Advanced Data Structures

Lecture 06: Orthogonal Range Searching and BSP Trees
Florian Kurpicz and Stefan Walzer
Motivation: Query Set of Points

- given set of points \(P = \{p_1, \ldots, p_n\} \) with \(p_i = (x_i, y_i) \)
- find all points in \([x, y] \times [x', y']\)
- higher dimensions are possible

- think about database queries
- each dimension is a property
- searching for objects fulfilling all properties of range
Motivation: Query Set of Points

- given set of points $P = \{p_1, \ldots, p_n\}$ with $p_i = (x_i, y_i)$
- find all points in $[x, y] \times [x', y']$
- higher dimensions are possible

- think about database queries
- each dimension is a property
- searching for objects fulfilling all properties of range
Motivation: Query Set of Points

- given set of points $P = \{p_1, \ldots, p_n\}$ with $p_i = (x_i, y_i)$
- find all points in $[x, y] \times [x', y']$
- higher dimensions are possible

- think about database queries
- each dimension is a property
- searching for objects fulfilling all properties of range
1-Dimensional Range Searching (1/2)

- consider 1-dimensional problem
- range is $[x..x']$
- points $P = \{x_1, \ldots, x_n\}$ are just numbers
consider 1-dimensional problem

range is \([x..x']\)

points \(P = \{x_1, \ldots, x_n\}\) are just numbers

build BBST where each leaf contains a point
inner node \(v\) store splitting value \(x_v\)
1-Dimensional Range Searching (1/2)

- consider 1-dimensional problem
- range is $[x..x']$
- points $P = \{x_1, \ldots, x_n\}$ are just numbers

- build BBST where each leaf contains a point
- inner node v store splitting value x_v
1-Dimensional Range Searching (1/2)

- consider 1-dimensional problem
- range is \([x..x']\)
- points \(P = \{x_1, \ldots, x_n\}\) are just numbers

- build BBST where each leaf contains a point
- inner node \(v\) store splitting value \(x_v\)

- query for both \(x\) and \(x'\)
- find leaves \(b\) and \(e\) for \(x\) and \(x'\)
- let node \(v\) be node where paths to leaves split
- report all leaves between \(b\) and \(e\)
how long does it take to report all children of a subtree with k leaves in a BBST?
1-Dimensional Range Searching (2/2)

- how long does it take to report all children of a subtree with k leaves in a BBST?

Lemma: 1-Dimensional Range Searching

Let P be a set of n 1-dimensional points. P can be stored in a BBST that requires $O(n)$ words space, can be constructed in $O(n \log n)$ time, and can answer range searching queries in $O(\log n + \text{occ})$ time.
1-Dimensional Range Searching (2/2)

Lemma: 1-Dimensional Range Searching
Let P be a set of n 1-dimensional points. P can be stored in a BBST that requires $O(n)$ words space, can be constructed in $O(n \log n)$ time, and can answer range searching queries in $O(\log n + occ)$ time.

Proof (Sketch Time)
- reporting all children in a subtree requires $O(occ)$ time
- BBST has depth $O(\log n)$
- search paths starting at v have length $O(\log n)$
- report all subtrees to the right of the left path
- report all subtrees to the left of the right path

how long does it take to report all children of a subtree with k leaves in a BBST?

PINGO
2-Dimensional Rectangular Range Searching

Important

- assume no two points have the same x- or y-coordinate ⇒ general position

- generalize 1-dimensional idea

1-dimensional
- split number of points in half at each node
- points consist of one value

2-dimensional
- points consist of two values
- split number of points in half w.r.t. one value
- switch between values depending on depth
Important

- assume no two points have the same x- or y-coordinate \(\Rightarrow\) general position

- generalize 1-dimensional idea

 - 1-dimensional
 - split number of points in half at each node
 - points consist of one value

 - 2-dimensional
 - points consist of two values
 - split number of points in half w.r.t. one value
 - switch between values depending on depth
2-Dimensional Rectangular Range Searching

Important

- assume no two points have the same x- or y-coordinate ⇒ general position

- generalize 1-dimensional idea

 - 1-dimensional
 - split number of points in half at each node
 - points consist of one value

 - 2-dimensional
 - points consist of two values
 - split number of points in half w.r.t. one value
 - switch between values depending on depth
2-Dimensional Rectangular Range Searching

Important

- assume no two points have the same x- or y-coordinate ⇒ general position

- generalize 1-dimensional idea
 - 1-dimensional
 - split number of points in half at each node
 - points consist of one value
 - 2-dimensional
 - points consist of two values
 - split number of points in half w.r.t. one value
 - switch between values depending on depth
2-Dimensional Rectangular Range Searching

Important

- assume no two points have the same x- or y-coordinate ⇒ general position

- generalize 1-dimensional idea
 - 1-dimensional
 - split number of points in half at each node
 - points consist of one value
 - 2-dimensional
 - points consist of two values
 - split number of points in half w.r.t. one value
 - switch between values depending on depth
Important

- assume no two points have the same x- or y-coordinate ⇒ general position

- generalize 1-dimensional idea

- 1-dimensional
 - split number of points in half at each node
 - points consist of one value

- 2-dimensional
 - points consist of two values
 - split number of points in half w.r.t. one value
 - switch between values depending on depth

2-Dimensional Rectangular Range Searching
Important

- assume no two points have the same x- or y-coordinate \Rightarrow general position

- generalize 1-dimensional idea
 - 1-dimensional
 - split number of points in half at each node
 - points consist of one value
 - 2-dimensional
 - points consist of two values
 - split number of points in half w.r.t. one value
 - switch between values depending on depth

2-Dimensional Rectangular Range Searching
2-Dimensional Rectangular Range Searching

Important
- Assume no two points have the same x- or y-coordinate \Rightarrow general position

- Generalize 1-dimensional idea
- 1-dimensional
 - Split number of points in half at each node
 - Points consist of one value
- 2-dimensional
 - Points consist of two values
 - Split number of points in half w.r.t. one value
 - Switch between values depending on depth
2-Dimensional Rectangular Range Searching

Important

- Assume no two points have the same x- or y-coordinate \Rightarrow general position

- Generalize 1-dimensional idea
 - 1-dimensional
 - Split number of points in half at each node
 - Points consist of one value
 - 2-dimensional
 - Points consist of two values
 - Split number of points in half w.r.t. one value
 - Switch between values depending on depth
considering the 2-dimensional case
- each inner node at an even depth
 - splits the leaves in its subtree in half
 - using the x-coordinate
- each inner node at an odd depth
 - splits the leaves in its subtree in half
 - using the y-coordinate
- until each region contains a single point
- each leaf represents a point

- splitting in linear time is complicated
- better presort based on x- and y-coordinate
- inner nodes store splitter (line)
considering the 2-dimensional case
- each inner node at an even depth
 - splits the leaves in its subtree in half
 - using the x-coordinate
- each inner node at an odd depth
 - splits the leaves in its subtree in half
 - using the y-coordinate
- until each region contains a single point
- each leaf represents a point

splitting in linear time is complicated
- better presort based on x- and y-coordinate
- inner nodes store splitter (line)
Kd-Trees (1/4)

- considering the 2-dimensional case
- each inner node at an even depth
 - splits the leaves in its subtree in half
 - using the x-coordinate
- each inner node at an odd depth
 - splits the leaves in its subtree in half
 - using the y-coordinate
- until each region contains a single point
- each leaf represents a point

- splitting in linear time is complicated
- better presort based on x- and y-coordinate
- inner nodes store splitter (line)
considering the 2-dimensional case
- each inner node at an even depth
 - splits the leaves in its subtree in half
 - using the x-coordinate
- each inner node at an odd depth
 - splits the leaves in its subtree in half
 - using the y-coordinate
- until each region contains a single point
- each leaf represents a point

splitting in linear time is complicated
- better presort based on x- and y-coordinate
- inner nodes store splitter (line)
Kd-Trees (1/4)

- considering the 2-dimensional case
- each inner node at an even depth
 - splits the leaves in its subtree in half
 - using the x-coordinate
- each inner node at an odd depth
 - splits the leaves in its subtree in half
 - using the y-coordinate
- until each region contains a single point
- each leaf represents a point

- splitting in linear time is complicated
- better presort based on x- and y-coordinate
- inner nodes store splitter (line)
considering the 2-dimensional case
- each inner node at an even depth
 - splits the leaves in its subtree in half
 - using the x-coordinate
- each inner node at an odd depth
 - splits the leaves in its subtree in half
 - using the y-coordinate
- until each region contains a single point
- each leaf represents a point

splitting in linear time is complicated
- better presort based on x- and y-coordinate
- inner nodes store splitter (line)
Kd-Trees (1/4)

- considering the 2-dimensional case
- each inner node at an even depth
 - splits the leaves in its subtree in half
 - using the x-coordinate
- each inner node at an odd depth
 - splits the leaves in its subtree in half
 - using the y-coordinate
- until each region contains a single point
- each leaf represents a point

- splitting in linear time is complicated
- better presort based on x- and y-coordinate
- inner nodes store splitter (line)
considering the 2-dimensional case

- each inner node at an even depth
 - splits the leaves in its subtree in half
 - using the x-coordinate

- each inner node at an odd depth
 - splits the leaves in its subtree in half
 - using the y-coordinate

- until each region contains a single point

- each leaf represents a point

- splitting in linear time is complicated
- better presort based on x- and y-coordinate
- inner nodes store splitter (line)
considering the 2-dimensional case

- each inner node at an even depth
 - splits the leaves in its subtree in half
 - using the x-coordinate
- each inner node at an odd depth
 - splits the leaves in its subtree in half
 - using the y-coordinate
- until each region contains a single point
- each leaf represents a point

splitting in linear time is complicated
- better presort based on x- and y-coordinate
- inner nodes store splitter (line)
Lemma: Kd-Tree Construction

A kd-tree for a set of n points requires $O(n)$ words space and can be constructed in $O(n \log n)$ time.
Lemma: Kd-Tree Construction

A kd-tree for a set of n points requires $O(n)$ words space and can be constructed in $O(n \log n)$ time.

Proof (Sketch: Space)

- there are $O(n)$ leaves
- there are $O(n)$ inner nodes
- a binary tree requires $O(1)$ words per node
- $O(n)$ words total space

Proof (Sketch: Time)

finding the splitter is easy due to presorted points
splitting requires $T(n)$ time with $T(n) = O(n) + 2T(\lceil n/2 \rceil)$
results in $O(n \log n)$ running time
presorting in same time bound
Lemma: Kd-Tree Construction
A kd-tree for a set of \(n \) points requires \(O(n) \) words space and can be constructed in \(O(n \log n) \) time

Proof (Sketch: Space)
- there are \(O(n) \) leaves
- there are \(O(n) \) inner nodes
- a binary tree requires \(O(1) \) words per node
- \(O(n) \) words total space

Proof (Sketch: Time)
- finding the splitter is easy due to presorted points
- splitting requires \(T(n) \) time with
 \[
 T(n) = \begin{cases}
 O(1) & n = 1 \\
 O(n) + 2T(\lceil n/2 \rceil) & n > 1
 \end{cases}
 \]
- results in \(O(n \log n) \) running time
- presorting in same time bound
Kd-Trees (3/4)

- use splitter depending on depth to identify paths through tree
- if a region is fully contained in query: report region
- if a region is intersected by query: check if point has to be reported
Kd-Trees (3/4)

- use splitter depending on depth to identify paths through tree
- if a region is fully contained in query: report region
- if a region is intersected by query: check if point has to be reported

- precomputation of query not necessary
- current region can be computed during query
- using splitters
Kd-Trees (3/4)

- use splitter depending on depth to identify paths through tree
- if a region is fully contained in query: report region
- if a region is intersected by query: check if point has to be reported

- precomputation of query not necessary
- current region can be computed during query
- using splitters

- example on the board
Lemma: Kd-Tree Query

A query with an axis-parallel rectangle in a Kd-tree storing n points in the plane can be performed in $O(\sqrt{n} + occ)$ time.
Lemma: Kd-Tree Query

A query with an axis-parallel rectangle in a Kd-tree storing \(n \) points in the plane can be performed in \(O(\sqrt{n} + \text{occ}) \) time.

Proof (Sketch)

- \(O(\text{occ}) \) time necessary to report points
- Look at number of regions intersected by any vertical line
- Upper bound for the regions intersected by query (for left and right edge of rectangle)
- Upper bound for top and bottom edges are the same

\[Q(n) = O\left(\frac{n}{4}\right) \]

Total running time is \(O(\sqrt{n} + \text{occ}) \).
Lemma: Kd-Tree Query

A query with an axis-parallel rectangle in a Kd-tree storing n points in the plane can be performed in $O(\sqrt{n} + \text{occ})$ time.

Proof (Sketch)

- $O(\text{occ})$ time necessary to report points
- Look at number of regions intersected by any vertical line
- Upper bound for the regions intersected by query (for left and right edge of rectangle)
- Upper bound for top and bottom edges are the same

Proof (Sketch, cont.)

- For vertical lines consider every inner node at odd depth
- Starting at root's children
- Can intersect two regions
- Number of nodes is $\lceil n/4 \rceil$ halved at each level
- Number of intersected regions is $Q(n)$ with

$$Q(n) = \begin{cases} O(1) & n = 1 \\ 2 + 2Q(\lceil n/4 \rceil) & n > 1 \end{cases}$$

- Results in $Q(n) = O(\sqrt{n})$
- $O(\sqrt{n} + k)$ total running time
Teaser: Other Space-Partitioning Search Trees

- Quadtrees
 - recursive partition of input space into four children (top-down)
 - generalizes to higher dimensions (Octtree)
 - often used in computer graphics
Teaser: Other Space-Partitioning Search Trees

- **Quadtrees**
 - recursive partition of input space into four children (top-down)
 - generalizes to higher dimensions (Octtree)
 - often used in computer graphics

- **R-Trees**
 - recursively group nearby objects into minimal bounding boxes (bottom-up)
 - works also for complex shapes, not only points
 - many variants exist (R*-Trees, R+Trees)
 - often used in spatial databases
Teaser: Other Space-Partitioning Search Trees

- **Quadtrees**
 - recursive partition of input space into four children (top-down)
 - generalizes to higher dimensions (Octtree)
 - often used in computer graphics

- **R-Trees**
 - recursively group nearby objects into minimal bounding boxes (bottom-up)
 - works also for complex shapes, not only points
 - many variants exist (R*-Trees, R+Trees)
 - often used in spatial databases

Example on the board
Range Trees (1/4)

- one BBST build on the x-coordinates
 - same as for 1-dimensional queries
- each inner node is associated with a set of points
- build a BBST for the y-coordinates of associated points for each inner node
 - store points in leaves not just y-coordinates
 - this BBST is used for reporting
- space-query-time trade-off
- faster queries but larger
one BBST build on the x-coordinates
 - same as for 1-dimensional queries
each inner node is associated with a set of points
build a BBST for the y-coordinates of associated points for each inner node
 - store points in leaves not just y-coordinates
 - this BBST is used for reporting

space-query-time trade-off
faster queries but larger
Range Trees (1/4)

- one BBST build on the x-coordinates
 - same as for 1-dimensional queries
- each inner node is associated with a set of points
- build a BBST for the y-coordinates of associated points for each inner node
 - store points in leaves not just y-coordinates
 - this BBST is used for reporting

- space-query-time trade-off
- faster queries but larger
the BBST for the x-coordinates requires $O(n)$ words of space

how much space do the associated BBSTs require in total?
the BBST for the x-coordinates requires $O(n)$ words of space

how much space do the associated BBSTs require in total?

Lemma: Space Range Tree

A range tree on a set of n points in the plane requires $O(n \log n)$ words space
the BBST for the x-coordinates requires $O(n)$ words of space

how much space do the associated BBSTs require in total?

Lemma: Space Range Tree

A range tree on a set of n points in the plane requires $O(n \log n)$ words space

Proof (Sketch)

- BBST for x-coordinates has depth $O(\log n)$
- all points are represented on each depth exactly once
the BBST for the x-coordinates requires $O(n)$ words of space

how much space do the associated BBSTs require in total?

Lemma: Space Range Tree

A range tree on a set of n points in the plane requires $O(n \log n)$ words space

Proof (Sketch)

- BBST for x-coordinates has depth $O(\log n)$
- all points are represented on each depth exactly once

Proof (Sketch, cnt.)

- all associated BBSTs on each depth contain every point exactly once
- total size of all BBSTs on each depth is $O(n)$
- total space $O(n \log n)$ words
the BBST for the x-coordinates requires $O(n)$ words of space.

how much space do the associated BBSTs require in total?

Lemma: Space Range Tree

A range tree on a set of n points in the plane requires $O(n \log n)$ words space.

Proof (Sketch)

- BBST for x-coordinates has depth $O(\log n)$
- all points are represented on each depth exactly once

Proof (Sketch, cnt.)

- all associated BBSTs on each depth contain every point exactly once
- total size of all BBSTs on each depth is $O(n)$
- total space $O(n \log n)$ words

how much faster is the range tree?
2-dimensional rectangular range search reduced to two 1-dimensional range searches

- look in BBST for x-coordinates \(x \)-coordinates same as 1-dimensional case
- instead of reporting subtrees to the right/left of paths search associated BBSTs
- report results in leaves of associated BBSTs
Range Trees (3/4)

- 2-dimensional rectangular range search reduced to two 1-dimensional range searches
- look in BBST for x-coordinates same as 1-dimensional case
- instead of reporting subtrees to the right/left of paths search associated BBSTs
- report results in leaves of associated BBSTs

Lemma: Range Tree Query Time

A query with an axis-parallel rectangle in a range tree storing n points requires $O(\log^2 n + occ)$ time
Range Trees (3/4)

- 2-dimensional rectangular range search reduced to two 1-dimensional range searches
- look in BBST for x-coordinates same as 1-dimensional case
- instead of reporting subtrees to the right/left of paths search associated BBSTs
- report results in leaves of associated BBSTs

Proof (Sketch)

- each search in an associated BBST t requires $O(\log n + occ_t)$ time
- $O(\log n)$ associated BSSTs T are searched as seen in 1-dimensional case
- total query time $\sum_{t \in T} O(\log n + occ_t) = O(occ)$
- $\sum_{t \in T} O(\log n) = O(\log^2 n)$
- total time: $O(\log^2 n + occ)$

Lemma: Range Tree Query Time

A query with an axis-parallel rectangle in a range tree storing n points requires $O(\log^2 n + occ)$ time
Range Trees (4/4)

- range trees can be generalized to higher dimensions
- for each dimension add an additional associated BBST
- reporting in final BBST
- \(d\)-dimensional queries are \(d\) 1-dimensional queries
Range Trees (4/4)

- range trees can be generalized to higher dimensions
- for each dimension add an additional associated BBST
- reporting in final BBST
- d-dimensional queries are d 1-dimensional queries

Lemma: Higher Dimensions Range Tree

A d-dimensional range tree (for $d \geq 2$) storing n points in the plane requires $O(n \log^{d-1} n)$ words space and can answer queries in $O(\log^d n + occ)$ time
Range Trees (4/4)

- Range trees can be generalized to higher dimensions.
- For each dimension, add an additional associated BBST.
- Reporting in final BBST.
- d-dimensional queries are d 1-dimensional queries.

Lemma: Higher Dimensions Range Tree

A d-dimensional range tree (for $d \geq 2$) storing n points in the plane requires $O(n \log^{d-1} n)$ words space and can answer queries in $O(\log^d n + occ)$ time.

Proof (Sketch Query Time)

- Recursive query time $Q_d(n)$ with $Q_2(n) = O(\log^2 n)$.
- $Q_d(n) = O(\log n) + O(\log n) \cdot Q_{d-1}(n)$.
- Solves to $Q_d(n) = O(\log^d n)$.
- $O(occ)$ time for reporting.
Range Trees (4/4)

- range trees can be generalized to higher dimensions
- for each dimension add an additional associated BBST
- reporting in final BBST
- \(d\)-dimensional queries are \(d\) 1-dimensional queries

Lemma: Higher Dimensions Range Tree

A \(d\)-dimensional range tree (for \(d \geq 2\)) storing \(n\) points in the plane requires \(O(n \log^{d-1} n)\) words space and can answer queries in \(O(\log^d n + \text{occ})\) time

Proof (Sketch Query Time)

- recursive query time \(Q_d(n)\) with \(Q_2(n) = O(\log^2 n)\)
- \(Q_d(n) = O(\log n) + O(\log n) \cdot Q_{d-1}(n)\)
- solves to \(Q_d(n) = O(\log^d n)\)
- \(O(\text{occ})\) time for reporting

Proof (Sketch Construction Space)

- recursive space \(S_d(n)\) with \(S_2(n) = O(n \log n)\) words
- \(T_d(n) = O(n \log n) + O(\log n) \cdot T_{d-1}(n)\)
- solves to \(S_d(n) = O(n \log^{d-1} n)\)
sorted sets S_1, \ldots, S_m

$|S_1| = n$ and $S_{i+1} \subseteq S_i$

report elements in range $[x..x']$ in S_1, \ldots, S_m
Fractional Cascading (1/2)

- sorted sets S_1, \ldots, S_m
- $|S_1| = n$ and $S_{i+1} \subseteq S_i$
- report elements in range $[x..x']$ in S_1, \ldots, S_m

- how much time does a naive algorithm with binary search require?
sorted sets S_1, \ldots, S_m

$|S_1| = n$ and $S_{i+1} \subseteq S_i$

report elements in range $[x..x']$ in S_1, \ldots, S_m

how much time does a naive algorithm with binary search require? $O(m \log n + \text{occ})$

$O(m \log n + \text{occ})$ time
Fractional Cascading (1/2)

- sorted sets S_1, \ldots, S_m
- $|S_1| = n$ and $S_{i+1} \subseteq S_i$
- report elements in range $[x..x']$ in S_1, \ldots, S_m

- how much time does a naive algorithm with binary search require? $O(m \log n + \text{occ})$ time
- $O(m + \log n + \text{occ})$ time possible with fractional cascading
Fractional Cascading (1/2)

- sorted sets S_1, \ldots, S_m
- $|S_1| = n$ and $S_{i+1} \subseteq S_i$
- report elements in range $[x..x']$ in S_1, \ldots, S_m

- how much time does a naive algorithm with binary search require?
 - $O(m \log n + \text{occ})$ time
 - $O(m + \log n + \text{occ})$ time possible with fractional cascading

- in addition to S_i store pointers to S_{i+1}
- for each element in S_i store pointer to successor in S_{i+1}
- possible because $S_{i+1} \subseteq S_i$
Lemma: Fractional Cascading

Given sets S_1, \ldots, S_m with $|S_1| = n$ and $S_{i+1} \subseteq S_i$, find a range in all S_i's using fractional cascading requires $O(m + \log n + \text{occ})$ time.
Fractional Cascading (2/2)

Lemma: Fractional Cascading

Given sets S_1, \ldots, S_m with $|S_1| = n$ and $S_{i+1} \subseteq S_i$, find a range in all S_i's using fractional cascading requires $O(m + \log n + \text{occ})$ time

Proof (Sketch)

- binary search on S_1 requires $O(\log n)$ time
- following pointer to S_2 requires $O(1)$ time
- scanning S_2 requires $O(\text{occ})$ time
- following pointer to S_3 requires $O(1)$ time
- repeat m times
- total: $O(m + \log n + \text{occ})$ time
Lemma: Fractional Cascading

Given sets S_1, \ldots, S_m with $|S_1| = n$ and $S_{i+1} \subseteq S_i$, find a range in all S_i's using fractional cascading requires $O(m + \log n + \text{occ})$ time.

Proof (Sketch)

- Binary search on S_1 requires $O(\log n)$ time.
- Following pointer to S_2 requires $O(1)$ time.
- Scanning S_2 requires $O(\text{occ})$ time.
- Following pointer to S_3 requires $O(1)$ time.
- Repeat m times.
- Total: $O(m + \log n + \text{occ})$ time.

How to apply to range trees?
- Instead of associated BBSTs store leaf data in arrays for all nodes but root.
- Each node has associated data.
- Store two successor pointers to the associated data in the left and right child.
- Two pointers to cover all possible paths.
- This is a layered range tree.
Query Layered Range Trees

- search in BBST for x-coordinates remains the same
- to search y-coordinates first search associated BBST of root
- same as initial binary search for fractional cascading
- continue to follow pointers in associated data and scan to report queries
Query Layered Range Trees

- search in BBST for x-coordinates remains the same
- to search y-coordinates first search associated BBST of root
- same as initial binary search for fractional cascading
- continue to follow pointers in associated data and scan to report queries

Lemma: Query time Layered Range Tree

A query with an axis-parallel rectangle in a layered range tree storing n points in the plane can be performed in $O(\log n + \text{occ})$ time
Query Layered Range Trees

- search in BBST for x-coordinates remains the same
- to search y-coordinates first search associated BBST of root
- same as initial binary search for fractional cascading
- continue to follow pointers in associated data and scan to report queries

Proof (Sketch)

- the initial search requires $O(\log n)$ time
- the search in the associated BBST of the root requires $O(\log n)$ time
- remaining searches in associated data a requires $O(1 + occ_a)$ time
- each point is reported once
- total time: $O(\log n + occ)$

Lemma: Query time Layered Range Tree

A query with an axis-parallel rectangle in a layered range tree storing n points in the plane can be performed in $O(\log n + occ)$ time
all solutions requires unique x and y-coordinates

big limitation for applications

remember database motivation
General Sets of Points (1/2)

- all solutions requires unique x and y-coordinates
- big limitation for applications
- remember database motivation

- store \((x|k)\) as coordinate with \(x\) being the x-coordinate and \(k\) a unique key
- same for y-coordinates
- compare points using
 \[(x|k) < (x'|k') \iff x < x' \text{ or } (x = x' \text{ and } k < k') \]
General Sets of Points (1/2)

- all solutions requires unique x and y-coordinates
- big limitation for applications
- remember database motivation

- store $(x|k)$ as coordinate with x being the x-coordinate and k a unique key
- same for y-coordinates
- compare points using $(x|k) < (x'|k') \iff x < x'$ or $(x = x'$ and $k < k')$

- range queries $[x..x'] \times [y..y']$ become
 $$[(x|\infty)..(x'|\infty)] \times (y|\infty)..[(y'|\infty)]$$
General Sets of Points (2/2)

- All solutions require unique x and y-coordinates.
- Big limitation for applications.
- Remember database motivation.
- If exact positions are not important to application.

Random perturbation:

\[
x + \delta \sim U(-\epsilon, \epsilon)
\]

Same for y-coordinates.
all solutions requires unique x and y-coordinates
big limitation for applications
remember database motivation
if exact positions are not important to application

random perturbation: $x + \delta \sim U(-\epsilon, \epsilon)$
same for y-coordinates
General Sets of Points (2/2)

- all solutions requires unique x and y-coordinates
- big limitation for applications
- remember database motivation
- if exact positions are not important to application

- random perturbation: $x + \delta \sim U(-\epsilon, \epsilon)$
- same for y-coordinates

- range queries $[x..x'] \times [y..y']$ become

 $[(x - \epsilon) .. (x' + \epsilon)] \times (y - \epsilon) .. [(y' + \epsilon)]$
Now: Render Object

- hidden surface removal
- which pixel is visible
- important for rendering
z-Buffer Algorithm

- Transform scene such that viewing direction is positive z-direction
- Consider objects in scene in arbitrary order
- Maintain two buffers
 - Frame buffer: currently shown pixel
 - Z-buffer: z-coordinate of object shown
- Compare z-coordinate of z-buffer and object
z-Buffer Algorithm

- transform scene such that viewing direction is positive z-direction
- consider objects in scene in arbitrary order
- maintain two buffers
 - frame buffer \(\sqrt{\circ} \) currently shown pixel
 - z-buffer \(\sqrt{\circ} \) z-coordinate of object shown
- compare z-coordinate of z-buffer and object

- first sort object in depth-order
- depth-order may not always exist \(\circ \)
- how to efficiently sort objects?
BSP Trees (1/2)

- partition space using hyperplanes
- binary partition similar to kd-tree
- hyperplanes create half-spaces and cut objects into fragments
BSP Trees (1/2)

- partition space using hyperplanes
- binary partition similar to kd-tree
- hyperplanes create half-spaces and cut objects into fragments

- $h^+ = \{(x_1, \ldots, x_d) : a_1 x_1 + \cdots + a_d x_d > c\}$
- $h^- = \{(x_1, \ldots, x_d) : a_1 x_1 + \cdots + a_d x_d < c\}$
BSP Trees (1/2)

- partition space using hyperplanes
- binary partition similar to kd-tree
- hyperplanes create half-spaces and cut objects into fragments

\[h^+ = \{ (x_1, \ldots, x_d) : a_1 x_1 + \cdots + a_d x_d > c \} \]

\[h^- = \{ (x_1, \ldots, x_d) : a_1 x_1 + \cdots + a_d x_d < c \} \]
BSP Trees (1/2)

- partition space using hyperplanes
- binary partition similar to kd-tree
- hyperplanes create half-spaces and cut objects into fragments

- \(h^+ = \{(x_1, \ldots, x_d): a_1 x_1 + \cdots + a_d x_d > c\} \)
- \(h^- = \{(x_1, \ldots, x_d): a_1 x_1 + \cdots + a_d x_d < c\} \)
BSP Trees (1/2)

- partition space using hyperplanes
- binary partition similar to kd-tree
- hyperplanes create half-spaces and cut objects into fragments

- $h^+ = \{(x_1, \ldots, x_d): a_1 x_1 + \cdots + a_d x_d > c\}$
- $h^- = \{(x_1, \ldots, x_d): a_1 x_1 + \cdots + a_d x_d < c\}$
BSP Trees (1/2)

- partition space using hyperplanes
- binary partition similar to kd-tree
- hyperplanes create half-spaces and cut objects into fragments

\[h^+ = \{(x_1, \ldots, x_d) : a_1 x_1 + \cdots + a_d x_d > c\} \]
\[h^- = \{(x_1, \ldots, x_d) : a_1 x_1 + \cdots + a_d x_d < c\} \]
BSP Trees (1/2)

- partition space using hyperplanes
- binary partition similar to kd-tree
- hyperplanes create half-spaces and cut objects into fragments

- $h^+ = \{(x_1, \ldots, x_d) : a_1 x_1 + \cdots + a_d x_d > c\}$
- $h^- = \{(x_1, \ldots, x_d) : a_1 x_1 + \cdots + a_d x_d < c\}$

- each split creates two nodes in a tree
- if number of objects in space is one: leaf
- otherwise: inner node
BSP Trees (2/2)

- for leaf: store object/fragment
- for inner node ν: store hyperplane h_{ν} and the objects contained in h_{ν}
- left child represents objects in upper half-space h^+
- right child represents objects in lower half-space h^-
BSP Trees (2/2)

- for leaf: store object/fragment
- for inner node \(\nu \): store hyperplane \(h_{\nu} \) and the objects contained in \(h_{\nu} \)
- left child represents objects in upper half-space \(h^+ \)
- right child represents objects in lower half-space \(h^- \)

- space of BSP tree is number of objects stored at all nodes
- what about fragments?
- too many fragments can make the tree big
Auto-Partitioning

- sorting points for kd-trees worked well
- BSP-tree is used to sort objects in depth-order
- auto-partitioning uses splitters through objects
 - 2-dimensional: line through line segments
 - 3-dimensional: half-plane through polygons
Painter’s Algorithm

- consider view point p_{view}
- traverse through tree and always recurse on half-space that does not contain p_{view} first
- then scan-convert object contained in node
- then recurse on half-space that contains p_{view}
Constructing Planar BSP Trees (1/3)

- use auto-partitioning
- construction similar to construction of kd-tree
- store all necessary information
 - hyperplane
 - objects in hyperplane
- how to determine next hyperplane?
- creating fragments increases size of BSP tree
Constructing Planar BSP Trees (1/3)

- use auto-partitioning
- construction similar to construction of kd-tree
- store all necessary information
 - hyperplane
 - objects in hyperplane
- how to determine next hyperplane?
- creating fragments increases size of BSP tree

- let s be object and $\ell(s)$ line through object
- order matters
Constructing Planar BSP Trees (1/3)

- use auto-partitioning
- construction similar to construction of kd-tree
- store all necessary information
 - hyperplane
 - objects in hyperplane
- how to determine next hyperplane?
- creating fragments increases size of BSP tree

- let \(s \) be object and \(\ell(s) \) line through object
- order matters
use auto-partitioning
- construction similar to construction of kd-tree
- store all necessary information
 - hyperplane
 - objects in hyperplane
- how to determine next hyperplane?
- creating fragments increases size of BSP tree

let \(s \) be object and \(\ell(s) \) line through object
- order matters
Lemma: Number Line Fragments

The expected number of fragments generated when iterating through the line segments using a random permutation is $O(n \log n)$.

Proof (Sketch)

Let $\text{dist}(s_i, s_j) = k$ and s_j^1, \ldots, s_j^k be segments between s_i and s_j. What is the probability that $\ell(s_i)$ cuts s_j? This happens if no s_j^x is processed before s_i since order is random:

$$P[\ell(s_i) \text{ cuts } s_j] \leq \frac{1}{\text{dist}(s_i, s_j)} + 2.$$
Lemma: Number Line Fragments

The expected number of fragments generated when iterating through the line segments using a random permutation is $O(n \log n)$.

Proof (Sketch)

- distance of lines $\text{dist}_{s_i}(s_j) = \begin{cases}
\# \text{ segments inters. } \ell(s_i) \\
\text{between } s_i \text{ and } s_j \\
\infty \quad \ell(s_i) \text{ inters. } s_j \\
\text{otherwise}
\end{cases}$

- example on the board
Lemma: Number Line Fragments

The expected number of fragments generated when iterating through the line segments using a random permutation is $O(n \log n)$.

Proof (Sketch)

- distance of lines $\text{dist}_{s_i}(s_j) = \begin{cases}
\# \text{ segments inters. } \ell(s_i) \\
\text{between } s_i \text{ and } s_j \\
\infty \quad \ell(s_i) \text{ inters. } s_j
\end{cases}$
- example on the board

Proof (Sketch, cnt.)

- let $\text{dist}_{s_i}(s_j) = k$ and s_{j_1}, \ldots, s_{j_k} be segments between s_i and s_j
- what is the probability that $\ell(s_i)$ cuts s_j?
- this happens if no s_{j_x} is processed before s_i
- since order is random

$$\mathbb{P}[\ell(s_i) \text{ cuts } s_j] \leq \frac{1}{\text{dist}_{s_i}(s_j) + 2}$$
Proof (Sketch, cnt.)

- expected number of cuts

\[\mathbb{E}[\text{# cuts generated by } s_i] \leq \sum_{j \neq i} \frac{1}{\text{dist}_{s_i}(s_j) + 2} \leq 2 \sum_{k=0}^{n-2} \frac{1}{k + 2} \leq 2 \ln n \]

- all lines generate at most $2n \ln n$ fragments
Constructing Planar BSP Trees (3/3)

Proof (Sketch, cnt.)

- expected number of cuts

\[
E[\# \text{ cuts generated by } s_i] \leq \sum_{j \neq i} \frac{1}{\text{dist}_{s_i}(s_j) + 2} \leq 2 \sum_{k=0}^{n-2} \frac{1}{k + 2} \leq 2 \ln n
\]

- all lines generate at most \(2n \ln n\) fragments

Lemma: BSP Construction

A BSP tree of size \(O(n \log n)\) can be computed in expected time \(O(n^2 \log n)\)
Proof (Sketch, cnt.)

- expected number of cuts

\[E[\text{# cuts generated by } s_i] \leq \sum_{j \neq i} \frac{1}{\text{dist}_{s_i}(s_j)} + 2 \leq 2 \sum_{k=0}^{n-2} \frac{1}{k + 2} \leq 2 \ln n \]

- all lines generate at most \(2n \ln n\) fragments

Lemma: BSP Construction

A BSP tree of size \(O(n \log n)\) can be computed in expected time \(O(n^2 \log n)\)

Proof (Sketch)

- computing permutation in linear time
- construction is linear in number of fragments to be considered
- number of fragments in subtree is bounded by \(n\)
- number of recursions is \(n \log n\)
Conclusion and Outlook

This Lecture
- orthogonal range searching
- BSP trees

Advanced Data Structures

- Successor
- RMQ
 - static BV
 - static succ. trees
 - range min-max tree
 - succ. graphs
- Kd-/ Range / BSP Tree