
Advanced Data Structures

Lecture 09: String B-Trees and Temporal Data Structures 2

Florian Kurpicz

The slides are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License cba: www.creativecommons.org/licenses/by-sa/4.0 | commit c70729e compiled at 2024-06-17-12:56

KIT – The Research University in the Helmholtz Association www.kit.edu

https://creativecommons.org/licenses/by-sa/4.0/
https://www.kit.edu

https://pingo.scc.kit.edu/172581

2/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

PINGO

https://pingo.scc.kit.edu/172581
https://pingo.scc.kit.edu/172581

Definition: External Memory Model
internal memory of M words

instances of size N ≫ M

unlimited external memory

transfer blocks of size B between memories

measure number of blocks I/Os

scanning N elements: Θ(N/B)

sorting N elements: Θ(N
B log M

B

N
B)

Set of Strings
alphabet Σ of size σ

k strings {s1, . . . , sk} over the alphabet Σ

total size of strings is N =
∑k

i=1 |si |
queries ask for pattern P of length m

3/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

External Memory Model [AV88]

Definition: External Memory Model
internal memory of M words

instances of size N ≫ M

unlimited external memory

transfer blocks of size B between memories

measure number of blocks I/Os

scanning N elements: Θ(N/B)

sorting N elements: Θ(N
B log M

B

N
B)

Set of Strings
alphabet Σ of size σ

k strings {s1, . . . , sk} over the alphabet Σ

total size of strings is N =
∑k

i=1 |si |
queries ask for pattern P of length m

3/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

External Memory Model [AV88]

Given a set S ⊆ Σ⋆ of prefix-free strings, we want to
answer:

is x ∈ Σ⋆ in S

add x /∈ S to S

remove x ∈ S from S

predecessor and
successor of
x ∈ Σ⋆ in S

Definition: Trie
Given a set S = {S1, . . . ,Sk} of prefix-free strings,
a trie is a labeled rooted tree G = (V ,E) with:

1. k leaves

2. ∀Si ∈ S there is a path from the root to a leaf,
such that the concatenation of the labels is Si

3. ∀v ∈ V the labels of the edges (v , ·) are unique

b

e

a

r

e

c

a

b r

S = {bear, bee, cab, car}

4/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

String Dictionary

Given a set S ⊆ Σ⋆ of prefix-free strings, we want to
answer:

is x ∈ Σ⋆ in S

add x /∈ S to S

remove x ∈ S from S

predecessor and
successor of
x ∈ Σ⋆ in S

Definition: Trie
Given a set S = {S1, . . . ,Sk} of prefix-free strings,
a trie is a labeled rooted tree G = (V ,E) with:

1. k leaves

2. ∀Si ∈ S there is a path from the root to a leaf,
such that the concatenation of the labels is Si

3. ∀v ∈ V the labels of the edges (v , ·) are unique

b

e

a

r

e

c

a

b r

S = {bear, bee, cab, car}

4/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

String Dictionary

Given a set S ⊆ Σ⋆ of prefix-free strings, we want to
answer:

is x ∈ Σ⋆ in S

add x /∈ S to S

remove x ∈ S from S

predecessor and
successor of
x ∈ Σ⋆ in S

Definition: Trie
Given a set S = {S1, . . . ,Sk} of prefix-free strings,
a trie is a labeled rooted tree G = (V ,E) with:

1. k leaves

2. ∀Si ∈ S there is a path from the root to a leaf,
such that the concatenation of the labels is Si

3. ∀v ∈ V the labels of the edges (v , ·) are unique

b

e

a

r

e

c

a

b r

S = {bear, bee, cab, car}

4/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

String Dictionary

Representation Query Time (Contains) Space in Words

arrays of variable size O(m · σ) O(N)

arrays of fixed size O(m) O(N · σ)
hash tables O(m) w.h.p. O(N)

balanced search trees O(m · lg σ) O(N)

weight-balanced search trees O(m + lg k) O(N)

two-levels with weight-balanced search trees O(m + lg σ) O(N)

more details in lecture Text Indexing

5/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Theoretical Comparison

Representation Query Time (Contains) Space in Words

arrays of variable size O(m · σ) O(N)

arrays of fixed size O(m) O(N · σ)
hash tables O(m) w.h.p. O(N)

balanced search trees O(m · lg σ) O(N)

weight-balanced search trees O(m + lg k) O(N)

two-levels with weight-balanced search trees O(m + lg σ) O(N)

more details in lecture Text Indexing

5/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Theoretical Comparison

tries have unnecessary nodes

branchless paths can be removed

edge labels can consist of multiple characters

Definition: Compact Trie
A compact trie is a trie where all branchless
paths are replaced by a single edge.

The label of the new edge is the concatenation
of the replaced edges’ labels.

b

e

a

r

c

a

e b r

be ca

ar

6/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Compact Trie

tries have unnecessary nodes

branchless paths can be removed

edge labels can consist of multiple characters

Definition: Compact Trie
A compact trie is a trie where all branchless
paths are replaced by a single edge.

The label of the new edge is the concatenation
of the replaced edges’ labels.

b

e

a

r

c

a

e b r

be ca

ar

6/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Compact Trie

tries have unnecessary nodes

branchless paths can be removed

edge labels can consist of multiple characters

Definition: Compact Trie
A compact trie is a trie where all branchless
paths are replaced by a single edge.

The label of the new edge is the concatenation
of the replaced edges’ labels.

b

e

a

r

c

a

e b r

be ca

ar

6/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Compact Trie

search tree with out-degree in [b, 2b)

works well in external memory

uses separators to find subtree

can be dynamic

who knows B-trees PINGO

example on the board �

From Atomic Values to Strings
strings take more time to compare

load as few strings from disk as possible

7/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

(Recap) B-Trees

https://kurpicz.org

strings are stored in EM

strings are identified by starting positions

B-tree layout for sorted suffixes ò identified by
position

at least b = Θ(B) children

tree height O(logB N)

given node v

L(v) is lexicographically smallest string at v

R(v) is lexicographically largest string at v

given node v with children v0, . . . , vk with
k ∈ [b, 2b)

inner: store separators
L(v0),R(v0), . . . , L(vk),R(vk)

leaf: store strings and link leaves

8/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

String B-Tree [FG99]

task: find all occurrences of pattern P

two traversals of String B-Tree

identify leftmost/rightmost occurrence

output all strings in O(occ/B)

at every node with children v0, . . . , vk

binary search for P in L(v0), . . . ,R(vk)

if R(vi) < P < L(vi+1): not found
if L(vi) ≤ P ≤ R(vi): continue in vi

Lemma: String B-Tree
Using a String B-tree, a pattern P can be found in a
set of strings with total length N in O(|P|/B logN)
I/Os

Proof (Sketch)
String B-Tree has height logB N

load separators of node: O(1) I/O

load strings for binary search: O(|P|/B) I/Os

total:
O(logB N · log B · |P|/B) = O(|P|/B logN) I/Os

9/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Search in String B-Tree

Patricia Trie
for strings S = {S0, . . . ,Sk−1}
a compact trie where only branching characters
are stored

additionally the string depth is stored

size O(k) for k strings

search requires two steps

first blind search using only trie

blind search can result in false matches

second a comparison with resulting string

use any leaf after matching pattern

0

2 2
e b r

be ca

ar

b c

a

How do Patricia tries help? PINGO

10/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Improving String B-Tree with Patricia Tries (1/2)

https://kurpicz.org

Patricia Trie
for strings S = {S0, . . . ,Sk−1}
a compact trie where only branching characters
are stored

additionally the string depth is stored

size O(k) for k strings

search requires two steps

first blind search using only trie

blind search can result in false matches

second a comparison with resulting string

use any leaf after matching pattern

0

2 2
e b r

be ca

ar

b c

a

How do Patricia tries help? PINGO

10/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Improving String B-Tree with Patricia Tries (1/2)

https://kurpicz.org

Patricia Trie
for strings S = {S0, . . . ,Sk−1}
a compact trie where only branching characters
are stored

additionally the string depth is stored

size O(k) for k strings

search requires two steps

first blind search using only trie

blind search can result in false matches

second a comparison with resulting string

use any leaf after matching pattern

0

2 2
e b r

be ca

ar

b c

a

How do Patricia tries help? PINGO

10/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Improving String B-Tree with Patricia Tries (1/2)

https://kurpicz.org

Patricia Trie
for strings S = {S0, . . . ,Sk−1}
a compact trie where only branching characters
are stored

additionally the string depth is stored

size O(k) for k strings

search requires two steps

first blind search using only trie

blind search can result in false matches

second a comparison with resulting string

use any leaf after matching pattern

0

2 2
e b r

be ca

ar

b c

a

How do Patricia tries help? PINGO

10/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Improving String B-Tree with Patricia Tries (1/2)

https://kurpicz.org

in each inner node build Patricia trie for
separators

if blind search finds leaf w

compute L = lcp(P,w)

let u be first node on root-to-w path with d ≥ L

d = L
find matching children vi and vi+1 of w with

branching characters ci < P[L + 1] < ci+1

example on the board �

d > L
consider next branching character c on path

if P[L + 1] < c continue in leftmost leaf

if P[L + 1] > c continue in rightmost leaf

11/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Improving String B-Tree with Patricia Tries (2/2)

in each inner node build Patricia trie for
separators

if blind search finds leaf w

compute L = lcp(P,w)

let u be first node on root-to-w path with d ≥ L

d = L
find matching children vi and vi+1 of w with

branching characters ci < P[L + 1] < ci+1

example on the board �

d > L
consider next branching character c on path

if P[L + 1] < c continue in leftmost leaf

if P[L + 1] > c continue in rightmost leaf

11/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Improving String B-Tree with Patricia Tries (2/2)

in each inner node build Patricia trie for
separators

if blind search finds leaf w

compute L = lcp(P,w)

let u be first node on root-to-w path with d ≥ L

d = L
find matching children vi and vi+1 of w with

branching characters ci < P[L + 1] < ci+1

example on the board �

d > L
consider next branching character c on path

if P[L + 1] < c continue in leftmost leaf

if P[L + 1] > c continue in rightmost leaf

11/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Improving String B-Tree with Patricia Tries (2/2)

at every node with children v0, . . . , vk

load Patricia trie for L(v0), . . . ,R(vk)

search Patricia trie for w ò result of blind search

load one string and compare with P

identify child and continue

How can this be improved even further?
PINGO

Lemma: String B-Tree with PTs
Using a string B-tree with Patricia tries, a pattern P
can be found in a set of strings with total length N
with O(|P|/B logB N) I/Os

Proof (Sketch)
loading PT: O(1) I/Os

blind search: no I/Os

loading one string: O(|P|/B) I/Os

identify child: no I/Os

total O(|P|/B logB N) I/Os

12/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Searching in Improved String B-Tree

https://kurpicz.org

at every node with children v0, . . . , vk

load Patricia trie for L(v0), . . . ,R(vk)

search Patricia trie for w ò result of blind search

load one string and compare with P

identify child and continue

How can this be improved even further?
PINGO

Lemma: String B-Tree with PTs
Using a string B-tree with Patricia tries, a pattern P
can be found in a set of strings with total length N
with O(|P|/B logB N) I/Os

Proof (Sketch)
loading PT: O(1) I/Os

blind search: no I/Os

loading one string: O(|P|/B) I/Os

identify child: no I/Os

total O(|P|/B logB N) I/Os

12/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Searching in Improved String B-Tree

https://kurpicz.org

at every node with children v0, . . . , vk

load Patricia trie for L(v0), . . . ,R(vk)

search Patricia trie for w ò result of blind search

load one string and compare with P

identify child and continue

How can this be improved even further?
PINGO

Lemma: String B-Tree with PTs
Using a string B-tree with Patricia tries, a pattern P
can be found in a set of strings with total length N
with O(|P|/B logB N) I/Os

Proof (Sketch)
loading PT: O(1) I/Os

blind search: no I/Os

loading one string: O(|P|/B) I/Os

identify child: no I/Os

total O(|P|/B logB N) I/Os

12/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Searching in Improved String B-Tree

https://kurpicz.org

at every node with children v0, . . . , vk

load Patricia trie for L(v0), . . . ,R(vk)

search Patricia trie for w ò result of blind search

load one string and compare with P

identify child and continue

How can this be improved even further?
PINGO

Lemma: String B-Tree with PTs
Using a string B-tree with Patricia tries, a pattern P
can be found in a set of strings with total length N
with O(|P|/B logB N) I/Os

Proof (Sketch)
loading PT: O(1) I/Os

blind search: no I/Os

loading one string: O(|P|/B) I/Os

identify child: no I/Os

total O(|P|/B logB N) I/Os

12/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Searching in Improved String B-Tree

https://kurpicz.org

search for pattern in nodes

path in String B-tree p0, p1, p2, . . .

in Patricia tries PTpi compute L = lcp(P,w)

all strings in pi have prefix P[0..L) �

do not compare previously matched characters

load only |P| − L characters at next node

pass L down the String B-tree

Lemma: String B-Tree with PTs and LCP
Using a String B-tree with Patricia tries and passing
down the LCP-value, a pattern P can be found in a
set of strings with total length N in
O(|P|/B + logB N) I/Os

Proof (Sketch)
passing down LCP-value: no I/Os

telescoping sum
∑

i≤h
Li−Li−1

B

h = logB N ò height of String B-tree

Li is LCP-value on Level i

L0 = 0 and Lh ≤ |P|
total: O(|P|/B + logB N) I/Os

13/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Improving Search with LCP-Values

search for pattern in nodes

path in String B-tree p0, p1, p2, . . .

in Patricia tries PTpi compute L = lcp(P,w)

all strings in pi have prefix P[0..L) �

do not compare previously matched characters

load only |P| − L characters at next node

pass L down the String B-tree

Lemma: String B-Tree with PTs and LCP
Using a String B-tree with Patricia tries and passing
down the LCP-value, a pattern P can be found in a
set of strings with total length N in
O(|P|/B + logB N) I/Os

Proof (Sketch)
passing down LCP-value: no I/Os

telescoping sum
∑

i≤h
Li−Li−1

B

h = logB N ò height of String B-tree

Li is LCP-value on Level i

L0 = 0 and Lh ≤ |P|
total: O(|P|/B + logB N) I/Os

13/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Improving Search with LCP-Values

search for pattern in nodes

path in String B-tree p0, p1, p2, . . .

in Patricia tries PTpi compute L = lcp(P,w)

all strings in pi have prefix P[0..L) �

do not compare previously matched characters

load only |P| − L characters at next node

pass L down the String B-tree

Lemma: String B-Tree with PTs and LCP
Using a String B-tree with Patricia tries and passing
down the LCP-value, a pattern P can be found in a
set of strings with total length N in
O(|P|/B + logB N) I/Os

Proof (Sketch)
passing down LCP-value: no I/Os

telescoping sum
∑

i≤h
Li−Li−1

B

h = logB N ò height of String B-tree

Li is LCP-value on Level i

L0 = 0 and Lh ≤ |P|
total: O(|P|/B + logB N) I/Os

13/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Improving Search with LCP-Values

lecture based on: http://courses.csail.mit.
edu/6.851/spring12/lectures/L01

Persistence
change in the past creates new branch

similar to version control

everything old/new remains the same

Retroactivity
change in the past affects future

make change in earlier version changes all later
versions

Definition: Partial Persistence
Only the latest version can be updated

Definition: Full Persistence
Any version can be updated

Definition: Confluent Persistence
Like full persistence, but two versions can be
combined to a new version

Definition: Functional
Nodes cannot be modified, only new nodes can be
created

14/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Recap: Persistent Data Structures

http://courses.csail.mit.edu/6.851/spring12/lectures/L01
http://courses.csail.mit.edu/6.851/spring12/lectures/L01

lecture based on: http://courses.csail.mit.
edu/6.851/spring12/lectures/L01

Persistence
change in the past creates new branch

similar to version control

everything old/new remains the same

Retroactivity
change in the past affects future

make change in earlier version changes all later
versions

Definition: Partial Persistence
Only the latest version can be updated

Definition: Full Persistence
Any version can be updated

Definition: Confluent Persistence
Like full persistence, but two versions can be
combined to a new version

Definition: Functional
Nodes cannot be modified, only new nodes can be
created

14/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Recap: Persistent Data Structures

http://courses.csail.mit.edu/6.851/spring12/lectures/L01
http://courses.csail.mit.edu/6.851/spring12/lectures/L01

lecture based on: http://courses.csail.mit.
edu/6.851/spring12/lectures/L01

Persistence
change in the past creates new branch

similar to version control

everything old/new remains the same

Retroactivity
change in the past affects future

make change in earlier version changes all later
versions

Definition: Partial Persistence
Only the latest version can be updated

Definition: Full Persistence
Any version can be updated

Definition: Confluent Persistence
Like full persistence, but two versions can be
combined to a new version

Definition: Functional
Nodes cannot be modified, only new nodes can be
created

14/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Recap: Persistent Data Structures

http://courses.csail.mit.edu/6.851/spring12/lectures/L01
http://courses.csail.mit.edu/6.851/spring12/lectures/L01

lecture based on: http://courses.csail.mit.
edu/6.851/spring12/lectures/L01

Persistence
change in the past creates new branch

similar to version control

everything old/new remains the same

Retroactivity
change in the past affects future

make change in earlier version changes all later
versions

Definition: Partial Persistence
Only the latest version can be updated

Definition: Full Persistence
Any version can be updated

Definition: Confluent Persistence
Like full persistence, but two versions can be
combined to a new version

Definition: Functional
Nodes cannot be modified, only new nodes can be
created

14/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Recap: Persistent Data Structures

http://courses.csail.mit.edu/6.851/spring12/lectures/L01
http://courses.csail.mit.edu/6.851/spring12/lectures/L01

Operations
INSERT(t, operation): insert operation at time t

DELETE(t): delete operation at time t

QUERY(t, query): ask query at time t

for a priority queue updates are
insert
delete-min

time is integer ò for simplicity otherwise use
order-maintenance data structure

0 1 2 3 4 now time

insert(7) insert(2) insert(3) del-min del-min queries

Definition: Partial Retroactivity
QUERY is only allowed for t = ∞ ò now

Definition: Full Retroactivity
QUERY is allowed at any time t

Definition: Nonoblivious Retroactivity
INSERT, DELETE, and QUERY at any time t but also
identify changed QUERY results

15/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Retroactive Data Structures

Operations
INSERT(t, operation): insert operation at time t

DELETE(t): delete operation at time t

QUERY(t, query): ask query at time t

for a priority queue updates are
insert
delete-min

time is integer ò for simplicity otherwise use
order-maintenance data structure

0 1 2 3 4 now time

insert(7) insert(2) insert(3) del-min del-min queries

Definition: Partial Retroactivity
QUERY is only allowed for t = ∞ ò now

Definition: Full Retroactivity
QUERY is allowed at any time t

Definition: Nonoblivious Retroactivity
INSERT, DELETE, and QUERY at any time t but also
identify changed QUERY results

15/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Retroactive Data Structures

Operations
INSERT(t, operation): insert operation at time t

DELETE(t): delete operation at time t

QUERY(t, query): ask query at time t

for a priority queue updates are
insert
delete-min

time is integer ò for simplicity otherwise use
order-maintenance data structure

0 1 2 3 4 now time

insert(7) insert(2) insert(3) del-min del-min queries

Definition: Partial Retroactivity
QUERY is only allowed for t = ∞ ò now

Definition: Full Retroactivity
QUERY is allowed at any time t

Definition: Nonoblivious Retroactivity
INSERT, DELETE, and QUERY at any time t but also
identify changed QUERY results

15/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Retroactive Data Structures

Operations
INSERT(t, operation): insert operation at time t

DELETE(t): delete operation at time t

QUERY(t, query): ask query at time t

for a priority queue updates are
insert
delete-min

time is integer ò for simplicity otherwise use
order-maintenance data structure

0 1 2 3 4 now time

insert(7) insert(2) insert(3) del-min del-min queries

Definition: Partial Retroactivity
QUERY is only allowed for t = ∞ ò now

Definition: Full Retroactivity
QUERY is allowed at any time t

Definition: Nonoblivious Retroactivity
INSERT, DELETE, and QUERY at any time t but also
identify changed QUERY results

15/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Retroactive Data Structures

commutative updates
invertible updates

operation op−1 such that op−1(op(·)) = ∅
DELETE becomes INSERT inverse operation

makes partial retroactivity easy

INSERT(t, operation) = INSERT(∞, operation)

DELETE(t, op) = INSERT(∞, op−1)

Partial Retroactivity
hashing

dynamic dictionaries

array with updates only ò A[i]+ = value

16/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Easy Cases: Partial Retroactivity

commutative updates
invertible updates

operation op−1 such that op−1(op(·)) = ∅
DELETE becomes INSERT inverse operation

makes partial retroactivity easy

INSERT(t, operation) = INSERT(∞, operation)

DELETE(t, op) = INSERT(∞, op−1)

Partial Retroactivity
hashing

dynamic dictionaries

array with updates only ò A[i]+ = value

16/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Easy Cases: Partial Retroactivity

Definition: Search Problem
A search problem is a problem on a set S of objects
with operations insert , delete, and query(x ,S)

Definition: Decomposable Search Problem
A decomposable search problem is a search
problem, with

query(x ,A ∪ B) = f (query(x ,A), query(x ,B))

with f requiring O(1) time

which decomposable search problem have we
seen PINGO

predecessor and successor search

range minimum queries

nearest neighbor

point location

. . .

these types of problems are also “easy”

17/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Search Problems

https://kurpicz.org

Definition: Search Problem
A search problem is a problem on a set S of objects
with operations insert , delete, and query(x ,S)

Definition: Decomposable Search Problem
A decomposable search problem is a search
problem, with

query(x ,A ∪ B) = f (query(x ,A), query(x ,B))

with f requiring O(1) time

which decomposable search problem have we
seen PINGO

predecessor and successor search

range minimum queries

nearest neighbor

point location

. . .

these types of problems are also “easy”

17/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Search Problems

https://kurpicz.org

Definition: Search Problem
A search problem is a problem on a set S of objects
with operations insert , delete, and query(x ,S)

Definition: Decomposable Search Problem
A decomposable search problem is a search
problem, with

query(x ,A ∪ B) = f (query(x ,A), query(x ,B))

with f requiring O(1) time

which decomposable search problem have we
seen PINGO

predecessor and successor search

range minimum queries

nearest neighbor

point location

. . .

these types of problems are also “easy”

17/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Search Problems

https://kurpicz.org

Definition: Search Problem
A search problem is a problem on a set S of objects
with operations insert , delete, and query(x ,S)

Definition: Decomposable Search Problem
A decomposable search problem is a search
problem, with

query(x ,A ∪ B) = f (query(x ,A), query(x ,B))

with f requiring O(1) time

which decomposable search problem have we
seen PINGO

predecessor and successor search

range minimum queries

nearest neighbor

point location

. . .

these types of problems are also “easy”

17/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Search Problems

https://kurpicz.org

Definition: Search Problem
A search problem is a problem on a set S of objects
with operations insert , delete, and query(x ,S)

Definition: Decomposable Search Problem
A decomposable search problem is a search
problem, with

query(x ,A ∪ B) = f (query(x ,A), query(x ,B))

with f requiring O(1) time

which decomposable search problem have we
seen PINGO

predecessor and successor search

range minimum queries

nearest neighbor

point location

. . .

these types of problems are also “easy”

17/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Search Problems

https://kurpicz.org

Lemma: Full Retroactivity for DSP
Every decomposable search problems can be made
fully retroactive with a O(logm) overhead in space
and time, where m is the number of operations

Proof (Sketch)
use balances search tree ò segment tree

each leaf corresponds to an update

node n corresponds to interval of time [sn, en]

if an object exists in the time interval [s, e], then
it appears in node n if [sn, en] ⊆ [s, e] if none of
n’s ancestors’ are ⊆ [s, e] �

each object occurs in O(log n) nodes

Proof (Sketch, cnt.)
to query find leaf corresponding to t

look at ancestors to find all objects

O(logm) results which can be combined in
O(logm) time

data structure is stored for each operation!

O(logm) space overhead!

18/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Decomposable Search Problems: Full Retroactivity

Lemma: Full Retroactivity for DSP
Every decomposable search problems can be made
fully retroactive with a O(logm) overhead in space
and time, where m is the number of operations

Proof (Sketch)
use balances search tree ò segment tree

each leaf corresponds to an update

node n corresponds to interval of time [sn, en]

if an object exists in the time interval [s, e], then
it appears in node n if [sn, en] ⊆ [s, e] if none of
n’s ancestors’ are ⊆ [s, e] �

each object occurs in O(log n) nodes

Proof (Sketch, cnt.)
to query find leaf corresponding to t

look at ancestors to find all objects

O(logm) results which can be combined in
O(logm) time

data structure is stored for each operation!

O(logm) space overhead!

18/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Decomposable Search Problems: Full Retroactivity

Lemma: Full Retroactivity for DSP
Every decomposable search problems can be made
fully retroactive with a O(logm) overhead in space
and time, where m is the number of operations

Proof (Sketch)
use balances search tree ò segment tree

each leaf corresponds to an update

node n corresponds to interval of time [sn, en]

if an object exists in the time interval [s, e], then
it appears in node n if [sn, en] ⊆ [s, e] if none of
n’s ancestors’ are ⊆ [s, e] �

each object occurs in O(log n) nodes

Proof (Sketch, cnt.)
to query find leaf corresponding to t

look at ancestors to find all objects

O(logm) results which can be combined in
O(logm) time

data structure is stored for each operation!

O(logm) space overhead!

18/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Decomposable Search Problems: Full Retroactivity

Lemma: Full Retroactivity for DSP
Every decomposable search problems can be made
fully retroactive with a O(logm) overhead in space
and time, where m is the number of operations

Proof (Sketch)
use balances search tree ò segment tree

each leaf corresponds to an update

node n corresponds to interval of time [sn, en]

if an object exists in the time interval [s, e], then
it appears in node n if [sn, en] ⊆ [s, e] if none of
n’s ancestors’ are ⊆ [s, e] �

each object occurs in O(log n) nodes

Proof (Sketch, cnt.)
to query find leaf corresponding to t

look at ancestors to find all objects

O(logm) results which can be combined in
O(logm) time

data structure is stored for each operation!

O(logm) space overhead!

18/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Decomposable Search Problems: Full Retroactivity

Lemma: Lower Bound
Rewinding m operations has a lower bound of Ω(m)
overhead

general case

Proof (Sketch)
two values X and Y

initially X = ∅ and Y = ∅
supported operations

X = x
Y+ = value
Y = X · Y
query Y

Proof (Sketch, cnt.)
perform operations

Y+ = an

Y = X · Y
Y+ = an=1

Y = X · Y
. . .
Y+ = a0

what are we computing here? PINGO

Y = an · X n + an−1X n−1 + · · ·+ a0

evaluate polynomial at X = x using t=0,X=x

this requires Ω(n) time [FHM01]

19/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

General Full Retroactivity

https://kurpicz.org

Lemma: Lower Bound
Rewinding m operations has a lower bound of Ω(m)
overhead

general case

Proof (Sketch)
two values X and Y

initially X = ∅ and Y = ∅
supported operations

X = x
Y+ = value
Y = X · Y
query Y

Proof (Sketch, cnt.)
perform operations

Y+ = an

Y = X · Y
Y+ = an=1

Y = X · Y
. . .
Y+ = a0

what are we computing here? PINGO

Y = an · X n + an−1X n−1 + · · ·+ a0

evaluate polynomial at X = x using t=0,X=x

this requires Ω(n) time [FHM01]

19/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

General Full Retroactivity

https://kurpicz.org

Lemma: Lower Bound
Rewinding m operations has a lower bound of Ω(m)
overhead

general case

Proof (Sketch)
two values X and Y

initially X = ∅ and Y = ∅
supported operations

X = x
Y+ = value
Y = X · Y
query Y

Proof (Sketch, cnt.)
perform operations

Y+ = an

Y = X · Y
Y+ = an=1

Y = X · Y
. . .
Y+ = a0

what are we computing here? PINGO

Y = an · X n + an−1X n−1 + · · ·+ a0

evaluate polynomial at X = x using t=0,X=x

this requires Ω(n) time [FHM01]

19/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

General Full Retroactivity

https://kurpicz.org

Lemma: Lower Bound
Rewinding m operations has a lower bound of Ω(m)
overhead

general case

Proof (Sketch)
two values X and Y

initially X = ∅ and Y = ∅
supported operations

X = x
Y+ = value
Y = X · Y
query Y

Proof (Sketch, cnt.)
perform operations

Y+ = an

Y = X · Y
Y+ = an=1

Y = X · Y
. . .
Y+ = a0

what are we computing here? PINGO

Y = an · X n + an−1X n−1 + · · ·+ a0

evaluate polynomial at X = x using t=0,X=x

this requires Ω(n) time [FHM01]

19/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

General Full Retroactivity

https://kurpicz.org

Lemma: Lower Bound
Rewinding m operations has a lower bound of Ω(m)
overhead

general case

Proof (Sketch)
two values X and Y

initially X = ∅ and Y = ∅
supported operations

X = x
Y+ = value
Y = X · Y
query Y

Proof (Sketch, cnt.)
perform operations

Y+ = an

Y = X · Y
Y+ = an=1

Y = X · Y
. . .
Y+ = a0

what are we computing here? PINGO

Y = an · X n + an−1X n−1 + · · ·+ a0

evaluate polynomial at X = x using t=0,X=x

this requires Ω(n) time [FHM01]

19/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

General Full Retroactivity

https://kurpicz.org

Lemma: Lower Bound
Rewinding m operations has a lower bound of Ω(m)
overhead

general case

Proof (Sketch)
two values X and Y

initially X = ∅ and Y = ∅
supported operations

X = x
Y+ = value
Y = X · Y
query Y

Proof (Sketch, cnt.)
perform operations

Y+ = an

Y = X · Y
Y+ = an=1

Y = X · Y
. . .
Y+ = a0

what are we computing here? PINGO

Y = an · X n + an−1X n−1 + · · ·+ a0

evaluate polynomial at X = x using t=0,X=x

this requires Ω(n) time [FHM01]

19/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

General Full Retroactivity

https://kurpicz.org

priority queue with
insert
delete-min

delete-min makes PQ non-commutative

Lemma: Partial Retroactive PQ
A priority queue can be partial retroactive with only
O(logm) overhead per partially retroactive operation

va
lu

e

time

20/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Priority Queues: Partial Retroactivity (1/6)

priority queue with
insert
delete-min

delete-min makes PQ non-commutative

Lemma: Partial Retroactive PQ
A priority queue can be partial retroactive with only
O(logm) overhead per partially retroactive operation

va
lu

e

time

20/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Priority Queues: Partial Retroactivity (1/6)

priority queue with
insert
delete-min

delete-min makes PQ non-commutative

Lemma: Partial Retroactive PQ
A priority queue can be partial retroactive with only
O(logm) overhead per partially retroactive operation

va
lu

e

time

20/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Priority Queues: Partial Retroactivity (1/6)

what is the problem with
INSERT(t,delete-min())
INSERT(t,insert(i))

INSERT(t,delete-min()) creates chain-reaction

INSERT(t,insert(i)) creates chain-reaction

can we solve DELETE(t,delete-min()) using
INSERT(t,insert(i))? PINGO

insert deleted minimum right after deletion

va
lu

e

time

21/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Priority Queues: Partial Retroactivity (2/6)

https://kurpicz.org

what is the problem with
INSERT(t,delete-min())
INSERT(t,insert(i))

INSERT(t,delete-min()) creates chain-reaction

INSERT(t,insert(i)) creates chain-reaction

can we solve DELETE(t,delete-min()) using
INSERT(t,insert(i))? PINGO

insert deleted minimum right after deletion

va
lu

e

time

21/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Priority Queues: Partial Retroactivity (2/6)

https://kurpicz.org

what is the problem with
INSERT(t,delete-min())
INSERT(t,insert(i))

INSERT(t,delete-min()) creates chain-reaction

INSERT(t,insert(i)) creates chain-reaction

can we solve DELETE(t,delete-min()) using
INSERT(t,insert(i))? PINGO

insert deleted minimum right after deletion

va
lu

e

time

21/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Priority Queues: Partial Retroactivity (2/6)

https://kurpicz.org

what is the problem with
INSERT(t,delete-min())
INSERT(t,insert(i))

INSERT(t,delete-min()) creates chain-reaction

INSERT(t,insert(i)) creates chain-reaction

can we solve DELETE(t,delete-min()) using
INSERT(t,insert(i))? PINGO

insert deleted minimum right after deletion

va
lu

e

time

21/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Priority Queues: Partial Retroactivity (2/6)

https://kurpicz.org

what is the problem with
INSERT(t,delete-min())
INSERT(t,insert(i))

INSERT(t,delete-min()) creates chain-reaction

INSERT(t,insert(i)) creates chain-reaction

can we solve DELETE(t,delete-min()) using
INSERT(t,insert(i))? PINGO

insert deleted minimum right after deletion

va
lu

e

time

21/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Priority Queues: Partial Retroactivity (2/6)

https://kurpicz.org

let Qt be elements in PQ at time t

what values are in Q∞? ò partial retroactivity

what value inserts INSERT(t, insert(v)) in Q∞

values is max{v , v ′ : v ′ deleted at time ≥ t}
maintaining deleted elements is hard ò can
change a lot

Definition: Bridge
A time t ′ is a bridge if Qt′ ⊆ Q∞

all elements present at t ′ are present at t∞

va
lu

e

time

A CB

what times are bridges? PINGO

22/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Priority Queues: Partial Retroactivity (3/6)

https://kurpicz.org

let Qt be elements in PQ at time t

what values are in Q∞? ò partial retroactivity

what value inserts INSERT(t, insert(v)) in Q∞

values is max{v , v ′ : v ′ deleted at time ≥ t}
maintaining deleted elements is hard ò can
change a lot

Definition: Bridge
A time t ′ is a bridge if Qt′ ⊆ Q∞

all elements present at t ′ are present at t∞

va
lu

e

time

A CB

what times are bridges? PINGO

22/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Priority Queues: Partial Retroactivity (3/6)

https://kurpicz.org

let Qt be elements in PQ at time t

what values are in Q∞? ò partial retroactivity

what value inserts INSERT(t, insert(v)) in Q∞

values is max{v , v ′ : v ′ deleted at time ≥ t}
maintaining deleted elements is hard ò can
change a lot

Definition: Bridge
A time t ′ is a bridge if Qt′ ⊆ Q∞

all elements present at t ′ are present at t∞

va
lu

e

time

A CB

what times are bridges? PINGO

22/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Priority Queues: Partial Retroactivity (3/6)

https://kurpicz.org

let Qt be elements in PQ at time t

what values are in Q∞? ò partial retroactivity

what value inserts INSERT(t, insert(v)) in Q∞

values is max{v , v ′ : v ′ deleted at time ≥ t}
maintaining deleted elements is hard ò can
change a lot

Definition: Bridge
A time t ′ is a bridge if Qt′ ⊆ Q∞

all elements present at t ′ are present at t∞

va
lu

e

time

A C

B

what times are bridges? PINGO

22/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Priority Queues: Partial Retroactivity (3/6)

https://kurpicz.org

Lemma: Deletions after Bridges
If time t ′ is closest bridge preceding time t , then

max{v ′ : v ′ deleted at time ≥ t}

=

max{v ′ /∈ Q∞ : v ′ inserted at time ≥ t ′}

Proof (Sketch)
max{v ′ /∈ Q∞ : v ′ inserted at time ≥ t ′} ∈
{v ′ : v ′ deleted at time ≥ t}

if maximum value is deleted between t ′ and t
then this time is a bridge
contradicting that t ′ is bridge preceding t

Proof (Sketch, cnt.)
max{v ′ : v ′ deleted at time ≥ t} ∈ {v ′ /∈
Q∞ : v ′ inserted at time ≥ t ′}

if v ′ is deleted at some time ≥ t
then it is not in Q∞

what values are in Q∞? ò partial retroactivity

what value inserts INSERT(t, insert(v)) in Q∞

max{v , v ′ /∈ Q∞ : v ′ inserted at time ≥ t ′}

23/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Priority Queues: Partial Retroactivity (4/6)

Lemma: Deletions after Bridges
If time t ′ is closest bridge preceding time t , then

max{v ′ : v ′ deleted at time ≥ t}

=

max{v ′ /∈ Q∞ : v ′ inserted at time ≥ t ′}

Proof (Sketch)
max{v ′ /∈ Q∞ : v ′ inserted at time ≥ t ′} ∈
{v ′ : v ′ deleted at time ≥ t}

if maximum value is deleted between t ′ and t
then this time is a bridge
contradicting that t ′ is bridge preceding t

Proof (Sketch, cnt.)
max{v ′ : v ′ deleted at time ≥ t} ∈ {v ′ /∈
Q∞ : v ′ inserted at time ≥ t ′}

if v ′ is deleted at some time ≥ t
then it is not in Q∞

what values are in Q∞? ò partial retroactivity

what value inserts INSERT(t, insert(v)) in Q∞

max{v , v ′ /∈ Q∞ : v ′ inserted at time ≥ t ′}

23/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Priority Queues: Partial Retroactivity (4/6)

Lemma: Deletions after Bridges
If time t ′ is closest bridge preceding time t , then

max{v ′ : v ′ deleted at time ≥ t}

=

max{v ′ /∈ Q∞ : v ′ inserted at time ≥ t ′}

Proof (Sketch)
max{v ′ /∈ Q∞ : v ′ inserted at time ≥ t ′} ∈
{v ′ : v ′ deleted at time ≥ t}

if maximum value is deleted between t ′ and t
then this time is a bridge
contradicting that t ′ is bridge preceding t

Proof (Sketch, cnt.)
max{v ′ : v ′ deleted at time ≥ t} ∈ {v ′ /∈
Q∞ : v ′ inserted at time ≥ t ′}

if v ′ is deleted at some time ≥ t
then it is not in Q∞

what values are in Q∞? ò partial retroactivity

what value inserts INSERT(t, insert(v)) in Q∞

max{v , v ′ /∈ Q∞ : v ′ inserted at time ≥ t ′}

23/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Priority Queues: Partial Retroactivity (4/6)

Lemma: Deletions after Bridges
If time t ′ is closest bridge preceding time t , then

max{v ′ : v ′ deleted at time ≥ t}

=

max{v ′ /∈ Q∞ : v ′ inserted at time ≥ t ′}

Proof (Sketch)
max{v ′ /∈ Q∞ : v ′ inserted at time ≥ t ′} ∈
{v ′ : v ′ deleted at time ≥ t}

if maximum value is deleted between t ′ and t
then this time is a bridge
contradicting that t ′ is bridge preceding t

Proof (Sketch, cnt.)
max{v ′ : v ′ deleted at time ≥ t} ∈ {v ′ /∈
Q∞ : v ′ inserted at time ≥ t ′}

if v ′ is deleted at some time ≥ t
then it is not in Q∞

what values are in Q∞? ò partial retroactivity

what value inserts INSERT(t, insert(v)) in Q∞

max{v , v ′ /∈ Q∞ : v ′ inserted at time ≥ t ′}

23/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Priority Queues: Partial Retroactivity (4/6)

keep track of inserted values

use balanced binary search trees for O(logm)
overhead

BBST for Q∞ ò changed for each update

BBST where leaves are inserts ordered by time
augmented with

for each node x store
max{v ′ /∈ Q∞ : v ′ inserted in subtree of x}

BBST where leaves are all updates ordered by
time augmented with

leaves store 0 for inserts with v ∈ Q∞, 1 for
inserts with v /∈ Q∞ and −1 for delete-mins
inner nodes store subtree sums

how can we find bridges? PINGO

use third BBST and find prefix of updates
summing to 0

requires O(log n) time as we traverse tree at
most twice

this results in bridge t ′

use second BBST to identify maximum value
not in Q∞ on path to t ′

since BBST is augmented with these values,
this requires O(log n) time

update all BBSTs in O(log n) time

24/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Priority Queues: Partial Retroactivity (5/6)

https://kurpicz.org

keep track of inserted values

use balanced binary search trees for O(logm)
overhead

BBST for Q∞ ò changed for each update

BBST where leaves are inserts ordered by time
augmented with

for each node x store
max{v ′ /∈ Q∞ : v ′ inserted in subtree of x}

BBST where leaves are all updates ordered by
time augmented with

leaves store 0 for inserts with v ∈ Q∞, 1 for
inserts with v /∈ Q∞ and −1 for delete-mins
inner nodes store subtree sums

how can we find bridges? PINGO

use third BBST and find prefix of updates
summing to 0

requires O(log n) time as we traverse tree at
most twice

this results in bridge t ′

use second BBST to identify maximum value
not in Q∞ on path to t ′

since BBST is augmented with these values,
this requires O(log n) time

update all BBSTs in O(log n) time

24/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Priority Queues: Partial Retroactivity (5/6)

https://kurpicz.org

keep track of inserted values

use balanced binary search trees for O(logm)
overhead

BBST for Q∞ ò changed for each update
BBST where leaves are inserts ordered by time
augmented with

for each node x store
max{v ′ /∈ Q∞ : v ′ inserted in subtree of x}

BBST where leaves are all updates ordered by
time augmented with

leaves store 0 for inserts with v ∈ Q∞, 1 for
inserts with v /∈ Q∞ and −1 for delete-mins
inner nodes store subtree sums

how can we find bridges? PINGO

use third BBST and find prefix of updates
summing to 0

requires O(log n) time as we traverse tree at
most twice

this results in bridge t ′

use second BBST to identify maximum value
not in Q∞ on path to t ′

since BBST is augmented with these values,
this requires O(log n) time

update all BBSTs in O(log n) time

24/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Priority Queues: Partial Retroactivity (5/6)

https://kurpicz.org

keep track of inserted values

use balanced binary search trees for O(logm)
overhead

BBST for Q∞ ò changed for each update
BBST where leaves are inserts ordered by time
augmented with

for each node x store
max{v ′ /∈ Q∞ : v ′ inserted in subtree of x}

BBST where leaves are all updates ordered by
time augmented with

leaves store 0 for inserts with v ∈ Q∞, 1 for
inserts with v /∈ Q∞ and −1 for delete-mins
inner nodes store subtree sums

how can we find bridges? PINGO

use third BBST and find prefix of updates
summing to 0

requires O(log n) time as we traverse tree at
most twice

this results in bridge t ′

use second BBST to identify maximum value
not in Q∞ on path to t ′

since BBST is augmented with these values,
this requires O(log n) time

update all BBSTs in O(log n) time

24/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Priority Queues: Partial Retroactivity (5/6)

https://kurpicz.org

keep track of inserted values

use balanced binary search trees for O(logm)
overhead

BBST for Q∞ ò changed for each update
BBST where leaves are inserts ordered by time
augmented with

for each node x store
max{v ′ /∈ Q∞ : v ′ inserted in subtree of x}

BBST where leaves are all updates ordered by
time augmented with

leaves store 0 for inserts with v ∈ Q∞, 1 for
inserts with v /∈ Q∞ and −1 for delete-mins
inner nodes store subtree sums

how can we find bridges? PINGO

use third BBST and find prefix of updates
summing to 0

requires O(log n) time as we traverse tree at
most twice

this results in bridge t ′

use second BBST to identify maximum value
not in Q∞ on path to t ′

since BBST is augmented with these values,
this requires O(log n) time

update all BBSTs in O(log n) time

24/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Priority Queues: Partial Retroactivity (5/6)

https://kurpicz.org

keep track of inserted values

use balanced binary search trees for O(logm)
overhead

BBST for Q∞ ò changed for each update
BBST where leaves are inserts ordered by time
augmented with

for each node x store
max{v ′ /∈ Q∞ : v ′ inserted in subtree of x}

BBST where leaves are all updates ordered by
time augmented with

leaves store 0 for inserts with v ∈ Q∞, 1 for
inserts with v /∈ Q∞ and −1 for delete-mins
inner nodes store subtree sums

how can we find bridges? PINGO

use third BBST and find prefix of updates
summing to 0

requires O(log n) time as we traverse tree at
most twice

this results in bridge t ′

use second BBST to identify maximum value
not in Q∞ on path to t ′

since BBST is augmented with these values,
this requires O(log n) time

update all BBSTs in O(log n) time

24/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Priority Queues: Partial Retroactivity (5/6)

https://kurpicz.org

keep track of inserted values

use balanced binary search trees for O(logm)
overhead

BBST for Q∞ ò changed for each update
BBST where leaves are inserts ordered by time
augmented with

for each node x store
max{v ′ /∈ Q∞ : v ′ inserted in subtree of x}

BBST where leaves are all updates ordered by
time augmented with

leaves store 0 for inserts with v ∈ Q∞, 1 for
inserts with v /∈ Q∞ and −1 for delete-mins
inner nodes store subtree sums

how can we find bridges? PINGO

use third BBST and find prefix of updates
summing to 0

requires O(log n) time as we traverse tree at
most twice

this results in bridge t ′

use second BBST to identify maximum value
not in Q∞ on path to t ′

since BBST is augmented with these values,
this requires O(log n) time

update all BBSTs in O(log n) time

24/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Priority Queues: Partial Retroactivity (5/6)

https://kurpicz.org

keep track of inserted values

use balanced binary search trees for O(logm)
overhead

BBST for Q∞ ò changed for each update
BBST where leaves are inserts ordered by time
augmented with

for each node x store
max{v ′ /∈ Q∞ : v ′ inserted in subtree of x}

BBST where leaves are all updates ordered by
time augmented with

leaves store 0 for inserts with v ∈ Q∞, 1 for
inserts with v /∈ Q∞ and −1 for delete-mins
inner nodes store subtree sums

how can we find bridges? PINGO

use third BBST and find prefix of updates
summing to 0

requires O(log n) time as we traverse tree at
most twice

this results in bridge t ′

use second BBST to identify maximum value
not in Q∞ on path to t ′

since BBST is augmented with these values,
this requires O(log n) time

update all BBSTs in O(log n) time

24/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Priority Queues: Partial Retroactivity (5/6)

https://kurpicz.org

Lemma: Partial Retroactive PQ
A priority queue can be partial retroactive with only
O(logm) overhead per partially retroactive operation

requires three BBSTs

updates need to update all BBSTs

25/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Priority Queues: Partial Retroactivity (6/6)

This Lecture
string B-tree

retroactive data structures

Next Lecture
learned data structures

Advanced Data Structures

static/dynamic

BV
static/dynamic

succ. trees

range min-max tree succ. graphs

Successor RMQ

SA & LCPString B-tree

CSA

retroactive

PQ

26/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Conclusion and Outlook

This Lecture
string B-tree

retroactive data structures

Next Lecture
learned data structures

Advanced Data Structures

static/dynamic

BV
static/dynamic

succ. trees

range min-max tree succ. graphs

Successor RMQ

SA & LCPString B-tree

CSA

retroactive

PQ

26/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Conclusion and Outlook

[AV88] Alok Aggarwal and Jeffrey Scott Vitter. “The Input/Output Complexity of Sorting and Related
Problems”. In: Commun. ACM 31.9 (1988), pages 1116–1127. DOI: 10.1145/48529.48535.

[FG99] Paolo Ferragina and Roberto Grossi. “The String B-tree: A New Data Structure for String Search in
External Memory and Its Applications”. In: J. ACM 46.2 (1999), pages 236–280. DOI:
10.1145/301970.301973.

[FHM01] Gudmund Skovbjerg Frandsen, Johan P. Hansen, and Peter Bro Miltersen. “Lower Bounds for
Dynamic Algebraic Problems”. In: Inf. Comput. 171.2 (2001), pages 333–349. DOI:
10.1006/inco.2001.3046.

27/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Bibliography I

https://doi.org/10.1145/48529.48535
https://doi.org/10.1145/301970.301973
https://doi.org/10.1006/inco.2001.3046

	Appendix

