Recap: Predecessor and RMQs

Predecessor
- Elias-Fano coding
- y-fast tries

Range Minimum Queries
- constant time with
 - $O(n^2)$ space
 - $O(n \log n)$ space
 - $O(n)$ space

- more to come: learned indices

- pointers to min and max are missing
Temporal Data Structures

- data structure that allows updates
- queries only on the newest version
- what happens to old versions

- keep old versions around
- in a “clever” way
- lecture based on: http://courses.csail.mit.edu/6.851/spring12/lectures/L01

Persistence
- change in the past creates new branch
- similar to version control
- everything old/new remains the same

Retroactivity
- change in the past affects future
- make change in earlier version changes all later versions
Definition: Pointer Machine
- nodes containing $d = O(1)$ fields
- one root node
- operations in $O(1)$ time
 - new node
 - $x = y$.field
 - x.field = y
 - $x = y + z$
- access nodes by root.x.y. . .

- add additional functionality to existing data structures
- is this a “useful” model?
- balanced binary search tree
- linked list
- . . .

example on the board
Persistence

- keep all versions of data structure
- never forget an old version
- updates create new versions e.g., insert/delete
- all operations are relative to specific version

Definition: Partial Persistence

Only the latest version can be updated

- versions are linearly ordered
- old versions can still be queries

Definition: Full Persistence

Any version can be updated

- versions form a tree
- updates on old versions create branch

Definition: Confluent Persistence

Like full persistence, but two versions can be combined to a new version

Definition: Functional

Nodes cannot be modified, only new nodes can be created
Lemma: Making DS Partially Persistent

Any pointer-machine data structure with $\leq p = O(1)$ pointers to any node can be made partially persistent with
- $O(1)$ amortized factor overhead and
- $O(1)$ additional space per update

Proof (Sketch: Idea)
- store original data and pointer (read only)
- store back pointers to latest version
- store $\leq 2p$ modifications to fields
 - modification = (version, field, value)
- version v: apply modification with version $\leq v$

Proof (Sketch: Functionality)
- read version v
 - look up all modifications $\leq v$
 - if old version go through old version pointer
- write version
 - if node is not full add modification
 - if node n is full
 - create new node n'
 - copy latest version to data fields
 - copy back pointers to n'
 - for every node x such that n points to x redirect its pack pointers to n'
 - for every node x pointing to n call recursive change of pointer to n'
Partial Persistence (2/3)

Proof (Sketch: Space)
- adding only constant number of back pointers
- adding only constant number of modifications
- total additional space is $O(1)$

Proof (Sketch: Time)
- read is constant time
- write requires amortized analysis

- potential function Φ
- $\text{amortizes}_\text{cost}(n) = \text{cost}(n) + \Delta \Phi$

Proof (Sketch: Time cnt.)
- potential
 $\Phi = c \cdot \sum \#\text{modifications in latest version}$
- change of potential by adding new modification
- change of potential by creating new node
- combined:
 $\text{amortized}_\text{cost} \leq c + c - 2cp + p \cdot \text{recursion}$
 - first c: constant time checking
 - second c: adding new modification
 - remaining part if new node is created
 - total amortized time: $O(1)$
Lemma: Making DS Partially Persistent

Any pointer-machine data structure with \(\leq p = O(1) \) pointers to any node can be made partially persistent with

- \(O(1) \) amortized factor overhead and
- \(O(1) \) additional space per update

- possible in \(O(1) \) worst case time [Bro96]

- also possible for full persistence? PINGO
Differences

- versions are no longer numbers
- versions are nodes in a tree

Can we represent versions in a linear fashion?

PINGO

```
ab cd ef g h i j k
((((((((()))())))))(()())())
```

```
b_a b_b e_b b_c b_d e_d ...
```

- versions change
- update in constant time?
Order-Maintenance Data Structure

Linked List
- insert before or after element in $O(1)$ time
- check if u is predecessor of v in n time

Balanced Search Tree
- insert before or after element in $O(\log n)$ time
- check if u is predecessor of v in $O(\log n)$ time

Order-Maintenance DS [DS87]
- insert before or after element in $O(1)$ time
- check if u is predecessor of v in $O(1)$ time
- how is

- linearized version tree in order-maintenance DS
- insert in $O(1)$ time
 - new version v of u
 - after b_u
 - before e_u
- check order of versions in $O(1)$ time
- maintain and check linearized version tree in $O(1)$ time
- important for applying modifications to fields
Lemma: Making DS Fully Persistent

Any pointer-machine data structure with \(\leq p = O(1) \) pointers to any node can be made fully persistent with
- \(O(1) \) amortized factor overhead and
- \(O(1) \) additional space per update

Proof (Sketch: Idea)
- store original data and pointer (read only)
- store back pointers to all versions
- store \(\leq 2(d + p + 1) \) modifications to fields
 - modification = (version, field, value)
- version \(v \): look at ancestors of \(v \)

Proof (Sketch: Functionality)
- read version \(v \)
 - look up all modifications \(\leq v \)
 - if old version go through old version pointer
- write version
 - if node is not full add modification
 - the same if node is full?
 - if node \(n \) is full
 - split node into two
 - each new node contains half of modifications
 - modifications are tree
 - partition tree
 - apply all modifications to “subtree”
 - recursively update pointers
Proof (Sketch: Space)
- if no split no additional memory
- if split \(O(1)\) memory

Proof (Sketch: Time)
- applying versions in \(O(1)\) time
- there are \(\leq 2(d + p) + 1\) recursive pointer updates
- potential

\[
\Phi = -c \cdot \sum \#\text{empty modification slots}
\]

Proof (Sketch: Time cnt.)
- if node is split \(\Delta \Phi = -c \cdot 2(d + p + 1)\)
- if node is not split \(\Delta \Phi = c\)
- combined:

\[
\text{amortized_cost} = c + c - 2c(d + p + 1) + (2(d + p) + 1) \cdot \text{recursions}
\]

- if node is split constants cancel each other out
Lemma: Making DS Fully Persistent

Any pointer-machine data structure with $\leq p = O(1)$ pointers to any node can be made fully persistent with

- $O(1)$ amortized factor overhead and
- $O(1)$ additional space per update

- versions are represented by tree
- tree has pointers to order-maintenance DS
- order-maintenance DS has pointers to tree

- de-amortization is open problem
Confluent Persistence

- hard because concatenation
- linked list concatenate with itself
- after u version length 2^u

more information:
Conclusion and Outlook

This Lecture
- partial and full persistent data structures

Next Lecture
- substituted by Stefan W.

Advanced Data Structures
- Successor
- RMQ
- static/dynamic BV
- static/dynamic succ. trees
- range min-max tree
- succ. graphs
Project

- bit vectors will have length > 2^{32}
- if you want to use a language not listed, write my a mail
 - I will decide by the end of the week
 - depends on the number of additional languages
- time for questions!
Bibliography I
