Advanced Data Structures

Lecture 06: Orthogonal Range Searching and BSP Trees

Florian Kurpicz and Stefan Walzer

The slides are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (®)(1)(0): www.creativecommons.org/licenses/by-sa/4.0 |commit c70729e compiled at 2024-05-26-19:48

PINGO

Motivation: Query Set of Points

- given set of points $P=\left\{p_{1}, \ldots, p_{n}\right\}$ with $p_{i}=\left(x_{i}, y_{i}\right)$
- find all points in $[x, y] \times\left[x^{\prime}, y^{\prime}\right]$
- higher dimensions are possible
- think about database queries
- each dimension is a property
- searching for objects fulfilling all properties of range

1-Dimensional Range Searching (1/2)

- consider 1-dimensional problem
- range is $\left[x . . x^{\prime}\right]$
- points $P=\left\{x_{1}, \ldots, x_{n}\right\}$ are just numbers
- build BBST where each leaf contains a point
- inner node v store splitting value x_{v}
- query for both x and x^{\prime}
- find leaves b and e for x and x^{\prime}
- let node v be node where paths to leaves split
- report all leaves between b and e

1-Dimensional Range Searching (2/2)

- how long does it take to report all children of a subtree with k leaves in a BBST? 蕧緆 PINGO

Lemma: 1-Dimensional Range Searching

Let P be a set of n 1-dimensional points. P can be stored in a BBST that requires $O(n)$ words space, can be constructed in $O(n \log n)$ time, and can answer range searching queries in $O(\log n+o c c)$ time

Proof (Sketch Time)

- reporting all children in a subtree requires O(occ) time
- BBST has depth $O(\log n)$
- search paths starting at v have length $O(\log n)$
- report all subtrees to the right of the left path
- report all subtrees to the left of the right path

2-Dimensional Rectangular Range Searching

Important

- assume no two points have the same x - or y-coordinate \Rightarrow general position
- generalize 1-dimensional idea
- 1-dimensional
- split number of points in half at each node
- points consist of one value
- 2-dimensional
- points consist of two values
- split number of points in half w.r.t. one value
- switch between values depending on depth

Kd-Trees (1/4)

- considering the 2 -dimensional case
- each inner node at an even depth
- splits the leaves in its subtree in half
- using the x-coordinate
- each inner node at an odd depth
- splits the leaves in its subtree in half
- using the y-coordinate
- until each region contains a single point
- each leaf represents a point
- splitting in linear time is complicated
- better presort based on x - and y-coordinate
- inner nodes store splitter (line)

Kd-Trees (2/4)

Lemma: Kd-Tree Construction

A kd-tree for a set of n points requires $O(n)$ words space and can be constructed in $O(n \log n)$ time

Proof (Sketch: Space)

- there are $O(n)$ leaves
- there are $O(n)$ inner nodes
- a binary tree requires $O(1)$ words per node
- O(n) words total space

Proof (Sketch: Time)

- finding the splitter is easy due to presorted points
- splitting requires $T(n)$ time with

$$
T(n)= \begin{cases}O(1) & n=1 \\ O(n)+2 T(\lceil n / 2\rceil) & n>1\end{cases}
$$

- results in $O(n \log n)$ running time
- presorting in same time bound

Kd-Trees (3/4)

- use splitter depending on depth to identify paths through tree
- if a region is fully contained in query: report region
- if a region is intersected by query: check if point has to be reported
- precomputation of query not necessary
- current region can be computed during query
- using splitters
- example on the board

Kd-Trees (4/4)

Lemma: Kd-Tree Query

A query with an axis-parallel rectangle in a Kd-tree storing n points in the plane can be performed in $O(\sqrt{n}+o c c)$ time

Proof (Sketch)

- O(occ) time necessary to report points
- look at number of regions intersected by any vertical line
- upper bound for the regions intersected by query (for left and right edge of rectangle)
- upper bound for top and bottom edges are the same

Proof (Sketch, cnt.)

- for vertical lines consider every inner node at odd depth
- starting at root's children
- can intersect two regions
- number of nodes is $\lceil n / 4\rceil$ (1) halved at each level
- number of intersected regions is $Q(n)$ with

$$
Q(n)= \begin{cases}O(1) & n=1 \\ 2+2 Q(\lceil n / 4\rceil) & n>1\end{cases}
$$

- results in $Q(n)=O(\sqrt{n})$
- $O(\sqrt{n}+k)$ total running time

Teaser: Other Space-Partitioning Search Trees

- Quadtrees
- recursive partition of input space into four children (top-down)
- generalizes to higher dimensions (Octtree)
- often used in computer graphics
- R-Trees
- recursively group nearby objects into minimal bounding boxes (bottom-up)
- works also for complex shapes, not only points
- many variants exist (R^{*}-Trees, $\mathrm{R}+$ Trees)
- often used in spatial databases

Example on the board

Range Trees (1/4)

- one BBST build on the x-coordinates
- same as for 1-dimensional queries
- each inner node is associated with a set of points
- build a BBST for the y-coordinates of associated points for each inner node
- store points in leaves not just y-coordinates
- this BBST is used for reporting
- space-query-time trade-off
- faster queries but larger

Range Trees (2/4)

- the BBST for the x-coordinates requires $O(n)$ words of space
- how much space do the associated BBSTs

Lemma: Space Range Tree

A range tree on a set of n points in the plane requires $O(n \log n)$ words space

Proof (Sketch)

- BBST for x-coordinates has depth $O(\log n)$
- all points are represented on each depth exactly once

Range Trees (3/4)

- 2-dimensional rectangular range search reduced to two 1-dimensional range searches
- look in BBST for x-coordinates (i) same as 1-dimensional case
- instead of reporting subtrees to the right/left of paths search associated BBSTs
- report results in leaves of associated BBSTs

Lemma: Range Tree Query Time

A query with an axis-parallel rectangle in a range tree storing n points requires $O\left(\log ^{2} n+o c c\right)$ time

Proof (Sketch)

- each search in an associated BBST t requires $O\left(\log n+\right.$ occ $\left._{t}\right)$ time
- $O(\log n)$ associated BSSTs T are searched (i) as seen in 1-dimensional case
- total query time $\sum_{t \in T} O\left(\log n+o c c_{t}\right)$
- $\sum_{t \in T} O\left(o c c_{t}\right)=O(o c c)$
- $\sum_{t \in T} O(\log n)=O\left(\log ^{2} n\right)$
- total time: $O\left(\log ^{2} n+o c c\right)$

Range Trees (4/4)

- range trees can be generalized to higher dimensions
- for each dimension add an additional associated BBST
- reporting in final BBST
- d-dimensional queries are d 1-dimensional queries

Lemma: Higher Dimensions Range Tree

A d-dimensional range tree (for $d \geq 2$) storing n points in the plane requires $O\left(n \log ^{d-1} n\right)$ words space and can answer queries in $O\left(\log ^{d} n+o c c\right)$ time

Proof (Sketch Query Time)

- recursive query time $Q_{d}(n)$ with $Q_{2}(n)=O\left(\log ^{2} n\right)$
- $Q_{d}(n)=O(\log n)+O(\log n) \cdot Q_{d-1}(n)$
- solves to $Q_{d}(n)=O\left(\log ^{d} n\right)$
- $O(o c c)$ time for reporting

Proof (Sketch Construction Space)

- recursive space $S_{d}(n)$ with $S_{2}(n)=O(n \log n)$ words
- $T_{d}(n)=O(n \log n)+O(\log n) \cdot T_{d-1}(n)$
- solves to $S_{d}(n)=O\left(n \log ^{d-1} n\right)$

Fractional Cascading (1/2)

- sorted sets S_{1}, \ldots, S_{m}
- $\left|S_{1}\right|=n$ and $S_{i+1} \subseteq S_{i}$
- report elements in range $\left[x . . x^{\prime}\right]$ in S_{1}, \ldots, S_{m}
- how much time does a naive algorithm with

- $O(m \log n+o c c)$ time
- $O(m+\log n+o c c)$ time possible with fractional cascading
- in addition to S_{i} store pointers to S_{i+1}
- for each element in S_{i} store pointer to successor in S_{i+1}
- possible because $S_{i+1} \subseteq S_{i} \cdot$

Fractional Cascading (2/2)

Lemma: Fractional Cascading

Given sets S_{1}, \ldots, S_{m} with $\left|S_{1}\right|=n$ and $S_{i+1} \subseteq S_{i}$, find a range in all S_{i} 's using fractional cascading requires $O(m+\log n+o c c)$ time

Proof (Sketch)

- binary search on S_{1} requires $O(\log n)$ time
- following pointer to S_{2} requires $O(1)$ time
- scanning S_{2} requires O (occ) time
- following pointer to S_{3} requires $O(1)$ time
- repeat m times
- total: $O(m+\log n+o c c)$ time
- how to apply to range trees?
- instead of associated BBSTs store leaf data in arrays for all nodes but root
- each node has associated data
- store two successor pointers to the associated data in the left and right child
- two pointers to cover all possible paths
- this is a layered range tree

Query Layered Range Trees

- search in BBST for x-coordinates remains the same
- to search y-coordinates first search associated BBST of root
- same as initial binary search for fractional cascading
- continue to follow pointers in associated data and scan to report queries

Lemma: Query time Layered Range Tree

A query with an axis-parallel rectangle in a layered range tree storing n points in the plane can be performed in $O(\log n+o c c)$ time

Proof (Sketch)

- the initial search requires $O(\log n)$ time
- the search in the associated BBST of the root requires $O(\log n)$ time
- remaining searches in associated data a requires $O\left(1+\right.$ occ $\left._{a}\right)$ time
- each point is reported once
- total time: $O(\log n+o c c)$

General Sets of Points (1/2)

- all solutions requires unique x and y-coordinates
- big limitation for applications
- remember database motivation
- store $(x \mid k)$ as coordinate with x being the x-coordinate and k a unique key
- same for y-coordinates
- compare points using
$(x \mid k)<\left(x^{\prime} \mid k^{\prime}\right) \Longleftrightarrow x<x^{\prime}$ or $(x=$ x^{\prime} and $\left.k<k^{\prime}\right)$)

$$
\left.x^{\prime} \text { and } k<k^{\prime}\right) \text {) }
$$

- range queries $\left[x . . x^{\prime}\right] \times\left[y . . y^{\prime}\right]$ become

$$
\left[(x \mid-\infty) . .\left(x^{\prime} \mid \infty\right)\right] \times(y \mid-\infty) . .\left[\left(y^{\prime} \mid \infty\right)\right]
$$

General Sets of Points (2/2)

- all solutions requires unique x and y-coordinates
- big limitation for applications
- remember database motivation
- if exact positions are not important to application
- random perturbation: $x+\delta \sim U(-\epsilon, \epsilon)$
- same for y-coordinates
- range queries $\left[x . . x^{\prime}\right] \times\left[y . . y^{\prime}\right]$ become

$$
\left[(x-\epsilon) . .\left(x^{\prime}+\epsilon\right)\right] \times(y-\epsilon) . .\left[\left(y^{\prime}+\epsilon\right)\right]
$$

Now: Render Object

- hidden surface removal
- which pixel is visible
- important for rendering

z-Buffer Algorithm

- transform scene such that viewing direction is positive z-direction
- consider objects in scene in arbitrary order
- maintain two buffers
- frame buffer (i) currently shown pixel
- z-buffer (i) z-coordinate of object shown
- compare z-coordinate of z-buffer and object
- first sort object in depth-order

- depth-order may not always exist \because
- how to efficiently sort objects?

BSP Trees (1/2)

- partition space using hyperplanes
- binary partition © similar to kd-tree
- hyperplanes create half-spaces and cut objects into fragments
- $h^{+}=\left\{\left(x_{1}, \ldots, x_{d}\right): a_{1} x_{1}+\cdots+a_{d} x_{d}>c\right\}$
- $h^{-}=\left\{\left(x_{1}, \ldots, x_{d}\right): a_{1} x_{1}+\cdots+a_{d} x_{d}<c\right\}$
- each split creates two nodes in a tree
- if number of objects in space is one: leaf

- otherwise: inner node

BSP Trees (2/2)

- for leaf: store object/fragment
- for inner node v : store hyperplane h_{v} and the objects contained in h_{v}
- left child represents objects in upper half-space h^{+}
- right child represents objects in lower half-space h^{-}
- space of BSP tree is number of objects stored at all nodes
what about fragments?
- too many fragments can make the tree big

Auto-Partitioning

- sorting points for kd-trees worked well
- BSP-tree is used to sort objects in depth-order
- auto-partitioning uses splitters through objects
- 2-dimensional: line through line segments
- 3-dimensional: half-plane through polygons

Painter's Algorithm

- consider view point $p_{\text {view }}$
- traverse through tree and always recurse on half-space that does not contain $p_{\text {view }}$ first
- then scan-convert object contained in node
- then recurse on half-space that contains $p_{\text {view }}$

Constructing Planar BSP Trees (1/3)

- use auto-partitioning
- construction similar to construction of kd-tree
- store all necessary information
- hyperplane
- objects in hyperplane
- how to determine next hyperplane?
- creating fragments increases size of BSP tree
- let s be object and $\ell(s)$ line through object
- order matters

Constructing Planar BSP Trees (2/3)

Lemma: Number Line Fragments

The expected number of fragments generated when iterating through the line segments using a random permutation is $O(n \log n)$

Proof (Sketch)

- distance of lines $\operatorname{dist}_{s_{i}}\left(s_{j}\right)=$ $\begin{cases}\text { \# segments inters. } \ell\left(s_{i}\right) & \\ \text { between } s_{i} \text { and } s_{j} & \ell\left(s_{i}\right) \text { inters. } s_{j} \\ \infty & \text { otherwise }\end{cases}$
- example on the board

Proof (Sketch, cnt.)

- let $\operatorname{dist}_{s_{i}}\left(s_{j}\right)=k$ and $s_{j_{1}}, \ldots, s_{j_{k}}$ be segments between s_{i} and s_{j}
- what is the probability that $\ell\left(s_{i}\right)$ cuts s_{j} ?
- this happens if no $s_{j_{x}}$ is processed before s_{i}
- since order is random

$$
\mathbb{P}\left[\ell\left(s_{i}\right) \text { cuts } s_{j}\right] \leq \frac{1}{\operatorname{dist}_{s_{i}}\left(s_{j}\right)+2}
$$

Constructing Planar BSP Trees (3/3)

Proof (Sketch, cnt.)

- expected number of cuts

$$
\mathbb{E}\left[\# \text { cuts generated by } s_{i}\right] \leq \sum_{j \neq i} \frac{1}{\operatorname{dist} s_{i}\left(s_{j}\right)+2} \leq 2 \sum_{k=0}^{n-2} \frac{1}{k+2} \leq 2 \ln n
$$

- all lines generate at most $2 n \ln n$ fragments

Lemma: BSP Construction

A BSP tree of size $O(n \log n)$ can be computed in expected time $O\left(n^{2} \log n\right)$

Proof (Sketch)

- computing permutation in linear time
- construction is linear in number of fragments to be considered
- number of fragments in subtree is bounded by n
- number of recursions is $n \log n$

Conclusion and Outlook

This Lecture

- orthogonal range searching
- BSP trees

Advanced Data Structures

