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Operations
INSERT(t, operation): insert operation at time t

DELETE(t): delete operation at time t

QUERY(t, query): ask query at time t

for a priority queue updates are
insert
delete-min

time is integer ò for simplicity otherwise use
order-maintenance data structure

0 1 2 3 4 now time

insert(7) insert(2) insert(3) del-min del-min queries

Definition: Partial Retroactivity
QUERY is only allowed for t = ∞ ò now

Definition: Full Retroactivity
QUERY is allowed at any time t

Definition: Nonoblivious Retroactivity
INSERT, DELETE, and QUERY at any time t but also
identify changed QUERY results
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priority queue with
insert
delete-min

delete-min makes PQ non-commutative

Lemma: Partial Retroactive PQ
A priority queue can be partial retroactive with only
O(logm) overhead per partially retroactive operation

va
lu

e

time
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what is the problem with
INSERT(t,delete-min())
INSERT(t,insert(i))

INSERT(t,delete-min()) creates chain-reaction

INSERT(t,insert(i)) creates chain-reaction

can we solve DELETE(t,delete-min()) using
INSERT(t,insert(i))? PINGO

insert deleted minimum right after deletion

va
lu

e

time
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let Qt be elements in PQ at time t

what values are in Q∞? ò partial retroactivity

what value inserts INSERT(t, insert(v)) in Q∞

values is max{v , v ′ : v ′ deleted at time ≥ t}
maintaining deleted elements is hard ò can
change a lot

Definition: Bridge
A time t ′ is a bridge if Qt′ ⊆ Q∞

all elements present at t ′ are present at t∞

va
lu

e

time

A CB

what times are bridges? PINGO
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Lemma: Deletions after Bridges
If time t ′ is closest bridge preceding time t , then

max{v ′ : v ′ deleted at time ≥ t}

=

max{v ′ /∈ Q∞ : v ′ inserted at time ≥ t ′}

Proof (Sketch)
max{v ′ /∈ Q∞ : v ′ inserted at time ≥ t ′} ∈
{v ′ : v ′ deleted at time ≥ t}

if maximum value is deleted between t ′ and t
then this time is a bridge
contradicting that t ′ is bridge preceding t

Proof (Sketch, cnt.)
max{v ′ : v ′ deleted at time ≥ t} ∈ {v ′ /∈
Q∞ : v ′ inserted at time ≥ t ′}

if v ′ is deleted at some time ≥ t
then it is not in Q∞

what values are in Q∞? ò partial retroactivity

what value inserts INSERT(t, insert(v)) in Q∞

max{v , v ′ /∈ Q∞ : v ′ inserted at time ≥ t ′}
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keep track of inserted values

use balanced binary search trees for O(logm)
overhead

BBST for Q∞ ò changed for each update

BBST where leaves are inserts ordered by time
augmented with

for each node x store
max{v ′ /∈ Q∞ : v ′ inserted in subtree of x}

BBST where leaves are all updates ordered by
time augmented with

leaves store 0 for inserts with v ∈ Q∞, 1 for
inserts with v /∈ Q∞ and −1 for delete-mins
inner nodes store subtree sums

how can we find bridges? PINGO

use third BBST and find prefix of updates
summing to 0

requires O(log n) time as we traverse tree at
most twice

this results in bridge t ′

use second BBST to identify maximum value
not in Q∞ on path to t ′

since BBST is augmented with these values,
this requires O(log n) time

update all BBSTs in O(log n) time
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Lemma: Partial Retroactive PQ
A priority queue can be partial retroactive with only
O(logm) overhead per partially retroactive operation

requires three BBSTs

updates need to update all BBSTs
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h : {0, . . . , u − 1} → {0, . . . ,m − 1}

n objects

from universe U = {0, . . . , u − 1}
hash table of size m ò m close to n

m ≪ u

Definition: Totally Random
P[h(x) = t] = 1/m

independent of h(y) for all x ̸= y ∈ U

requires Θ(u logm) bits of space to store ò too
big

Definition: Universal
choose h from family H with
Ph∈H [h(x) = h(y)] = O(1/m) for all
x ̸= y ∈ U

family is small to enable efficient encoding

h(x) = (ax mod u) mod m for 0 < a < p
and p being prime > u

h(x) = ax » (log u − logm) for m, u being
powers of two

Why is this family easier to store? PINGO
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Why is this family easier to store? PINGO
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Definition: k -wise Independent
choose h from family H with
P[h(x1) = t1& . . .&h(xk) = tk ] = O(1/mk) for
distinct x1, . . . , xk ∈ U

implies universal

h(x) = ((
∑k−1

i=0 aix i) mod p) mod m for
0 ≤ ai < p and 0 < ak−1 < p

pairwise (k = 2) independence is stronger than
universal

h(x) = ((ax + b) mod u) mod m

Definition: Simple Tabulation Hashing
view x as vector x1, . . . , xc of characters

totally random hash table Ti for each character

h(x) = T1(x1) xor . . . xor Tc(xc)

Why can we use totally random hash tables?
PINGO

O(cu1/c) space

O(c) time to compute

3-wise independent
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Definition: Perfect Hash Function
injective hash function

maps n objects to m slots

lower space bound for m = (1 + ϵ)n is

log e − ϵ log
1 + ϵ

ϵ

for m close to n there are likely collisions

Definition: Minimal Perfect Hash Function
bijective hash function

maps n objects to m = n slots

h : N → [0, n)

lower space bound as for PHF with ϵ = 0:

log e ≈ 1.44

no collisions

can we make PHF to MPHF? PINGO
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for each object calculate three potential slots
(h0, h1, and h2)

for each slot that contains only one object,
remove the object from all its other slots

one slot per object

if that does not work use other hash functions

use rank data structure to map slots to [0, n)

example on the board �

1.95 bits per object when m = 1.23n

how to check if hash function works

interpret each slot as node in a hypergraph

objects are edges

if graph is peelable, we have a feasible mapping

Definition: Peelable
A hypergraph is peelable, if it is possible to obtain a
graph without edges by iteratively taking away edges
that contain a node with degree 1

example on the board �
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partition keys into buckets

set m = (1 + ϵ)n ò 1.01n

sort partitions by size

starting with largest bucket, find universal hash
function mapping all keys to empty slots

if key mapped to non-empty slot, try next hash
function

for each bucket store universal hash function

use rank data structure to map slots to [0, n)

example on the board �

can be used as PHF

there are a lot of tricks w.r.t. bucket sizes and
size distributions

requires around 2.05 bits per object
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partition keys into buckets of size b

for each bucket compute splitting trees

split keys into smaller sets

stop when sets have size ℓ

upper aggregation levels have fanout 2
lower two aggregation levels have fanout

max{2, ⌈0.35ℓ+ 0.55⌉}
max{2, ⌈0.21ℓ+ 0.9⌉}

last level is leaf level

find bijections

Bucket 0 Bucket 1 Bucket 2

Input objects
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tree structure is well defined

store information for each node in preorder

store hash function for each splitter

encode function using Golomb-Rice

encodings of splitting trees stored in one bit
vector
use Elias-Fano to store

size of buckets
starting position of bucket in bit vector

Bucket 0 Bucket 1 Bucket 2

Input objects
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Definition: Golomb Code
Given an integer x > 0 and a constant b > 0, the
Golomb code consists of

q = ⌊ x
b ⌋

r = x − qb = x % b

c = ⌈lg b⌉
with

(x)Gol(b) = (q)1(r)2

where (r)2 depends on its size

r < 2⌊lg b⌋−1: r requires ⌊lg b⌋ bits and starts
with a 0

r ≥ 2⌊lg b⌋−1: r requires ⌈lg b⌉ bits and starts
with a 1 and it encodes r − 2⌊lg b⌋−1

b has to be fixed for all codes

still variable length

Golomb-Rice is special case where r is power
of two

for b = 5, there are 4 remainders:
00, 01, 100, 101, and 110

2⌊lg 5⌋−1 = 2

0, 1 < 2: 00 and 01 require 2 bits

2, 3, 4 ≥ 2: require 3 bits and encode 0, 1, 2
starting with 1
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find perfect hash function for keys in leaves

test hash functions brute force

use hash value modulo ℓ

set bit in “bit vector” of length ℓ

all bits set indicates bijection

Bucket 0 Bucket 1 Bucket 2

Input objects
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find bucket

follow splitting tree

accumulate number of objects to the left

use bijection in leaf
result is sum of

objects in previous buckets
objects to the left in splitting tree
value of bijection

Bucket 0 Bucket 1 Bucket 2

Input objects
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Based Minimal Perfect Hash Functions”. In:
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randomly distribute objects in leaf in two sets A
and B

hash objects in both set

two “bit vectors”: cyclic shift one until all bits are
set when ORed

store hash function and rotation

Lemma: Rotation Fitting
Let |A| = A, |B| = B, and P(R) be the probability of
finding a bijection using rotation fitting. Let P(B)
denote the probability of finding a bijection using
RecSplit’s brute force strategy. Then,
P(R) → mP(B) for m → ∞.
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Proof (Sketch)
consider number of different injective functions
under cyclic shifts

bit vector of length m with B set bits

total number of equivalence classes under
rotation is 1

m

∑
d divides gcd(A,B) ϕ(d)

(m/d
B/d

)
probability of the event I that there is a rotation
has the m least significant bits set is

P(I) ≥ m
1∑

d divides gcd(A,B) ϕ(d)
(m/d
B/d

) ,
ϕ(i) = |{j ≤ i : gcd(i, j) = 1}| is Euler’s totient
function

Proof (Sketch, cnt.)
determine the probability P(R) using the events

A: popcount(a)=A
B: popcount(b)=B
B: found bijection using brute-force
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Proof (Sketch, ctn.)

P(R) = P(A)P(B)P(I)

≥ m!

(m − A)!mA · m!

(m − B)!mB · P(I) = m!

mm · m!

A!B!
· P(I) = P(B) · m!

A!B!
· P(I)

≥ P(B) · m!

A!B!
· m

1∑
d|gcd(A,B) ϕ(d)

(m/d
b/d

) = P(B) · m · m!

m! + (A!B!)
∑

d |gcd(A,B),d ̸=1 ϕ(d)
(m/d

b/d

)
= P(B) · m · 1

1 +
∑

d|gcd(A,B),d ̸=1 ϕ(d)
(m/d)!A!B!

m!(A/d)!(B/d)!

∼ P(B) · m · 1

1 +
∑

d|gcd(A,B),d ̸=1 ϕ(d)
√

d AA−A/dBB−B/d

mm−m/d

→ P(B) · m for m → ∞
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Rotation Fitting (3/3)



Computing on the GPU
several streaming multiprocessors (SMs)

each SM contains many arithmetic logic units
(ALUs)

several threads operat in lock-step (warp)

to hide latencies, each SM is oversubscribed
with more threads than ALUs

in CUDA, kernels are functions that can be
executed on the GPU

a kernel is executed on a grid of thread blocks

use GPU to determine splitting and bijections

Kernel

Kernel

Kernel

8888888888 8

24 24 24 16

72Kernel

88Kernel
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Parallel RecSplit on the GPU



Intel i7 11700 processor with 8 cores (16
hardware threads (HT)), base clock: 2.5 GHz

AVX-512.

Ubuntu 22.04 with Linux 5.15.0

NVIDIA RTX 3090 GPU

AMD EPYC 7702P processor with 64 cores
(128 hardware threads), base clock: 2.0 GHz

AVX2

Ubuntu 20.04 with Linux 5.4.0

GNU C++ compiler v.11.2.0 (-O3
-march=native)
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Experimental Evaluation
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Rotation Fitting



Configuration Method Bijections Threads B/Obj Constr. Speedup

ℓ = 16, b = 2000 RecSplit [EGV20b] Brute force 1 1.560 1175.4 1
RecSplit Brute force 16 1.560 206.5 5
SIMDRecSplit Rotation fitting 1 1.560 138.0 8
SIMDRecSplit Rotation fitting 16 1.560 27.9 42
GPURecSplit Brute force GPU 1.560 1.8 655
GPURecSplit Rotation fitting GPU 1.560 1.0 1173

ℓ = 18, b = 50 RecSplit [EGV20b] Brute force 1 1.707 2942.9 1
RecSplit Brute force 16 1.713 504.0 5
SIMDRecSplit Rotation fitting 1 1.709 58.3 50
SIMDRecSplit Rotation fitting 16 1.708 12.3 239
GPURecSplit Brute force GPU 1.708 5.2 564
GPURecSplit Rotation fitting GPU 1.709 0.5 5438

ℓ = 24, b = 2000 GPURecSplit Brute force GPU 1.496 2300.9 —
GPURecSplit Rotation fitting GPU 1.496 467.9 —
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Overview Results
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Comparison with Competitors
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conclusion retroactive data structures

minimal perfect hash functions

Next Lecture (15.07.2024)
NO LECTURE ON 08.07.2024

learned data structures

Oral Exams and Project
registration exams and project will open this
week

exam dates: 19.08., 20.08., 26.08.,28.08.,
30.08., 09.09, and 11.09.

Advanced Data Structures

static/dynamic
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static/dynamic

succ. trees

range min-max tree succ. graphs

Successor RMQ

SA & LCPString B-tree

CSA
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Conclusion and Outlook
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