

Advanced Data Structures

Lecture 06: Temporal Data Structures

Florian Kurpicz

The slides are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License @) www.creativecommons.org/licenses/by-sa/4.0 | commit c70729e compiled at 2024-05-13-10:05

www.kit.edu

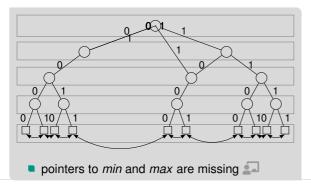
PINGO

https://pingo.scc.kit.edu/551581

Recap: Predecessor and RMQs

Predecessor

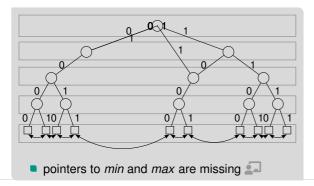
- Elias-Fano coding
- y-fast tries



Recap: Predecessor and RMQs

Predecessor

- Elias-Fano coding
- y-fast tries

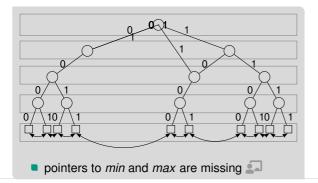


more to come: learned indices

Recap: Predecessor and RMQs

Predecessor

- Elias-Fano coding
- y-fast tries



more to come: learned indices

Range Minimum Queries

- constant time with
 - O(n²) space
 - O(n log n) space
 - O(n) space

Temporal Data Structures

- data structure that allows updates
- queries only on the newest version
- what happens to old versions

Karlsruhe Institute of Technology

Temporal Data Structures

- data structure that allows updates
- queries only on the newest version
- what happens to old versions
- keep old versions around
- in a "clever" way
- lecture based on: http://courses.csail.mit. edu/6.851/spring12/lectures/L01

Temporal Data Structures

- data structure that allows updates
- queries only on the newest version
- what happens to old versions
- keep old versions around
- in a "clever" way
- lecture based on: http://courses.csail.mit. edu/6.851/spring12/lectures/L01

Persistence

- change in the past creates new branch
- similar to version control
- everything old/new remains the same

Temporal Data Structures

- data structure that allows updates
- queries only on the newest version
- what happens to old versions
- keep old versions around
- in a "clever" way
- lecture based on: http://courses.csail.mit. edu/6.851/spring12/lectures/L01

Persistence

- change in the past creates new branch
- similar to version control
- everything old/new remains the same

Retroactivity

- change in the past affects future
- make change in earlier version changes all later versions

Karlsruhe Institute of Technology

Model of Computation

- nodes containing d = O(1) fields
- one root node
- operations in O(1) time
 - new node
 - x = y.field
 - x.field = y
 - x =y+z
- access nodes by root.x.y...
- example on the board

Model of Computation

- nodes containing d = O(1) fields
- one root node
- operations in O(1) time
 - new node
 - x = y.field
 - x.field = y
 - x =y+z
- access nodes by root.x.y...
- example on the board

- add additional functionality to existing data structures
- is this a "useful" model?

Model of Computation

- nodes containing d = O(1) fields
- one root node
- operations in O(1) time
 - new node
 - x = y.field
 - x.field = y
 - x =y+z
- access nodes by root.x.y...
- example on the board

- add additional functionality to existing data structures
- is this a "useful" model? W PINGO
- balanced binary search tree
- linked list

Model of Computation

- nodes containing d = O(1) fields
- one root node
- operations in O(1) time
 - new node
 - x = y.field
 - x.field = y
 - x =y+z
- access nodes by root.x.y...
- example on the board

- add additional functionality to existing data structures
- is this a "useful" model? W PINGO
- balanced binary search tree
- linked list
- . . .

Karlsruhe Institute of Technology

Persistence

- keep all versions of data structure
- never forget an old version
- updates create new versions () e.g., insert/delete
- all operations are relative to specific version

Definition: Partial Persistence

Only the latest version can be updated

- versions are linearly ordered
- old versions can still be queries

Persistence

- keep all versions of data structure
- never forget an old version
- updates create new versions

 e.g., insert/delete
- all operations are relative to specific version

Definition: Partial Persistence

Only the latest version can be updated

- versions are linearly ordered
- old versions can still be queries

Definition: Full Persistence

Any version can be updated

- versions form a tree
- updates on old versions create branch

Persistence

- keep all versions of data structure
- never forget an old version
- updates create new versions

 e.g., insert/delete
- all operations are relative to specific version

Definition: Partial Persistence

Only the latest version can be updated

- versions are linearly ordered
- old versions can still be queries

Definition: Full Persistence

Any version can be updated

- versions form a tree
- updates on old versions create branch

Definition: Confluent Persistence

Like full persistence, but two versions can be combined to a new version

Definition: Functional

Nodes cannot be modified, only new nodes can be created

Karlsruhe Institute of Technology

Partial Persistence (1/3)

Lemma: Making DS Partially Persistent

Any pointer-machine data structure with $\leq p = O(1)$ pointers to any node can be made partially persistent with

- O(1) amortized factor overhead and
- O(1) additional space per update

Karlsruhe Institute of Technology

Partial Persistence (1/3)

Lemma: Making DS Partially Persistent

Any pointer-machine data structure with $\leq p = O(1)$ pointers to any node can be made partially persistent with

- O(1) amortized factor overhead and
- O(1) additional space per update

Proof (Sketch: Idea)

- store original data and pointer (read only)
- store back pointers to latest version
- store ≤ 2*p* modifications to fields
 - modification = (version, field, value)
- version *v*: apply modification with version $\leq v$

Lemma: Making DS Partially Persistent

Any pointer-machine data structure with $\leq p = O(1)$ pointers to any node can be made partially persistent with

- O(1) amortized factor overhead and
- O(1) additional space per update

Proof (Sketch: Idea)

- store original data and pointer (read only)
- store back pointers to latest version
- store ≤ 2*p* modifications to fields
 - modification = (version, field, value)
- version *v*: apply modification with version $\leq v$

Proof (Sketch: Functionality)

- read version v
 - look up all modifications $\leq v$
 - if old version go through old version pointer

Lemma: Making DS Partially Persistent

Any pointer-machine data structure with $\leq p = O(1)$ pointers to any node can be made partially persistent with

- O(1) amortized factor overhead and
- O(1) additional space per update

Proof (Sketch: Idea)

- store original data and pointer (read only)
- store back pointers to latest version
- store ≤ 2*p* modifications to fields
 - modification = (version, field, value)
- version *v*: apply modification with version $\leq v$

Proof (Sketch: Functionality)

- read version v
 - look up all modifications $\leq v$
 - if old version go through old version pointer
- write version
 - if node is not full add modification
 - if node n is full
 - create new node n'
 - copy latest version to data fields
 - copy back pointers to n'
 - for every node x such that n points to x redirect its pack pointers to n'
 - for every node x pointing to n call recursive change of pointer to n'

Proof (Sketch: Space)

- adding only constant number of back pointers
- adding only constant number of modifications
- total additional space is O(1)

Proof (Sketch: Space)

- adding only constant number of back pointers
- adding only constant number of modifications
- total additional space is O(1)

Proof (Sketch: Time)

- read is constant time
- write requires amortized analysis

Proof (Sketch: Space)

- adding only constant number of back pointers
- adding only constant number of modifications
- total additional space is O(1)

Proof (Sketch: Time)

- read is constant time
- write requires amortized analysis
- potential function Φ
- amortizes_cost(n) = cost(n) + $\Delta \Phi$

Proof (Sketch: Space)

- adding only constant number of back pointers
- adding only constant number of modifications
- total additional space is O(1)

Proof (Sketch: Time)

- read is constant time
- write requires amortized analysis
- potential function Φ
- amortizes_cost(n) = cost(n) + $\Delta \Phi$

Proof (Sketch: Time cnt.)

- potential
 - $\Phi = c \cdot \sum \#$ modifications in latest version
- change of potential by adding new modification
- change of potential by creating new node
- combined:

amortized_cost $\leq c + c - 2cp + p \cdot recursion$

- first c: constant time checking
- second c: adding new modification
- remaining part if new node is created
- total amortized time: O(1)

Lemma: Making DS Partially Persistent

Any pointer-machine data structure with $\leq p = O(1)$ pointers to any node can be made partially persistent with

- O(1) amortized factor overhead and
- O(1) additional space per update

Lemma: Making DS Partially Persistent

Any pointer-machine data structure with $\leq p = O(1)$ pointers to any node can be made partially persistent with

- O(1) amortized factor overhead and
- O(1) additional space per update

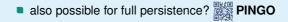
possible in O(1) worst case time [Bro96]

Lemma: Making DS Partially Persistent

Any pointer-machine data structure with $\leq p = O(1)$ pointers to any node can be made partially persistent with

- O(1) amortized factor overhead and
- O(1) additional space per update

possible in O(1) worst case time [Bro96]



Differences

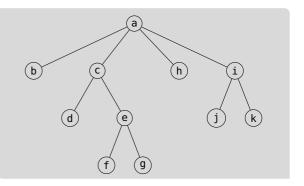
- versions are no longer numbers
- versions are nodes in a tree

Differences

- versions are no longer numbers
- versions are nodes in a tree
- can we represent versions in a linear fashion?
 PINGO

Differences

- versions are no longer numbers
- versions are nodes in a tree
- can we represent versions in a linear fashion? **PINGO**

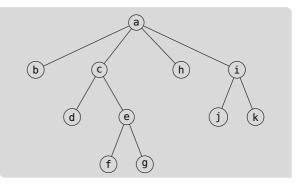


Differences

- versions are no longer numbers
- versions are nodes in a tree
- can we represent versions in a linear fashion? **PINGO**

ab cd ef g h ij k (()(()(()()))()(()()))

 $b_a b_b e_b b_c b_d e_d \dots$

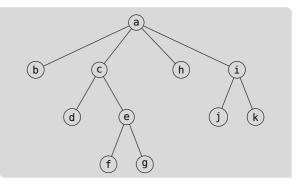


Differences

- versions are no longer numbers
- versions are nodes in a tree
- can we represent versions in a linear fashion? **PINGO**

ab cd ef g h ij k (()(()(()()))()(()()))

 $b_a b_b e_b b_c b_d e_d \dots$



versions change

update in constant time?

Linked List

- insert before or after element in O(1) time
- check if u is predecessor of v in n time

Linked List

- insert before or after element in O(1) time
- check if u is predecessor of v in n time

Balanced Search Tree

- insert before or after element in O(log n) time
- check if *u* is predecessor of *v* in $O(\log n)$ time

Linked List

- insert before or after element in O(1) time
- check if u is predecessor of v in n time

Balanced Search Tree

- insert before or after element in O(log n) time
- check if u is predecessor of v in O(log n) time

Order-Maintenance DS [DS87]

- insert before or after element in O(1) time
- check if u is predecessor of v in O(1) time

Linked List

- insert before or after element in O(1) time
- check if *u* is predecessor of *v* in *n* time

Balanced Search Tree

- insert before or after element in O(log n) time
- check if u is predecessor of v in O(log n) time

Order-Maintenance DS [DS87]

- insert before or after element in O(1) time
- check if u is predecessor of v in O(1) time
- how is

- linearized version tree in order-maintenance DS
- insert in O(1) time
 - new version v of u
 - after b_u
 - before e_u
- check order of versions in O(1) time
- maintain and check linearized version tree in O(1) time
- important for applying modifications to fields

Full Persistence (2/4)

Lemma: Making DS Fully Persistent

Any pointer-machine data structure with $\leq p = O(1)$ pointers to any node can be made fully persistent with

- O(1) amortized factor overhead and
- O(1) additional space per update

Full Persistence (2/4)

Lemma: Making DS Fully Persistent

Any pointer-machine data structure with $\leq p = O(1)$ pointers to any node can be made fully persistent with

- O(1) amortized factor overhead and
- O(1) additional space per update

Proof (Sketch: Idea)

- store original data and pointer (read only)
- store back pointers to all versions
- store $\leq 2(d + p + 1)$ modifications to fields
 - modification = (version, field, value)
- version v: look at ancestors of v

Full Persistence (2/4)

Lemma: Making DS Fully Persistent

Any pointer-machine data structure with $\leq p = O(1)$ pointers to any node can be made fully persistent with

- O(1) amortized factor overhead and
- O(1) additional space per update

Proof (Sketch: Idea)

- store original data and pointer (read only)
- store back pointers to all versions
- store $\leq 2(d + p + 1)$ modifications to fields
 - modification = (version, field, value)
- version v: look at ancestors of v

Proof (Sketch: Functionality)

- read version v
 - look up all modifications $\leq v$
 - if old version go through old version pointer

Full Persistence (2/4)

Lemma: Making DS Fully Persistent

Any pointer-machine data structure with $\leq p = O(1)$ pointers to any node can be made fully persistent with

- O(1) amortized factor overhead and
- O(1) additional space per update

Proof (Sketch: Idea)

- store original data and pointer (read only)
- store back pointers to all versions
- store $\leq 2(d + p + 1)$ modifications to fields
 - modification = (version, field, value)
- version v: look at ancestors of v

Proof (Sketch: Functionality)

- read version v
 - look up all modifications $\leq v$
 - if old version go through old version pointer

write version

- if node is not full add modification
- the same if node is full? Will PINGO

Full Persistence (2/4)

Lemma: Making DS Fully Persistent

Any pointer-machine data structure with $\leq p = O(1)$ pointers to any node can be made fully persistent with

- O(1) amortized factor overhead and
- O(1) additional space per update

Proof (Sketch: Idea)

- store original data and pointer (read only)
- store back pointers to all versions
- store $\leq 2(d + p + 1)$ modifications to fields
 - modification = (version, field, value)
- version v: look at ancestors of v

Proof (Sketch: Functionality)

- read version v
 - look up all modifications $\leq v$
 - if old version go through old version pointer
- write version
 - if node is not full add modification
 - the same if node is full? PINGO
 - if node n is full
 - split node into two
 - each new node contains half of modifications
 - modifications are tree
 - partition tree
 - apply all modifications to "subtree"
 - recursively update pointers

Full Persistence (3/4)

Proof (Sketch: Space)

- if no split no additional memory
- if split O(1) memory

Full Persistence (3/4)

Proof (Sketch: Space)

- if no split no additional memory
- if split O(1) memory

Proof (Sketch: Time)

- applying versions in O(1) time
- there are ≤ 2(d + p) + 1 recursive pointer updates
- potential

 $\Phi = -c \cdot \sum \#$ empty modification slots

Full Persistence (3/4)

Proof (Sketch: Space)

- if no split no additional memory
- if split O(1) memory

Proof (Sketch: Time)

- applying versions in O(1) time
- there are ≤ 2(d + p) + 1 recursive pointer updates
- potential

 $\Phi = -c \cdot \sum \#$ empty modification slots

Proof (Sketch: Time cnt.)

- if node is split $\Delta \Phi = -c \cdot 2(d + p + 1)$
- if node is not split $\Delta \Phi = c$
- combined:

amortized_cost = c + c- 2c(d + p + 1)+ $(2(d + p) + 1) \cdot$ recursions

if node is split constants cancel each other out

Full Persistence (4/4)

Lemma: Making DS Fully Persistent

Any pointer-machine data structure with $\leq p = O(1)$ pointers to any node can be made fully persistent with

- O(1) amortized factor overhead and
- O(1) additional space per update

Full Persistence (4/4)

Lemma: Making DS Fully Persistent

Any pointer-machine data structure with $\leq p = O(1)$ pointers to any node can be made fully persistent with

- O(1) amortized factor overhead and
- O(1) additional space per update
- versions are represented by tree
- tree has pointers to order-maintenance DS
- order-maintenance DS has pointers to tree

Full Persistence (4/4)

Lemma: Making DS Fully Persistent

Any pointer-machine data structure with $\leq p = O(1)$ pointers to any node can be made fully persistent with

- O(1) amortized factor overhead and
- O(1) additional space per update
- versions are represented by tree
- tree has pointers to order-maintenance DS
- order-maintenance DS has pointers to tree
- de-amortization is open problem

Confluent Persistence

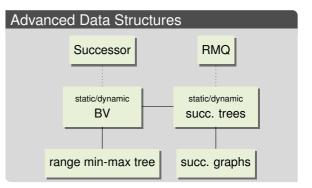
- hard because concatenation
- linked list concatenate with itself
- after u version length 2^u
- more information: https://ocw.mit.edu/courses/
 - 6-851-advanced-data-structures-spring-2012/

pages/calendar-and-notes/

Conclusion and Outlook

This Lecture

partial and full persistent data structures



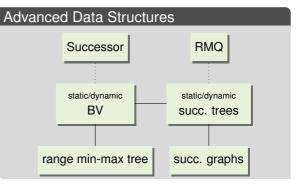
Conclusion and Outlook

This Lecture

partial and full persistent data structures

Next Lecture

substituted by Stefan W.



Project

- bit vectors will have length > 2³²
- if you want to use a language not listed, write my a mail
 - I will decide by the end of the week
 - depends on the number of additional languages
- time for questions!

Bibliography I

- [Bro96] Gerth Stølting Brodal. "Partially Persistent Data Structures of Bounded Degree with Constant Update Time". In: *Nord. J. Comput.* 3.3 (1996), pages 238–255.
- [DS87] Paul F. Dietz and Daniel Dominic Sleator. "Two Algorithms for Maintaining Order in a List". In: *STOC*. ACM, 1987, pages 365–372. DOI: 10.1145/28395.28434.