Advanced Data Structures

Lecture 08: Compressed Suffix Array

Florian Kurpicz
Suffix Array and LCP-Array

Definition: Suffix Array [GBS92; MM93]
Given a text T of length n, the suffix array (SA) is a permutation of $[1..n]$, such that for $i \leq j \in [1..n]$

$$T[SA[i]..n] \leq T[SA[j]..n]$$

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>$</td>
</tr>
<tr>
<td>SA</td>
<td>13</td>
<td>12</td>
<td>1</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>11</td>
<td>2</td>
<td>10</td>
<td>7</td>
<td>4</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>LCP</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Given a text T of length n, the suffix array (SA) is a permutation of $[1..n]$, such that for $i \leq j \in [1..n]$

$$T[SA[i]..n] \leq T[SA[j]..n]$$

T	a	b	a	b	c	a	b	c	a	b	b	a	$
SA	13	12	1	9	6	3	11	2	10	7	4	8	5
LCP	0	0	1	2	2	5	0	2	1	1	4	0	3
Suffix Array and LCP-Array

Definition: Suffix Array [GBS92; MM93]

Given a text T of length n, the suffix array (SA) is a permutation of $[1..n]$, such that for $i \leq j \in [1..n]$

$$T[SA[i]..n] \leq T[SA[j]..n]$$

Definition: Longest Common Prefix Array

Given a text T of length n and its SA, the LCP-array is defined as

$$LCP[i] = \begin{cases} 0 & i = 1 \\ \max\{\ell : T[SA[i]..SA[i] + \ell) = T[SA[i - 1]..SA[i - 1] + \ell]\} & i \neq 1 \end{cases}$$
Suffix Array and LCP-Array

Definition: Suffix Array [GBS92; MM93]
Given a text T of length n, the suffix array (SA) is a permutation of $[1..n]$, such that for $i \leq j \in [1..n]$

$$T[SA[i]..n] \leq T[SA[j]..n]$$

Definition: Longest Common Prefix Array
Given a text T of length n and its SA, the LCP-array is defined as

$$LCP[i] = \begin{cases} 0 & i = 1 \\ \max\{\ell : T[SA[i]..SA[i] + \ell) = T[SA[i - 1]..SA[i - 1 + \ell)} & i \neq 1 \end{cases}$$
(Compressed) Text Indices #Ad
(Compressed) Text Indices #Ad

Suffix Tree
1973

Suffix Array
1993

LCP Array
1993

Memory Requirements

...babab... aabaac...

...83095...

...a a b b a a b b...
(Compressed) Text Indices #Ad

Memory Requirements

- Suffix Tree (1973)
- Suffix Array (1993)
- LCP Array (1993)
- BWT (1994)
- Wavelet Tree (2000)
- FM-Index (2000)
- r-Index (2018)
- Block Tree (2021)

String Sorting

LCE Queries

(Patricia) Tries

Bit Vectors and Rank/Select Queries

EM Hashing

Succinct Data Structures

Compression

abca
ba
cc
83095...

babab...
aabac...

01110001
01001
101
10
11
0

a: 0
b: 4
c: 5

abccaca0
0110001
01001
1001
0
10
11
0

abccaaca
01110001
01001
101
10
11
0

a: 0
b: 4
c: 5

JEA '21, ALENEX '18,'20, SPIRE '19

Submitted (arXiv:2205.04745)

ALENEX '19, BigData '18

Florian Kurpicz | Advanced Data Structures | 08 Compressed Suffix Array

Institute of Theoretical Informatics, Algorithm Engineering
(Compressed) Text Indices #Ad
(Compressed) Text Indices #Ad

Memory Requirements

- **Suffix Tree**
 - Year: 1973
 - Diagram:

- **Suffix Array**
 - Year: 1993
 - Diagram:

- **LCP Array**
 - Year: 1993
 - Diagram:

- **BWT**
 - Year: 1994
 - Diagram:

- **Wavelet Tree**
 - Year: 2000
 - Diagram:

- **FM-Index**
 - Year: 2000
 - Diagram:

- **r-Index**
 - Year: 2018
 - Diagram:

- **Block Tree**
 - Year: 2021
 - Diagram:

- **Compression**
 - Diagram:

- **String Sorting**

- **LCE Queries**

- **(Patricia) Tries**

- **Bit Vectors and Rank/Select Queries**

- **EM Hashing**

- **Succinct Data Structures**

- **Compression**
The definition of the \(\Psi \) function is given as follows:

Definition: \(\Psi \) Function

Given a suffix array \(SA \) of length \(n \),

\[
\Psi(i) = SA^{-1}[SA[i] + 1]
\]
Definition: Ψ Function

Given a suffix array SA of length n,

$$\Psi(i) = SA^{-1}[SA[i] + 1]$$
Ψ Function

Definition: Ψ Function

Given a suffix array SA of length n,

$$\Psi(i) = SA^{-1}[SA[i] + 1]$$

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>$</td>
</tr>
<tr>
<td>SA</td>
<td>13</td>
<td>12</td>
<td>1</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>11</td>
<td>2</td>
<td>10</td>
<td>7</td>
<td>4</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>Ψ</td>
<td>-</td>
<td>1</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>2</td>
<td>6</td>
<td>7</td>
<td>12</td>
<td>13</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

| | $|$ | a | $|$ | a | a | a | b | b | b | b | c | c | a |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | a | b | a | b | b | b | b | b | a | b | a | b | b |
| | a | b | a | c | c | c | a | b | b | c | b | b | c |
| | a | b | c | c | b | a | b | c | a | a | c | b | a |
| | a | b | a | b | a | b | b | a | $|$ | a | b | b | $|$ |
| | a | b | a | b | a | b | b | a | $|$ | a | b | b | $|$ |
Definition: \(\Psi \) Function

Given a suffix array \(SA \) of length \(n \),

\[
\Psi(i) = SA^{-1}[SA[i] + 1]
\]
**Definition: **Ψ Function

Given a suffix array SA of length n,

$$\Psi(i) = SA^{-1}[SA[i] + 1]$$

- $SA[\Psi(i)] = SA[i] + 1$
- where in SA is the suffix $T[SA[i] + 1..n)$
- “successor” function
Definition: Ψ Function

Given a suffix array SA of length n,

$$\Psi(i) = SA^{-1}[SA[i] + 1]$$

- $SA[\Psi(i)] = SA[i] + 1$
- where in SA is the suffix $T[SA[i] + 1..n)$
- "successor" function

- can be used to obtain suffix array
- can be compressed \(\text{currently } O(n \log n) \text{ bits}\)
Recovering Ψ from SA

<table>
<thead>
<tr>
<th>Ψ</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ψ</td>
<td>$-$</td>
<td>1</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>2</td>
<td>6</td>
<td>7</td>
<td>12</td>
<td>13</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

| T | a | b | a | b | a | b | c | a | b | c | a | b | a | $\$ |
|------|---|---|---|---|---|---|---|---|---|----|----|----|----|
| SA| 13| 12| 1 | 9 | 6 | 3 | 11| 2 | 10| 7 | 4 | 8 | 5 |

Replacing SA with Ψ

Which number does *in this example* not occur?
Replacing SA with Ψ

Which number does in this example not occur?
Answer: 3
Replacing SA with Ψ

- which number does in this example not occur? Answer: 3
- how to obtain $SA[j]$ using Ψ

| T | a | b | a | b | c | a | b | c | a | b | b | a | $
| SA | 13| 12| 1 | 9 | 6 | 3 | 11| 2 | 10| 7 | 4 | 8 | 5
| Ψ | - | 1 | 8 | 9 | 10| 11| 2 | 6 | 7 | 12 | 13| 4 | 5

| Ψ | a | a | a | b | a | b | b | a | b | c | c | a | a
| Ψ | b | b | b | c | c | $|b$ | b | b | c | a | b | b
| Ψ | c | c | $|b$ | b | a | $|b$ | b | a | c | a | b | a
| Ψ | a | b | $|b$ | b | a | $|b$ | b | a | c | a | b | a
| Ψ | b | b | $|b$ | b | a | $|b$ | b | a | c | a | b | a

| Ψ | c | c | $|b$ | b | a | $|b$ | b | a | c | a | b | a
| Ψ | a | b | $|b$ | b | a | $|b$ | b | a | c | a | b | a
| Ψ | b | b | $|b$ | b | a | $|b$ | b | a | c | a | b | a
| Ψ | c | c | $|b$ | b | a | $|b$ | b | a | c | a | b | a
| Ψ | a | b | $|b$ | b | a | $|b$ | b | a | c | a | b | a
| Ψ | b | b | $|b$ | b | a | $|b$ | b | a | c | a | b | a
| Ψ | c | c | $|b$ | b | a | $|b$ | b | a | c | a | b | a
| Ψ | a | b | $|b$ | b | a | $|b$ | b | a | c | a | b | a
Replacing SA with Ψ

- which number does in this example not occur? Answer: 3
- how to obtain $SA[i]$ using Ψ?
- follow positions until last suffix is found
- last suffix is at position 1
- $n - \#\text{steps}$ is SA value
- requires $O(n)$ time
Replacing SA with Ψ

- which number does in this example not occur? Answer: 3
- how to obtain $SA[i]$ using Ψ
- follow positions until last suffix is found
- last suffix is at position 1
- $n - \#\text{steps}$ is SA value
- requires $O(n)$ time

- pattern matching: $O(mn \log n)$ time
- pattern matching with LCP and RMQ: $O(mn + \log n)$ time
Speeding Up Lookups in Ψ (1/2)

- space SA: $O(n \log n)$ bits
- space text: $O(n \log \sigma)$ bits
- space compressed suffix array should not more than text

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>$</td>
</tr>
<tr>
<td>SA</td>
<td>13</td>
<td>12</td>
<td>1</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>11</td>
<td>2</td>
<td>10</td>
<td>7</td>
<td>4</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>Ψ</td>
<td>-</td>
<td>1</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>2</td>
<td>6</td>
<td>7</td>
<td>12</td>
<td>13</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>$</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>c</td>
<td>c</td>
</tr>
<tr>
<td></td>
<td>$</td>
<td>b</td>
<td>b</td>
<td>c</td>
<td>c</td>
<td>$</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td></td>
<td>a</td>
<td>$</td>
<td>$</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>$</td>
<td>b</td>
<td>$</td>
<td>b</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>b</td>
<td>b</td>
<td>c</td>
<td>b</td>
<td>a</td>
<td>$</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>$</td>
<td>b</td>
<td>a</td>
</tr>
</tbody>
</table>
Speeding Up Lookups in Ψ (1/2)

- space SA: $O(n \log n)$ bits
- space text: $O(n \log \sigma)$ bits
- space compressed suffix array should not more than text
- sample every $\log n$-th SA entry
- $O(n/ \log n)$ samples of size $O(\log n)$ bits
- total space: $O(n)$ bits

<table>
<thead>
<tr>
<th>T</th>
<th>a</th>
<th>b</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>b</th>
<th>b</th>
<th>a</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA</td>
<td>13</td>
<td>12</td>
<td>1</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>11</td>
<td>2</td>
<td>10</td>
<td>7</td>
<td>4</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>Ψ</td>
<td>-</td>
<td>1</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>2</td>
<td>6</td>
<td>7</td>
<td>12</td>
<td>13</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>-</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>-</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>-</td>
<td>b</td>
<td>c</td>
<td>c</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>-</td>
<td>c</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>c</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>a</td>
</tr>
</tbody>
</table>
Speeding Up Lookups in Ψ (1/2)

- space SA: $O(n \log n)$ bits
- space text: $O(n \log \sigma)$ bits
- space compressed suffix array should not more than text

- sample every $\log n$-th SA entry
- $O(n/ \log n)$ samples of size $O(\log n)$ bits
- total space: $O(n)$ bits

<table>
<thead>
<tr>
<th>Ψ</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>a $$$</td>
</tr>
<tr>
<td>SA</td>
<td>13</td>
<td>12</td>
<td>1</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>11</td>
<td>2</td>
<td>10</td>
<td>7</td>
<td>4</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>Ψ</td>
<td>$-$</td>
<td>1</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>2</td>
<td>6</td>
<td>7</td>
<td>12</td>
<td>13</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

what is better? PINGO

<table>
<thead>
<tr>
<th>Ψ</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ψ</td>
<td>$-$</td>
<td>1</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>2</td>
<td>6</td>
<td>7</td>
<td>12</td>
<td>13</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

```plaintext
1 2 3 4 5 6 7 8 9 10 11 12 13
```

```plaintext
Ta b a b c a b c a b b a $\$
```

```
SA 13 12 1 9 6 3 11 2 10 7 4 8 5
```

```
Ψ - 1 8 9 10 11 2 6 7 12 13 4 5
```

<table>
<thead>
<tr>
<th>Ψ</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ψ</td>
<td>$-$</td>
<td>1</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>2</td>
<td>6</td>
<td>7</td>
<td>12</td>
<td>13</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

```
Ψ - 1 8 9 10 11 2 6 7 12 13 4 5
```

<table>
<thead>
<tr>
<th>Ψ</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ψ</td>
<td>$-$</td>
<td>1</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>2</td>
<td>6</td>
<td>7</td>
<td>12</td>
<td>13</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

```
Ψ - 1 8 9 10 11 2 6 7 12 13 4 5
```

```
Ψ - 1 8 9 10 11 2 6 7 12 13 4 5
```
Speeding Up Lookups in Ψ (1/2)

- space SA: $O(n \log n)$ bits
- space text: $O(n \log \sigma)$ bits
- space compressed suffix array should not more than text

- sample every $\log n$-th SA entry
- $O(n/ \log n)$ samples of size $O(\log n)$ bits
- total space: $O(n)$ bits

- every $\log n$-th entry in Ψ
- every $\log n$-th step in Ψ
- what is better? PINGO
Speeding Up Lookups in Ψ (2/2)

- every log n-th entry in Ψ
- every log n-th step in Ψ
- what is better? PINGO

<table>
<thead>
<tr>
<th>Ψ</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>A</td>
</tr>
<tr>
<td>SA</td>
<td>13</td>
<td>12</td>
<td>1</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>11</td>
<td>2</td>
<td>10</td>
<td>7</td>
<td>4</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>Ψ</td>
<td>-</td>
<td>1</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>2</td>
<td>6</td>
<td>7</td>
<td>12</td>
<td>13</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

A PINGO
Speeding Up Lookups in Ψ (2/2)

- every log n-th entry in Ψ
- every log n-th step in Ψ
- what is better? PINGO
- every log n-th step in Ψ is better
- sampled positions may not be reached in better asymptotic time
Speeding Up Lookups in Ψ (2/2)

- every log n-th entry in Ψ
- every log n-th step in Ψ
- what is better? PINGO

- every log n-th step in Ψ is better
- sampled positions may not be reached in better asymptotic time

how much time does recovering SA position from Ψ require with sampling? PINGO

<table>
<thead>
<tr>
<th>T</th>
<th>a</th>
<th>b</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>b</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA</td>
<td>13</td>
<td>12</td>
<td>1</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>11</td>
<td>2</td>
<td>10</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>Ψ</td>
<td>-</td>
<td>1</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>2</td>
<td>6</td>
<td>7</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>b</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>c</td>
<td>c</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>Ψ-</td>
<td>1</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>2</td>
<td>6</td>
<td>7</td>
<td>12</td>
<td>13</td>
<td>4</td>
</tr>
</tbody>
</table>
Speeding Up Lookups in Ψ (2/2)

- Every $\log n$-th entry in Ψ
- Every $\log n$-th step in Ψ
- What is better? PINGO

- Every $\log n$-th step in Ψ is better
- Sampled positions may not be reached in better asymptotic time

- How much time does recovering SA position from Ψ require with sampling? PINGO
- Answer: $O(\log n)$
Speeding Up Lookups in Ψ (2/2)

- every log n-th entry in Ψ
- every log n-th step in Ψ
- what is better? PINGO

- every log n-th step in Ψ is better
- sampled positions may not be reached in better asymptotic time

- how much time does recovering SA position from Ψ require with sampling? PINGO
- answer: $O(\log n)$
Speeding Up Lookups in \(\Psi \) (2/2)

- every log \(n \)-th entry in \(\Psi \)
- every log \(n \)-th step in \(\Psi \)
- what is better? PINGO

- every log \(n \)-th step in \(\Psi \) is better
- sampled positions may not be reached in better asymptotic time

- how much time does recovering \(SA \) position from \(\Psi \) require with sampling? PINGO
- answer: \(O(\log n) \)
Speeding Up Lookups in Ψ (2/2)

- every log n-th entry in Ψ
- every log n-th step in Ψ
- what is better? PINGO

- every log n-th step in Ψ is better
- sampled positions may not be reached in better asymptotic time

- how much time does recovering SA position from Ψ require with sampling? PINGO
- answer: $O(\log n)$
Speeding Up Lookups in Ψ (2/2)

- every log n-th entry in Ψ
- every log n-th step in Ψ
- what is better? PINGO

- every log n-th step in Ψ is better
- sampled positions may not be reached in better asymptotic time

- how much time does recovering SA position from Ψ require with sampling? PINGO
- answer: $O(\log n)$

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>$$</td>
</tr>
<tr>
<td>SA</td>
<td>13</td>
<td>12</td>
<td>1</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>11</td>
<td>2</td>
<td>10</td>
<td>7</td>
<td>4</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>Ψ</td>
<td>-</td>
<td>1</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>2</td>
<td>6</td>
<td>7</td>
<td>12</td>
<td>13</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>$$</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>c</td>
<td>c</td>
</tr>
<tr>
<td></td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>$$</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>c</td>
<td>$$</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a</td>
<td>$$</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>$$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>$$</td>
<td>b</td>
<td>b</td>
<td>$$</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>$$</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>$$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>$$</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>$$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b</td>
<td>$$</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>$$</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>$$</td>
</tr>
</tbody>
</table>
Speeding Up Lookups in Ψ (2/2)

- every log n-th entry in Ψ
- every log n-th step in Ψ
- what is better? PINGO

- every log n-th step in Ψ is better
- sampled positions may not be reached in better asymptotic time

- how much time does recovering SA position from Ψ require with sampling? PINGO
- answer: $O(\log n)$

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>$$</td>
</tr>
<tr>
<td>SA</td>
<td>13</td>
<td>12</td>
<td>1</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>11</td>
<td>2</td>
<td>10</td>
<td>7</td>
<td>4</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>Ψ</td>
<td>-</td>
<td>1</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>2</td>
<td>6</td>
<td>7</td>
<td>12</td>
<td>13</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>$$</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>$$</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>$$</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>$$</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>$$</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>$$</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>$$</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>b</td>
</tr>
</tbody>
</table>

8/19 2024-06-10 Florian Kurpicz | Advanced Data Structures | 08 Compressed Suffix Array Institute of Theoretical Informatics, Algorithm Engineering
Speeding Up Lookups in Ψ (2/2)

1. every log n-th entry in Ψ
2. every log n-th step in Ψ
3. what is better? PINGO

- every log n-th step in Ψ is better

- sampled positions may not be reached in better asymptotic time

- how much time does recovering SA position from Ψ require with sampling? PINGO

- answer: $O(\log n)$

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>$$</td>
</tr>
<tr>
<td>SA</td>
<td>13</td>
<td>12</td>
<td>1</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>11</td>
<td>2</td>
<td>10</td>
<td>7</td>
<td>4</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>Ψ</td>
<td>-</td>
<td>1</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>2</td>
<td>6</td>
<td>7</td>
<td>12</td>
<td>13</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>$$</td>
<td>a</td>
<td>$$</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>c</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>$$</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>$$</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>$$</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>a</td>
<td>$$</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>c</td>
<td>a</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>$$</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>$$</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>$$</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>$$</td>
<td>a</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>$$</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>$$</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>$$</td>
<td>a</td>
</tr>
</tbody>
</table>
Structure of Ψ

does Ψ have some structure?

Lemma: Structure of Ψ

$T[SA[i]] = T[SA[i+1]] \Rightarrow \Psi(i) < \Psi(i+1)$

Proof (Sketch)

$T[SA[i]] \leq T[SA[i+1]]$ if $T[SA[i]] = T[SA[i+1]]$ then $T[SA[i+1]..n] \leq T[SA[i+1]+1..n]$

$T[SA[i+1]] = T[\Psi(i)]$

Note that not all increasing intervals belong to the same character.

Example on the board
does Ψ have some structure?

Lemma: Structure of Ψ

$T[SA[i]] = T[SA[i + 1]] \Rightarrow \Psi(i) < \Psi(i + 1)$
does Ψ have some structure?

Lemma: Structure of Ψ

$T[SA[i]] = T[SA[i + 1]] \Rightarrow \Psi(i) < \Psi(i + 1)$

Proof (Sketch)

- $T[SA[i]] \leq T[SA[i + 1]]$
- if $T[SA[i]] = T[SA[i + 1]]$ then $T[SA[i] + 1..n) \leq T[SA[i + 1] + 1..n)$
- $T[SA[i] + 1] = T[\Psi(i)]$
- if suffixes share same character, lexicographical order of suffixes without first character holds
Structure of Ψ

does Ψ have some structure?

Lemma: Structure of Ψ

$T[SA[i]] = T[SA[i + 1]] \Rightarrow \Psi(i) < \Psi(i + 1)$

Proof (Sketch)

- $T[SA[i]] \leq T[SA[i + 1]]$
- if $T[SA[i]] = T[SA[i + 1]]$ then $T[SA[i] + 1..n] \leq T[SA[i + 1] + 1..n]$
- $T[SA[i] + 1] = T[\Psi(i)]$
- if suffixes share same character, lexicographical order of suffixes without first character holds

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>$$$</td>
</tr>
<tr>
<td>SA</td>
<td>13</td>
<td>12</td>
<td>1</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>11</td>
<td>2</td>
<td>10</td>
<td>7</td>
<td>4</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>Ψ</td>
<td>-</td>
<td>1</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>2</td>
<td>6</td>
<td>7</td>
<td>12</td>
<td>13</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

- note that not all increasing intervals belong to the same character
- example on the board

/chalkboard-◎eacher
Compressing Ordered Sequences

Δ-Encoding
- store difference between entries
- scanning whole sequence up to value when decoding
Compressing Ordered Sequences

\[\Delta\text{-Encoding}\]
- store difference between entries
- scanning whole sequence up to value when decoding

\[\text{Elias-Fano (Lecture 05)}\]
- upper and lower halves
- upper half represented in bit vector \(p_i + i \)
- lower half plain bit compressed

\[
\begin{array}{cccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 10 & 20 & 21 & 22 & 32 \\
0 & 1 & 2 & 4 & 7 & 10 & 20 & 21 & 22 & 30 & & & \\
\end{array}
\]

- 0: 000000
- 1: 000001
- 2: 000010
- 4: 000100
- 7: 000111
- 10: 001010
- 20: 010100
- 21: 010101
- 22: 010110
- 30: 100000

Upper: 11101101000111000100
Lower: 00 01 10 00 11 10 00 01 10 00
Compressing Ordered Sequences

Δ-Encoding
- store difference between entries
- scanning whole sequence up to value when decoding

Elias-Fano (Lecture 05)
- upper and lower halves
- upper half represented in bit vector \(p_i + i \)
- lower half plain bit compressed

Using Elias-Fano is bad for large alphabets.

Example on the board:

<table>
<thead>
<tr>
<th>Number</th>
<th>Tuple</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>000000</td>
</tr>
<tr>
<td>1</td>
<td>000001</td>
</tr>
<tr>
<td>2</td>
<td>000010</td>
</tr>
<tr>
<td>3</td>
<td>000100</td>
</tr>
<tr>
<td>4</td>
<td>000111</td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>001010</td>
</tr>
<tr>
<td>20</td>
<td>010100</td>
</tr>
<tr>
<td>21</td>
<td>010101</td>
</tr>
<tr>
<td>22</td>
<td>010110</td>
</tr>
<tr>
<td>30</td>
<td>100000</td>
</tr>
</tbody>
</table>

Upper: \(11101101000111000100 \)

Lower: \(00011000111000011000 \)
Recap: Elias-Fano Coding Space

Lemma: Elias-Fano Coding

Given an array containing \(n \) distinct integers from a universe \(U = [0, n) \), the array can be represented using

\[
n(2 + \log \left\lceil \frac{u}{n} \right\rceil) \text{ bits}
\]

while allowing \(O(1) \) access time and \(O(\log \frac{u}{n}) \) predecessor/successor time.
Compressing Sparse Ordered Sequences

- Elias-Fano coding for each increasing interval
- \(\sigma \) many
- only every \(1/\sigma \)-th entry is set (sparse)

\[u = 512, \quad n = 8, \quad q = 64 \]

\((0, 3, 17, 89, 128, 132, 500, 511) \)

\((0, 0), (0, 3), (0, 7), (1, 25), (2, 0), (2, 4), (7, 52), (7, 63) \)

store quotient \((x/q)\) using Elias-Fano

store remainder \((x \mod q)\) plain using \(\lceil \log q \rceil\) bits

Lemma: \(\Psi \) with Elias-Fano

Using Elias-Fano with quotienting, \(\Psi \) can be stored using \(O(n\sigma) \) bits

more precise: two additional bits per character
Elias-Fano coding for each increasing interval

- σ many
- only every $1/\sigma$-th entry is set (sparse)

if there are n entries of universe with size u

- make entries sparse using $q = u/n$
- for each value x store pair $(x/q, x\%q)$

Lemma: Ψ with Elias-Fano

Using Elias-Fano with quotienting, Ψ can be stored using $O(n\sigma)$ bits

more precise: two additional bits per character
Compressing Sparse Ordered Sequences

- Elias-Fano coding for each increasing interval
- \(\sigma \) many
- only every \(1/\sigma \)-th entry is set (sparse)

if there are \(n \) entries of universe with size \(u \)
- make entries sparse using \(q = u/n \)
- for each value \(x \) store pair \((x/q, x\%q) \)

- \(u = 512, n = 8, q = 64 \)
- \((0, 3, 17, 89, 128, 132, 500, 511) \)
- \(\{0, 0\}, \{0, 3\}, \{0, 7\}, \{1, 25\}, \{2, 0\}, \{2, 4\}, \{7, 52\}, \{7, 63\} \)
Compressing Sparse Ordered Sequences

- Elias-Fano coding for each increasing interval
- σ many
- only every $1/\sigma$-th entry is set (sparse)

- if there are n entries of universe with size u
- make entries sparse using $q = u/n$
- for each value x store pair $(x/q, x \% q)$

- $u = 512, n = 8, q = 64$
- $(0, 3, 17, 89, 128, 132, 500, 511)$
- $\{0, 0\}, \{0, 3\}, \{0, 7\}, \{1, 25\}, \{2, 0\}, \{2, 4\}, \{7, 52\}, \{7, 63\}$

- store quotient (x/q) using Elias-Fano
- store remainder $(x \% q)$ plain using $\lceil \log q \rceil$ bits
Compressing Sparse Ordered Sequences

- Elias-Fano coding for each increasing interval
- σ many
- only every $1/\sigma$-th entry is set (sparse)

- if there are n entries of universe with size u
- make entries sparse using $q = u/n$
- for each value x store pair $(x/q, x \% q)$

- $u = 512$, $n = 8$, $q = 64$
- $(0, 3, 17, 89, 128, 132, 500, 511)$
- $\{0, 0\}, \{0, 3\}, \{0, 7\}, \{1, 25\}, \{2, 0\}, \{2, 4\}, \{7, 52\}, \{7, 63\}$

- store quotient (x/q) using Elias-Fano
- store remainder $(x \% q)$ plain using $\lceil \log q \rceil$ bits

Lemma: Ψ with Elias-Fano

Using Elias-Fano with quotienting, Ψ can be stored using $O(n\sigma)$ bits
Elias-Fano coding for each increasing interval
- only every $1/\sigma$-th entry is set (sparse)

if there are n entries of universe with size u
- make entries sparse using $q = u/n$
- for each value x store pair $(x/q, x \% q)$

Lemma: Ψ with Elias-Fano
Using Elias-Fano with quotienting, Ψ can be stored using $O(n\sigma)$ bits

store quotient (x/q) using Elias-Fano
store remainder $(x \% q)$ plain using $\lceil \log q \rceil$ bits

more precise: two additional bits per character

$u = 512, n = 8, q = 64$

$(0, 3, 17, 89, 128, 132, 500, 511)$

$\{0, 0\}, \{0, 3\}, \{0, 7\}, \{1, 25\}, \{2, 0\}, \{2, 4\}, \{7, 52\}, \{7, 63\}$
Simple Compressed Suffix Array

- compute Ψ and store samples of SA
- compress Ψ Elias-Fano with quotienting
- binary search on SA by decoding Ψ

- space: $O(n \log \sigma)$ space
- query time: $O(m \log^2 n)$
Improving Compressed Suffix Arrays [GV05] (1/5)

- improve SA lookup to $O(\log \log n)$ time
- divide-and-conquer approach
- storing Ψ only for half of the entries
- recurs for the other half
Improving Compressed Suffix Arrays [GV05] (1/5)

- improve SA lookup to $O(\log \log n)$ time
- divide-and-conquer approach
- storing Ψ only for half of the entries
- recurs for the other half

<table>
<thead>
<tr>
<th>1 2 3 4 5 6 7 8 9 10 11 12 13</th>
</tr>
</thead>
<tbody>
<tr>
<td>T a b a b c a b c a b b a $</td>
</tr>
<tr>
<td>SA 13 12 1 9 6 3 11 2 10 7 4 8 5</td>
</tr>
<tr>
<td>Ψ - 1 8 9 10 11 2 6 7 12 13 4 5</td>
</tr>
<tr>
<td>NEW 13 1 9 3 11 7 5 1 10 6 7 13 4</td>
</tr>
</tbody>
</table>

- for which values do we store Ψ?
Improving Compressed Suffix Arrays (2/5)

- store bit vector marking odd SA values
- store only odd SA values
- store Ψ for even SA values
Improving Compressed Suffix Arrays (2/5)

- store bit vector marking odd SA values
- store only odd SA values
- store Ψ for even SA values

- store Ψ as before
- Elias-Fano with quotienting
- without sampling
Improving Compressed Suffix Arrays (2/5)

- store bit vector marking odd SA values
- store only odd SA values
- store Ψ for even SA values

- store Ψ as before
- Elias-Fano with quotienting
- without sampling

- right half (SA) still big
- how to recurs?
Improving Compressed Suffix Arrays (2/5)

- Store bit vector marking odd SA values
- Store only odd SA values
- Store Ψ for even SA values
- Store Ψ as before
- Elias-Fano with quotienting
- Without sampling

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>$$$</td>
</tr>
<tr>
<td>SA</td>
<td>13</td>
<td>12</td>
<td>1</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>11</td>
<td>2</td>
<td>10</td>
<td>7</td>
<td>4</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>Ψ</td>
<td>-</td>
<td>1</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>2</td>
<td>6</td>
<td>7</td>
<td>12</td>
<td>13</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>NEW</td>
<td>13</td>
<td>1</td>
<td>9</td>
<td>3</td>
<td>11</td>
<td>7</td>
<td>5</td>
<td>1</td>
<td>10</td>
<td>6</td>
<td>7</td>
<td>13</td>
<td>4</td>
</tr>
<tr>
<td>BV</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Right half (SA) still big
How to recurs?
SA half consists only of odd values
- for value x store $(x - 1)/2$
- reversible since all values are odd
Improving Compressed Suffix Arrays (3/5)

- SA half consists only of odd values
- for value x store $(x - 1)/2$
- reversible since all values are odd

- $13, 1, 9, 3, 11, 7, 5$
- $6, 0, 4, 1, 5, 3, 2$

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>$$$</td>
</tr>
<tr>
<td>SA</td>
<td>13</td>
<td>12</td>
<td>1</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>11</td>
<td>2</td>
<td>10</td>
<td>7</td>
<td>4</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>Ψ</td>
<td>-</td>
<td>1</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>2</td>
<td>6</td>
<td>7</td>
<td>12</td>
<td>13</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>NEW</td>
<td>13</td>
<td>1</td>
<td>9</td>
<td>3</td>
<td>11</td>
<td>7</td>
<td>5</td>
<td>1</td>
<td>10</td>
<td>6</td>
<td>7</td>
<td>13</td>
<td>4</td>
</tr>
<tr>
<td>BV</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Improving Compressed Suffix Arrays (3/5)

- SA half consists only of odd values
- for value x store $(x - 1)/2$
- reversible since all values are odd

- $13, 1, 9, 3, 11, 7, 5$
- $6, 0, 4, 1, 5, 3, 2$

- what do we have here? PINGO

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>$$</td>
</tr>
<tr>
<td>SA</td>
<td>13</td>
<td>12</td>
<td>1</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>11</td>
<td>2</td>
<td>10</td>
<td>7</td>
<td>4</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>$Ψ$</td>
<td>-</td>
<td>1</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>2</td>
<td>6</td>
<td>7</td>
<td>12</td>
<td>13</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>NEW</td>
<td>13</td>
<td>1</td>
<td>9</td>
<td>3</td>
<td>11</td>
<td>7</td>
<td>5</td>
<td>1</td>
<td>10</td>
<td>6</td>
<td>7</td>
<td>13</td>
<td>4</td>
</tr>
<tr>
<td>BV</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Improving Compressed Suffix Arrays (3/5)

- SA half consists only of odd values
- for value x store $(x - 1)/2$
- reversible since all values are odd

- $13, 1, 9, 3, 11, 7, 5$
- $6, 0, 4, 1, 5, 3, 2$

- what do we have here? PINGO
- permutation basically a suffix array without text

```
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T$</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>$$$</td>
</tr>
<tr>
<td>$SA$</td>
<td>13</td>
<td>12</td>
<td>1</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>11</td>
<td>2</td>
<td>10</td>
<td>7</td>
<td>4</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>$\Psi$</td>
<td>-</td>
<td>1</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>2</td>
<td>6</td>
<td>7</td>
<td>12</td>
<td>13</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>$NEW$</td>
<td>13</td>
<td>1</td>
<td>9</td>
<td>3</td>
<td>11</td>
<td>7</td>
<td>5</td>
<td>1</td>
<td>10</td>
<td>6</td>
<td>7</td>
<td>13</td>
<td>4</td>
</tr>
<tr>
<td>$BV$</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
```
SA half consists only of odd values
for value x store $(x - 1)/2$
reversible since all values are odd

$13, 1, 9, 3, 11, 7, 5$
$6, 0, 4, 1, 5, 3, 2$

what do we have here? PINGO

permutation basically a suffix array without text

recurs on the permutation without explicitly storing it

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>$$$</td>
</tr>
<tr>
<td>SA</td>
<td>13</td>
<td>12</td>
<td>1</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>11</td>
<td>2</td>
<td>10</td>
<td>7</td>
<td>4</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>$Ψ$</td>
<td>-</td>
<td>1</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>2</td>
<td>6</td>
<td>7</td>
<td>12</td>
<td>13</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>NEW</td>
<td>13</td>
<td>1</td>
<td>9</td>
<td>3</td>
<td>11</td>
<td>7</td>
<td>5</td>
<td>1</td>
<td>10</td>
<td>6</td>
<td>7</td>
<td>13</td>
<td>4</td>
</tr>
<tr>
<td>BV</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Improving Compressed Suffix Arrays (4/5)

- recurs log log \(n \) times
- guarantees \(O(\log \log n) \) time to obtain \(SA \) value
- allows to store final \(SA \) within space bounds

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T)</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>(\Psi)</td>
<td>-</td>
<td>1</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>2</td>
<td>6</td>
<td>7</td>
<td>12</td>
<td>13</td>
<td>4</td>
</tr>
<tr>
<td>NEW</td>
<td>13</td>
<td>1</td>
<td>9</td>
<td>3</td>
<td>11</td>
<td>7</td>
<td>5</td>
<td>1</td>
<td>10</td>
<td>6</td>
<td>7</td>
<td>13</td>
</tr>
<tr>
<td>(BV)</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Improving Compressed Suffix Arrays (4/5)

- recurs \(\log \log n \) times
- guarantees \(O(\log \log n) \) time to obtain \(SA \) value
- allows to store final \(SA \) within space bounds

Lemma: Space Final \(SA \)

Using the divide-and-conquer approach, the final \(SA \) requires \(O(n) \) bits of space

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T)</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>$</td>
</tr>
<tr>
<td>(SA)</td>
<td>13</td>
<td>12</td>
<td>1</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>11</td>
<td>2</td>
<td>10</td>
<td>7</td>
<td>4</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>(\Psi)</td>
<td>-</td>
<td>1</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>2</td>
<td>6</td>
<td>7</td>
<td>12</td>
<td>13</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>NEW</td>
<td>13</td>
<td>1</td>
<td>9</td>
<td>3</td>
<td>11</td>
<td>7</td>
<td>5</td>
<td>1</td>
<td>10</td>
<td>6</td>
<td>7</td>
<td>13</td>
<td>4</td>
</tr>
<tr>
<td>(BV)</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Improving Compressed Suffix Arrays (4/5)

- recurses \(\log \log n \) times
- guarantees \(O(\log \log n) \) time to obtain SA value
- allows to store final SA within space bounds

Lemma: Space Final SA

Using the divide-and-conquer approach, the final SA requires \(O(n) \) bits of space

Proof (Sketch)

- after \(\log \log n \) recursions SA has size \(\frac{n}{2^{\log \log n}} \)
- each entry requires \(\log n \) bits
- total space: \(O(n) \) bits
Lemma: Decoding Time Improved CSA

An SA value can be decoded in $O(\log \log n)$ time using the improved CSA.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>$$$</td>
</tr>
<tr>
<td>SA</td>
<td>13</td>
<td>12</td>
<td>1</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>11</td>
<td>2</td>
<td>10</td>
<td>7</td>
<td>4</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>Ψ</td>
<td>-</td>
<td>1</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>2</td>
<td>6</td>
<td>7</td>
<td>12</td>
<td>13</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>NEW</td>
<td>13</td>
<td>1</td>
<td>9</td>
<td>3</td>
<td>11</td>
<td>7</td>
<td>5</td>
<td>1</td>
<td>10</td>
<td>6</td>
<td>7</td>
<td>13</td>
<td>4</td>
</tr>
<tr>
<td>BV</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Lemma: Decoding Time Improved CSA

An SA value can be decoded in $O(\log \log n)$ time using the improved CSA.

Proof (Sketch)

- on each level, odd SA values can be decoded using the recursive SA
- there are at most $\log \log n$ levels
- on each level, even SA values can be decoded in one step, as the next SA value is odd

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>$$$</td>
</tr>
<tr>
<td>SA</td>
<td>13</td>
<td>12</td>
<td>1</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>11</td>
<td>2</td>
<td>10</td>
<td>7</td>
<td>4</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>Ψ</td>
<td>-</td>
<td>1</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>2</td>
<td>6</td>
<td>7</td>
<td>12</td>
<td>13</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>NEW</td>
<td>13</td>
<td>1</td>
<td>9</td>
<td>3</td>
<td>11</td>
<td>7</td>
<td>5</td>
<td>1</td>
<td>10</td>
<td>6</td>
<td>7</td>
<td>13</td>
<td>4</td>
</tr>
<tr>
<td>BV</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Lemma: Decoding Time Improved CSA

An SA value can be decoded in $O(\log \log n)$ time using the improved CSA.

Proof (Sketch)

- on each level, odd SA values can be decoded using the recursive SA
- there are at most $\log \log n$ levels
- on each level, even SA values can be decoded in one step, as the next SA value is odd

requires rank and select data structures
Conclusion and Outlook

This Lecture
- compressed suffix array
- note that CSA can be compressed further
- Elias-Fano for sparse sequences

Advanced Data Structures
- Successor
 - static/dynamic
 - BV
 - range min-max tree
- RMQ
 - static/dynamic
 - succ. trees
 - succ. graphs
Bibliography I

