
Advanced Data Structures

Lecture 06: Orthogonal Range Searching and BSP Trees

Florian Kurpicz and Stefan Walzer

The slides are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License cba: www.creativecommons.org/licenses/by-sa/4.0 | commit c70729e compiled at 2024-05-26-19:48

KIT – The Research University in the Helmholtz Association www.kit.edu

https://creativecommons.org/licenses/by-sa/4.0/
https://www.kit.edu

2/30 2024-05-26 Kurpicz & Walzer | Advanced Data Structures | 06 Orthogonal Range Searching and BSP Trees Institute of Theoretical Informatics, Algorithm Engineering

PINGO

given set of points P = {p1, . . . , pn} with
pi = (xi , yi)

find all points in [x , y]× [x ′, y ′]

higher dimensions are possible

think about database queries

each dimension is a property

searching for objects fulfilling all properties of
range

3/30 2024-05-26 Kurpicz & Walzer | Advanced Data Structures | 06 Orthogonal Range Searching and BSP Trees Institute of Theoretical Informatics, Algorithm Engineering

Motivation: Query Set of Points

consider 1-dimensional problem

range is [x ..x ′]

points P = {x1, . . . , xn} are just numbers

build BBST where each leaf contains a point

inner node v store splitting value xv

query for both x and x ′

find leaves b and e for x and x ′

let node v be node where paths to leaves split

report all leaves between b and e

4/30 2024-05-26 Kurpicz & Walzer | Advanced Data Structures | 06 Orthogonal Range Searching and BSP Trees Institute of Theoretical Informatics, Algorithm Engineering

1-Dimensional Range Searching (1/2)

how long does it take to report all children of a
subtree with k leaves in a BBST? PINGO

Lemma: 1-Dimensional Range Searching
Let P be a set of n 1-dimensional points. P can be
stored in a BBST that requires O(n) words space,
can be constructed in O(n log n) time, and can
answer range searching queries in O(log n + occ)
time

Proof (Sketch Time)
reporting all children in a subtree requires
O(occ) time

BBST has depth O(log n)

search paths starting at v have length O(log n)

report all subtrees to the right of the left path

report all subtrees to the left of the right path

5/30 2024-05-26 Kurpicz & Walzer | Advanced Data Structures | 06 Orthogonal Range Searching and BSP Trees Institute of Theoretical Informatics, Algorithm Engineering

1-Dimensional Range Searching (2/2)

https://kurpicz.org

Important
assume no two points have the same x- or
y -coordinate ⇒ general position

generalize 1-dimensional idea
1-dimensional

split number of points in half at each node
points consist of one value

2-dimensional
points consist of two values
split number of points in half w.r.t. one value
switch between values depending on depth

6/30 2024-05-26 Kurpicz & Walzer | Advanced Data Structures | 06 Orthogonal Range Searching and BSP Trees Institute of Theoretical Informatics, Algorithm Engineering

2-Dimensional Rectangular Range Searching

considering the 2-dimensional case
each inner node at an even depth

splits the leaves in its subtree in half
using the x-coordinate

each inner node at an odd depth
splits the leaves in its subtree in half
using the y -coordinate

until each region contains a single point

each leaf represents a point

splitting in linear time is complicated

better presort based on x- and y -coordinate

inner nodes store splitter (line)

ℓ1

ℓ2

ℓ3

ℓ4

ℓ5

ℓ6

ℓ7

ℓ8

7/30 2024-05-26 Kurpicz & Walzer | Advanced Data Structures | 06 Orthogonal Range Searching and BSP Trees Institute of Theoretical Informatics, Algorithm Engineering

Kd-Trees (1/4)

Lemma: Kd-Tree Construction
A kd-tree for a set of n points requires O(n) words
space and can be constructed in O(n log n) time

Proof (Sketch: Space)
there are O(n) leaves

there are O(n) inner nodes

a binary tree requires O(1) words per node

O(n) words total space

Proof (Sketch: Time)
finding the splitter is easy due to presorted
points

splitting requires T (n) time with

T (n) =

{
O(1) n = 1

O(n) + 2T (⌈n/2⌉) n > 1

results in O(n log n) running time

presorting in same time bound

8/30 2024-05-26 Kurpicz & Walzer | Advanced Data Structures | 06 Orthogonal Range Searching and BSP Trees Institute of Theoretical Informatics, Algorithm Engineering

Kd-Trees (2/4)

use splitter depending on depth to identify paths
through tree

if a region is fully contained in query: report
region

if a region is intersected by query: check if point
has to be reported

precomputation of query not necessary

current region can be computed during query

using splitters

example on the board �

9/30 2024-05-26 Kurpicz & Walzer | Advanced Data Structures | 06 Orthogonal Range Searching and BSP Trees Institute of Theoretical Informatics, Algorithm Engineering

Kd-Trees (3/4)

Lemma: Kd-Tree Query
A query with an axis-parallel rectangle in a Kd-tree
storing n points in the plane can be performed in
O(

√
n + occ) time

Proof (Sketch)
O(occ) time necessary to report points

look at number of regions intersected by any
vertical line

upper bound for the regions intersected by
query (for left and right edge of rectangle)

upper bound for top and bottom edges are the
same

Proof (Sketch, cnt.)
for vertical lines consider every inner node at
odd depth

starting at root’s children

can intersect two regions

number of nodes is ⌈n/4⌉ ò halved at each
level

number of intersected regions is Q(n) with

Q(n) =

{
O(1) n = 1

2 + 2Q(⌈n/4⌉) n > 1

results in Q(n) = O(
√

n)

O(
√

n + k) total running time
10/30 2024-05-26 Kurpicz & Walzer | Advanced Data Structures | 06 Orthogonal Range Searching and BSP Trees Institute of Theoretical Informatics, Algorithm Engineering

Kd-Trees (4/4)

Quadtrees
recursive partition of input space into four
children (top-down)
generalizes to higher dimensions (Octtree)
often used in computer graphics

R-Trees
recursively group nearby objects into minimal
bounding boxes (bottom-up)
works also for complex shapes, not only points
many variants exist (R∗-Trees, R+Trees)
often used in spatial databases

Example on the board �

11/30 2024-05-26 Kurpicz & Walzer | Advanced Data Structures | 06 Orthogonal Range Searching and BSP Trees Institute of Theoretical Informatics, Algorithm Engineering

Teaser: Other Space-Partitioning Search Trees

one BBST build on the x-coordinates
same as for 1-dimensional queries

each inner node is associated with a set of
points
build a BBST for the y -coordinates of
associated points for each inner node

store points in leaves not just y -coordinates
this BBST is used for reporting

space-query-time trade-off

faster queries but larger

12/30 2024-05-26 Kurpicz & Walzer | Advanced Data Structures | 06 Orthogonal Range Searching and BSP Trees Institute of Theoretical Informatics, Algorithm Engineering

Range Trees (1/4)

the BBST for the x-coordinates requires O(n)
words of space

how much space do the associated BBSTs
require in total? PINGO

Lemma: Space Range Tree
A range tree on a set of n points in the plane requires
O(n log n) words space

Proof (Sketch)
BBST for x-coordinates has depth O(log n)

all points are represented on each depth exactly
once

Proof (Sketch, cnt.)
all associated BBSTs on each depth contain
every point exactly once

total size of all BBSTs on each depth is O(n)

total space O(n log n) words

how much faster is the range tree?

13/30 2024-05-26 Kurpicz & Walzer | Advanced Data Structures | 06 Orthogonal Range Searching and BSP Trees Institute of Theoretical Informatics, Algorithm Engineering

Range Trees (2/4)

https://kurpicz.org

2-dimensional rectangular range search
reduced to two 1-dimensional range searches

look in BBST for x-coordinates ò same as
1-dimensional case

instead of reporting subtrees to the right/left of
paths search associated BBSTs

report results in leaves of associated BBSTs

Lemma: Range Tree Query Time
A query with an axis-parallel rectangle in a range
tree storing n points requires O(log2 n + occ) time

Proof (Sketch)
each search in an associated BBST t requires
O(log n + occt) time

O(log n) associated BSSTs T are searched
ò as seen in 1-dimensional case

total query time
∑

t∈T O(log n + occt)∑
t∈T O(occt) = O(occ)∑
t∈T O(log n) = O(log2 n)

total time: O(log2 n + occ)

14/30 2024-05-26 Kurpicz & Walzer | Advanced Data Structures | 06 Orthogonal Range Searching and BSP Trees Institute of Theoretical Informatics, Algorithm Engineering

Range Trees (3/4)

range trees can be generalized to higher
dimensions

for each dimension add an additional
associated BBST

reporting in final BBST

d-dimensional queries are d 1-dimensional
queries

Lemma: Higher Dimensions Range Tree
A d-dimensional range tree (for d ≥ 2) storing n
points in the plane requires O(n logd−1 n) words
space and can answer queries in O(logd n + occ)
time

Proof (Sketch Query Time)
recursive query time Qd(n) with
Q2(n) = O(log2 n)

Qd(n) = O(log n) + O(log n) · Qd−1(n)

solves to Qd(n) = O(logd n)

O(occ) time for reporting

Proof (Sketch Construction Space)
recursive space Sd(n) with S2(n) = O(n log n)
words

Td(n) = O(n log n) + O(log n) · Td−1(n)

solves to Sd(n) = O(n logd−1 n)

15/30 2024-05-26 Kurpicz & Walzer | Advanced Data Structures | 06 Orthogonal Range Searching and BSP Trees Institute of Theoretical Informatics, Algorithm Engineering

Range Trees (4/4)

sorted sets S1, . . . ,Sm

|S1| = n and Si+1 ⊆ Si

report elements in range [x ..x ′] in S1, . . . ,Sm

how much time does a naive algorithm with
binary search require? PINGO

O(m log n + occ) time

O(m + log n + occ) time possible with
fractional cascading

in addition to Si store pointers to Si+1

for each element in Si store pointer to
successor in Si+1

possible because Si+1 ⊆ Si �

16/30 2024-05-26 Kurpicz & Walzer | Advanced Data Structures | 06 Orthogonal Range Searching and BSP Trees Institute of Theoretical Informatics, Algorithm Engineering

Fractional Cascading (1/2)

https://kurpicz.org

Lemma: Fractional Cascading
Given sets S1, . . . ,Sm with |S1| = n and Si+1 ⊆ Si ,
find a range in all Si ’s using fractional cascading
requires O(m + log n + occ) time

Proof (Sketch)
binary search on S1 requires O(log n) time

following pointer to S2 requires O(1) time

scanning S2 requires O(occ) time

following pointer to S3 requires O(1) time

repeat m times

total: O(m + log n + occ) time

how to apply to range trees?

instead of associated BBSTs store leaf data in
arrays for all nodes but root

each node has associated data

store two successor pointers to the associated
data in the left and right child

two pointers to cover all possible paths

this is a layered range tree

17/30 2024-05-26 Kurpicz & Walzer | Advanced Data Structures | 06 Orthogonal Range Searching and BSP Trees Institute of Theoretical Informatics, Algorithm Engineering

Fractional Cascading (2/2)

search in BBST for x-coordinates remains the
same

to search y -coordinates first search associated
BBST of root

same as initial binary search for fractional
cascading

continue to follow pointers in associated data
and scan to report queries

Lemma: Query time Layered Range Tree
A query with an axis-parallel rectangle in a layered
range tree storing n points in the plane can be
performed in O(log n + occ) time

Proof (Sketch)
the initial search requires O(log n) time

the search in the associated BBST of the root
requires O(log n) time

remaining searches in associated data a
requires O(1 + occa) time

each point is reported once

total time: O(log n + occ)

18/30 2024-05-26 Kurpicz & Walzer | Advanced Data Structures | 06 Orthogonal Range Searching and BSP Trees Institute of Theoretical Informatics, Algorithm Engineering

Query Layered Range Trees

all solutions requires unique x and
y -coordinates

big limitation for applications

remember database motivation

store (x |k) as coordinate with x being the
x-coordinate and k a unique key

same for y -coordinates

compare points using
(x |k) < (x ′|k ′) ⇐⇒ x < x ′ or (x =
x ′ and k < k ′))

range queries [x ..x ′]× [y ..y ′] become

[(x | −∞)..(x ′|∞)]× (y | −∞)..[(y ′|∞)]

19/30 2024-05-26 Kurpicz & Walzer | Advanced Data Structures | 06 Orthogonal Range Searching and BSP Trees Institute of Theoretical Informatics, Algorithm Engineering

General Sets of Points (1/2)

all solutions requires unique x and
y -coordinates

big limitation for applications

remember database motivation

if exact positions are not important to
application

random perturbation: x + δ ∼ U(−ϵ, ϵ)

same for y -coordinates

range queries [x ..x ′]× [y ..y ′] become

[(x − ϵ)..(x ′ + ϵ)]× (y − ϵ)..[(y ′ + ϵ)]

20/30 2024-05-26 Kurpicz & Walzer | Advanced Data Structures | 06 Orthogonal Range Searching and BSP Trees Institute of Theoretical Informatics, Algorithm Engineering

General Sets of Points (2/2)

hidden surface removal

which pixel is visible

important for rendering

21/30 2024-05-26 Kurpicz & Walzer | Advanced Data Structures | 06 Orthogonal Range Searching and BSP Trees Institute of Theoretical Informatics, Algorithm Engineering

Now: Render Object

transform scene such that viewing direction is
positive z-direction

consider objects in scene in arbitrary order
maintain two buffers

frame buffer ò currently shown pixel
z-buffer ò z-coordinate of object shown

compare z-coordinate of z-buffer and object

first sort object in depth-order

depth-order may not always exist �

how to efficiently sort objects?

22/30 2024-05-26 Kurpicz & Walzer | Advanced Data Structures | 06 Orthogonal Range Searching and BSP Trees Institute of Theoretical Informatics, Algorithm Engineering

z-Buffer Algorithm

partition space using hyperplanes

binary partition ò similar to kd-tree

hyperplanes create half-spaces and cut objects
into fragments

h+ = {(x1, . . . , xd) : a1x1 + · · ·+ ad xd > c}
h− = {(x1, . . . , xd) : a1x1 + · · ·+ ad xd < c}

each split creates two nodes in a tree

if number of objects in space is one: leaf

otherwise: inner node

23/30 2024-05-26 Kurpicz & Walzer | Advanced Data Structures | 06 Orthogonal Range Searching and BSP Trees Institute of Theoretical Informatics, Algorithm Engineering

BSP Trees (1/2)

for leaf: store object/fragment

for inner node v : store hyperplane hv and the
objects contained in hv

left child represents objects in upper half-space
h+

right child represents objects in lower
half-space h−

space of BSP tree is number of objects stored
at all nodes

what about fragments?

too many fragments can make the tree big

24/30 2024-05-26 Kurpicz & Walzer | Advanced Data Structures | 06 Orthogonal Range Searching and BSP Trees Institute of Theoretical Informatics, Algorithm Engineering

BSP Trees (2/2)

sorting points for kd-trees worked well

BSP-tree is used to sort objects in depth-order
auto-partitioning uses splitters through objects

2-dimensional: line through line segments
3-dimensional: half-plane through polygons

25/30 2024-05-26 Kurpicz & Walzer | Advanced Data Structures | 06 Orthogonal Range Searching and BSP Trees Institute of Theoretical Informatics, Algorithm Engineering

Auto-Partitioning

consider view point pview

traverse through tree and always recurse on
half-space that does not contain pview first

then scan-convert object contained in node

then recurse on half-space that contains pview

pview

26/30 2024-05-26 Kurpicz & Walzer | Advanced Data Structures | 06 Orthogonal Range Searching and BSP Trees Institute of Theoretical Informatics, Algorithm Engineering

Painter’s Algorithm

use auto-partitioning

construction similar to construction of kd-tree
store all necessary information

hyperplane
objects in hyperplane

how to determine next hyperplane?

creating fragments increases size of BSP tree

let s be object and ℓ(s) line through object

order matters

27/30 2024-05-26 Kurpicz & Walzer | Advanced Data Structures | 06 Orthogonal Range Searching and BSP Trees Institute of Theoretical Informatics, Algorithm Engineering

Constructing Planar BSP Trees (1/3)

Lemma: Number Line Fragments
The expected number of fragments generated when
iterating through the line segments using a random
permutation is O(n log n)

Proof (Sketch)
distance of lines distsi (sj) =

segments inters. ℓ(si)

between si and sj ℓ(si) inters. sj

∞ otherwise

example on the board �

Proof (Sketch, cnt.)
let distsi (sj) = k and sj1 , . . . , sjk be segments
between si and sj

what is the probability that ℓ(si) cuts sj?

this happens if no sjx is processed before si

since order is random

P[ℓ(si) cuts sj] ≤
1

distsi (sj) + 2

28/30 2024-05-26 Kurpicz & Walzer | Advanced Data Structures | 06 Orthogonal Range Searching and BSP Trees Institute of Theoretical Informatics, Algorithm Engineering

Constructing Planar BSP Trees (2/3)

Proof (Sketch, cnt.)
expected number of cuts

E[# cuts generated by si] ≤
∑
j ̸=i

1
distsi (sj) + 2

≤ 2
n−2∑
k=0

1
k + 2

≤ 2 ln n

all lines generate at most 2n ln n fragments

Lemma: BSP Construction
A BSP tree of size O(n log n) can be computed in
expected time O(n2 log n)

Proof (Sketch)
computing permutation in linear time

construction is linear in number of fragments to
be considered

number of fragments in subtree is bounded by n

number of recursions is n log n
29/30 2024-05-26 Kurpicz & Walzer | Advanced Data Structures | 06 Orthogonal Range Searching and BSP Trees Institute of Theoretical Informatics, Algorithm Engineering

Constructing Planar BSP Trees (3/3)

This Lecture
orthogonal range searching

BSP trees

Advanced Data Structures

static

BV
static

succ. trees

range min-max tree succ. graphs

Successor RMQ

Kd-/ Range / BSP

Tree

30/30 2024-05-26 Kurpicz & Walzer | Advanced Data Structures | 06 Orthogonal Range Searching and BSP Trees Institute of Theoretical Informatics, Algorithm Engineering

Conclusion and Outlook

