

Advanced Data Structures

Lecture 09: String B-Trees and Temporal Data Structures 2

Florian Kurpicz

The slides are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License @) www.creativecommons.org/licenses/by-sa/4.0 | commit c70729e compiled at 2024-06-17-12:56

www.kit.edu

PINGO

https://pingo.scc.kit.edu/172581

External Memory Model [AV88]

Definition: External Memory Model

- internal memory of M words
- instances of size $N \gg M$
- unlimited external memory
- transfer blocks of size B between memories
- measure number of blocks I/Os
- scanning N elements: $\Theta(N/B)$
- sorting *N* elements: $\Theta(\frac{N}{B} \log_{\frac{M}{B}} \frac{N}{B})$

External Memory Model [AV88]

Definition: External Memory Model

- internal memory of M words
- instances of size $N \gg M$
- unlimited external memory
- transfer blocks of size B between memories
- measure number of blocks I/Os
- scanning N elements: $\Theta(N/B)$
- sorting *N* elements: $\Theta(\frac{N}{B} \log_{\frac{M}{B}} \frac{N}{B})$

Set of Strings

- alphabet Σ of size σ
- *k* strings $\{s_1, \ldots, s_k\}$ over the alphabet Σ
- total size of strings is $N = \sum_{i=1}^{k} |s_i|$
- queries ask for pattern P of length m

String Dictionary

Given a set $S \subseteq \Sigma^*$ of prefix-free strings, we want to answer:

• is $x \in \Sigma^*$ in S• add $x \notin S$ to S

- predecessor and successor of $x \in \Sigma^*$ in *S*
- remove $x \in S$ from S

String Dictionary

Given a set $S \subseteq \Sigma^*$ of prefix-free strings, we want to answer:

predecessor and successor of

 $x \in \Sigma^*$ in S

- is $x \in \Sigma^*$ in S
- add $x \notin S$ to S
- remove $x \in S$ from S

Definition: Trie

Given a set $S = \{S_1, ..., S_k\}$ of prefix-free strings, a trie is a labeled rooted tree G = (V, E) with:

- 1. k leaves
- 2. $\forall S_i \in S$ there is a path from the root to a leaf, such that the concatenation of the labels is S_i
- 3. $\forall v \in V$ the labels of the edges (v, \cdot) are unique

String Dictionary

Given a set $\mathcal{S} \subseteq \Sigma^{\star}$ of prefix-free strings, we want to answer:

predecessor and

successor of

 $x \in \Sigma^*$ in S

- is $x \in \Sigma^*$ in S
- add $x \notin S$ to S
- remove $x \in S$ from S

Definition: Trie

Given a set $S = \{S_1, ..., S_k\}$ of prefix-free strings, a trie is a labeled rooted tree G = (V, E) with:

- 1. k leaves
- 2. $\forall S_i \in S$ there is a path from the root to a leaf, such that the concatenation of the labels is S_i
- 3. $\forall v \in V$ the labels of the edges (v, \cdot) are unique

Theoretical Comparison

Representation	Query Time (Contains)	Space in Words
arrays of variable size	$O(m \cdot \sigma)$	<i>O</i> (<i>N</i>)
arrays of fixed size	<i>O</i> (<i>m</i>)	$O(N \cdot \sigma)$
hash tables	<i>O</i> (<i>m</i>) w.h.p.	O(N)
balanced search trees	$O(m \cdot \lg \sigma)$	O(N)
weight-balanced search trees	$O(m + \lg k)$	O(N)
two-levels with weight-balanced search trees	$O(m + \lg \sigma)$	O(N)

Theoretical Comparison

Representation	Query Time (Contains)	Space in Words
arrays of variable size	$O(m \cdot \sigma)$	<i>O</i> (<i>N</i>)
arrays of fixed size	<i>O</i> (<i>m</i>)	$O(N \cdot \sigma)$
hash tables	<i>O</i> (<i>m</i>) w.h.p.	O(N)
balanced search trees	$O(m \cdot \lg \sigma)$	O(N)
weight-balanced search trees	$O(m + \lg k)$	O(N)
two-levels with weight-balanced search trees	$O(m + \lg \sigma)$	O(N)

more details in lecture Text Indexing

Compact Trie

- tries have unnecessary nodes
- branchless paths can be removed
- edge labels can consist of multiple characters

Compact Trie

- tries have unnecessary nodes
- branchless paths can be removed
- edge labels can consist of multiple characters

Definition: Compact Trie

- A compact trie is a trie where all branchless paths are replaced by a single edge.
- The label of the new edge is the concatenation of the replaced edges' labels.

Compact Trie

- tries have unnecessary nodes
- branchless paths can be removed
- edge labels can consist of multiple characters

Definition: Compact Trie

- A compact trie is a trie where all branchless paths are replaced by a single edge.
- The label of the new edge is the concatenation of the replaced edges' labels.

(Recap) B-Trees

- search tree with out-degree in [b, 2b)
- works well in external memory
- uses separators to find subtree
- can be dynamic
- who knows B-trees PINGO
- example on the board

From Atomic Values to Strings

- strings take more time to compare
- load as few strings from disk as possible

String B-Tree [FG99]

- strings are stored in EM
- strings are identified by starting positions
- B-tree layout for sorted suffixes () identified by position
- at least $b = \Theta(B)$ children
- tree height O(log_B N)
- given node v
- L(v) is lexicographically smallest string at v
- R(v) is lexicographically largest string at v

- given node v with children v_0, \ldots, v_k with $k \in [b, 2b)$
- inner: store separators
 L(*v*₀), *R*(*v*₀), ..., *L*(*v*_k), *R*(*v*_k)
- leaf: store strings and link leaves

Search in String B-Tree

- task: find all occurrences of pattern P
- two traversals of String B-Tree
- identify leftmost/rightmost occurrence
- output all strings in O(occ/B)
- at every node with children v_0, \ldots, v_k
- binary search for *P* in $L(v_0), \ldots, R(v_k)$
 - if $R(v_i) < P < L(v_{i+1})$: not found
 - if $L(v_i) \leq P \leq R(v_i)$: continue in v_i

Lemma: String B-Tree

Using a String B-tree, a pattern *P* can be found in a set of strings with total length *N* in $O(|P|/B \log N)$ I/Os

Proof (Sketch)

- String B-Tree has height log_B N
- Ioad separators of node: O(1) I/O
- load strings for binary search: O(|P|/B) I/Os
- total:
 - $O(\log_B N \cdot \log B \cdot |P|/B) = O(|P|/B \log N)$ I/Os

- for strings $S = \{S_0, \ldots, S_{k-1}\}$
- a compact trie where only branching characters are stored
- additionally the string depth is stored
- size O(k) for k strings

- for strings $S = \{S_0, \ldots, S_{k-1}\}$
- a compact trie where only branching characters are stored
- additionally the string depth is stored
- size O(k) for k strings

- for strings $S = \{S_0, \ldots, S_{k-1}\}$
- a compact trie where only branching characters are stored
- additionally the string depth is stored
- size O(k) for k strings
- search requires two steps
- first blind search using only trie
- blind search can result in false matches
- second a comparison with resulting string
- use any leaf after matching pattern

- for strings $S = \{S_0, \ldots, S_{k-1}\}$
- a compact trie where only branching characters are stored
- additionally the string depth is stored
- size O(k) for k strings
- search requires two steps
- first blind search using only trie
- blind search can result in false matches
- second a comparison with resulting string
- use any leaf after matching pattern

- in each inner node build Patricia trie for separators
- if blind search finds leaf w
- compute L = lcp(P, w)
- let *u* be first node on root-to-*w* path with $d \ge L$

- in each inner node build Patricia trie for separators
- if blind search finds leaf w
- compute L = lcp(P, w)
- let *u* be first node on root-to-*w* path with $d \ge L$

d = L

- find matching children v_i and v_{i+1} of w with
- branching characters $c_i < P[L+1] < c_{i+1}$
- example on the board

- in each inner node build Patricia trie for separators
- if blind search finds leaf w
- compute L = lcp(P, w)
- let *u* be first node on root-to-*w* path with $d \ge L$

d = L

- find matching children v_i and v_{i+1} of w with
- branching characters $c_i < P[L+1] < c_{i+1}$
- example on the board

d > L

- consider next branching character *c* on path
- if P[L+1] < c continue in leftmost leaf
- if P[L+1] > c continue in rightmost leaf

- at every node with children v_0, \ldots, v_k
- load Patricia trie for $L(v_0), \ldots, R(v_k)$
- search Patricia trie for w 1 result of blind search
- load one string and compare with P
- identify child and continue

- at every node with children v_0, \ldots, v_k
- load Patricia trie for $L(v_0), \ldots, R(v_k)$
- search Patricia trie for w () result of blind search
- load one string and compare with P
- identify child and continue

Lemma: String B-Tree with PTs

Using a string B-tree with Patricia tries, a pattern *P* can be found in a set of strings with total length *N* with $O(|P|/B \log_B N)$ I/Os

- at every node with children v_0, \ldots, v_k
- load Patricia trie for $L(v_0), \ldots, R(v_k)$
- search Patricia trie for w () result of blind search
- load one string and compare with P
- identify child and continue

Lemma: String B-Tree with PTs

Using a string B-tree with Patricia tries, a pattern *P* can be found in a set of strings with total length *N* with $O(|P|/B \log_B N)$ I/Os

Proof (Sketch)

- Ioading PT: O(1) I/Os
- blind search: no I/Os
- loading one string: O(|P|/B) I/Os
- identify child: no I/Os
- total $O(|P|/B \log_B N)$ I/Os

- at every node with children v_0, \ldots, v_k
- load Patricia trie for $L(v_0), \ldots, R(v_k)$
- search Patricia trie for w 1 result of blind search
- load one string and compare with P
- identify child and continue
- How can this be improved even further?
 PINGO

Lemma: String B-Tree with PTs

Using a string B-tree with Patricia tries, a pattern *P* can be found in a set of strings with total length *N* with $O(|P|/B \log_B N)$ I/Os

Proof (Sketch)

- Ioading PT: O(1) I/Os
- blind search: no I/Os
- loading one string: O(|P|/B) I/Os
- identify child: no I/Os
- total $O(|P|/B \log_B N)$ I/Os

Improving Search with LCP-Values

- search for pattern in nodes
- path in String B-tree p_0, p_1, p_2, \ldots
- in Patricia tries PT_{p_i} compute L = lcp(P, w)
- all strings in p_i have prefix P[0..L) I
- do not compare previously matched characters
- load only |P| L characters at next node
- pass L down the String B-tree

Improving Search with LCP-Values

- search for pattern in nodes
- path in String B-tree p_0, p_1, p_2, \ldots
- in Patricia tries PT_{p_i} compute L = lcp(P, w)
- all strings in p_i have prefix P[0..L) I
- do not compare previously matched characters
- load only |P| L characters at next node
- pass L down the String B-tree

Lemma: String B-Tree with PTs and LCP

Using a String B-tree with Patricia tries and passing down the LCP-value, a pattern *P* can be found in a set of strings with total length *N* in $O(|P|/B + \log_B N)$ I/Os

Improving Search with LCP-Values

- search for pattern in nodes
- path in String B-tree p_0, p_1, p_2, \ldots
- in Patricia tries PT_{p_i} compute L = lcp(P, w)
- all strings in p_i have prefix P[0..L)
- do not compare previously matched characters
- load only |P| L characters at next node
- pass L down the String B-tree

Lemma: String B-Tree with PTs and LCP

Using a String B-tree with Patricia tries and passing down the LCP-value, a pattern *P* can be found in a set of strings with total length *N* in $O(|P|/B + \log_B N)$ I/Os

Proof (Sketch)

- passing down LCP-value: no I/Os
- telescoping sum $\sum_{i < h} \frac{L_i L_{i-1}}{B}$
- $h = \log_B N$ height of String B-tree
- Li is LCP-value on Level i
- $L_0 = 0$ and $L_h \leq |P|$
- total: $O(|P|/B + \log_B N)$ I/Os

Recap: Persistent Data Structures

lecture based on: http://courses.csail.mit. edu/6.851/spring12/lectures/L01

Recap: Persistent Data Structures

lecture based on: http://courses.csail.mit. edu/6.851/spring12/lectures/L01

Persistence

- change in the past creates new branch
- similar to version control
- everything old/new remains the same

Recap: Persistent Data Structures

lecture based on: http://courses.csail.mit. edu/6.851/spring12/lectures/L01

Definition: Partial Persistence

Only the latest version can be updated

Persistence

- change in the past creates new branch
- similar to version control
- everything old/new remains the same

Definition: Full Persistence

Any version can be updated

Definition: Confluent Persistence

Like full persistence, but two versions can be combined to a new version

Definition: Functional

Nodes cannot be modified, only new nodes can be created

Recap: Persistent Data Structures

lecture based on: http://courses.csail.mit. edu/6.851/spring12/lectures/L01

Persistence

- change in the past creates new branch
- similar to version control
- everything old/new remains the same

Retroactivity

- change in the past affects future
- make change in earlier version changes all later versions

Definition: Partial Persistence

Only the latest version can be updated

Definition: Full Persistence

Any version can be updated

Definition: Confluent Persistence

Like full persistence, but two versions can be combined to a new version

Definition: Functional

Nodes cannot be modified, only new nodes can be created

Retroactive Data Structures

Operations

- INSERT(t, operation): insert operation at time t
- DELETE(t): delete operation at time t
- QUERY(t, query): ask query at time t

for a priority queue updates are

- insert
- delete-min
- time is integer () for simplicity otherwise use order-maintenance data structure

insert(7) insert(2) insert(3) del-min del-min queries							
Ó	-	1 2	2 (3 4	1 n	ów ti	ime

Retroactive Data Structures

Operations

- INSERT(t, operation): insert operation at time t
- DELETE(t): delete operation at time t
- QUERY(t, query): ask query at time t

for a priority queue updates are

- insert
- delete-min
- time is integer () for simplicity otherwise use order-maintenance data structure

insert(7) insert(2) insert(3) del-min del-min queries							
Ċ) -	1 2	2 3	3 4	4 n	ów	time

Definition: Partial Retroactivity

QUERY is only allowed for $t = \infty$ () now

Retroactive Data Structures

Operations

- INSERT(t, operation): insert operation at time t
- DELETE(t): delete operation at time t
- QUERY(t, query): ask query at time t

for a priority queue updates are

- insert
- delete-min
- time is integer () for simplicity otherwise use order-maintenance data structure

inse	rt(7) inse	rt(2) inse	rt(3) del-	min del-	min		queries
Ċ) -		2 (3 4	4 n	iow	time

Definition: Partial Retroactivity

QUERY is only allowed for $t = \infty$ () now

Definition: Full Retroactivity

QUERY is allowed at any time t

Retroactive Data Structures

Operations

- INSERT(t, operation): insert operation at time t
- DELETE(t): delete operation at time t
- QUERY(t, query): ask query at time t

for a priority queue updates are

- insert
- delete-min
- time is integer () for simplicity otherwise use order-maintenance data structure

Definition: Partial Retroactivity

QUERY is only allowed for $t = \infty$ () now

Definition: Full Retroactivity

QUERY is allowed at any time t

Definition: Nonoblivious Retroactivity

INSERT, DELETE, and QUERY at any time *t* but also identify changed QUERY results

Karlsruhe Institute of Technology

Easy Cases: Partial Retroactivity

- commutative updates
- invertible updates
 - operation op^{-1} such that $op^{-1}(op(\cdot)) = \emptyset$
 - DELETE becomes INSERT inverse operation
- makes partial retroactivity easy
- INSERT $(t, operation) = INSERT(\infty, operation)$
- DELETE $(t, op) = \text{INSERT}(\infty, op^{-1})$

Easy Cases: Partial Retroactivity

- commutative updates
- invertible updates
 - operation op^{-1} such that $op^{-1}(op(\cdot)) = \emptyset$
 - DELETE becomes INSERT inverse operation
- makes partial retroactivity easy
- INSERT $(t, operation) = INSERT(\infty, operation)$
- DELETE $(t, op) = \text{INSERT}(\infty, op^{-1})$

Partial Retroactivity

- hashing
- dynamic dictionaries
- array with updates only A[i] + = value

Definition: Search Problem

A search problem is a problem on a set S of objects with operations *insert*, *delete*, and query(x, S)

Definition: Search Problem

A search problem is a problem on a set S of objects with operations *insert*, *delete*, and query(x, S)

Definition: Decomposable Search Problem

A decomposable search problem is a search problem, with

- $query(x, A \cup B) = f(query(x, A), query(x, B))$
- with f requiring O(1) time

Definition: Search Problem

A search problem is a problem on a set S of objects with operations *insert*, *delete*, and query(x, S)

Definition: Decomposable Search Problem

A decomposable search problem is a search problem, with

- $query(x, A \cup B) = f(query(x, A), query(x, B))$
- with f requiring O(1) time

which decomposable search problem have we seen PINGO

Definition: Search Problem

A search problem is a problem on a set S of objects with operations *insert*, *delete*, and query(x, S)

Definition: Decomposable Search Problem

A decomposable search problem is a search problem, with

- $query(x, A \cup B) = f(query(x, A), query(x, B))$
- with f requiring O(1) time

which decomposable search problem have we seen PINGO

- predecessor and successor search
- range minimum queries
- nearest neighbor
- point location
- . . .

Definition: Search Problem

A search problem is a problem on a set S of objects with operations *insert*, *delete*, and query(x, S)

Definition: Decomposable Search Problem

A decomposable search problem is a search problem, with

- $query(x, A \cup B) = f(query(x, A), query(x, B))$
- with f requiring O(1) time
- which decomposable search problem have we seen PINGO

- predecessor and successor search
- range minimum queries
- nearest neighbor
- point location
- . . .
- these types of problems are also "easy"

Lemma: Full Retroactivity for DSP

Every decomposable search problems can be made fully retroactive with a $O(\log m)$ overhead in space and time, where *m* is the number of operations

Lemma: Full Retroactivity for DSP

Every decomposable search problems can be made fully retroactive with a $O(\log m)$ overhead in space and time, where *m* is the number of operations

Proof (Sketch)

- use balances search tree () segment tree
- each leaf corresponds to an update
- node *n* corresponds to interval of time $[s_n, e_n]$
- if an object exists in the time interval [s, e], then it appears in node n if [s_n, e_n] ⊆ [s, e] if none of n's ancestors' are ⊆ [s, e] ⊆
- each object occurs in O(log n) nodes

Lemma: Full Retroactivity for DSP

Every decomposable search problems can be made fully retroactive with a $O(\log m)$ overhead in space and time, where *m* is the number of operations

Proof (Sketch)

- use balances search tree () segment tree
- each leaf corresponds to an update
- node *n* corresponds to interval of time $[s_n, e_n]$
- if an object exists in the time interval [s, e], then it appears in node n if [s_n, e_n] ⊆ [s, e] if none of n's ancestors' are ⊆ [s, e]
- each object occurs in O(log n) nodes

- to query find leaf corresponding to t
- look at ancestors to find all objects
- O(log m) results which can be combined in O(log m) time

Lemma: Full Retroactivity for DSP

Every decomposable search problems can be made fully retroactive with a $O(\log m)$ overhead in space and time, where *m* is the number of operations

Proof (Sketch)

- use balances search tree () segment tree
- each leaf corresponds to an update
- node *n* corresponds to interval of time $[s_n, e_n]$
- if an object exists in the time interval [s, e], then it appears in node n if [s_n, e_n] ⊆ [s, e] if none of n's ancestors' are ⊆ [s, e] ⊆
- each object occurs in O(log n) nodes

- to query find leaf corresponding to t
- look at ancestors to find all objects
- O(log m) results which can be combined in O(log m) time
- data structure is stored for each operation!
- O(log m) space overhead!

Lemma: Lower Bound

Rewinding *m* operations has a lower bound of $\Omega(m)$ overhead

general case

Lemma: Lower Bound

Rewinding *m* operations has a lower bound of $\Omega(m)$ overhead

general case

Proof (Sketch)

- two values X and Y
- initially $X = \emptyset$ and $Y = \emptyset$
- supported operations
 - *X* = *x*
 - Y + = value
 - $Y = X \cdot Y$
 - query Y

Lemma: Lower Bound

Rewinding *m* operations has a lower bound of $\Omega(m)$ overhead

general case

Proof (Sketch)

- two values X and Y
- initially $X = \emptyset$ and $Y = \emptyset$
- supported operations
 - *X* = *x*
 - Y + = value
 - $Y = X \cdot Y$
 - query Y

- perform operations
 - *Y*+ = *a_n*
 - $Y = X \cdot Y$
 - $Y + = a_{n=1}$
 - $Y = X \cdot Y$
 - ...
 - $Y + = a_0$
- what are we computing here? PINGO

Lemma: Lower Bound

Rewinding *m* operations has a lower bound of $\Omega(m)$ overhead

general case

Proof (Sketch)

- two values X and Y
- initially $X = \emptyset$ and $Y = \emptyset$
- supported operations
 - *X* = *x*
 - Y + = value
 - $Y = X \cdot Y$
 - query Y

- perform operations
 - *Y*+ = *a*_n
 - $Y = X \cdot Y$
 - $Y + = a_{n=1}$
 - $Y = X \cdot Y$
 - ...
 - $Y + = a_0$
- what are we computing here? W PINGO

•
$$Y = a_n \cdot X^n + a_{n-1}X^{n-1} + \cdots + a_0$$

Lemma: Lower Bound

Rewinding *m* operations has a lower bound of $\Omega(m)$ overhead

general case

Proof (Sketch)

- two values X and Y
- initially $X = \emptyset$ and $Y = \emptyset$
- supported operations
 - *X* = *x*
 - Y + = value
 - $Y = X \cdot Y$
 - query Y

- perform operations
 - $Y + = a_n$
 - $Y = X \cdot Y$
 - $Y + = a_{n=1}$
 - $Y = X \cdot Y$
 - ...
 - $Y + = a_0$
- what are we computing here? W PINGO
- $Y = a_n \cdot X^n + a_{n-1}X^{n-1} + \cdots + a_0$
- evaluate polynomial at X = x using t=0,X=x

Lemma: Lower Bound

Rewinding *m* operations has a lower bound of $\Omega(m)$ overhead

general case

Proof (Sketch)

- two values X and Y
- initially $X = \emptyset$ and $Y = \emptyset$
- supported operations
 - *X* = *x*
 - Y+ = value
 - $Y = X \cdot Y$
 - query Y

- perform operations
 - $Y + = a_n$
 - $Y = X \cdot Y$
 - $Y + = a_{n=1}$
 - $Y = X \cdot Y$
 - ...
 - $Y + = a_0$
- what are we computing here? W PINGO
- $Y = a_n \cdot X^n + a_{n-1}X^{n-1} + \cdots + a_0$
- evaluate polynomial at X = x using t=0,X=x
- this requires $\Omega(n)$ time [FHM01]

- insert
- delete-min
- delete-min makes PQ non-commutative

Lemma: Partial Retroactive PQ

A priority queue can be partial retroactive with only $O(\log m)$ overhead per partially retroactive operation

value time

priority queue with

- insert
- delete-min
- delete-min makes PQ non-commutative

Lemma: Partial Retroactive PQ

A priority queue can be partial retroactive with only $O(\log m)$ overhead per partially retroactive operation

priority queue with

- insert
- delete-min
- delete-min makes PQ non-commutative

Lemma: Partial Retroactive PQ

A priority queue can be partial retroactive with only $O(\log m)$ overhead per partially retroactive operation

what is the problem with INSERT(t, delete-min()) INSERT(t, insert(i)) INSERT(t, delete-min()) creates chain-reaction value INSERT(t,insert(i)) creates chain-reaction time

what is the problem with INSERT(t, delete-min()) INSERT(t, insert(i)) INSERT(t, delete-min()) creates chain-reaction value INSERT(t,insert(i)) creates chain-reaction

- what is the problem with
 - INSERT(t,delete-min())
 - INSERT(t, insert(i))
- INSERT(t, delete-min()) creates chain-reaction
- INSERT(t, insert(i)) creates chain-reaction
- can we solve DELETE(t, delete-min()) using INSERT(t, insert(i))? PINGO
- insert deleted minimum right after deletion

let Q_t be elements in PQ at time t

- what values are in Q_{∞} ? partial retroactivity
- what value inserts INSERT(t, insert(v)) in Q_{∞}
- values is $\max\{v, v' : v' \text{ deleted at time } \geq t\}$
- maintaining deleted elements is hard () can change a lot

let Q_t be elements in PQ at time t

- what values are in Q_{∞} ? partial retroactivity
- what value inserts INSERT(t, insert(v)) in Q_{∞}
- values is $\max\{v, v' : v' \text{ deleted at time } \geq t\}$
- maintaining deleted elements is hard () can change a lot

Definition: Bridge

A time t' is a bridge if $Q_{t'} \subseteq Q_{\infty}$

• all elements present at t' are present at t_{∞}

let Q_t be elements in PQ at time t

- what values are in Q_{∞} ? partial retroactivity
- what value inserts INSERT(t, insert(v)) in Q_{∞}
- values is $\max\{v, v' : v' \text{ deleted at time } \geq t\}$
- maintaining deleted elements is hard () can change a lot

Definition: Bridge

A time t' is a bridge if $Q_{t'} \subseteq Q_{\infty}$

• all elements present at t' are present at t_{∞}

Lemma: Deletions after Bridges

If time t' is closest bridge preceding time t, then

```
\max\{v' : v' \text{ deleted at time } \geq t\}
```

```
\max\{v' \notin Q_{\infty} \colon v' \text{ inserted at time} \geq t'\}
```


Lemma: Deletions after Bridges

If time t' is closest bridge preceding time t, then

```
\max\{v': v' \text{ deleted at time } \geq t\}
```

```
\max\{v' \notin Q_{\infty} \colon v' \text{ inserted at time} \geq t'\}
```

Proof (Sketch)

- $\max\{v' \notin Q_{\infty} : v' \text{ inserted at time } \geq t'\} \in \{v' : v' \text{ deleted at time } \geq t\}$
 - if maximum value is deleted between t' and t
 - then this time is a bridge
 - contradicting that t' is bridge preceding t

Lemma: Deletions after Bridges

If time t' is closest bridge preceding time t, then

```
\max\{v': v' \text{ deleted at time } \geq t\}
```

```
\max\{ v' \notin \textit{\textbf{Q}}_\infty \colon v' \text{ inserted at time} \geq t' \}
```

Proof (Sketch)

- $\max\{v' \notin Q_{\infty} : v' \text{ inserted at time } \geq t'\} \in \{v' : v' \text{ deleted at time } \geq t\}$
 - if maximum value is deleted between t' and t
 - then this time is a bridge
 - contradicting that t' is bridge preceding t

- $\max\{v': v' \text{ deleted at time } \geq t\} \in \{v' \notin Q_{\infty}: v' \text{ inserted at time } \geq t'\}$
 - if v' is deleted at some time $\geq t$
 - then it is not in Q_{∞}

Lemma: Deletions after Bridges

If time t' is closest bridge preceding time t, then

```
\max\{v': v' \text{ deleted at time } \geq t\}
```

 $\max\{v' \notin Q_{\infty} \colon v' \text{ inserted at time} \geq t'\}$

Proof (Sketch)

- $\max\{v' \notin Q_{\infty} : v' \text{ inserted at time } \geq t'\} \in \{v' : v' \text{ deleted at time } \geq t\}$
 - if maximum value is deleted between t' and t
 - then this time is a bridge
 - contradicting that t' is bridge preceding t

- $\max\{v': v' \text{ deleted at time } \geq t\} \in \{v' \notin Q_{\infty}: v' \text{ inserted at time } \geq t'\}$
 - if v' is deleted at some time $\geq t$
 - then it is not in Q_{∞}
- what values are in Q_{∞} ? partial retroactivity
- what value inserts INSERT(t, insert(v)) in Q_{∞}
- $\max\{v, v' \notin Q_{\infty} : v' \text{ inserted at time } \geq t'\}$

- keep track of inserted values
- use balanced binary search trees for O(log m) overhead

Karlsruhe Institute of Technology

- keep track of inserted values
- use balanced binary search trees for O(log m) overhead
- BBST for Q_{∞} I changed for each update

- keep track of inserted values
- use balanced binary search trees for O(log m) overhead
- BBST for Q_{∞} () changed for each update
- BBST where leaves are inserts ordered by time augmented with

```
for each node x store
max{v' ∉ Q<sub>∞</sub>: v' inserted in subtree of x}
```


- keep track of inserted values
- use balanced binary search trees for O(log m) overhead
- BBST for Q_{∞} () changed for each update
- BBST where leaves are inserts ordered by time augmented with
 - for each node x store max{v' ∉ Q_∞: v' inserted in subtree of x}
- BBST where leaves are all updates ordered by time augmented with
 - leaves store 0 for inserts with v ∈ Q_∞, 1 for inserts with v ∉ Q_∞ and −1 for delete-mins
 - inner nodes store subtree sums

- keep track of inserted values
- use balanced binary search trees for O(log m) overhead
- BBST for Q_{∞} () changed for each update
- BBST where leaves are inserts ordered by time augmented with
 - for each node x store max{v' ∉ Q_∞: v' inserted in subtree of x}
- BBST where leaves are all updates ordered by time augmented with
 - leaves store 0 for inserts with v ∈ Q_∞, 1 for inserts with v ∉ Q_∞ and −1 for delete-mins
 - inner nodes store subtree sums

- keep track of inserted values
- use balanced binary search trees for O(log m) overhead
- **BBST for** Q_{∞} **G** changed for each update
- BBST where leaves are inserts ordered by time augmented with
 - for each node x store max{v' ∉ Q_∞: v' inserted in subtree of x}
- BBST where leaves are all updates ordered by time augmented with
 - leaves store 0 for inserts with v ∈ Q_∞, 1 for inserts with v ∉ Q_∞ and −1 for delete-mins
 - inner nodes store subtree sums

- how can we find bridges? W PINGO
- use third BBST and find prefix of updates summing to 0
- requires O(log n) time as we traverse tree at most twice
- this results in bridge t'

- keep track of inserted values
- use balanced binary search trees for O(log m) overhead
- **BBST for** Q_{∞} **G** changed for each update
- BBST where leaves are inserts ordered by time augmented with
 - for each node x store max{v' ∉ Q_∞: v' inserted in subtree of x}
- BBST where leaves are all updates ordered by time augmented with
 - leaves store 0 for inserts with v ∈ Q_∞, 1 for inserts with v ∉ Q_∞ and −1 for delete-mins
 - inner nodes store subtree sums

- how can we find bridges? **PINGO**
- use third BBST and find prefix of updates summing to 0
- requires O(log n) time as we traverse tree at most twice
- this results in bridge t'
- use second BBST to identify maximum value not in Q_{∞} on path to t'
- since BBST is augmented with these values, this requires O(log n) time

- keep track of inserted values
- use balanced binary search trees for O(log m) overhead
- **BBST for** Q_{∞} **G** changed for each update
- BBST where leaves are inserts ordered by time augmented with
 - for each node x store max{v' ∉ Q_∞: v' inserted in subtree of x}
- BBST where leaves are all updates ordered by time augmented with
 - leaves store 0 for inserts with v ∈ Q_∞, 1 for inserts with v ∉ Q_∞ and −1 for delete-mins
 - inner nodes store subtree sums

- how can we find bridges? PINGO
- use third BBST and find prefix of updates summing to 0
- requires O(log n) time as we traverse tree at most twice
- this results in bridge t'
- use second BBST to identify maximum value not in Q_{∞} on path to t'
- since BBST is augmented with these values, this requires O(log n) time
- update all BBSTs in O(log n) time

Lemma: Partial Retroactive PQ

A priority queue can be partial retroactive with only $O(\log m)$ overhead per partially retroactive operation

- requires three BBSTs
- updates need to update all BBSTs

Conclusion and Outlook

This Lecture

- string B-tree
- retroactive data structures

Conclusion and Outlook

This Lecture

- string B-tree
- retroactive data structures

Next Lecture

learned data structures

Bibliography I

- [AV88] Alok Aggarwal and Jeffrey Scott Vitter. "The Input/Output Complexity of Sorting and Related Problems". In: *Commun. ACM* 31.9 (1988), pages 1116–1127. DOI: 10.1145/48529.48535.
- [FG99] Paolo Ferragina and Roberto Grossi. "The String B-tree: A New Data Structure for String Search in External Memory and Its Applications". In: J. ACM 46.2 (1999), pages 236–280. DOI: 10.1145/301970.301973.
- [FHM01] Gudmund Skovbjerg Frandsen, Johan P. Hansen, and Peter Bro Miltersen. "Lower Bounds for Dynamic Algebraic Problems". In: Inf. Comput. 171.2 (2001), pages 333–349. DOI: 10.1006/inco.2001.3046.