
Advanced Data Structures

Lecture 06: Temporal Data Structures

Florian Kurpicz

The slides are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License cba: www.creativecommons.org/licenses/by-sa/4.0 | commit c70729e compiled at 2024-05-13-10:05

KIT – The Research University in the Helmholtz Association www.kit.edu

https://creativecommons.org/licenses/by-sa/4.0/
https://www.kit.edu

https://pingo.scc.kit.edu/551581

2/16 2024-05-13 Florian Kurpicz | Advanced Data Structures | 06 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

PINGO

https://pingo.scc.kit.edu/551581
https://pingo.scc.kit.edu/551581

Predecessor
Elias-Fano coding

y-fast tries

0 1

0

1

0 1

0 1

0 1

0

1

0 1

0 10 1

0 10 1

0 1

0 1

0 10 1

pointers to min and max are missing �

more to come: learned indices

Range Minimum Queries
constant time with

O(n2) space
O(n log n) space
O(n) space

3/16 2024-05-13 Florian Kurpicz | Advanced Data Structures | 06 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Recap: Predecessor and RMQs

Predecessor
Elias-Fano coding

y-fast tries

0 1

0

1

0 1

0 1

0 1

0

1

0 1

0 10 1

0 10 1

0 1

0 1

0 10 1

pointers to min and max are missing �

more to come: learned indices

Range Minimum Queries
constant time with

O(n2) space
O(n log n) space
O(n) space

3/16 2024-05-13 Florian Kurpicz | Advanced Data Structures | 06 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Recap: Predecessor and RMQs

Predecessor
Elias-Fano coding

y-fast tries

0 1

0

1

0 1

0 1

0 1

0

1

0 1

0 10 1

0 10 1

0 1

0 1

0 10 1

pointers to min and max are missing �

more to come: learned indices

Range Minimum Queries
constant time with

O(n2) space
O(n log n) space
O(n) space

3/16 2024-05-13 Florian Kurpicz | Advanced Data Structures | 06 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Recap: Predecessor and RMQs

data structure that allows updates

queries only on the newest version

what happens to old versions

keep old versions around

in a “clever” way

lecture based on: http://courses.csail.mit.
edu/6.851/spring12/lectures/L01

Persistence
change in the past creates new branch

similar to version control

everything old/new remains the same

Retroactivity
change in the past affects future

make change in earlier version changes all later
versions

4/16 2024-05-13 Florian Kurpicz | Advanced Data Structures | 06 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Temporal Data Structures

http://courses.csail.mit.edu/6.851/spring12/lectures/L01
http://courses.csail.mit.edu/6.851/spring12/lectures/L01

data structure that allows updates

queries only on the newest version

what happens to old versions

keep old versions around

in a “clever” way

lecture based on: http://courses.csail.mit.
edu/6.851/spring12/lectures/L01

Persistence
change in the past creates new branch

similar to version control

everything old/new remains the same

Retroactivity
change in the past affects future

make change in earlier version changes all later
versions

4/16 2024-05-13 Florian Kurpicz | Advanced Data Structures | 06 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Temporal Data Structures

http://courses.csail.mit.edu/6.851/spring12/lectures/L01
http://courses.csail.mit.edu/6.851/spring12/lectures/L01

data structure that allows updates

queries only on the newest version

what happens to old versions

keep old versions around

in a “clever” way

lecture based on: http://courses.csail.mit.
edu/6.851/spring12/lectures/L01

Persistence
change in the past creates new branch

similar to version control

everything old/new remains the same

Retroactivity
change in the past affects future

make change in earlier version changes all later
versions

4/16 2024-05-13 Florian Kurpicz | Advanced Data Structures | 06 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Temporal Data Structures

http://courses.csail.mit.edu/6.851/spring12/lectures/L01
http://courses.csail.mit.edu/6.851/spring12/lectures/L01

data structure that allows updates

queries only on the newest version

what happens to old versions

keep old versions around

in a “clever” way

lecture based on: http://courses.csail.mit.
edu/6.851/spring12/lectures/L01

Persistence
change in the past creates new branch

similar to version control

everything old/new remains the same

Retroactivity
change in the past affects future

make change in earlier version changes all later
versions

4/16 2024-05-13 Florian Kurpicz | Advanced Data Structures | 06 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Temporal Data Structures

http://courses.csail.mit.edu/6.851/spring12/lectures/L01
http://courses.csail.mit.edu/6.851/spring12/lectures/L01

Definition: Pointer Machine
nodes containing d = O(1) fields

one root node
operations in O(1) time

new node
x = y.field
x.field = y
x =y+z

access nodes by root.x.y.. . .

example on the board �

add additional functionality to existing data
structures

is this a “useful” model? PINGO

balanced binary search tree

linked list

. . .

5/16 2024-05-13 Florian Kurpicz | Advanced Data Structures | 06 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Model of Computation

https://kurpicz.org

Definition: Pointer Machine
nodes containing d = O(1) fields

one root node
operations in O(1) time

new node
x = y.field
x.field = y
x =y+z

access nodes by root.x.y.. . .

example on the board �

add additional functionality to existing data
structures

is this a “useful” model? PINGO

balanced binary search tree

linked list

. . .

5/16 2024-05-13 Florian Kurpicz | Advanced Data Structures | 06 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Model of Computation

https://kurpicz.org

Definition: Pointer Machine
nodes containing d = O(1) fields

one root node
operations in O(1) time

new node
x = y.field
x.field = y
x =y+z

access nodes by root.x.y.. . .

example on the board �

add additional functionality to existing data
structures

is this a “useful” model? PINGO

balanced binary search tree

linked list

. . .

5/16 2024-05-13 Florian Kurpicz | Advanced Data Structures | 06 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Model of Computation

https://kurpicz.org

Definition: Pointer Machine
nodes containing d = O(1) fields

one root node
operations in O(1) time

new node
x = y.field
x.field = y
x =y+z

access nodes by root.x.y.. . .

example on the board �

add additional functionality to existing data
structures

is this a “useful” model? PINGO

balanced binary search tree

linked list

. . .

5/16 2024-05-13 Florian Kurpicz | Advanced Data Structures | 06 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Model of Computation

https://kurpicz.org

keep all versions of data structure

never forget an old version

updates create new versions ò e.g.,
insert/delete

all operations are relative to specific version

Definition: Partial Persistence
Only the latest version can be updated

versions are linearly ordered

old versions can still be queries

Definition: Full Persistence
Any version can be updated

versions form a tree

updates on old versions create branch

Definition: Confluent Persistence
Like full persistence, but two versions can be
combined to a new version

Definition: Functional
Nodes cannot be modified, only new nodes can be
created

6/16 2024-05-13 Florian Kurpicz | Advanced Data Structures | 06 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Persistence

keep all versions of data structure

never forget an old version

updates create new versions ò e.g.,
insert/delete

all operations are relative to specific version

Definition: Partial Persistence
Only the latest version can be updated

versions are linearly ordered

old versions can still be queries

Definition: Full Persistence
Any version can be updated

versions form a tree

updates on old versions create branch

Definition: Confluent Persistence
Like full persistence, but two versions can be
combined to a new version

Definition: Functional
Nodes cannot be modified, only new nodes can be
created

6/16 2024-05-13 Florian Kurpicz | Advanced Data Structures | 06 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Persistence

keep all versions of data structure

never forget an old version

updates create new versions ò e.g.,
insert/delete

all operations are relative to specific version

Definition: Partial Persistence
Only the latest version can be updated

versions are linearly ordered

old versions can still be queries

Definition: Full Persistence
Any version can be updated

versions form a tree

updates on old versions create branch

Definition: Confluent Persistence
Like full persistence, but two versions can be
combined to a new version

Definition: Functional
Nodes cannot be modified, only new nodes can be
created

6/16 2024-05-13 Florian Kurpicz | Advanced Data Structures | 06 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Persistence

Lemma: Making DS Partially Persistent
Any pointer-machine data structure with ≤ p = O(1)
pointers to any node can be made partially persistent
with

O(1) amortized factor overhead and

O(1) additional space per update

Proof (Sketch: Idea)
store original data and pointer (read only)

store back pointers to latest version
store ≤ 2p modifications to fields

modification = (version, field , value)

version v : apply modification with version ≤ v

Proof (Sketch: Functionality)
read version v

look up all modifications ≤ v
if old version go through old version pointer

write version
if node is not full add modification
if node n is full

create new node n′

copy latest version to data fields
copy back pointers to n′

for every node x such that n points to x redirect
its pack pointers to n′

for every node x pointing to n call recursive
change of pointer to n′

7/16 2024-05-13 Florian Kurpicz | Advanced Data Structures | 06 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Partial Persistence (1/3)

Lemma: Making DS Partially Persistent
Any pointer-machine data structure with ≤ p = O(1)
pointers to any node can be made partially persistent
with

O(1) amortized factor overhead and

O(1) additional space per update

Proof (Sketch: Idea)
store original data and pointer (read only)

store back pointers to latest version
store ≤ 2p modifications to fields

modification = (version, field , value)

version v : apply modification with version ≤ v

Proof (Sketch: Functionality)
read version v

look up all modifications ≤ v
if old version go through old version pointer

write version
if node is not full add modification
if node n is full

create new node n′

copy latest version to data fields
copy back pointers to n′

for every node x such that n points to x redirect
its pack pointers to n′

for every node x pointing to n call recursive
change of pointer to n′

7/16 2024-05-13 Florian Kurpicz | Advanced Data Structures | 06 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Partial Persistence (1/3)

Lemma: Making DS Partially Persistent
Any pointer-machine data structure with ≤ p = O(1)
pointers to any node can be made partially persistent
with

O(1) amortized factor overhead and

O(1) additional space per update

Proof (Sketch: Idea)
store original data and pointer (read only)

store back pointers to latest version
store ≤ 2p modifications to fields

modification = (version, field , value)

version v : apply modification with version ≤ v

Proof (Sketch: Functionality)
read version v

look up all modifications ≤ v
if old version go through old version pointer

write version
if node is not full add modification
if node n is full

create new node n′

copy latest version to data fields
copy back pointers to n′

for every node x such that n points to x redirect
its pack pointers to n′

for every node x pointing to n call recursive
change of pointer to n′

7/16 2024-05-13 Florian Kurpicz | Advanced Data Structures | 06 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Partial Persistence (1/3)

Lemma: Making DS Partially Persistent
Any pointer-machine data structure with ≤ p = O(1)
pointers to any node can be made partially persistent
with

O(1) amortized factor overhead and

O(1) additional space per update

Proof (Sketch: Idea)
store original data and pointer (read only)

store back pointers to latest version
store ≤ 2p modifications to fields

modification = (version, field , value)

version v : apply modification with version ≤ v

Proof (Sketch: Functionality)
read version v

look up all modifications ≤ v
if old version go through old version pointer

write version
if node is not full add modification
if node n is full

create new node n′

copy latest version to data fields
copy back pointers to n′

for every node x such that n points to x redirect
its pack pointers to n′

for every node x pointing to n call recursive
change of pointer to n′

7/16 2024-05-13 Florian Kurpicz | Advanced Data Structures | 06 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Partial Persistence (1/3)

Proof (Sketch: Space)
adding only constant number of back pointers

adding only constant number of modifications

total additional space is O(1)

Proof (Sketch: Time)
read is constant time

write requires amortized analysis

potential function Φ

amortizes_cost(n) = cost(n) + ∆Φ

Proof (Sketch: Time cnt.)
potential
Φ = c ·

∑
#modifications in latest version

change of potential by adding new modification

change of potential by creating new node

combined:

amortized_cost ≤ c + c − 2cp + p · recursion

first c: constant time checking

second c: adding new modification

remaining part if new node is created

total amortized time: O(1)

8/16 2024-05-13 Florian Kurpicz | Advanced Data Structures | 06 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Partial Persistence (2/3)

Proof (Sketch: Space)
adding only constant number of back pointers

adding only constant number of modifications

total additional space is O(1)

Proof (Sketch: Time)
read is constant time

write requires amortized analysis

potential function Φ

amortizes_cost(n) = cost(n) + ∆Φ

Proof (Sketch: Time cnt.)
potential
Φ = c ·

∑
#modifications in latest version

change of potential by adding new modification

change of potential by creating new node

combined:

amortized_cost ≤ c + c − 2cp + p · recursion

first c: constant time checking

second c: adding new modification

remaining part if new node is created

total amortized time: O(1)

8/16 2024-05-13 Florian Kurpicz | Advanced Data Structures | 06 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Partial Persistence (2/3)

Proof (Sketch: Space)
adding only constant number of back pointers

adding only constant number of modifications

total additional space is O(1)

Proof (Sketch: Time)
read is constant time

write requires amortized analysis

potential function Φ

amortizes_cost(n) = cost(n) + ∆Φ

Proof (Sketch: Time cnt.)
potential
Φ = c ·

∑
#modifications in latest version

change of potential by adding new modification

change of potential by creating new node

combined:

amortized_cost ≤ c + c − 2cp + p · recursion

first c: constant time checking

second c: adding new modification

remaining part if new node is created

total amortized time: O(1)

8/16 2024-05-13 Florian Kurpicz | Advanced Data Structures | 06 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Partial Persistence (2/3)

Proof (Sketch: Space)
adding only constant number of back pointers

adding only constant number of modifications

total additional space is O(1)

Proof (Sketch: Time)
read is constant time

write requires amortized analysis

potential function Φ

amortizes_cost(n) = cost(n) + ∆Φ

Proof (Sketch: Time cnt.)
potential
Φ = c ·

∑
#modifications in latest version

change of potential by adding new modification

change of potential by creating new node

combined:

amortized_cost ≤ c + c − 2cp + p · recursion

first c: constant time checking

second c: adding new modification

remaining part if new node is created

total amortized time: O(1)

8/16 2024-05-13 Florian Kurpicz | Advanced Data Structures | 06 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Partial Persistence (2/3)

Lemma: Making DS Partially Persistent
Any pointer-machine data structure with ≤ p = O(1)
pointers to any node can be made partially persistent
with

O(1) amortized factor overhead and

O(1) additional space per update

possible in O(1) worst case time [Bro96]

also possible for full persistence? PINGO

9/16 2024-05-13 Florian Kurpicz | Advanced Data Structures | 06 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Partial Persistence (3/3)

https://kurpicz.org

Lemma: Making DS Partially Persistent
Any pointer-machine data structure with ≤ p = O(1)
pointers to any node can be made partially persistent
with

O(1) amortized factor overhead and

O(1) additional space per update

possible in O(1) worst case time [Bro96]

also possible for full persistence? PINGO

9/16 2024-05-13 Florian Kurpicz | Advanced Data Structures | 06 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Partial Persistence (3/3)

https://kurpicz.org

Lemma: Making DS Partially Persistent
Any pointer-machine data structure with ≤ p = O(1)
pointers to any node can be made partially persistent
with

O(1) amortized factor overhead and

O(1) additional space per update

possible in O(1) worst case time [Bro96]

also possible for full persistence? PINGO

9/16 2024-05-13 Florian Kurpicz | Advanced Data Structures | 06 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Partial Persistence (3/3)

https://kurpicz.org

Differences
versions are no longer numbers

versions are nodes in a tree

can we represent versions in a linear fashion?
PINGO

ab cd ef g h ij k

(()(()(()()))()(()()))

babbebbcbded . . .

a

i

kj

hc

e

gf

d

b

versions change

update in constant time?

10/16 2024-05-13 Florian Kurpicz | Advanced Data Structures | 06 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Full Persistence (1/4)

https://kurpicz.org

Differences
versions are no longer numbers

versions are nodes in a tree

can we represent versions in a linear fashion?
PINGO

ab cd ef g h ij k

(()(()(()()))()(()()))

babbebbcbded . . .

a

i

kj

hc

e

gf

d

b

versions change

update in constant time?

10/16 2024-05-13 Florian Kurpicz | Advanced Data Structures | 06 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Full Persistence (1/4)

https://kurpicz.org

Differences
versions are no longer numbers

versions are nodes in a tree

can we represent versions in a linear fashion?
PINGO

ab cd ef g h ij k

(()(()(()()))()(()()))

babbebbcbded . . .

a

i

kj

hc

e

gf

d

b

versions change

update in constant time?

10/16 2024-05-13 Florian Kurpicz | Advanced Data Structures | 06 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Full Persistence (1/4)

https://kurpicz.org

Differences
versions are no longer numbers

versions are nodes in a tree

can we represent versions in a linear fashion?
PINGO

ab cd ef g h ij k

(()(()(()()))()(()()))

babbebbcbded . . .

a

i

kj

hc

e

gf

d

b

versions change

update in constant time?

10/16 2024-05-13 Florian Kurpicz | Advanced Data Structures | 06 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Full Persistence (1/4)

https://kurpicz.org

Differences
versions are no longer numbers

versions are nodes in a tree

can we represent versions in a linear fashion?
PINGO

ab cd ef g h ij k

(()(()(()()))()(()()))

babbebbcbded . . .

a

i

kj

hc

e

gf

d

b

versions change

update in constant time?

10/16 2024-05-13 Florian Kurpicz | Advanced Data Structures | 06 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Full Persistence (1/4)

https://kurpicz.org

Linked List
insert before or after element in O(1) time

check if u is predecessor of v in n time

Balanced Search Tree
insert before or after element in O(log n) time

check if u is predecessor of v in O(log n) time

Order-Maintenance DS [DS87]
insert before or after element in O(1) time

check if u is predecessor of v in O(1) time

how is

linearized version tree in order-maintenance DS
insert in O(1) time

new version v of u
after bu

before eu

check order of versions in O(1) time

maintain and check linearized version tree in
O(1) time

important for applying modifications to fields

11/16 2024-05-13 Florian Kurpicz | Advanced Data Structures | 06 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Order-Maintenance Data Structure

Linked List
insert before or after element in O(1) time

check if u is predecessor of v in n time

Balanced Search Tree
insert before or after element in O(log n) time

check if u is predecessor of v in O(log n) time

Order-Maintenance DS [DS87]
insert before or after element in O(1) time

check if u is predecessor of v in O(1) time

how is

linearized version tree in order-maintenance DS
insert in O(1) time

new version v of u
after bu

before eu

check order of versions in O(1) time

maintain and check linearized version tree in
O(1) time

important for applying modifications to fields

11/16 2024-05-13 Florian Kurpicz | Advanced Data Structures | 06 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Order-Maintenance Data Structure

Linked List
insert before or after element in O(1) time

check if u is predecessor of v in n time

Balanced Search Tree
insert before or after element in O(log n) time

check if u is predecessor of v in O(log n) time

Order-Maintenance DS [DS87]
insert before or after element in O(1) time

check if u is predecessor of v in O(1) time

how is

linearized version tree in order-maintenance DS
insert in O(1) time

new version v of u
after bu

before eu

check order of versions in O(1) time

maintain and check linearized version tree in
O(1) time

important for applying modifications to fields

11/16 2024-05-13 Florian Kurpicz | Advanced Data Structures | 06 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Order-Maintenance Data Structure

Linked List
insert before or after element in O(1) time

check if u is predecessor of v in n time

Balanced Search Tree
insert before or after element in O(log n) time

check if u is predecessor of v in O(log n) time

Order-Maintenance DS [DS87]
insert before or after element in O(1) time

check if u is predecessor of v in O(1) time

how is

linearized version tree in order-maintenance DS
insert in O(1) time

new version v of u
after bu

before eu

check order of versions in O(1) time

maintain and check linearized version tree in
O(1) time

important for applying modifications to fields

11/16 2024-05-13 Florian Kurpicz | Advanced Data Structures | 06 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Order-Maintenance Data Structure

Lemma: Making DS Fully Persistent
Any pointer-machine data structure with ≤ p = O(1)
pointers to any node can be made fully persistent
with

O(1) amortized factor overhead and

O(1) additional space per update

Proof (Sketch: Idea)
store original data and pointer (read only)

store back pointers to all versions
store ≤ 2(d + p + 1) modifications to fields

modification = (version, field , value)

version v : look at ancestors of v

Proof (Sketch: Functionality)
read version v

look up all modifications ≤ v
if old version go through old version pointer

write version
if node is not full add modification
the same if node is full? PINGO

if node n is full
split node into two
each new node contains half of modifications
modifications are tree
partition tree �

apply all modifications to “subtree”
recursively update pointers

12/16 2024-05-13 Florian Kurpicz | Advanced Data Structures | 06 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Full Persistence (2/4)

https://kurpicz.org

Lemma: Making DS Fully Persistent
Any pointer-machine data structure with ≤ p = O(1)
pointers to any node can be made fully persistent
with

O(1) amortized factor overhead and

O(1) additional space per update

Proof (Sketch: Idea)
store original data and pointer (read only)

store back pointers to all versions
store ≤ 2(d + p + 1) modifications to fields

modification = (version, field , value)

version v : look at ancestors of v

Proof (Sketch: Functionality)
read version v

look up all modifications ≤ v
if old version go through old version pointer

write version
if node is not full add modification
the same if node is full? PINGO

if node n is full
split node into two
each new node contains half of modifications
modifications are tree
partition tree �

apply all modifications to “subtree”
recursively update pointers

12/16 2024-05-13 Florian Kurpicz | Advanced Data Structures | 06 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Full Persistence (2/4)

https://kurpicz.org

Lemma: Making DS Fully Persistent
Any pointer-machine data structure with ≤ p = O(1)
pointers to any node can be made fully persistent
with

O(1) amortized factor overhead and

O(1) additional space per update

Proof (Sketch: Idea)
store original data and pointer (read only)

store back pointers to all versions
store ≤ 2(d + p + 1) modifications to fields

modification = (version, field , value)

version v : look at ancestors of v

Proof (Sketch: Functionality)
read version v

look up all modifications ≤ v
if old version go through old version pointer

write version
if node is not full add modification
the same if node is full? PINGO

if node n is full
split node into two
each new node contains half of modifications
modifications are tree
partition tree �

apply all modifications to “subtree”
recursively update pointers

12/16 2024-05-13 Florian Kurpicz | Advanced Data Structures | 06 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Full Persistence (2/4)

https://kurpicz.org

Lemma: Making DS Fully Persistent
Any pointer-machine data structure with ≤ p = O(1)
pointers to any node can be made fully persistent
with

O(1) amortized factor overhead and

O(1) additional space per update

Proof (Sketch: Idea)
store original data and pointer (read only)

store back pointers to all versions
store ≤ 2(d + p + 1) modifications to fields

modification = (version, field , value)

version v : look at ancestors of v

Proof (Sketch: Functionality)
read version v

look up all modifications ≤ v
if old version go through old version pointer

write version
if node is not full add modification
the same if node is full? PINGO

if node n is full
split node into two
each new node contains half of modifications
modifications are tree
partition tree �

apply all modifications to “subtree”
recursively update pointers

12/16 2024-05-13 Florian Kurpicz | Advanced Data Structures | 06 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Full Persistence (2/4)

https://kurpicz.org

Lemma: Making DS Fully Persistent
Any pointer-machine data structure with ≤ p = O(1)
pointers to any node can be made fully persistent
with

O(1) amortized factor overhead and

O(1) additional space per update

Proof (Sketch: Idea)
store original data and pointer (read only)

store back pointers to all versions
store ≤ 2(d + p + 1) modifications to fields

modification = (version, field , value)

version v : look at ancestors of v

Proof (Sketch: Functionality)
read version v

look up all modifications ≤ v
if old version go through old version pointer

write version
if node is not full add modification
the same if node is full? PINGO
if node n is full

split node into two
each new node contains half of modifications
modifications are tree
partition tree �

apply all modifications to “subtree”
recursively update pointers

12/16 2024-05-13 Florian Kurpicz | Advanced Data Structures | 06 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Full Persistence (2/4)

https://kurpicz.org

Proof (Sketch: Space)
if no split no additional memory

if split O(1) memory

Proof (Sketch: Time)
applying versions in O(1) time

there are ≤ 2(d + p) + 1 recursive pointer
updates

potential

Φ = −c ·
∑

#empty modification slots

Proof (Sketch: Time cnt.)
if node is split ∆Φ = −c · 2(d + p + 1)

if node is not split ∆Φ = c

combined:

amortized_cost = c + c

− 2c(d + p + 1)

+ (2(d + p) + 1) · recursions

if node is split constants cancel each other out

13/16 2024-05-13 Florian Kurpicz | Advanced Data Structures | 06 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Full Persistence (3/4)

Proof (Sketch: Space)
if no split no additional memory

if split O(1) memory

Proof (Sketch: Time)
applying versions in O(1) time

there are ≤ 2(d + p) + 1 recursive pointer
updates

potential

Φ = −c ·
∑

#empty modification slots

Proof (Sketch: Time cnt.)
if node is split ∆Φ = −c · 2(d + p + 1)

if node is not split ∆Φ = c

combined:

amortized_cost = c + c

− 2c(d + p + 1)

+ (2(d + p) + 1) · recursions

if node is split constants cancel each other out

13/16 2024-05-13 Florian Kurpicz | Advanced Data Structures | 06 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Full Persistence (3/4)

Proof (Sketch: Space)
if no split no additional memory

if split O(1) memory

Proof (Sketch: Time)
applying versions in O(1) time

there are ≤ 2(d + p) + 1 recursive pointer
updates

potential

Φ = −c ·
∑

#empty modification slots

Proof (Sketch: Time cnt.)
if node is split ∆Φ = −c · 2(d + p + 1)

if node is not split ∆Φ = c

combined:

amortized_cost = c + c

− 2c(d + p + 1)

+ (2(d + p) + 1) · recursions

if node is split constants cancel each other out

13/16 2024-05-13 Florian Kurpicz | Advanced Data Structures | 06 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Full Persistence (3/4)

Lemma: Making DS Fully Persistent
Any pointer-machine data structure with ≤ p = O(1)
pointers to any node can be made fully persistent
with

O(1) amortized factor overhead and

O(1) additional space per update

versions are represented by tree

tree has pointers to order-maintenance DS

order-maintenance DS has pointers to tree

de-amortization is open problem

14/16 2024-05-13 Florian Kurpicz | Advanced Data Structures | 06 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Full Persistence (4/4)

Lemma: Making DS Fully Persistent
Any pointer-machine data structure with ≤ p = O(1)
pointers to any node can be made fully persistent
with

O(1) amortized factor overhead and

O(1) additional space per update

versions are represented by tree

tree has pointers to order-maintenance DS

order-maintenance DS has pointers to tree

de-amortization is open problem

14/16 2024-05-13 Florian Kurpicz | Advanced Data Structures | 06 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Full Persistence (4/4)

Lemma: Making DS Fully Persistent
Any pointer-machine data structure with ≤ p = O(1)
pointers to any node can be made fully persistent
with

O(1) amortized factor overhead and

O(1) additional space per update

versions are represented by tree

tree has pointers to order-maintenance DS

order-maintenance DS has pointers to tree

de-amortization is open problem

14/16 2024-05-13 Florian Kurpicz | Advanced Data Structures | 06 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Full Persistence (4/4)

hard because concatenation

linked list concatenate with itself

after u version length 2u

more information:
https://ocw.mit.edu/courses/

6-851-advanced-data-structures-spring-2012/

pages/calendar-and-notes/

15/16 2024-05-13 Florian Kurpicz | Advanced Data Structures | 06 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Confluent Persistence

https://ocw.mit.edu/courses/6-851-advanced-data-structures-spring-2012/pages/calendar-and-notes/
https://ocw.mit.edu/courses/6-851-advanced-data-structures-spring-2012/pages/calendar-and-notes/
https://ocw.mit.edu/courses/6-851-advanced-data-structures-spring-2012/pages/calendar-and-notes/

This Lecture
partial and full persistent data structures

Next Lecture
substituted by Stefan W.

Advanced Data Structures

static/dynamic

BV
static/dynamic

succ. trees

range min-max tree succ. graphs

Successor RMQ

16/16 2024-05-13 Florian Kurpicz | Advanced Data Structures | 06 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Conclusion and Outlook

This Lecture
partial and full persistent data structures

Next Lecture
substituted by Stefan W.

Advanced Data Structures

static/dynamic

BV
static/dynamic

succ. trees

range min-max tree succ. graphs

Successor RMQ

16/16 2024-05-13 Florian Kurpicz | Advanced Data Structures | 06 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Conclusion and Outlook

bit vectors will have length > 232

if you want to use a language not listed, write
my a mail

I will decide by the end of the week
depends on the number of additional languages

time for questions!

17/16 2024-05-13 Florian Kurpicz | Advanced Data Structures | 06 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Project

[Bro96] Gerth Stølting Brodal. “Partially Persistent Data Structures of Bounded Degree with Constant Update
Time”. In: Nord. J. Comput. 3.3 (1996), pages 238–255.

[DS87] Paul F. Dietz and Daniel Dominic Sleator. “Two Algorithms for Maintaining Order in a List”. In: STOC.
ACM, 1987, pages 365–372. DOI: 10.1145/28395.28434.

18/16 2024-05-13 Florian Kurpicz | Advanced Data Structures | 06 Temporal Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Bibliography I

https://doi.org/10.1145/28395.28434

	Appendix

