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Motivation: Query Set of Points

® given set of points P = {px, ..., p,} with
pi = (Xi,yi)

® find all points in [x, y] x [x’, y']

® higher dimensions are possible

@ think about database queries
® each dimension is a property

& searching for objects fulfilling all properties of
range
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1-Dimensional Range Searching (1/2)

@ consider 1-dimensional problem
® range is [x..X']
® points P = {x1, ..., x,} are just numbers
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1-Dimensional Range Searching (1/2)

consider 1-dimensional problem

range is [x..x']

points P = {x1,..., Xp} are just numbers

build BBST where each leaf contains a point

inner node v store splitting value x,
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1-Dimensional Range Searching (1/2)

@ consider 1-dimensional problem
® range is [x..X']
® points P = {x1, ..., x,} are just numbers

® build BBST where each leaf contains a point

inner node v store splitting value x,

query for both x and x’ 1 1

find leaves b and e for x and x’

let node v be node where paths to leaves split

report all leaves between b and e
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1-Dimensional Range Searching (2/2)

® how long does it take to report all chlldren of a
subtree with k leaves in a BBST?: é-i’]s PINGO
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1-Dimensional Range Searching (2/2)

® how long does it take to report all children of a
subtree with k leaves in a BBST? & PINGO

Let P be a set of n 1-dimensional points. P can be
stored in a BBST that requires O(n) words space,
can be constructed in O(nlog n) time, and can
answer range searching queries in O(log n + occ)
time
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1-Dimensional Range Searching (2/2)

® how long does it take to report all children of a

subtree with K leaves in a BBST? & PINGO ® reporting all children in a subtree requires
O(occ) time
® BBST has depth O(log n)
Let P be a set of n 1-dimensional points. P can be ® search paths starting at v have length O(log n)
stored in a BBST that requires O(n) words space, ® report all subtrees to the right of the left path
el b eweiineies In Ol o i) diie, e e & report all subtrees to the left of the right path

answer range searching queries in O(log n + occ)
time
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2-Dimensional Rectangular Range Searching

Important

® assume no two points have the same x- or
y-coordinate = general position

® generalize 1-dimensional idea

@ 1-dimensional o
& split number of points in half at each node
® points consist of one value O

& 2-dimensional °

® points consist of two values
& split number of points in half w.r.t. one value
& switch between values depending on depth
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& considering the 2-dimensional case
® each inner node at an even depth

® splits the leaves in its subtree in half
® using the x-coordinate

® each inner node at an odd depth

® gsplits the leaves in its subtree in half o
® using the y-coordinate © .

® until each region contains a single point °
@ each leaf represents a point

® splitting in linear time is complicated
@ better presort based on x- and y-coordinate
® inner nodes store splitter (line)
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Kd -Trees (2/ 4) Karlsruhe Institute of Technology

Lemma: Kd-Tree Construction

A kd-tree for a set of n points requires O(n) words
space and can be constructed in O(nlog n) time
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Kd-Trees (2/4) KIT

A kd-tree for a set of n points requires O(n) words
space and can be constructed in O(nlog n) time

® there are O(n) leaves

® there are O(n) inner nodes

® a binary tree requires O(1) words per node
@ O(n) words total space
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space and can be constructed in O(nlog n) time

® there are O(n) leaves
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@ O(n) words total space
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® finding the splitter is easy due to presorted
points

® splitting requires T(n) time with

() = o(1) n=1
(=19 o(n) + 27([n/2]) n> 1

® results in O(nlog n) running time
® presorting in same time bound
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Kd-Trees (3/4) A“(IT

® use splitter depending on depth to identify paths
through tree

& f a region is fully contained in query: report
region

a f a region is intersected by query: check if point
has to be reported
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® use splitter depending on depth to identify paths
through tree

& f a region is fully contained in query: report
region

a f a region is intersected by query: check if point
has to be reported

® precomputation of query not necessary
® current region can be computed during query
® using splitters
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Kd -Trees (3/4) Karlsruhe Institute of Technology

® use splitter depending on depth to identify paths
through tree

& f a region is fully contained in query: report
region

a f a region is intersected by query: check if point
has to be reported

® precomputation of query not necessary
® current region can be computed during query

® using splitters

& example on the board
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Lemma: Kd-Tree Query

A query with an axis-parallel rectangle in a Kd-tree
storing n points in the plane can be performed in
O(v/n + occ) time
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Kd 'TreeS (4/4) Karlsruhe Institute of Technology

A query with an axis-parallel rectangle in a Kd-tree
storing n points in the plane can be performed in
O(v/n + occ) time

® O(occ) time necessary to report points

® |ook at number of regions intersected by any
vertical line

® upper bound for the regions intersected by
query (for left and right edge of rectangle)

® upper bound for top and bottom edges are the
same
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A query with an axis-parallel rectangle in a Kd-tree
storing n points in the plane can be performed in
O(v/n + occ) time

10/30

® O(occ) time necessary to report points

® |ook at number of regions intersected by any
vertical line

® upper bound for the regions intersected by
query (for left and right edge of rectangle)

® upper bound for top and bottom edges are the
same

2024-05-26
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& for vertical lines consider every inner node at
odd depth

® starting at root’s children
® can intersect two regions
® number of nodes is [n/4]

® number of intersected regions is Q(n) with

_Jom
aln) = {2 +2Q([n/4])

n=1
n>1

results in Q(n) = O(y/n)
® O(y/n + k) total running time
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Teaser: Other Space-Partitioning Search Trees

® Quadtrees
® recursive partition of input space into four
children (top-down)
® generalizes to higher dimensions (Octtree)
® often used in computer graphics
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® often used in spatial databases
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® Quadtrees
® recursive partition of input space into four
children (top-down)
® generalizes to higher dimensions (Octtree)
® often used in computer graphics

| R-Trees

& recursively group nearby objects into minimal
bounding boxes (bottom-up)

® works also for complex shapes, not only points

® many variants exist (R*-Trees, R+Trees)

® often used in spatial databases

Example on the board
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Range Trees (1/4)

® one BBST build on the x-coordinates
® same as for 1-dimensional queries
® each inner node is associated with a set of
points

® build a BBST for the y-coordinates of
associated points for each inner node

® store points in leaves not just y-coordinates
@ this BBST is used for reporting

® space-query-time trade-off

& faster queries but larger | ,

4._._._{,8——._%—.—.7
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® one BBST build on the x-coordinates
® same as for 1-dimensional queries
® each inner node is associated with a set of
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Karlsruhe Institute of Technology

® the BBST for the x-coordinates requires O(n)
words of space

® how much space do the associated BBSTs
require in total? :

13/30 2024-05-26 Kurpicz & Walzer | Advanced Data Structures | 06 Orthogonal Range Searching and BSP Trees Institute of Theoretical Informatics, Algorithm Engineering


https://kurpicz.org

Range Trees (2/4) A“(IT
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® the BBST for the x-coordinates requires O(n)
words of space

® how much space do the associated BBSTs
require in total? :

A range tree on a set of n points in the plane requires
O(nlog n) words space
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Range Trees (2/4) A“(IT

Karlsruhe Institute of Technology

® the BBST for the x-coordinates requires O(n)
words of space

® how much space do the associated BBSTs
require in total? :

A range tree on a set of n points in the plane requires
O(nlog n) words space

® BBST for x-coordinates has depth O(log n)

® all points are represented on each depth exactly
once
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Range Trees (2/4) ﬂ(IT

Karlsruhe Institute of Technology

® the BBST for the x-coordinates requires O(n)
words of space ® all associated BBSTs on each depth contain
® how much space do the associated BBSTs every point exactly once
EgiE

require in total? =5 PINGO ® total size of all BBSTs on each depth is O(n)
a total space O(nlog n) words

A range tree on a set of n points in the plane requires
O(nlog n) words space

® BBST for x-coordinates has depth O(log n)

® all points are represented on each depth exactly
once
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Range Trees (2/4)

® the BBST for the x-coordinates requires O(n)

words of space ® all associated BBSTs on each depth contain
® how much space do the associated BBSTs every point exactly once

require in total? z I_*f PINGO ® total size of all BBSTs on each depth is O(n)

a total space O(nlog n) words

A range tree on a set of n points in the plane requires @ how much faster is the range tree?
O(nlog n) words space

® BBST for x-coordinates has depth O(log n)

® all points are represented on each depth exactly
once
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Range Trees (3/4) A“(IT

@ 2-dimensional rectangular range search
reduced to two 1-dimensional range searches

@ ook in BBST for x-coordinates
® instead of reporting subtrees to the right/left of

paths search associated BBSTs
& report results in leaves of associated BBSTs
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@ 2-dimensional rectangular range search
reduced to two 1-dimensional range searches

@ ook in BBST for x-coordinates
® instead of reporting subtrees to the right/left of

paths search associated BBSTs
& report results in leaves of associated BBSTs

A query with an axis-parallel rectangle in a range
tree storing n points requires O(log® n + occ) time
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Range Trees (3/4)

@ 2-dimensional rectangular range search
reduced to two 1-dimensional range searches ® each search in an associated BBST ¢ requires
® |ook in BBST for x-coordinates O(log n + occ;) time

® O(log n) associated BSSTs T are searched
® instead of reporting subtrees to the right/left of

paths search associated BBSTs ® total query time 3", O(log n + occ;)
® report results in leaves of associated BBSTs ® 3,7 O(ocet) = O(occ)
® > 7 O(logn) = O(log® n)

: : . ® total time: O(log? n+ occ
A query with an axis-parallel rectangle in a range ! (log™  + )

tree storing n points requires O(log® n + occ) time
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Range Trees (4/4)

® range trees can be generalized to higher
dimensions

& for each dimension add an additional
associated BBST

& reporting in final BBST

® d-dimensional queries are d 1-dimensional
queries
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Range Trees (4/4)

® range trees can be generalized to higher
dimensions

& for each dimension add an additional
associated BBST
& reporting in final BBST

® d-dimensional queries are d 1-dimensional
queries

A d-dimensional range tree (for d > 2) storing n
points in the plane requires O(nlog? " n) words
space and can answer queries in O(log? n + occ)
time
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Range Trees (4/4)

® range trees can be generalized to higher

dimensions ® recursive query time Qg(n) with
® for each dimension add an additional Qu(n) = O(log? n)

associated BBST » Qy(n) = O(log n) + O(log n) - Qy_1(n)
& reporting in final BBST ® solves to Qy(n) = O(Iogd n)
a d-dimensional queries are d 1-dimensional = O(occ) time for reporting

queries

A d-dimensional range tree (for d > 2) storing n
points in the plane requires O(nlog? " n) words
space and can answer queries in O(log? n + occ)
time
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Range Trees (4/4)

® range trees can be generalized to higher

dimensions ® recursive query time Qg(n) with
® for each dimension add an additional Qu(n) = O(log? n)

associated BBST » Qy(n) = O(log n) + O(log n) - Qy_1(n)
& reporting in final BBST ® solves to Qy(n) = O(Iogd n)
a d-dimensional queries are d 1-dimensional = O(occ) time for reporting

queries

® recursive space Sy(n) with So(n) = O(nlogn
A d-dimensional range tree (for d > 2) storing n s a(n) 2() (nlog )

L . d_1 words
points in the plane requires O(nlog®~ ' n) words
space and can answer queries in O(log? n + occ) ® T4(n) = O(nlog n) + O(log n) - Ta—1(n)
time ® solves to Sy(n) = O(nlog? " n)
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Fractional Cascading (1/2)

® sorted sets Sy, ..., Sy
a |S1| =nand S;;1 C §;
® report elements in range [x..x’] in Sy,..., Sy

16/30 2024-05-26 Kurpicz & Walzer | Advanced Data Structures | 06 Orthogonal Range Searching and BSP Trees Institute of Theoretical Informatics, Algorithm Engineering


https://kurpicz.org

KIT

Fractional Cascading (1/2)

® sorted sets Sy, ..., Sy
a |S1| =nand S;;1 C §;
® report elements in range [x..x’] in Sy,..., Sy

® how much time does a naive algorithm with

binary search require? "E@i PINGO
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Fractional Cascading (1/2)

sorted sets Sy,...,Spy
|S1| = nand S,'+1 - S,'
report elements in range [x..x’] in S, ..., Sp

® how much time does a naive algorithm with
binary search require? @g PINGO

o

&

O(mlog n+ occ) time
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KIT

Fractional Cascading (1/2)

sorted sets Sy,...,Spy
|S1| = nand S,'+1 - S,'
report elements in range [x..x’] in S, ..., Sp

® how much time does a naive algorithm with
binary search require? @g PINGO

o

&

O(mlog n+ occ) time

O(m + log n+ occ) time possible with
fractional cascading
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Fractional Cascading (1/2)

16/30

sorted sets Sy,...,Spy

a |S1| = nand S,'+1 @y
® report elements in range [x..x’] in Sy,..., Sy

how much time does a naive algorithm with
binary search require? & @g PINGO

o
O(mlog n + occ) time
O(m + log n+ occ) time possible with
fractional cascading

KIT

Karlsruhe Institute of Technology

® in addition to S; store pointers to Sj 1

® for each element in S; store pointer to
successor in Sjtq

® possible because Si11 C S;
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Fractional Cascading (2/2)

Given sets Sy, ..., Sy with |Si| = nand S;11 C S,
find a range in all S;’s using fractional cascading
requires O(m + log n + occ) time
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Fractional Cascading (2/2)

Given sets Sy, ..., Sy with |Si| = nand S;11 C S,
find a range in all S;’s using fractional cascading
requires O(m + log n + occ) time

binary search on S; requires O(log n) time
following pointer to S, requires O(1) time
scanning S requires O(occ) time
following pointer to S; requires O(1) time
repeat m times

total: O(m + log n + occ) time
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Fractional Cascading (2/2)

® how to apply to range trees?

Given sets Sy, ..., Sy with |Si| = nand S;11 C S, ® instead of associated BBSTs store leaf data in
find a range in all S;’s using fractional cascading arrays for all nodes but root
requires O(m + log n + occ) time m each node has associated data

@ store two successor pointers to the associated
data in the left and right child

binary search on S; requires O(log n) time ® two pointers to cover all possible paths
following pointer to S, requires O(1) time ® this is a layered range tree

scanning S, requires O(occ) time

following pointer to S; requires O(1) time

repeat m times

total: O(m + log n + occ) time
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Query Layered Range Trees

® search in BBST for x-coordinates remains the
same

® to search y-coordinates first search associated
BBST of root

® same as initial binary search for fractional
cascading

& continue to follow pointers in associated data
and scan to report queries
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Query Layered Range Trees

® search in BBST for x-coordinates remains the
same

® to search y-coordinates first search associated
BBST of root

® same as initial binary search for fractional
cascading

& continue to follow pointers in associated data
and scan to report queries

A query with an axis-parallel rectangle in a layered
range tree storing n points in the plane can be
performed in O(log n + occ) time
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Query Layered Range Trees

search in BBST for x-coordinates remains the
same

to search y-coordinates first search associated
BBST of root

same as initial binary search for fractional
cascading

continue to follow pointers in associated data
and scan to report queries

A query with an axis-parallel rectangle in a layered
range tree storing n points in the plane can be
performed in O(log n + occ) time

18/30

2024-05-26

KIT

Karlsruhe Institute of Technology

the initial search requires O(log n) time

® the search in the associated BBST of the root

requires O(log n) time
remaining searches in associated data a
requires O(1 + occ,) time

® each point is reported once

total time: O(log n + occ)
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General Sets of Points (1/2) A“(IT

Karlsruhe Institute of Technology

® all solutions requires unique x and
y-coordinates

® big limitation for applications
® remember database motivation
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General Sets of Points (1/2)

® all solutions requires unique x and
y-coordinates

® big limitation for applications
® remember database motivation

® store (x|k) as coordinate with x being the
x-coordinate and k a unique key

@ same for y-coordinates

® compare points using
(x]k) < (X'|K') <= x < x'or(x =
x" and k < k')
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General Sets of Points (1/2)
® all solutions requires unique x and ® range queries [x..x’] x [y..y’] become
y-coordinates
/ /
® big limitation for applications [(x] = 00)..(x"|o0)] X (y| = 00)..[(y'|o0)]

® remember database motivation

® store (x|k) as coordinate with x being the
x-coordinate and k a unique key

@ same for y-coordinates

® compare points using
(x|k) < (X'|K') <= x < x'or(x=
x" and k < k')
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General Sets of Points (2/2) A“(IT

® all solutions requires unique x and
y-coordinates

® big limitation for applications
® remember database motivation

& if exact positions are not important to
application
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General Sets of Points (2/2) A“(IT

® all solutions requires unique x and
y-coordinates

® big limitation for applications
® remember database motivation

& if exact positions are not important to
application

® random perturbation: x 4+ 6 ~ U(—¢, €)
® same for y-coordinates
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General Sets of Points (2/2) A“(IT

® all solutions requires unique x and ® range queries [x..x’] x [y..y’] become
y-coordinates
/ /
® big limitation for applications [(x = &) (X' + )] x (y —€)-[(y' +€)]

® remember database motivation

& if exact positions are not important to
application

® random perturbation: x 4+ 6 ~ U(—¢, €)
® same for y-coordinates
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Now: Render Object

® hidden surface removal
® which pixel is visible
® important for rendering
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z-Buffer Algorithm

@ transform scene such that viewing direction is
positive z-direction

® consider objects in scene in arbitrary order

® maintain two buffers

a frame buffer @ currently shown pixel
@ z-buffer @ z-coordinate of object shown

® compare z-coordinate of z-buffer and object
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z-Buffer Algorithm

transform scene such that viewing direction is
positive z-direction

consider objects in scene in arbitrary order
maintain two buffers

a frame buffer @ currently shown pixel
@ z-buffer @ z-coordinate of object shown

® compare z-coordinate of z-buffer and object

& first sort object in depth-order
® depth-order may not always exist £.-J
@ how to efficiently sort objects?
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BSP Trees (1/2) A“(IT

Karlsruhe Institute of Technology

® partition space using hyperplanes
® binary partition

@ hyperplanes create half-spaces and cut objects
into fragments
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BSP Trees (1/2) A“(IT

® partition space using hyperplanes

® binary partition

@ hyperplanes create half-spaces and cut objects
into fragments

® At ={(x1,...,Xg): @a1xq +--- + agxqg > c}

a ={(X1,...,Xg): @Xy+ -+ agxg < c}
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BSP Trees (1/2) A“(IT

® partition space using hyperplanes

® binary partition

@ hyperplanes create half-spaces and cut objects
into fragments

® At ={(x1,...,Xg): @a1xq +--- + agxqg > c}

a ={(X1,...,Xg): @Xy+ -+ agxg < c}
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BSP Trees (1/2) A“(IT

® partition space using hyperplanes

® binary partition

@ hyperplanes create half-spaces and cut objects
into fragments

® At ={(x1,...,Xg): @a1xq +--- + agxqg > c}

a ={(X1,...,Xg): @Xy+ -+ agxg < c}
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BSP Trees (1/2) A“(IT

® partition space using hyperplanes

® binary partition

@ hyperplanes create half-spaces and cut objects
into fragments

® At ={(x1,...,Xg): @a1xq +--- + agxqg > c}

a ={(X1,...,Xg): @Xy+ -+ agxg < c}
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BSP Trees (1/2) A“(IT

® partition space using hyperplanes

® binary partition

@ hyperplanes create half-spaces and cut objects
into fragments

® At ={(x1,...,Xg): @a1xq +--- + agxqg > c}

a ={(X1,...,Xg): @Xy+ -+ agxg < c}
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BSP Trees (1/2)

23/30

® partition space using hyperplanes
® binary partition

hyperplanes create half-spaces and cut objects
into fragments

{(X1a'-'7 ) aiXy + -+ agXg > C}
{(X1,...7 ):a1X1+"'+adXd<C}

® each split creates two nodes in a tree

if number of objects in space is one: leaf
otherwise: inner node
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BSP Trees (2/2) ﬂ(IT

Karlsruhe Institute of Technology

® for leaf: store object/fragment

& for inner node v: store hyperplane h, and the
objects contained in h,

® |eft child represents objects in upper half-space
h+

& right child represents objects in lower
half-space h™
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BSP Trees (2/2) ﬂ(IT

Karlsruhe Institute of Technology

® for leaf: store object/fragment

& for inner node v: store hyperplane h, and the
objects contained in h,

® |eft child represents objects in upper half-space
h+

& right child represents objects in lower
half-space h™ B

® space of BSP tree is number of objects stored
at all nodes

® what about fragments?
® too many fragments can make the tree big
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Au tO' Pa rt i t i O n i n g Karlsruhe Institute of Technology

& sorting points for kd-trees worked well
® BSP-tree is used to sort objects in depth-order
® gquto-partitioning uses splitters through objects

® 2-dimensional: line through line segments
® 3-dimensional: half-plane through polygons
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Painter’s Algorithm

® consider view point pyiew

& traverse through tree and always recurse on
half-space that does not contain pyje first

& then scan-convert object contained in node
@ then recurse on half-space that contains pyiew

Pview
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Constructing Planar BSP Trees (1/3)

use auto-partitioning

construction similar to construction of kd-tree
store all necessary information

® hyperplane
® objects in hyperplane

how to determine next hyperplane?

creating fragments increases size of BSP tree
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Constructing Planar BSP Trees (1/3)

® use auto-partitioning
® construction similar to construction of kd-tree
@ store all necessary information

® hyperplane
® objects in hyperplane

® how to determine next hyperplane?
® creating fragments increases size of BSP tree

® |et s be object and ¢(s) line through object
@ order matters
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Constructing Planar BSP Trees (1/3)

® use auto-partitioning
® construction similar to construction of kd-tree
@ store all necessary information ,

® hyperplane
® objects in hyperplane

® how to determine next hyperplane?
® creating fragments increases size of BSP tree

® |et s be object and ¢(s) line through object .
@ order matters y
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Constructing Planar BSP Trees (1/3)

® use auto-partitioning
® construction similar to construction of kd-tree
@ store all necessary information

® hyperplane
® objects in hyperplane

® how to determine next hyperplane?
® creating fragments increases size of BSP tree

® |et s be object and ¢(s) line through object
@ order matters
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Constructing Planar BSP Trees (2/3)

The expected number of fragments generated when
iterating through the line segments using a random
permutation is O(nlog n)
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Constructing Planar BSP Trees (2/3)

The expected number of fragments generated when
iterating through the line segments using a random
permutation is O(nlog n)

® distance of lines dists,(s;) =
# segments inters. £(s;)
between s; and s; {(s;) inters. s;
00 otherwise

& example on the board
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Constructing Planar BSP Trees (2/3)
The expected number of fragments generated when ® let dist;(sj)) = kand s;,, . . ., s, be segments
iterating through the line segments using a random between s; and s;

permutation is O(nlog n) = what is the probability that £(s;) cuts s;?

® this happens if no s;, is processed before s;

® since order is random
® distance of lines dists,(s;) =

# segments inters. £(s;) P[¢(s;) cuts sj] <
between s; and s; {(s;) inters. s;

1
dists,(s;) + 2

00 otherwise

& example on the board
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Constructing Planar BSP Trees (3/3)

@ expected number of cuts

1

E[# cuts generated by s;] < Z sty (5) 1 2 P
i

@ all lines generate at most 2nIn n fragments
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Constructing Planar BSP Trees (3/3)

@ expected number of cuts

1

E[# cuts generated by s;] < Z sty (5) 1 2 P
i

@ all lines generate at most 2nIn n fragments

A BSP tree of size O(nlog n) can be computed in
expected time O(n? log n)
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Constructing Planar BSP Trees (3/3) ﬂ(IT

@ expected number of cuts

1 S
E[# cuts generated by s;] < — <2 —— <2lnn
[ 9 / ’]—Zdists,(s,)+2— k42~
JAi k=0
@ all lines generate at most 2nIn n fragments
A BSP tree of size O(nlog n) can be computed in ® computing permutation in linear time
expected time O(n? log n) ® construction is linear in number of fragments to

be considered
® number of fragments in subtree is bounded by n
® number of recursions is nlog n
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Conclusion and Outlook

This Lecture Advanced Data Structures

& orthogonal range searching 2 =
uccessorl |
@ BSP trees _ _

static static
BV succ. trees

-

range min-max tree | succ. graphs

Kd-/ Range / BSP
Tree

30/30 2024-05-26 Kurpicz & Walzer | Advanced Data Structures | 06 Orthogonal Range Searching and BSP Trees  Institute of Theoretical Informatics, Algorithm Engineering



