KIT

Karlsruhe Institute of Technology

Advanced Data Structures

Lecture 09: String B-Trees and Temporal Data Structures 2
Florian Kurpicz

The slides are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License @®®@): www.creativecommons.org/licenses/by-sa/4.0 | commit c70729e compiled at 2024-06-17-13:29

KIT — The Research University in the Helmholtz Association WWW. kit.edu

https://creativecommons.org/licenses/by-sa/4.0/
https://www.kit.edu

PINGO it

Karlsruhe Institute of Technology

https://pingo.scc.kit.edu/172581

2/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

https://pingo.scc.kit.edu/172581
https://pingo.scc.kit.edu/172581

Ui

External Memory Model [AV88]

Definition: External Memory Model Set of Strings

3/26

= sorting N elements: ©(j5 logu)

internal memory of M words ® alphabet ¥ of size o

instances of size N > M ® k strings {si, ..., Sk} over the alphabet ¥
unlimited external memory m total size of strings is N = E; |si|
transfer blocks of size B between memories ® queries ask for pattern P of length m

measure number of blocks 1/0s

scanning N elements: ©(N/B)
N

2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

String Dictionary

Given a set S C ¥ * of prefix-free strings, we want to
answer:
BisxeX*inS
®addx ¢ Sto S
® remove x € Sfrom S

@ predecessor and
successor of
XeEX*inS

Givenaset S = {Sy, ..., S} of prefix-free strings,
a trie is a labeled rooted tree G = (V, E) with:

1. k leaves

2. VS; € Sthere is a path from the root to a leaf,
such that the concatenation of the labels is S;

3. Vv € V the labels of the edges (v, -) are unique

4/26 2024-06-17

Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2

KIT

Karlsruhe Institute of Technology

e

e a

N, N

S = {bear, bee, cab, car}

Institute of Theoretical Informatics, Algorithm Engineering

KIT

Theoretical Comparison

Representation Query Time (Contains) Space in Words

arrays of variable size O(m- o) O(N)

arrays of fixed size O(m) O(N - o)

hash tables O(m) w.h.p. O(N)

balanced search trees O(m-lgo) O(N)

weight-balanced search trees O(m+lgk) O(N)

two-levels with weight-balanced search trees O(m + g o) O(N)

® more details in lecture Text Indexing

5/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

KIT

Compact Trie

tries have unnecessary nodes

b C
branchless paths can be removed be/ \ca
edge labels can consist of multiple characters e

y Y 7

a
\
® A compact trie is a trie where all branchless

paths are replaced by a single edge. r

The label of the new edge is the concatenation
of the replaced edges’ labels.

6/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

SKIT

(R e ca p) B 'Trees Karlsruhe Institute of Technology

search tree with out-degree in [b, 2b)
works well in external memory

can be dynamic

a
a
® uses separators to find subtree
a
® who knows B-trees gég‘? PINGO

example on the board £ -/

From Atomic Values to Strings

® strings take more time to compare
® |oad as few strings from disk as possible

7/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

https://kurpicz.org

String B-Tree [FG99] A“(IT

® strings are stored in EM ® given node v with children vy, . . ., v, with
® strings are identified by starting positions k € [b,2b)

® inner: store separators
m B-tree layout for sorted suffixes L(v), R(vo), - - - L(vk), R(vk)

@ |eaf: store strings and link leaves
® at least b = ©(B) children
® tree height O(logg N)

@ given node v

® [(v) is lexicographically smallest string at v
® R(v) is lexicographically largest string at v

8/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

KIT

Search in String B-Tree
@ task: find all occurrences of pattern P
® two traversals of String B-Tree Using a String B-tree, a pattern P can be found in a
® identify leftmost/rightmost occurrence set of strings with total length N in O(|P|/Blog N)
® output all strings in O(occ/B) VOs

at every node with children vy, . . ., v
® binary search for Pin L(v), ..., R(vk)

® if B(v;) < P < L(Vi+1): not found
® if L(v)) < P < R(v): continue in v; ® |oad strings for binary search: O(|P|/B) I/Os

® iotal:
O(logg N -log B-|P|/B) = O(|P|/Blog N) 1/Os

® String B-Tree has height logg N
® |oad separators of node: O(1) I/O

9/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

KIT

Improving String B-Tree with Patricia Tries (1/2)

® for strings S = {Sy, ..., Sk—1} bb @
® a compact trie where only branching characters
are stored

® additionally the string depth is stored
ad

® size O(k) for k strings
search requires two steps

first blind search using only trie

blind search can result in false matches ® How do Patricia tries help? %‘;a% PINGO
e
second a comparison with resulting string

use any leaf after matching pattern

10/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

https://kurpicz.org

Ui

Improving String B-Tree with Patricia Tries (2/2)

® in each inner node build Patricia trie for

separators & consider next branching character ¢ on path
® if blind search finds leaf w ® if P[L 4+ 1] < c continue in leftmost leaf
® compute L = lep(P, w) ® if P[L + 1] > ¢ continue in rightmost leaf

@ |et u be first node on root-to-w path with d > L

& find matching children v; and v;;1 of w with
® branching characters ¢; < P[L + 1] < ¢t
® example on the board £

11/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

KIT

Searching in Improved String B-Tree
® at every node with children vy, ..., vk
® |oad Patricia trie for L(v), . .., R(Vk) Using a string B-tree with Patricia tries, a pattern P
® search Patricia trie for w can be found in a set of strings with total length N
® |oad one string and compare with P with O(|P|/Blogg N) /Os
& identify child and continue

® How can this be improved even further? et (P17e ©{() 10z
Egs,s&!@g PINGO blind search: no I/Os

loading one string: O(|P|/B) 1/Os
identify child: no I/Os
total O(|P|/Blogs N) 1/0s

12/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

https://kurpicz.org

KIT

Improving Search with LCP-Values
@ search for pattern in nodes
® path in String B-tree pg, p1, P2, . . - Using a String B-tree with Patricia tries and passing
® in Patricia tries PT,, compute L = Ico(P, w) down the LCP-value, a pattern P can be found in a
i -havé refix P[0.1) set of strings with total length N in
gsin pihave p . O(|P|/B + logg N) 1/Os
@ do not compare previously matched characters
® |oad only |P| — L characters at next node
® pass L down the String B-tree passing down LCP-value: no 1/Os
telescoping sum Z,Sh L’*EL,'*‘

a
a
@ h=loggN

@ [, is LCP-value on Level i

® [g=0and L, < |P]|

® total: O(|P|/B + logg N) I/Os

13/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Ui

Recap: Persistent Data Structures

® lecture based on: http://courses.csail.mit. Definition: Partial Persistence

edu/6.851/springl2/lectures/LO1 Only the latest version can be updated
Persistence Definition: Full Persistence
® change in the past creates new branch Any version can be updated

® similar to version control

& everything old/new remains the same Definition: Confluent Persistence

Like full persistence, but two versions can be

Retroactivity combined to a new version
® change in the past affects future — -
9 P Definition: Functional

® make change in earlier version changes all later »
versions Nodes cannot be modified, only new nodes can be

created

14/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

http://courses.csail.mit.edu/6.851/spring12/lectures/L01
http://courses.csail.mit.edu/6.851/spring12/lectures/L01

Retroactive Data Structures

® INSERT(t, operation): insert operation at time ¢
® DELETE(t): delete operation at time t
® QUERY(t, query): ask query at time ¢

& for a priority queue updates are
® insert
& delete-min
® time is integer @ for simplicity otherwise use
order-maintenance data structure

inselrt(7) inselrt(2) inselrt(3) del-lmin del-lmin queries
0 i 2 H 4 now time
15/26 2024-06-17

Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2

SKIT

Karlsruhe Institute of Technology

Definition: Partial Retroactivity

QUERY is only allowed for t = co @ now

Definition: Full Retroactivity

QUERY is allowed at any time t

Definition: Nonoblivious Retroactivity

INSERT, DELETE, and QUERY at any time t but also
identify changed QUERY results

Institute of Theoretical Informatics, Algorithm Engineering

KIT

Easy Cases: Partial Retroactivity
® commutative updates Partial Retroactivity
@ invertible updates ® hashing
® operation op~ ' such that op~1(op(+)) = 0 ® dynamic dictionaries

® DELETE becomes INSERT inverse operation . :
_ o ® array with updates only @ Al/| -+ — value

® makes partial retroactivity easy

® INSERT(t, operation) = INSERT(co, operation)

® DELETE(t, 0p) = INSERT(00,0p™ ")

16/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

CIT

Search Problems

Definition: Search Problem

A search problem is a problem on a set S of objects
with operations insert, delete, and query(x, S)

Definition: Decomposable Search Problem

A decomposable search problem is a search
problem, with

®w query(x, AU B) = f(query(x, A), query(x, B)) ® these types of problems are also “easy”
® with f requiring O(1) time

predecessor and successor search

range minimum queries

nearest neighbor

point location

® which decomposable search problem have we
seen Eﬁ‘% PINGO

17/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

https://kurpicz.org

KIT

Decomposable Search Problems: Full Retroactivity

Every decomposable search problems can be made
fully retroactive with a O(log m) overhead in space
and time, where m is the number of operations

to query find leaf corresponding to t

look at ancestors to find all objects

O(log m) results which can be combined in
O(log m) time

use balances search tree

data structure is stored for each operation!
each leaf corresponds to an update

O(log m) space overhead!
node n corresponds to interval of time [s,]

if an object exists in the time interval [s, €], then
it appears in node n if [sy, e,] C [s, €] if none of
n’s ancestors’ are C [s, €]

® each object occurs in O(log n) nodes

18/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

KIT

General Full Retroactivity
Rewinding m operations has a lower bound of Q(m) ® perform operations
overhead Y+ =a,
ayY=X.Y
® general case ® Y+ = ap
mY=X.Y
.
B Y+ =g

@ two values X and Y
® initially X =0 and Y =0
® supported operations

mX=x
Y+ = value ® this requires Q(n) time [FHMO1]

a
ay=X-Y
a query Y

Y =3, X"+a, X"+ - +a
® evaluate polynomial at X = x using t=0, X=x

19/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

https://kurpicz.org

KIT

Priority Queues: Partial Retroactivity (1/6)

& priority queue with 1
® insert
& delete-min

@ delete-min makes PQ non-commutative

value

A priority queue can be partial retroactive with only
O(log m) overhead per partially retroactive operation

T
time

20/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

KIT

Priority Queues: Partial Retroactivity (2/6)

@ what is the problem with 1

® INSERT(t,delete-min())
® INSERT(t,insert(i))

® INSERT(t,delete-min()) creates chain-reaction

® INSERT(t,insert(i)) creates chain-reaction

value

@ can we solve DELETE(t delete -min()) using
INSERT(t,insert(i))? gPINGO

® insert deleted minimum right after deletion

T
time

21/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

https://kurpicz.org

KIT

Priority Queues: Partial Retroactivity (3/6)

let Q; be elements in PQ at time t 4

what values are in Q,.?
what value inserts INSERT(t, insert(v)) in Qu

values is max{v, v': v’ deleted at time > t}

maintaining deleted elements is hard

value

Atime t' is a bridge if Qv C Qs ‘

" time

® all elements present at t’ are present at t., . . Eeim
? &

® what times are bridges? e PINGO

22/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

https://kurpicz.org

KIT

Priority Queues: Partial Retroactivity (4/6)
If time t' is closest bridge preceding time t, then ® max{v’: v/ deleted attime > t} € {V' ¢
Q. : V' inserted at time > t'}
max{v’: v’ deleted at time > t} ® if v/ is deleted at some time > ¢

® then it is notin Q.

max{V’ ¢ Q. : V' inserted at time > t'} ® what values are in Q.?
® what value inserts INSERT(¢, insert(v)) in Quo
® max{v,Vv' ¢ Q: V inserted at time > t'}
® max{V' ¢ Qu: V' inserted attime > t'} €
{V': V' deleted at time > t}
= if maximum value is deleted between t" and t

® then this time is a bridge
® contradicting that ¢’ is bridge preceding t

23/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

24/26 2024-06-17

Priority Queues: Partial Retroactivity (5/6)

® keep track of inserted values

® use balanced binary search trees for O(log m)
overhead

@ BBST for Q.
@ BBST where leaves are inserts ordered by time
augmented with
® for each node x store
max{v’ ¢ Qs : v’ inserted in subtree of x}
® BBST where leaves are all updates ordered by
time augmented with
® |eaves store 0 for inserts with v € Q, 1 for
inserts with v ¢ Q. and —1 for delete-mins
® inner nodes store subtree sums

KIT

Karlsruhe Institute of Technology

® how can we find bridges? 2 PINGO
@ use third BBST and find prefix of updates

summing to 0

® requires O(log n) time as we traverse tree at

most twice
® this results in bridge t’

® use second BBST to identify maximum value
not in Q. on path to

® since BBST is augmented with these values,
this requires O(log n) time

® update all BBSTs in O(log n) time

Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

https://kurpicz.org

KIT

Priority Queues: Partial Retroactivity (6/6)

A priority queue can be partial retroactive with only
O(log m) overhead per partially retroactive operation

® requires three BBSTs
® updates need to update all BBSTs

25/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

SKIT

Conclusion and Outlook

This Lecture Advanced Data Structures

. strlng IS retroactive S B
® retroactive data structures PQ tring B-tree | SA & LCP |

Next Lecture

® |earned data structures Successor | CSAl RMQl

static/dynamic static/dynamic

BV succ. trees

range min-max tree succ. graphs

26/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

Bibliography | A“(IT

Karlsruhe Institute of Technology

[AV88] Alok Aggarwal and Jeffrey Scott Vitter. “The Input/Output Complexity of Sorting and Related
Problems”. In: Commun. ACM 31.9 (1988), pages 1116—1127. DOI: 10.1145/48529.48535.

[FG99] Paolo Ferragina and Roberto Grossi. “The String B-tree: A New Data Structure for String Search in
External Memory and Its Applications”. In: J. ACM 46.2 (1999), pages 236—280. DOI:
10.1145/301970.301973.

[FHMO1] Gudmund Skovbjerg Frandsen, Johan P. Hansen, and Peter Bro Miltersen. “Lower Bounds for
Dynamic Algebraic Problems”. In: Inf. Comput. 171.2 (2001), pages 333-349. DOI:
10.1006/1inco0.2001.3046.

27/26 2024-06-17 Florian Kurpicz | Advanced Data Structures | 09 String B-Trees & Temporal Data Structures 2 Institute of Theoretical Informatics, Algorithm Engineering

https://doi.org/10.1145/48529.48535
https://doi.org/10.1145/301970.301973
https://doi.org/10.1006/inco.2001.3046

	Appendix

