text{excess}(i) = \text{rank}('(')(i + 1) - \text{rank}(')')(i + 1) \)
- \(\text{fwd_search}(i, d) = \min\{j > i : \text{excess}(j) - \text{excess}(i - 1) = d\} \)
- \(\text{bwd_search}(i, d) = \max\{j < i : \text{excess}(i) - \text{excess}(j - 1) = d\} \)
- \(\text{findclose}(i) = \text{fwd_search}(i, 0) \)
- \(\text{findopen}(i) = \text{bwd_search}(i, 0) \)
- \(\text{enclose}(i) = \text{bwd_search}(i, 2) \)
given connected planar graph G and its dual G^*
let T be spanning tree of G
construct complementary spanning tree T^* of G^* using only edges not crossing edges in T
edges are stored in adjacency lists
Succinct Planar Graph: General Idea [Fer+20; Tur84]

- given connected planar graph G and its dual G^*
- let T be spanning tree of G
- construct complementary spanning tree T^* of G^* using only edges not crossing edges in T

- edges are stored in adjacency lists

Definition: Incidence

Given a face f and a vertex v, an incidence of f in v is a pair of edges e, e', such that v is part of f and e, e' are incident of f and consecutive in the adjacency list of v
Lemma: Graph-Tree-Traversal

Given an embedding of G, a spanning tree T of G, and its complementary spanning tree T^* of the dual of G. When

- traversing T depth-first, starting at any node on the outer face
- processing edges in counter-clockwise order
- (for the root choose an arbitrary incidence of the outer face),

each edge not in T corresponds to the next edge visited in a depth-first traversal of T^*.
Traversal of the Graph gives Traversal of Trees (2/2)

Proof Graph-Tree-Traversal

- proof by induction
- correct in the beginning
- processed i edges, $(i + 1)$-th edge is (v, w)
- if (v, w) is in T, nothing changes
- example on the board
Traversals of the Graph gives Traversals of Trees (2/2)

Proof Graph-Tree-Traversals

- proof by induction
- correct in the beginning
- processed i edges, $(i + 1)$-th edge is (v, w)
- if (v, w) is in T, nothing changes
- example on the board

Proof Graph-Tree-Traversals

- proof by induction
- correct in the beginning
- processed i edges, $(i + 1)$-th edge is (v, w)
- if (v, w) is in not T, then
- visit new edge in T'
- due to counter-clockwise visiting of nodes in G
- going deeper in T^*
- example on the board
Succinct Planar Graph Representation

Succinct Graphs \((n = |V| \text{ and } m = |E|)\)

- bit vector \(A[0..2m]\) with \(A[i] = 1 \iff \text{the } i\text{-th edge processed is in } T\)
Succinct Planar Graph Representation

Succinct Graphs \((n = |V| \text{ and } m = |E|)\)

- bit vector \(A[0..2m]\) with \(A[i] = 1 \iff \text{the } i\text{-th edge processed is in } T\)
- \(A = 01101101011100101100010100\)

A = 01101101011100101100010100

\(A = 01101101011100101100010100\)

\(B = (())(())()()\)

\(B^* = ()(()(()))()()\)
Succinct Planar Graph Representation

Succinct Graphs ($n = |V|$ and $m = |E|$)

- bit vector $A[0..2m]$ with $A[i] = 1 \iff$ the i-th edge processed is in T
- bit vector $B[0..2(n - 1)]$ with $B[i] = "(\)" \iff$ i-th time an edge in T is processed is the first time that edge is processed

- $A = 01101101011100101100010100$

![Graph Diagram]
Succinct Planar Graph Representation

Succinct Graphs \((n = |V|\) and \(m = |E|\))

- bit vector \(A[0..2m]\) with \(A[i] = 1 \iff \) the \(i\)-th edge processed is in \(T\)
- bit vector \(B[0..2(n - 1)]\) with \(B[i] = \) "(" \(\iff \) \(i\)-th time an edge in \(T\) is processed is the first time that edge is processed

- \(A = 01101101011100101100010100\)
- \(B = ((()())(()))()()\)
Succinct Graphs ($n = |V|$ and $m = |E|$)

- bit vector $A[0..2m)$ with $A[i] = 1 \iff$ the i-th edge processed is in T
- bit vector $B[0..2(n - 1))$ with $B[i] = "(" \iff i$-th time an edge in T is processed is the first time that edge is processed
- bit vector $B^*[0..2(m - n + 1))$ with $B^*[i] = "(" \iff i$-th time an edge not in T is processed is the first time that edge is processed

- $A = 01101101011100101100010100$
- $B = (())(())(())(())(())$
Succinct Graphs ($n = |V|$ and $m = |E|$)

- bit vector $A[0..2m]$ with $A[i] = 1 \iff$ the i-th edge processed is in T
- bit vector $B[0..2(n - 1)]$ with $B[i] = "(" \iff i$-th time an edge in T is processed is the first time that edge is processed
- bit vector $B^*[0..2(m - n + 1)]$ with $B^*[i] = "(" \iff i$-th time an edge not in T is processed is the first time that edge is processed

- $A = 01101101011100101100010100$
- $B = (())(())(())(())$
- $B^* = (())(())(())(())(())$
Simple Planar Succinct Graph Operations (1/2)

- $\text{first}(v)$ return i such that the first edge processed when visiting v is processed i-th during traversal
- $\text{next}(i)$ return j such that next edge that is processed when visiting v by i-th edge is processed j-th during traversal
- $\text{mate}(i)$ return j such that edge is processed i-th and j-th during traversal
- $\text{vertex}(i)$ return node v that is currently visited when processing i-th edge during traversal
Simple Planar Succinct Graph Operations (2/2)

- all operations work in $O(1)$ time
- using rank and select queries on A
- using BP representation of T and T^*

Example on the board
Simple Planar Succinct Graph Operations (2/2)

- all operations work in $O(1)$ time
- using rank and select queries on A
- using BP representation of T and T^*

$$A = 01101101011100101100010100$$

$$B = ((()))((()))((()))$$

$$B^* = ()((())(()))()$$

- $\text{first}(0) = 0$, $\text{mate}(0) = 3$, $\text{vertex}(3) = 2$
- $\text{next}(0) = 1$, $\text{mate}(1) = 9$, $\text{vertex}(9) = 1$
- $\text{next}(1) = 10$, $\text{mate}(10) = 16$, $\text{vertex}(16) = 4$
- $\text{next}(10) = 17$, $\text{mate}(17) = 25$, $\text{vertex}(25) = 6$

- example on the board
Getting the Degree

- while node has next
- increase counter and go to next
- return counter

Running time depends on the degree of the node.
Better running time is preferable.
Speed up queries using $O(m)$ additional bits.

Let $f(m) \in \omega(1)$.
Mark in $D[0..m]$ nodes with degree $> f(m)$.
At most $m / f(m)$ ones (sparse).
For these nodes store degree unary in $E[0..2^m]$.
Also sparse.
Compressed sparse bit vectors require $O(m)$ space.
Degree queries require only $O(f(m))$ time.

Example on the board.
Getting the Degree

- while node has next
- increase counter and go to next
- return counter

- running time depends of degree of node
- better running time preferable
Getting the Degree

- while node has next
- increase counter and go to next
- return counter

- running time depends of degree of node
- better running time preferable

- speed up queries using $o(m)$ additional bits
- let $f(m) \in \omega(1)$
- mark in $D[0..m]$ nodes with degree $> f(m)$
 - at most $m/f(m)$ ones (sparse)
- for these nodes store degree unary in $E[0..2m]$
 - also sparse
- compressed sparse bit vectors require $o(m)$ space
Getting the Degree

- while node has \textit{next}
- increase counter and go to \textit{next}
- return counter

- running time depends of degree of node
- better running time preferable

- speed up queries using $o(m)$ additional bits
- let $f(m) \in \omega(1)$
- mark in $D[0..m]$ nodes with degree $> f(m)$
 - at most $m/f(m)$ ones (sparse)
- for these nodes store degree unary in $E[0..2m]$
 - also sparse
- compressed sparse bit vectors require $o(m)$ space

- degree queries require only $O(f(m))$ time
- example on the board 📊
Lemma: Succinct Planar Graphs

Storing an embedding of a connected planar graph with m edges requires $4m + o(m)$ bits and all nodes incident to a node can be iterated over in (counter-)clockwise order in constant time per edge. Finding the degree of a node can be done in $O(f(m))$ time for any function $f(m) \in \omega(1)$.
Conclusion and Outlook

This Lecture
- succinct planar graphs

Advanced Data Structures
- static BV
- static succ. trees
- succ. graphs
Conclusion and Outlook

This Lecture
- succinct planar graphs
- recap DFUDS

Advanced Data Structures
- static BV
- static succ. trees
- succ. graphs
Conclusion and Outlook

This Lecture
- succinct planar graphs
- recap DFUDS

Next Lecture
- predecessor data structures
- range minimum queries

Advanced Data Structures
- static BV
- static succ. trees
- succ. graphs
- detailed information on the homepage
- implement predecessor and range minimum data structures
- deadline: 17.07.2023
- 2 pages report