External Memory Model [AV88]

Definition: External Memory Model

- internal memory of M words
- instances of size $N \gg M$
- unlimited external memory
- transfer blocks of size B between memories

- measure number of blocks I/Os
- scanning N elements: $\Theta(N/B)$
- sorting N elements: $\Theta\left(\frac{N}{B} \log \frac{M}{B} \frac{N}{B}\right)$
External Memory Model [AV88]

Definition: External Memory Model
- internal memory of M words
- instances of size $N \gg M$
- unlimited external memory
- transfer blocks of size B between memories
- measure number of blocks I/Os
- scanning N elements: $\Theta(N/B)$
- sorting N elements: $\Theta(N/B \log_{M/B} N)$

Set of Strings
- alphabet Σ of size σ
- k strings $\{s_1, \ldots, s_k\}$ over the alphabet Σ
- total size of strings is $N = \sum_{i=1}^{k} |s_i|$
- queries ask for pattern P of length m
Given a set $S \subseteq \Sigma^*$ of prefix-free strings, we want to answer:
- is $x \in \Sigma^*$ in S
- add $x \notin S$ to S
- remove $x \in S$ from S
- predecessor and successor of $x \in \Sigma^*$ in S
Given a set $S \subseteq \Sigma^*$ of prefix-free strings, we want to answer:

- is $x \in \Sigma^*$ in S
- add $x \notin S$ to S
- remove $x \in S$ from S
- predecessor and successor of $x \in \Sigma^*$ in S

Definition: Trie

Given a set $S = \{S_1, \ldots, S_k\}$ of prefix-free strings, a trie is a labeled rooted tree $G = (V, E)$ with:

1. k leaves
2. $\forall S_i \in S$ there is a path from the root to a leaf, such that the concatenation of the labels is S_i
3. $\forall v \in V$ the labels of the edges (v, \cdot) are unique
Given a set $S \subseteq \Sigma^*$ of prefix-free strings, we want to answer:

- is $x \in \Sigma^*$ in S
- add $x \notin S$ to S
- remove $x \in S$ from S
- predecessor and successor of $x \in \Sigma^*$ in S

Definition: Trie

Given a set $S = \{S_1, \ldots, S_k\}$ of prefix-free strings, a trie is a labeled rooted tree $G = (V, E)$ with:

1. k leaves
2. $\forall S_i \in S$ there is a path from the root to a leaf, such that the concatenation of the labels is S_i
3. $\forall v \in V$ the labels of the edges (v, \cdot) are unique

$S = \{\text{bear, bee, cab, car}\}$
Theoretical Comparison

<table>
<thead>
<tr>
<th>Representation</th>
<th>Query Time (Contains)</th>
<th>Space in Words</th>
</tr>
</thead>
<tbody>
<tr>
<td>arrays of variable size</td>
<td>$O(m \cdot \sigma)$</td>
<td>$O(N)$</td>
</tr>
<tr>
<td>arrays of fixed size</td>
<td>$O(m)$</td>
<td>$O(N \cdot \sigma)$</td>
</tr>
<tr>
<td>hash tables</td>
<td>$O(m)$ w.h.p.</td>
<td>$O(N)$</td>
</tr>
<tr>
<td>balanced search trees</td>
<td>$O(m \cdot \lg \sigma)$</td>
<td>$O(N)$</td>
</tr>
<tr>
<td>weight-balanced search trees</td>
<td>$O(m + \lg k)$</td>
<td>$O(N)$</td>
</tr>
<tr>
<td>two-levels with weight-balanced search trees</td>
<td>$O(m + \lg \sigma)$</td>
<td>$O(N)$</td>
</tr>
</tbody>
</table>
Theoretical Comparison

<table>
<thead>
<tr>
<th>Representation</th>
<th>Query Time (Contains)</th>
<th>Space in Words</th>
</tr>
</thead>
<tbody>
<tr>
<td>arrays of variable size</td>
<td>$O(m \cdot \sigma)$</td>
<td>$O(N)$</td>
</tr>
<tr>
<td>arrays of fixed size</td>
<td>$O(m)$</td>
<td>$O(N \cdot \sigma)$</td>
</tr>
<tr>
<td>hash tables</td>
<td>$O(m)$ w.h.p.</td>
<td>$O(N)$</td>
</tr>
<tr>
<td>balanced search trees</td>
<td>$O(m \cdot \lg \sigma)$</td>
<td>$O(N)$</td>
</tr>
<tr>
<td>weight-balanced search trees</td>
<td>$O(m + \lg k)$</td>
<td>$O(N)$</td>
</tr>
<tr>
<td>two-levels with weight-balanced search trees</td>
<td>$O(m + \lg \sigma)$</td>
<td>$O(N)$</td>
</tr>
</tbody>
</table>

[more details in lecture Text Indexing](#)
Compact Trie

- tries have unnecessary nodes
- branchless paths can be removed
- edge labels can consist of multiple characters
Compact Trie

- tries have unnecessary nodes
- branchless paths can be removed
- edge labels can consist of multiple characters

Definition: Compact Trie

- A compact trie is a trie where all branchless paths are replaced by a single edge.
- The label of the new edge is the concatenation of the replaced edges’ labels.
Compact Trie

- tries have unnecessary nodes
- branchless paths can be removed
- edge labels can consist of multiple characters

Definition: Compact Trie

- A compact trie is a trie where all branchless paths are replaced by a single edge.
- The label of the new edge is the concatenation of the replaced edges’ labels.
(Recap) B-Trees

- search tree with out-degree in \([b, 2b)\)
- works well in external memory
- uses separators to find subtree
- can be dynamic
- who knows B-trees?

example on the board

From Atomic Values to Strings

- strings take more time to compare
- load as few strings from disk as possible
String B-Tree [FG99]

- Strings are stored in EM.
- Strings are identified by starting positions.

B-tree layout for sorted suffixes identified by position:
- At least $b = \Theta(B)$ children.
- Tree height $O(\log_B N)$.

Given node v with children v_0, \ldots, v_k with $k \in [b, 2b)$.
- Inner: store separators $L(v_0), R(v_0), \ldots, L(v_k), R(v_k)$.
- Leaf: store strings and link leaves.

Given node v:
- $L(v)$ is lexicographically smallest string at v.
- $R(v)$ is lexicographically largest string at v.
Search in String B-Tree

- task: find all occurrences of pattern \(P \)
- two traversals of String B-Tree
- identify leftmost/rightmost occurrence
- output all strings in \(O(\text{occ}/B) \)

- at every node with children \(v_0, \ldots, v_k \)
- binary search for \(P \) in \(L(v_0), \ldots, R(v_k) \)
 - if \(R(v_i) < P < L(v_{i+1}) \): not found
 - if \(L(v_i) \leq P \leq R(v_i) \): continue in \(v_i \)

Lemma: String B-Tree

Using a String B-tree, a pattern \(P \) can be found in a set of strings with total length \(N \) in \(O(|P|/B \log N) \) I/Os

Proof (Sketch)

- String B-Tree has height \(\log_B N \)
- load separators of node: \(O(1) \) I/O
- load strings for binary search: \(O(|P|/B) \) I/Os
- total: \(O(\log_B N \cdot \log B \cdot |P|/B) = O(|P|/B \log N) \) I/Os
Improving String B-Tree with Patricia Tries (1/2)

Patricia Trie

- for strings $S = \{S_0, \ldots, S_{k-1}\}$
- a compact trie where only branching characters are stored
- additionally the string depth is stored
- size $O(k)$ for k strings
Improving String B-Tree with Patricia Tries (1/2)

Patricia Trie

- for strings $S = \{ S_0, \ldots, S_{k-1} \}$
- a compact trie where only branching characters are stored
- additionally the string depth is stored
- size $O(k)$ for k strings

How do Patricia tries help?
Improving String B-Tree with Patricia Tries (1/2)

Patricia Trie

- for strings \(S = \{ S_0, \ldots, S_{k-1} \} \)
- a compact trie where only branching characters are stored
- additionally the string depth is stored
- size \(O(k) \) for \(k \) strings

- search requires two steps
 - first **blind search** using only trie
 - blind search can result in false matches
 - second a comparison with resulting string
 - use any leaf after matching pattern
Patricia Trie

- for strings $S = \{ S_0, \ldots, S_{k-1} \}$
- a compact trie where only branching characters are stored
- additionally the string depth is stored
- size $O(k)$ for k strings

- search requires two steps
- first blind search using only trie
- blind search can result in false matches
- second a comparison with resulting string
- use any leaf after matching pattern

How do Patricia tries help?
Improving String B-Tree with Patricia Tries (2/2)

- in each inner node build Patricia trie for separators
- if blind search finds leaf \(w \)
- compute \(L = \text{lcp}(P, w) \)
- let \(u \) be first node on root-to-\(w \) path with \(d \geq L \)
Improving String B-Tree with Patricia Tries (2/2)

- in each inner node build Patricia trie for separators
- if blind search finds leaf w
- compute $L = \text{lcp}(P, w)$
- let u be first node on root-to-w path with $d \geq L$

$d = L$

- find matching children v_i and v_{i+1} of w with
- branching characters $c_i < P[L + 1] < c_{i+1}$
- example on the board 📚
Improving String B-Tree with Patricia Tries (2/2)

- In each inner node build Patricia trie for separators
- If blind search finds leaf w
- Compute $L = lcp(P, w)$
- Let u be first node on root-to-w path with $d \geq L$

$d > L$
- Consider next branching character c on path
- If $P[L + 1] < c$ continue in leftmost leaf
- If $P[L + 1] > c$ continue in rightmost leaf

$d = L$
- Find matching children v_i and v_{i+1} of w with
- Branching characters $c_i < P[L + 1] < c_{i+1}$
- Example on the board
Searching in Improved String B-Tree

- at every node with children \(v_0, \ldots, v_k \)
- load Patricia trie for \(L(v_0), \ldots, R(v_k) \)
- search Patricia trie for \(w \) result of blind search
- load one string and compare with \(P \)
- identify child and continue
Searching in Improved String B-Tree

- at every node with children v_0, \ldots, v_k
- load Patricia trie for $L(v_0), \ldots, R(v_k)$
- search Patricia trie for w \(\triangleright\) result of blind search
- load one string and compare with P
- identify child and continue

Lemma: String B-Tree with PTs

Using a string B-tree with Patricia tries, a pattern P can be found in a set of strings with total length N with $O(|P|/B \log_B N)$ I/Os.
Searching in Improved String B-Tree

- at every node with children v_0, \ldots, v_k
- load Patricia trie for $L(v_0), \ldots, R(v_k)$
- search Patricia trie for w
 result of blind search
- load one string and compare with P
- identify child and continue

Lemma: String B-Tree with PTs

Using a string B-tree with Patricia tries, a pattern P can be found in a set of strings with total length N with $O(|P|/B \log_B N)$ I/Os

Proof (Sketch)

- loading PT: $O(1)$ I/Os
- blind search: no I/Os
- loading one string: $O(|P|/B)$ I/Os
- identify child: no I/Os
- total $O(|P|/B \log_B N)$ I/Os
Searching in Improved String B-Tree

- at every node with children v_0, \ldots, v_k
- load Patricia trie for $L(v_0), \ldots, R(v_k)$
- search Patricia trie for w \(\triangleright\) result of blind search
- load one string and compare with P
- identify child and continue

Lemma: String B-Tree with PTs

Using a string B-tree with Patricia tries, a pattern P can be found in a set of strings with total length N with $O(|P|/B \log_B N)$ I/Os.

Proof (Sketch)

- loading PT: $O(1)$ I/Os
- blind search: no I/Os
- loading one string: $O(|P|/B)$ I/Os
- identify child: no I/Os
- total $O(|P|/B \log_B N)$ I/Os

How can this be improved even further?

PINGO
Improving Search with LCP-Values

- search for pattern in nodes
- path in String B-tree \(p_0, p_1, p_2, \ldots \)
- in Patricia tries \(PT_{p_i} \), compute \(L = \text{lcp}(P, w) \)
- all strings in \(p_i \) have prefix \(P[0..L) \)
- do not compare previously matched characters
- load only \(|P| - L \) characters at next node
- pass \(L \) down the String B-tree
Improving Search with LCP-Values

- search for pattern in nodes
- path in String B-tree \(p_0, p_1, p_2, \ldots \)
- in Patricia tries \(PT_{p_i} \), compute \(L = lcp(P, w) \)
- all strings in \(p_i \) have prefix \(P[0..L] \)
- do not compare previously matched characters
- load only \(|P| - L \) characters at next node
- pass \(L \) down the String B-tree

Lemma: String B-Tree with PTs and LCP

Using a String B-tree with Patricia tries and passing down the LCP-value, a pattern \(P \) can be found in a set of strings with total length \(N \) in \(O(|P|/B + \log_B N) \) I/Os.
Improving Search with LCP-Values

- search for pattern in nodes
- path in String B-tree p_0, p_1, p_2, \ldots
- in Patricia tries PT_{p_i} compute $L = \text{lcp}(P, w)$
- all strings in p_i have prefix $P[0..L)$
- do not compare previously matched characters
- load only $|P| - L$ characters at next node
- pass L down the String B-tree

Lemma: String B-Tree with PTs and LCP

Using a String B-tree with Patricia tries and passing down the LCP-value, a pattern P can be found in a set of strings with total length N in $O(|P|/B + \log B N)$ I/Os.

Proof (Sketch)

- passing down LCP-value: no I/Os
- telescoping sum $\sum_{i \leq h} \frac{L_i - L_{i-1}}{B}$
- $h = \log B N$ \(\#\) height of String B-tree
- L_i is LCP-value on Level i
- $L_0 = 0$ and $L_h \leq |P|$
- total: $O(|P|/B + \log B N)$ I/Os
Recap: Persistent Data Structures

- lecture based on: http://courses.csail.mit.edu/6.851/spring12/lectures/L01

Persistence
- change in the past creates new branch
 - everything old/new remains the same

Retroactivity
- change in the past affects future
 - make change in earlier version changes all later versions

Definition: Partial Persistence
- Only the latest version can be updated

Definition: Full Persistence
- Any version can be updated

Definition: Confluent Persistence
- Like full persistence, but two versions can be combined to a new version

Definition: Functional
- Nodes cannot be modified, only new nodes can be created
Recap: Persistent Data Structures

- lecture based on: http://courses.csail.mit.edu/6.851/spring12/lectures/L01

Persistence
- change in the past creates new branch
- similar to version control
- everything old/new remains the same
Recap: Persistent Data Structures

- lecture based on: http://courses.csail.mit.edu/6.851/spring12/lectures/L01

Persistence

- change in the past creates new branch
- similar to version control
- everything old/new remains the same

Definitions

Definition: Partial Persistence

Only the latest version can be updated

Definition: Full Persistence

Any version can be updated

Definition: Confluent Persistence

Like full persistence, but two versions can be combined to a new version

Definition: Functional

Nodes cannot be modified, only new nodes can be created
Recap: Persistent Data Structures

- **Persistence**
 - change in the past creates new branch
 - similar to version control
 - everything old/new remains the same

- **Retroactivity**
 - change in the past affects future
 - make change in earlier version changes all later versions

- **Definition: Partial Persistence**
 - Only the latest version can be updated

- **Definition: Full Persistence**
 - Any version can be updated

- **Definition: Confluent Persistence**
 - Like full persistence, but two versions can be combined to a new version

- **Definition: Functional**
 - Nodes cannot be modified, only new nodes can be created
Retroactive Data Structures

Operations

- **INSERT**(t, operation): insert operation at time t
- **DELETE**(t): delete operation at time t
- **QUERY**(t, query): ask query at time t

- for a priority queue updates are
 - insert
 - delete-min

- time is integer \(\text{for simplicity otherwise use order-maintenance data structure} \)
Retroactive Data Structures

Operations

- INSERT\((t, operation)\): insert operation at time \(t\)
- DELETE\((t)\): delete operation at time \(t\)
- QUERY\((t, query)\): ask \(query\) at time \(t\)

for a priority queue updates are

- insert
- delete-min

\textbf{Definition: Partial Retroactivity}

QUERY is only allowed for \(t = \infty\) \(\bigcirc\) now

\textbf{Definition: Full Retroactivity}

QUERY is allowed at any time \(t\)

\textbf{Definition: Nonoblivious Retroactivity}

INSERT, DELETE, and QUERY at any time \(t\) but also identify changed QUERY results

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>now</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>insert(7)</td>
<td>insert(2)</td>
<td>insert(3)</td>
<td>del-min</td>
<td>del-min</td>
<td>queries</td>
<td></td>
</tr>
</tbody>
</table>

2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2
Institute of Theoretical Informatics, Algorithm Engineering
Retroactive Data Structures

Operations

- **INSERT**\((t, operation)\): insert operation at time \(t\)
- **DELETE**\((t)\): delete operation at time \(t\)
- **QUERY**\((t, query)\): ask query at time \(t\)

for a priority queue updates are

- insert
- delete-min

* time is integer ⌢ for simplicity otherwise use order-maintenance data structure

Definition: Partial Retroactivity

QUERY is only allowed for \(t = \infty \circlearrowleft\) now

Definition: Full Retroactivity

QUERY is allowed at any time \(t\)

Observations:

- \(insert(7)\) insert(2) insert(3) del-min del-min
- \(queries\)
Retroactive Data Structures

Operations

- INSERT\((t, \text{operation})\): insert operation at time \(t\)
- DELETE\((t)\): delete operation at time \(t\)
- QUERY\((t, \text{query})\): ask query at time \(t\)

for a priority queue updates are

- insert
- delete-min

- time is integer for simplicity otherwise use order-maintenance data structure

Definition: Partial Retroactivity

QUERY is only allowed for \(t = \infty\) now

Definition: Full Retroactivity

QUERY is allowed at any time \(t\)

Definition: Nonoblivious Retroactivity

INSERT, DELETE, and QUERY at any time \(t\) but also identify changed QUERY results

<table>
<thead>
<tr>
<th>insert(7)</th>
<th>insert(2)</th>
<th>insert(3)</th>
<th>del-min</th>
<th>del-min</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

queries

now time
Easy Cases: Partial Retroactivity

- commutative updates
- invertible updates
 - operation op^{-1} such that $op^{-1}(op(\cdot)) = \emptyset$
 - DELETE becomes INSERT inverse operation
- makes partial retroactivity easy
- $\text{INSERT}(t, operation) = \text{INSERT}(\infty, operation)$
- $\text{DELETE}(t, op) = \text{INSERT}(\infty, op^{-1})$
Easy Cases: Partial Retroactivity

- commutative updates
- invertible updates
 - operation op^{-1} such that $op^{-1}(op(\cdot)) = \emptyset$
 - DELETE becomes INSERT inverse operation
- makes partial retroactivity easy
- $\text{INSERT}(t, \text{operation}) = \text{INSERT}(\infty, \text{operation})$
- $\text{DELETE}(t, op) = \text{INSERT}(\infty, op^{-1})$

Partial Retroactivity

- hashing
- dynamic dictionaries
- array with updates only $A[i]+ = \text{value}$
Search Problems

Definition: Search Problem

A search problem is a problem on a set S of objects with operations \textit{insert}, \textit{delete}, and $\textit{query}(x, S)$.
Definition: Search Problem
A search problem is a problem on a set \(S \) of objects with operations \(\text{insert}, \ \text{delete}, \ \text{and} \ \text{query}(x, S) \).

Definition: Decomposable Search Problem
A decomposable search problem is a search problem, with
- \(\text{query}(x, A \cup B) = f(\text{query}(x, A), \text{query}(x, B)) \)
- with \(f \) requiring \(O(1) \) time
Search Problems

Definition: Search Problem
A search problem is a problem on a set S of objects with operations *insert*, *delete*, and $query(x, S)$

Definition: Decomposable Search Problem
A decomposable search problem is a search problem, with

- $query(x, A \cup B) = f(query(x, A), query(x, B))$
- with f requiring $O(1)$ time

- which decomposable search problem have we seen? PINGO
Search Problems

Definition: Search Problem
A search problem is a problem on a set S of objects with operations $insert$, $delete$, and $query(x, S)$

Definition: Decomposable Search Problem
A decomposable search problem is a search problem, with
- $query(x, A \cup B) = f(query(x, A), query(x, B))$
- with f requiring $O(1)$ time

- predecessor and successor search
- range minimum queries
- nearest neighbor
- point location
- ...
Definition: Search Problem

A search problem is a problem on a set S of objects with operations insert, delete, and $\text{query}(x, S)$.

Definition: Decomposable Search Problem

A decomposable search problem is a search problem, with

- $\text{query}(x, A \cup B) = f(\text{query}(x, A), \text{query}(x, B))$
- with f requiring $O(1)$ time

- predecessor and successor search
- range minimum queries
- nearest neighbor
- point location
- . . .
- these types of problems are also “easy”

- which decomposable search problem have we seen: PINGO
Lemma: Full Retroactivity for DSP

Every decomposable search problems can be made fully retroactive with a $O(\log m)$ overhead in space and time, where m is the number of operations.
Lemma: Full Retroactivity for DSP

Every decomposable search problem can be made fully retroactive with a $O(\log m)$ overhead in space and time, where m is the number of operations.

Proof (Sketch)

- Use balances search tree/segment tree
- Each leaf corresponds to an update
- Node n corresponds to interval of time $[s_n, e_n]
- If an object exists in the time interval $[s, e]$, then it appears in node n if $[s_n, e_n] \subseteq [s, e]$ if none of n's ancestors' are $\subseteq [s, e]$
- Each object occurs in $O(\log n)$ nodes

Proof (Sketch, cont.)

To query find leaf corresponding to t look at ancestors to find all objects $O(\log m)$ results which can be combined in $O(\log m)$ time. Data structure is stored for each operation! $O(\log m)$ space overhead!
Lemma: Full Retroactivity for DSP

Every decomposable search problems can be made fully retroactive with a $O(\log m)$ overhead in space and time, where m is the number of operations.

Proof (Sketch)

- use balances search tree or segment tree
- each leaf corresponds to an update
- node n corresponds to interval of time $[s_n, e_n]
- if an object exists in the time interval $[s, e]$, then it appears in node n if $[s_n, e_n] \subseteq [s, e]$ if none of n's ancestors' are $\subseteq [s, e]$
- each object occurs in $O(\log n)$ nodes

Proof (Sketch, cnt.)

- to query find leaf corresponding to t
- look at ancestors to find all objects
- $O(\log m)$ results which can be combined in $O(\log m)$ time
Lemma: Full Retroactivity for DSP

Every decomposable search problems can be made fully retroactive with a $O(\log m)$ overhead in space and time, where m is the number of operations.

Proof (Sketch, cnt.)
- to query find leaf corresponding to t
- look at ancestors to find all objects
- $O(\log m)$ results which can be combined in $O(\log m)$ time

Proof (Sketch)
- use balances search tree segment tree
- each leaf corresponds to an update
- node n corresponds to interval of time $[s_n, e_n]$
- if an object exists in the time interval $[s, e]$, then it appears in node n if $[s_n, e_n] \subseteq [s, e]$ if none of n's ancestors’ are $\subseteq [s, e]$
- each object occurs in $O(\log n)$ nodes

- data structure is stored for each operation!
- $O(\log m)$ space overhead!
Lemma: Lower Bound

Rewinding m operations has a lower bound of $\Omega(m)$ overhead

- general case
Lemma: Lower Bound

Rewinding \(m \) operations has a lower bound of \(\Omega(m) \) overhead

- general case

Proof (Sketch)

- two values \(X \) and \(Y \)
- initially \(X = \emptyset \) and \(Y = \emptyset \)
- supported operations
 - \(X = x \)
 - \(Y + = value \)
 - \(Y = X \cdot Y \)
 - \(query \ Y \)
Lemma: Lower Bound

Rewinding m operations has a lower bound of $\Omega(m)$ overhead.

Proof (Sketch)

- two values X and Y
- initially $X = \emptyset$ and $Y = \emptyset$
- supported operations
 - $X = x$
 - $Y+ = \text{value}$
 - $Y = X \cdot Y$
 - query Y

Proof (Sketch, cnt.)

- perform operations
 - $Y+ = a_n$
 - $Y = X \cdot Y$
 - $Y+ = a_{n-1}$
 - $Y = X \cdot Y$
 - \ldots
 - $Y+ = a_0$

- what are we computing here? PINGO
Lemma: Lower Bound
Rewinding \(m \) operations has a lower bound of \(\Omega(m) \) overhead

Proof (Sketch)
- two values \(X \) and \(Y \)
- initially \(X = \emptyset \) and \(Y = \emptyset \)
- supported operations
 - \(X = x \)
 - \(Y+ = \text{value} \)
 - \(Y = X \cdot Y \)
 - \(\text{query } Y \)

Proof (Sketch, cnt.)
- perform operations
 - \(Y+ = a_n \)
 - \(Y = X \cdot Y \)
 - \(Y+ = a_{n-1} \)
 - \(Y = X \cdot Y \)
 - \(\ldots \)
 - \(Y+ = a_0 \)
- what are we computing here? PINGO
- \(Y = a_n \cdot X^n + a_{n-1}X^{n-1} + \cdots + a_0 \)
Lemma: Lower Bound
Rewinding \(m \) operations has a lower bound of \(\Omega(m) \) overhead

Proof (Sketch)
- two values \(X \) and \(Y \)
- initially \(X = \emptyset \) and \(Y = \emptyset \)
- supported operations
 - \(X = x \)
 - \(Y+ = value \)
 - \(Y = X \cdot Y \)
 - query \(Y \)

Proof (Sketch, cnt.)
- perform operations
 - \(Y+ = a_n \)
 - \(Y = X \cdot Y \)
 - \(Y+ = a_{n-1} \)
 - \(Y = X \cdot Y \)
 - \(\ldots \)
 - \(Y+ = a_0 \)
- what are we computing here? PINGO
- \(Y = a_n \cdot X^n + a_{n-1} X^{n-1} + \ldots + a_0 \)
- evaluate polynomial at \(X = x \) using \(t=0, X=x \)
Lemma: Lower Bound
Rewinding m operations has a lower bound of $\Omega(m)$ overhead

Proof (Sketch)
- two values X and Y
- initially $X = \emptyset$ and $Y = \emptyset$
- supported operations
 - $X = x$
 - $Y+ = \text{value}$
 - $Y = X \cdot Y$
 - query Y

Proof (Sketch, cnt.)
- perform operations
 - $Y+ = a_n$
 - $Y = X \cdot Y$
 - $Y+ = a_{n-1}$
 - $Y = X \cdot Y$
 - \ldots
 - $Y+ = a_0$
- what are we computing here? PINGO
- $Y = a_n \cdot X^n + a_{n-1}X^{n-1} + \cdots + a_0$
- evaluate polynomial at $X = x$ using $t=0, X=x$
- this requires $\Omega(n)$ time [FHM01]
priority queue with
 - insert
 - delete-min
 - delete-min makes PQ non-commutative

Lemma: Partial Retroactive PQ

A priority queue can be partial retroactive with only $O(\log m)$ overhead per partially retroactive operation
Priority Queues: Partial Retroactivity (1/6)

- priority queue with
 - insert
 - delete-min
- delete-min makes PQ non-commutative

Lemma: Partial Retroactive PQ

A priority queue can be partial retroactive with only $O(\log m)$ overhead per partially retroactive operation
Priority Queues: Partial Retroactivity (1/6)

- priority queue with
 - insert
 - delete-min
- delete-min makes PQ non-commutative

Lemma: Partial Retroactive PQ

A priority queue can be partial retroactive with only $O(\log m)$ overhead per partially retroactive operation.
what is the problem with
- INSERT(t, delete-min())
- INSERT(t, insert(i))

Can we solve DELETE(t, delete-min()) using INSERT(t, insert(i))?
what is the problem with
- \(\text{INSERT}(t, \text{delete-min}()) \)
- \(\text{INSERT}(t, \text{insert}(i)) \)

- \(\text{INSERT}(t, \text{delete-min}()) \) creates chain-reaction
- \(\text{INSERT}(t, \text{insert}(i)) \) creates chain-reaction
what is the problem with
- INSERT(t,delete-min())
- INSERT(t,insert(i))

- INSERT(t,delete-min()) creates chain-reaction
- INSERT(t,insert(i)) creates chain-reaction
what is the problem with
 - $\text{INSERT}(t, \text{delete-min}())$
 - $\text{INSERT}(t, \text{insert}(i))$

- $\text{INSERT}(t, \text{delete-min}())$ creates chain-reaction
- $\text{INSERT}(t, \text{insert}(i))$ creates chain-reaction

- can we solve $\text{DELETE}(t, \text{delete-min}())$ using $\text{INSERT}(t, \text{insert}(i))$? PINGO
what is the problem with
- \(\text{INSERT}(t, \text{delete-min}()) \)
- \(\text{INSERT}(t, \text{insert}(i)) \)

\(\text{INSERT}(t, \text{delete-min}()) \) creates chain-reaction
\(\text{INSERT}(t, \text{insert}(i)) \) creates chain-reaction

can we solve \(\text{DELETE}(t, \text{delete-min}()) \) using
\(\text{INSERT}(t, \text{insert}(i)) \)?
insert deleted minimum right after deletion
Priority Queues: Partial Retroactivity (3/6)

- let Q_t be elements in PQ at time t

- what values are in Q_∞? 1 partial retroactivity
- what value inserts $\text{INSERT}(t, \text{insert}(v))$ in Q_∞
- values is $\max\{v, v': v' \text{ deleted at time } \geq t\}$
- maintaining deleted elements is hard 1 can change a lot
Priority Queues: Partial Retroactivity (3/6)

- Let Q_t be elements in PQ at time t
- What values are in Q_∞? 📑 partial retroactivity
- What value inserts $\text{INSERT}(t, \text{insert}(v))$ in Q_∞
- Values is $\max\{v, v': v' \text{ deleted at time } \geq t\}$
- Maintaining deleted elements is hard 📑 can change a lot

Definition: Bridge

A time t' is a bridge if $Q_t \subseteq Q_\infty$

- All elements present at t' are present at t_∞
Priority Queues: Partial Retroactivity (3/6)

- let Q_t be elements in PQ at time t
- what values are in Q_∞? partial retroactivity
- what value inserts INSERT(t, insert(v)) in Q_∞
- values is $\max\{v, v': v' \text{ deleted at time } \geq t\}$
- maintaining deleted elements is hard can change a lot

Definition: Bridge

A time t' is a bridge if $Q_{t'} \subseteq Q_\infty$

- all elements present at t' are present at t_∞

what times are bridges?
Let Q_t be elements in PQ at time t.

- What values are in Q_∞? ✡ partial retroactivity
- What value inserts $\text{INSERT}(t, \text{insert}(v))$ in Q_∞
- Values is $\max\{v, v': v' \text{ deleted at time } \geq t\}$
- Maintaining deleted elements is hard ✡ can change a lot

Definition: Bridge

A time t' is a bridge if $Q_{t'} \subseteq Q_\infty$

- All elements present at t' are present at t_∞

What times are bridges?
Lemma: Deletions after Bridges

If time t' is closest bridge preceding time t, then

$$\max\{v': v' \text{ deleted at time } \geq t\}$$

$$=\max\{v' \notin Q_{\infty}: v' \text{ inserted at time } \geq t'\}$$
Lemma: Deletions after Bridges

If time t' is closest bridge preceding time t, then

$$\max\{v' : v' \text{ deleted at time } t' \geq t\}$$

$$= \max\{v' \not\in Q_\infty : v' \text{ inserted at time } t' \geq t\}$$

Proof (Sketch)

- $\max\{v' \not\in Q_\infty : v' \text{ inserted at time } t' \geq t\} \in \{v' : v' \text{ deleted at time } t' \geq t\}$
 - if maximum value is deleted between t' and t
 - then this time is a bridge
 - contradicting that t' is bridge preceding t
Lemma: Deletions after Bridges

If time t' is closest bridge preceding time t, then

$$\max\{v': v' \text{ deleted at time } \geq t\} = \max\{v' \not\in Q_{\infty} : v' \text{ inserted at time } \geq t'\}$$

Proof (Sketch)

- $\max\{v' \not\in Q_{\infty} : v' \text{ inserted at time } \geq t'\} \in \{v' : v' \text{ deleted at time } \geq t\}$
 - if maximum value is deleted between t' and t
 - then this time is a bridge
 - contradicting that t' is bridge preceding t
Lemma: Deletions after Bridges

If time t' is closest bridge preceding time t, then

$$\max\{v': v' \text{ deleted at time } \geq t\}$$

$$= \max\{v' \notin Q_\infty : v' \text{ inserted at time } \geq t'\}$$

Proof (Sketch)

- $\max\{v' \notin Q_\infty : v' \text{ inserted at time } \geq t'\} \in \{v' : v' \text{ deleted at time } \geq t\}$
 - if maximum value is deleted between t' and t
 - then this time is a bridge
 - contradicting that t' is bridge preceding t

Proof (Sketch, cnt.)

- $\max\{v' : v' \text{ deleted at time } \geq t\} \in \{v' \notin Q_\infty : v' \text{ inserted at time } \geq t'\}$
 - if v' is deleted at some time $\geq t$
 - then it is not in Q_∞

- what values are in Q_∞? partial retroactivity
- what value inserts $\text{INSERT}(t, \text{insert}(v))$ in Q_∞
- $\max\{v, v' \notin Q_\infty : v' \text{ inserted at time } \geq t'\}$
Priority Queues: Partial Retroactivity (5/6)

- keep track of inserted values
- use balanced binary search trees for $O(\log m)$ overhead
keep track of inserted values
use balanced binary search trees for $O(\log m)$ overhead

BBST for Q_{∞} changed for each update
Priority Queues: Partial Retroactivity (5/6)

- keep track of inserted values
- use balanced binary search trees for $O(\log m)$ overhead

- BBST for Q_∞ changed for each update
- BBST where leaves are inserts ordered by time augmented with
 - for each node x store
 $$\max\{v' \notin Q_\infty : v' \text{ inserted in subtree of } x\}$$

- how can we find bridges?
 - use third BBST and find prefix of updates summing to 0
 - requires $O(\log n)$ time as we traverse tree at most twice
 - this results in bridge t'
 - use second BBST to identify maximum value not in Q_∞ on path to t' since BBST is augmented with these values, this requires $O(\log n)$ time

- update all BBSTs in $O(\log n)$ time
Priority Queues: Partial Retroactivity (5/6)

- keep track of inserted values
- use balanced binary search trees for $O(\log m)$ overhead

- BBST for Q_∞ changed for each update
- BBST where leaves are inserts ordered by time augmented with
 - for each node x store
 $$\max\{v' \notin Q_\infty : v' \text{ inserted in subtree of } x\}$$
- BBST where leaves are all updates ordered by time augmented with
 - leaves store 0 for inserts with $v \in Q_\infty$, 1 for inserts with $v \notin Q_\infty$ and -1 for delete-mins
 - inner nodes store subtree sums
Priority Queues: Partial Retroactivity (5/6)

- keep track of inserted values
- use balanced binary search trees for $O(\log m)$ overhead

- BBST for Q_∞ changed for each update
- BBST where leaves are inserts ordered by time augmented with
 - for each node x store
 $\max\{v' \notin Q_\infty : v'$ inserted in subtree of $x\}$
- BBST where leaves are all updates ordered by time augmented with
 - leaves store 0 for inserts with $v \in Q_\infty$, 1 for inserts with $v \notin Q_\infty$ and -1 for delete-mins
 - inner nodes store subtree sums

- how can we find bridges?
 - use third BBST and find prefix of updates summing to 0 requires $O(\log n)$ time as we traverse tree at most twice this results in bridge t'
 - use second BBST to identify maximum value not in Q_∞ on path to t' since BBST is augmented with these values, this requires $O(\log n)$ time
 - update all BBSTs in $O(\log n)$ time
keep track of inserted values
use balanced binary search trees for $O(\log m)$ overhead

- BBST for Q_∞ changed for each update
- BBST where leaves are inserts ordered by time augmented with
 - for each node x store
 \[\max \{ v' \not\in Q_\infty : v' \text{ inserted in subtree of } x \} \]
 - BBST where leaves are all updates ordered by time augmented with
 - leaves store 0 for inserts with $v \in Q_\infty$, 1 for inserts with $v \not\in Q_\infty$ and -1 for delete-mins
 - inner nodes store subtree sums

how can we find bridges? PINGO
use third BBST and find prefix of updates summing to 0
requires $O(\log n)$ time as we traverse tree at most twice
this results in bridge t'
keep track of inserted values
use balanced binary search trees for $O(\log m)$ overhead

BBST for Q_∞ changed for each update
BBST where leaves are inserts ordered by time augmented with
 for each node x store
 $\max\{v' \in Q_\infty : v' \text{ inserted in subtree of } x\}$
BBST where leaves are all updates ordered by time augmented with
 leaves store 0 for inserts with $v \in Q_\infty$, 1 for inserts with $v \notin Q_\infty$ and -1 for delete-mins
 inner nodes store subtree sums

how can we find bridges? use third BBST and find prefix of updates summing to 0
requires $O(\log n)$ time as we traverse tree at most twice
this results in bridge t'

use second BBST to identify maximum value not in Q_∞ on path to t'
since BBST is augmented with these values, this requires $O(\log n)$ time
Priority Queues: Partial Retroactivity (5/6)

- keep track of inserted values
- use balanced binary search trees for $O(\log m)$ overhead

BBST for Q_∞ changed for each update
- BBST where leaves are inserts ordered by time augmented with
 - for each node x store $\max\{v' \notin Q_\infty : v' \text{ inserted in subtree of } x\}
- BBST where leaves are all updates ordered by time augmented with
 - leaves store 0 for inserts with $v \in Q_\infty$, 1 for inserts with $v \notin Q_\infty$ and -1 for delete-mins
 - inner nodes store subtree sums

- how can we find bridges? PINGO
- use third BBST and find prefix of updates summing to 0
- requires $O(\log n)$ time as we traverse tree at most twice
- this results in bridge t'

- use second BBST to identify maximum value not in Q_∞ on path to t'
- since BBST is augmented with these values, this requires $O(\log n)$ time

- update all BBSTs in $O(\log n)$ time
Lemma: Partial Retroactive PQ

A priority queue can be partial retroactive with only $O(\log m)$ overhead per partially retroactive operation.

- requires three BBSTs
- updates need to update all BBSTs
Conclusion and Outlook

This Lecture
- string B-tree
- retroactive data structures

Advanced Data Structures
- retroactive PQ
- String B-tree
- SA & LCP
- Successor
- CSA
- RMQ
- static/dynamic BV
- static/dynamic succ. trees
- range min-max tree
- succ. graphs

Institute of Theoretical Informatics, Algorithm Engineering
Conclusion and Outlook

This Lecture
- string B-tree
- retroactive data structures

Next Lecture
- learned data structures

Advanced Data Structures
- retroactive PQ
- String B-tree
- SA & LCP
- Successor
- CSA
- RMQ
- static/dynamic BV
- static/dynamic succ. trees
- range min-max tree
- succ. graphs
Bibliography I

