
Advanced Data Structures

Lecture 10: Retroactive Data Structures (cnt.) and Minimal Perfect Hashing

Florian Kurpicz

The slides are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License cba: www.creativecommons.org/licenses/by-sa/4.0 | commit c70729e compiled at 2024-07-01-12:39

KIT – The Research University in the Helmholtz Association www.kit.edu

https://creativecommons.org/licenses/by-sa/4.0/
https://www.kit.edu

https://pingo.scc.kit.edu/489786

2/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

PINGO

https://pingo.scc.kit.edu/489786
https://pingo.scc.kit.edu/489786

Operations
INSERT(t, operation): insert operation at time t

DELETE(t): delete operation at time t

QUERY(t, query): ask query at time t

for a priority queue updates are
insert
delete-min

time is integer ò for simplicity otherwise use
order-maintenance data structure

0 1 2 3 4 now time

insert(7) insert(2) insert(3) del-min del-min queries

Definition: Partial Retroactivity
QUERY is only allowed for t = ∞ ò now

Definition: Full Retroactivity
QUERY is allowed at any time t

Definition: Nonoblivious Retroactivity
INSERT, DELETE, and QUERY at any time t but also
identify changed QUERY results

3/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

Recap: Retroactive Data Structures

Operations
INSERT(t, operation): insert operation at time t

DELETE(t): delete operation at time t

QUERY(t, query): ask query at time t

for a priority queue updates are
insert
delete-min

time is integer ò for simplicity otherwise use
order-maintenance data structure

0 1 2 3 4 now time

insert(7) insert(2) insert(3) del-min del-min queries

Definition: Partial Retroactivity
QUERY is only allowed for t = ∞ ò now

Definition: Full Retroactivity
QUERY is allowed at any time t

Definition: Nonoblivious Retroactivity
INSERT, DELETE, and QUERY at any time t but also
identify changed QUERY results

3/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

Recap: Retroactive Data Structures

Operations
INSERT(t, operation): insert operation at time t

DELETE(t): delete operation at time t

QUERY(t, query): ask query at time t

for a priority queue updates are
insert
delete-min

time is integer ò for simplicity otherwise use
order-maintenance data structure

0 1 2 3 4 now time

insert(7) insert(2) insert(3) del-min del-min queries

Definition: Partial Retroactivity
QUERY is only allowed for t = ∞ ò now

Definition: Full Retroactivity
QUERY is allowed at any time t

Definition: Nonoblivious Retroactivity
INSERT, DELETE, and QUERY at any time t but also
identify changed QUERY results

3/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

Recap: Retroactive Data Structures

Operations
INSERT(t, operation): insert operation at time t

DELETE(t): delete operation at time t

QUERY(t, query): ask query at time t

for a priority queue updates are
insert
delete-min

time is integer ò for simplicity otherwise use
order-maintenance data structure

0 1 2 3 4 now time

insert(7) insert(2) insert(3) del-min del-min queries

Definition: Partial Retroactivity
QUERY is only allowed for t = ∞ ò now

Definition: Full Retroactivity
QUERY is allowed at any time t

Definition: Nonoblivious Retroactivity
INSERT, DELETE, and QUERY at any time t but also
identify changed QUERY results

3/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

Recap: Retroactive Data Structures

priority queue with
insert
delete-min

delete-min makes PQ non-commutative

Lemma: Partial Retroactive PQ
A priority queue can be partial retroactive with only
O(logm) overhead per partially retroactive operation

va
lu

e

time

4/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

Priority Queues: Partial Retroactivity (1/6)

priority queue with
insert
delete-min

delete-min makes PQ non-commutative

Lemma: Partial Retroactive PQ
A priority queue can be partial retroactive with only
O(logm) overhead per partially retroactive operation

va
lu

e

time

4/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

Priority Queues: Partial Retroactivity (1/6)

priority queue with
insert
delete-min

delete-min makes PQ non-commutative

Lemma: Partial Retroactive PQ
A priority queue can be partial retroactive with only
O(logm) overhead per partially retroactive operation

va
lu

e

time

4/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

Priority Queues: Partial Retroactivity (1/6)

what is the problem with
INSERT(t,delete-min())
INSERT(t,insert(i))

INSERT(t,delete-min()) creates chain-reaction

INSERT(t,insert(i)) creates chain-reaction

can we solve DELETE(t,delete-min()) using
INSERT(t,insert(i))? PINGO

insert deleted minimum right after deletion

va
lu

e

time

5/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

Priority Queues: Partial Retroactivity (2/6)

https://kurpicz.org

what is the problem with
INSERT(t,delete-min())
INSERT(t,insert(i))

INSERT(t,delete-min()) creates chain-reaction

INSERT(t,insert(i)) creates chain-reaction

can we solve DELETE(t,delete-min()) using
INSERT(t,insert(i))? PINGO

insert deleted minimum right after deletion

va
lu

e

time

5/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

Priority Queues: Partial Retroactivity (2/6)

https://kurpicz.org

what is the problem with
INSERT(t,delete-min())
INSERT(t,insert(i))

INSERT(t,delete-min()) creates chain-reaction

INSERT(t,insert(i)) creates chain-reaction

can we solve DELETE(t,delete-min()) using
INSERT(t,insert(i))? PINGO

insert deleted minimum right after deletion

va
lu

e

time

5/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

Priority Queues: Partial Retroactivity (2/6)

https://kurpicz.org

what is the problem with
INSERT(t,delete-min())
INSERT(t,insert(i))

INSERT(t,delete-min()) creates chain-reaction

INSERT(t,insert(i)) creates chain-reaction

can we solve DELETE(t,delete-min()) using
INSERT(t,insert(i))? PINGO

insert deleted minimum right after deletion

va
lu

e

time

5/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

Priority Queues: Partial Retroactivity (2/6)

https://kurpicz.org

what is the problem with
INSERT(t,delete-min())
INSERT(t,insert(i))

INSERT(t,delete-min()) creates chain-reaction

INSERT(t,insert(i)) creates chain-reaction

can we solve DELETE(t,delete-min()) using
INSERT(t,insert(i))? PINGO

insert deleted minimum right after deletion

va
lu

e

time

5/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

Priority Queues: Partial Retroactivity (2/6)

https://kurpicz.org

let Qt be elements in PQ at time t

what values are in Q∞? ò partial retroactivity

what value inserts INSERT(t, insert(v)) in Q∞

values is max{v , v ′ : v ′ deleted at time ≥ t}
maintaining deleted elements is hard ò can
change a lot

Definition: Bridge
A time t ′ is a bridge if Qt′ ⊆ Q∞

all elements present at t ′ are present at t∞

va
lu

e

time

A CB

what times are bridges? PINGO

6/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

Priority Queues: Partial Retroactivity (3/6)

https://kurpicz.org

let Qt be elements in PQ at time t

what values are in Q∞? ò partial retroactivity

what value inserts INSERT(t, insert(v)) in Q∞

values is max{v , v ′ : v ′ deleted at time ≥ t}
maintaining deleted elements is hard ò can
change a lot

Definition: Bridge
A time t ′ is a bridge if Qt′ ⊆ Q∞

all elements present at t ′ are present at t∞

va
lu

e

time

A CB

what times are bridges? PINGO

6/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

Priority Queues: Partial Retroactivity (3/6)

https://kurpicz.org

let Qt be elements in PQ at time t

what values are in Q∞? ò partial retroactivity

what value inserts INSERT(t, insert(v)) in Q∞

values is max{v , v ′ : v ′ deleted at time ≥ t}
maintaining deleted elements is hard ò can
change a lot

Definition: Bridge
A time t ′ is a bridge if Qt′ ⊆ Q∞

all elements present at t ′ are present at t∞

va
lu

e

time

A CB

what times are bridges? PINGO

6/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

Priority Queues: Partial Retroactivity (3/6)

https://kurpicz.org

let Qt be elements in PQ at time t

what values are in Q∞? ò partial retroactivity

what value inserts INSERT(t, insert(v)) in Q∞

values is max{v , v ′ : v ′ deleted at time ≥ t}
maintaining deleted elements is hard ò can
change a lot

Definition: Bridge
A time t ′ is a bridge if Qt′ ⊆ Q∞

all elements present at t ′ are present at t∞

va
lu

e

time

A C

B

what times are bridges? PINGO

6/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

Priority Queues: Partial Retroactivity (3/6)

https://kurpicz.org

Lemma: Deletions after Bridges
If time t ′ is closest bridge preceding time t , then

max{v ′ : v ′ deleted at time ≥ t}

=

max{v ′ /∈ Q∞ : v ′ inserted at time ≥ t ′}

Proof (Sketch)
max{v ′ /∈ Q∞ : v ′ inserted at time ≥ t ′} ∈
{v ′ : v ′ deleted at time ≥ t}

if maximum value is deleted between t ′ and t
then this time is a bridge
contradicting that t ′ is bridge preceding t

Proof (Sketch, cnt.)
max{v ′ : v ′ deleted at time ≥ t} ∈ {v ′ /∈
Q∞ : v ′ inserted at time ≥ t ′}

if v ′ is deleted at some time ≥ t
then it is not in Q∞

what values are in Q∞? ò partial retroactivity

what value inserts INSERT(t, insert(v)) in Q∞

max{v , v ′ /∈ Q∞ : v ′ inserted at time ≥ t ′}

7/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

Priority Queues: Partial Retroactivity (4/6)

Lemma: Deletions after Bridges
If time t ′ is closest bridge preceding time t , then

max{v ′ : v ′ deleted at time ≥ t}

=

max{v ′ /∈ Q∞ : v ′ inserted at time ≥ t ′}

Proof (Sketch)
max{v ′ /∈ Q∞ : v ′ inserted at time ≥ t ′} ∈
{v ′ : v ′ deleted at time ≥ t}

if maximum value is deleted between t ′ and t
then this time is a bridge
contradicting that t ′ is bridge preceding t

Proof (Sketch, cnt.)
max{v ′ : v ′ deleted at time ≥ t} ∈ {v ′ /∈
Q∞ : v ′ inserted at time ≥ t ′}

if v ′ is deleted at some time ≥ t
then it is not in Q∞

what values are in Q∞? ò partial retroactivity

what value inserts INSERT(t, insert(v)) in Q∞

max{v , v ′ /∈ Q∞ : v ′ inserted at time ≥ t ′}

7/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

Priority Queues: Partial Retroactivity (4/6)

Lemma: Deletions after Bridges
If time t ′ is closest bridge preceding time t , then

max{v ′ : v ′ deleted at time ≥ t}

=

max{v ′ /∈ Q∞ : v ′ inserted at time ≥ t ′}

Proof (Sketch)
max{v ′ /∈ Q∞ : v ′ inserted at time ≥ t ′} ∈
{v ′ : v ′ deleted at time ≥ t}

if maximum value is deleted between t ′ and t
then this time is a bridge
contradicting that t ′ is bridge preceding t

Proof (Sketch, cnt.)
max{v ′ : v ′ deleted at time ≥ t} ∈ {v ′ /∈
Q∞ : v ′ inserted at time ≥ t ′}

if v ′ is deleted at some time ≥ t
then it is not in Q∞

what values are in Q∞? ò partial retroactivity

what value inserts INSERT(t, insert(v)) in Q∞

max{v , v ′ /∈ Q∞ : v ′ inserted at time ≥ t ′}

7/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

Priority Queues: Partial Retroactivity (4/6)

Lemma: Deletions after Bridges
If time t ′ is closest bridge preceding time t , then

max{v ′ : v ′ deleted at time ≥ t}

=

max{v ′ /∈ Q∞ : v ′ inserted at time ≥ t ′}

Proof (Sketch)
max{v ′ /∈ Q∞ : v ′ inserted at time ≥ t ′} ∈
{v ′ : v ′ deleted at time ≥ t}

if maximum value is deleted between t ′ and t
then this time is a bridge
contradicting that t ′ is bridge preceding t

Proof (Sketch, cnt.)
max{v ′ : v ′ deleted at time ≥ t} ∈ {v ′ /∈
Q∞ : v ′ inserted at time ≥ t ′}

if v ′ is deleted at some time ≥ t
then it is not in Q∞

what values are in Q∞? ò partial retroactivity

what value inserts INSERT(t, insert(v)) in Q∞

max{v , v ′ /∈ Q∞ : v ′ inserted at time ≥ t ′}

7/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

Priority Queues: Partial Retroactivity (4/6)

keep track of inserted values

use balanced binary search trees for O(logm)
overhead

BBST for Q∞ ò changed for each update

BBST where leaves are inserts ordered by time
augmented with

for each node x store
max{v ′ /∈ Q∞ : v ′ inserted in subtree of x}

BBST where leaves are all updates ordered by
time augmented with

leaves store 0 for inserts with v ∈ Q∞, 1 for
inserts with v /∈ Q∞ and −1 for delete-mins
inner nodes store subtree sums

how can we find bridges? PINGO

use third BBST and find prefix of updates
summing to 0

requires O(log n) time as we traverse tree at
most twice

this results in bridge t ′

use second BBST to identify maximum value
not in Q∞ on path to t ′

since BBST is augmented with these values,
this requires O(log n) time

update all BBSTs in O(log n) time

8/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

Priority Queues: Partial Retroactivity (5/6)

https://kurpicz.org

keep track of inserted values

use balanced binary search trees for O(logm)
overhead

BBST for Q∞ ò changed for each update

BBST where leaves are inserts ordered by time
augmented with

for each node x store
max{v ′ /∈ Q∞ : v ′ inserted in subtree of x}

BBST where leaves are all updates ordered by
time augmented with

leaves store 0 for inserts with v ∈ Q∞, 1 for
inserts with v /∈ Q∞ and −1 for delete-mins
inner nodes store subtree sums

how can we find bridges? PINGO

use third BBST and find prefix of updates
summing to 0

requires O(log n) time as we traverse tree at
most twice

this results in bridge t ′

use second BBST to identify maximum value
not in Q∞ on path to t ′

since BBST is augmented with these values,
this requires O(log n) time

update all BBSTs in O(log n) time

8/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

Priority Queues: Partial Retroactivity (5/6)

https://kurpicz.org

keep track of inserted values

use balanced binary search trees for O(logm)
overhead

BBST for Q∞ ò changed for each update
BBST where leaves are inserts ordered by time
augmented with

for each node x store
max{v ′ /∈ Q∞ : v ′ inserted in subtree of x}

BBST where leaves are all updates ordered by
time augmented with

leaves store 0 for inserts with v ∈ Q∞, 1 for
inserts with v /∈ Q∞ and −1 for delete-mins
inner nodes store subtree sums

how can we find bridges? PINGO

use third BBST and find prefix of updates
summing to 0

requires O(log n) time as we traverse tree at
most twice

this results in bridge t ′

use second BBST to identify maximum value
not in Q∞ on path to t ′

since BBST is augmented with these values,
this requires O(log n) time

update all BBSTs in O(log n) time

8/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

Priority Queues: Partial Retroactivity (5/6)

https://kurpicz.org

keep track of inserted values

use balanced binary search trees for O(logm)
overhead

BBST for Q∞ ò changed for each update
BBST where leaves are inserts ordered by time
augmented with

for each node x store
max{v ′ /∈ Q∞ : v ′ inserted in subtree of x}

BBST where leaves are all updates ordered by
time augmented with

leaves store 0 for inserts with v ∈ Q∞, 1 for
inserts with v /∈ Q∞ and −1 for delete-mins
inner nodes store subtree sums

how can we find bridges? PINGO

use third BBST and find prefix of updates
summing to 0

requires O(log n) time as we traverse tree at
most twice

this results in bridge t ′

use second BBST to identify maximum value
not in Q∞ on path to t ′

since BBST is augmented with these values,
this requires O(log n) time

update all BBSTs in O(log n) time

8/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

Priority Queues: Partial Retroactivity (5/6)

https://kurpicz.org

keep track of inserted values

use balanced binary search trees for O(logm)
overhead

BBST for Q∞ ò changed for each update
BBST where leaves are inserts ordered by time
augmented with

for each node x store
max{v ′ /∈ Q∞ : v ′ inserted in subtree of x}

BBST where leaves are all updates ordered by
time augmented with

leaves store 0 for inserts with v ∈ Q∞, 1 for
inserts with v /∈ Q∞ and −1 for delete-mins
inner nodes store subtree sums

how can we find bridges? PINGO

use third BBST and find prefix of updates
summing to 0

requires O(log n) time as we traverse tree at
most twice

this results in bridge t ′

use second BBST to identify maximum value
not in Q∞ on path to t ′

since BBST is augmented with these values,
this requires O(log n) time

update all BBSTs in O(log n) time

8/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

Priority Queues: Partial Retroactivity (5/6)

https://kurpicz.org

keep track of inserted values

use balanced binary search trees for O(logm)
overhead

BBST for Q∞ ò changed for each update
BBST where leaves are inserts ordered by time
augmented with

for each node x store
max{v ′ /∈ Q∞ : v ′ inserted in subtree of x}

BBST where leaves are all updates ordered by
time augmented with

leaves store 0 for inserts with v ∈ Q∞, 1 for
inserts with v /∈ Q∞ and −1 for delete-mins
inner nodes store subtree sums

how can we find bridges? PINGO

use third BBST and find prefix of updates
summing to 0

requires O(log n) time as we traverse tree at
most twice

this results in bridge t ′

use second BBST to identify maximum value
not in Q∞ on path to t ′

since BBST is augmented with these values,
this requires O(log n) time

update all BBSTs in O(log n) time

8/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

Priority Queues: Partial Retroactivity (5/6)

https://kurpicz.org

keep track of inserted values

use balanced binary search trees for O(logm)
overhead

BBST for Q∞ ò changed for each update
BBST where leaves are inserts ordered by time
augmented with

for each node x store
max{v ′ /∈ Q∞ : v ′ inserted in subtree of x}

BBST where leaves are all updates ordered by
time augmented with

leaves store 0 for inserts with v ∈ Q∞, 1 for
inserts with v /∈ Q∞ and −1 for delete-mins
inner nodes store subtree sums

how can we find bridges? PINGO

use third BBST and find prefix of updates
summing to 0

requires O(log n) time as we traverse tree at
most twice

this results in bridge t ′

use second BBST to identify maximum value
not in Q∞ on path to t ′

since BBST is augmented with these values,
this requires O(log n) time

update all BBSTs in O(log n) time

8/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

Priority Queues: Partial Retroactivity (5/6)

https://kurpicz.org

keep track of inserted values

use balanced binary search trees for O(logm)
overhead

BBST for Q∞ ò changed for each update
BBST where leaves are inserts ordered by time
augmented with

for each node x store
max{v ′ /∈ Q∞ : v ′ inserted in subtree of x}

BBST where leaves are all updates ordered by
time augmented with

leaves store 0 for inserts with v ∈ Q∞, 1 for
inserts with v /∈ Q∞ and −1 for delete-mins
inner nodes store subtree sums

how can we find bridges? PINGO

use third BBST and find prefix of updates
summing to 0

requires O(log n) time as we traverse tree at
most twice

this results in bridge t ′

use second BBST to identify maximum value
not in Q∞ on path to t ′

since BBST is augmented with these values,
this requires O(log n) time

update all BBSTs in O(log n) time

8/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

Priority Queues: Partial Retroactivity (5/6)

https://kurpicz.org

Lemma: Partial Retroactive PQ
A priority queue can be partial retroactive with only
O(logm) overhead per partially retroactive operation

requires three BBSTs

updates need to update all BBSTs

9/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

Priority Queues: Partial Retroactivity (6/6)

h : {0, . . . , u − 1} → {0, . . . ,m − 1}

n objects

from universe U = {0, . . . , u − 1}
hash table of size m ò m close to n

m ≪ u

Definition: Totally Random
P[h(x) = t] = 1/m

independent of h(y) for all x ̸= y ∈ U

requires Θ(u logm) bits of space to store ò too
big

Definition: Universal
choose h from family H with
Ph∈H [h(x) = h(y)] = O(1/m) for all
x ̸= y ∈ U

family is small to enable efficient encoding

h(x) = (ax mod u) mod m for 0 < a < p
and p being prime > u

h(x) = ax » (log u − logm) for m, u being
powers of two

Why is this family easier to store? PINGO

10/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

Hashing (1/2)

https://kurpicz.org

h : {0, . . . , u − 1} → {0, . . . ,m − 1}

n objects

from universe U = {0, . . . , u − 1}
hash table of size m ò m close to n

m ≪ u

Definition: Totally Random
P[h(x) = t] = 1/m

independent of h(y) for all x ̸= y ∈ U

requires Θ(u logm) bits of space to store ò too
big

Definition: Universal
choose h from family H with
Ph∈H [h(x) = h(y)] = O(1/m) for all
x ̸= y ∈ U

family is small to enable efficient encoding

h(x) = (ax mod u) mod m for 0 < a < p
and p being prime > u

h(x) = ax » (log u − logm) for m, u being
powers of two

Why is this family easier to store? PINGO

10/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

Hashing (1/2)

https://kurpicz.org

h : {0, . . . , u − 1} → {0, . . . ,m − 1}

n objects

from universe U = {0, . . . , u − 1}
hash table of size m ò m close to n

m ≪ u

Definition: Totally Random
P[h(x) = t] = 1/m

independent of h(y) for all x ̸= y ∈ U

requires Θ(u logm) bits of space to store ò too
big

Definition: Universal
choose h from family H with
Ph∈H [h(x) = h(y)] = O(1/m) for all
x ̸= y ∈ U

family is small to enable efficient encoding

h(x) = (ax mod u) mod m for 0 < a < p
and p being prime > u

h(x) = ax » (log u − logm) for m, u being
powers of two

Why is this family easier to store? PINGO

10/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

Hashing (1/2)

https://kurpicz.org

h : {0, . . . , u − 1} → {0, . . . ,m − 1}

n objects

from universe U = {0, . . . , u − 1}
hash table of size m ò m close to n

m ≪ u

Definition: Totally Random
P[h(x) = t] = 1/m

independent of h(y) for all x ̸= y ∈ U

requires Θ(u logm) bits of space to store ò too
big

Definition: Universal
choose h from family H with
Ph∈H [h(x) = h(y)] = O(1/m) for all
x ̸= y ∈ U

family is small to enable efficient encoding

h(x) = (ax mod u) mod m for 0 < a < p
and p being prime > u

h(x) = ax » (log u − logm) for m, u being
powers of two

Why is this family easier to store? PINGO

10/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

Hashing (1/2)

https://kurpicz.org

Definition: k -wise Independent
choose h from family H with
P[h(x1) = t1& . . .&h(xk) = tk] = O(1/mk) for
distinct x1, . . . , xk ∈ U

implies universal

h(x) = ((
∑k−1

i=0 aix i) mod p) mod m for
0 ≤ ai < p and 0 < ak−1 < p

pairwise (k = 2) independence is stronger than
universal

h(x) = ((ax + b) mod u) mod m

Definition: Simple Tabulation Hashing
view x as vector x1, . . . , xc of characters

totally random hash table Ti for each character

h(x) = T1(x1) xor . . . xor Tc(xc)

Why can we use totally random hash tables?
PINGO

O(cu1/c) space

O(c) time to compute

3-wise independent

11/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

Hashing (2/2)

https://kurpicz.org

Definition: k -wise Independent
choose h from family H with
P[h(x1) = t1& . . .&h(xk) = tk] = O(1/mk) for
distinct x1, . . . , xk ∈ U

implies universal

h(x) = ((
∑k−1

i=0 aix i) mod p) mod m for
0 ≤ ai < p and 0 < ak−1 < p

pairwise (k = 2) independence is stronger than
universal

h(x) = ((ax + b) mod u) mod m

Definition: Simple Tabulation Hashing
view x as vector x1, . . . , xc of characters

totally random hash table Ti for each character

h(x) = T1(x1) xor . . . xor Tc(xc)

Why can we use totally random hash tables?
PINGO

O(cu1/c) space

O(c) time to compute

3-wise independent

11/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

Hashing (2/2)

https://kurpicz.org

Definition: k -wise Independent
choose h from family H with
P[h(x1) = t1& . . .&h(xk) = tk] = O(1/mk) for
distinct x1, . . . , xk ∈ U

implies universal

h(x) = ((
∑k−1

i=0 aix i) mod p) mod m for
0 ≤ ai < p and 0 < ak−1 < p

pairwise (k = 2) independence is stronger than
universal

h(x) = ((ax + b) mod u) mod m

Definition: Simple Tabulation Hashing
view x as vector x1, . . . , xc of characters

totally random hash table Ti for each character

h(x) = T1(x1) xor . . . xor Tc(xc)

Why can we use totally random hash tables?
PINGO

O(cu1/c) space

O(c) time to compute

3-wise independent

11/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

Hashing (2/2)

https://kurpicz.org

Definition: k -wise Independent
choose h from family H with
P[h(x1) = t1& . . .&h(xk) = tk] = O(1/mk) for
distinct x1, . . . , xk ∈ U

implies universal

h(x) = ((
∑k−1

i=0 aix i) mod p) mod m for
0 ≤ ai < p and 0 < ak−1 < p

pairwise (k = 2) independence is stronger than
universal

h(x) = ((ax + b) mod u) mod m

Definition: Simple Tabulation Hashing
view x as vector x1, . . . , xc of characters

totally random hash table Ti for each character

h(x) = T1(x1) xor . . . xor Tc(xc)

Why can we use totally random hash tables?
PINGO

O(cu1/c) space

O(c) time to compute

3-wise independent

11/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

Hashing (2/2)

https://kurpicz.org

Definition: k -wise Independent
choose h from family H with
P[h(x1) = t1& . . .&h(xk) = tk] = O(1/mk) for
distinct x1, . . . , xk ∈ U

implies universal

h(x) = ((
∑k−1

i=0 aix i) mod p) mod m for
0 ≤ ai < p and 0 < ak−1 < p

pairwise (k = 2) independence is stronger than
universal

h(x) = ((ax + b) mod u) mod m

Definition: Simple Tabulation Hashing
view x as vector x1, . . . , xc of characters

totally random hash table Ti for each character

h(x) = T1(x1) xor . . . xor Tc(xc)

Why can we use totally random hash tables?
PINGO

O(cu1/c) space

O(c) time to compute

3-wise independent

11/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

Hashing (2/2)

https://kurpicz.org

Definition: k -wise Independent
choose h from family H with
P[h(x1) = t1& . . .&h(xk) = tk] = O(1/mk) for
distinct x1, . . . , xk ∈ U

implies universal

h(x) = ((
∑k−1

i=0 aix i) mod p) mod m for
0 ≤ ai < p and 0 < ak−1 < p

pairwise (k = 2) independence is stronger than
universal

h(x) = ((ax + b) mod u) mod m

Definition: Simple Tabulation Hashing
view x as vector x1, . . . , xc of characters

totally random hash table Ti for each character

h(x) = T1(x1) xor . . . xor Tc(xc)

Why can we use totally random hash tables?
PINGO

O(cu1/c) space

O(c) time to compute

3-wise independent

11/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

Hashing (2/2)

https://kurpicz.org

Definition: Perfect Hash Function
injective hash function

maps n objects to m slots

lower space bound for m = (1 + ϵ)n is

log e − ϵ log
1 + ϵ

ϵ

for m close to n there are likely collisions

Definition: Minimal Perfect Hash Function
bijective hash function

maps n objects to m = n slots

h : N → [0, n)

lower space bound as for PHF with ϵ = 0:

log e ≈ 1.44

no collisions

can we make PHF to MPHF? PINGO

12/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

Minimal Perfect Hashing

https://kurpicz.org

Definition: Perfect Hash Function
injective hash function

maps n objects to m slots

lower space bound for m = (1 + ϵ)n is

log e − ϵ log
1 + ϵ

ϵ

for m close to n there are likely collisions

Definition: Minimal Perfect Hash Function
bijective hash function

maps n objects to m = n slots

h : N → [0, n)

lower space bound as for PHF with ϵ = 0:

log e ≈ 1.44

no collisions

can we make PHF to MPHF? PINGO

12/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

Minimal Perfect Hashing

https://kurpicz.org

Definition: Perfect Hash Function
injective hash function

maps n objects to m slots

lower space bound for m = (1 + ϵ)n is

log e − ϵ log
1 + ϵ

ϵ

for m close to n there are likely collisions

Definition: Minimal Perfect Hash Function
bijective hash function

maps n objects to m = n slots

h : N → [0, n)

lower space bound as for PHF with ϵ = 0:

log e ≈ 1.44

no collisions

can we make PHF to MPHF? PINGO

12/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

Minimal Perfect Hashing

https://kurpicz.org

for each object calculate three potential slots
(h0, h1, and h2)

for each slot that contains only one object,
remove the object from all its other slots

one slot per object

if that does not work use other hash functions

use rank data structure to map slots to [0, n)

example on the board �

1.95 bits per object when m = 1.23n

how to check if hash function works

interpret each slot as node in a hypergraph

objects are edges

if graph is peelable, we have a feasible mapping

Definition: Peelable
A hypergraph is peelable, if it is possible to obtain a
graph without edges by iteratively taking away edges
that contain a node with degree 1

example on the board �

13/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

BDZ (RAM) Algorithm [BPZ13]

for each object calculate three potential slots
(h0, h1, and h2)

for each slot that contains only one object,
remove the object from all its other slots

one slot per object

if that does not work use other hash functions

use rank data structure to map slots to [0, n)

example on the board �

1.95 bits per object when m = 1.23n

how to check if hash function works

interpret each slot as node in a hypergraph

objects are edges

if graph is peelable, we have a feasible mapping

Definition: Peelable
A hypergraph is peelable, if it is possible to obtain a
graph without edges by iteratively taking away edges
that contain a node with degree 1

example on the board �

13/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

BDZ (RAM) Algorithm [BPZ13]

partition keys into buckets

set m = (1 + ϵ)n ò 1.01n

sort partitions by size

starting with largest bucket, find universal hash
function mapping all keys to empty slots

if key mapped to non-empty slot, try next hash
function

for each bucket store universal hash function

use rank data structure to map slots to [0, n)

example on the board �

can be used as PHF

there are a lot of tricks w.r.t. bucket sizes and
size distributions

requires around 2.05 bits per object

14/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

Compress, Hash, and Displace [BBD09a]

partition keys into buckets

set m = (1 + ϵ)n ò 1.01n

sort partitions by size

starting with largest bucket, find universal hash
function mapping all keys to empty slots

if key mapped to non-empty slot, try next hash
function

for each bucket store universal hash function

use rank data structure to map slots to [0, n)

example on the board �

can be used as PHF

there are a lot of tricks w.r.t. bucket sizes and
size distributions

requires around 2.05 bits per object

14/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

Compress, Hash, and Displace [BBD09a]

partition keys into buckets of size b

for each bucket compute splitting trees

split keys into smaller sets

stop when sets have size ℓ

upper aggregation levels have fanout 2
lower two aggregation levels have fanout

max{2, ⌈0.35ℓ+ 0.55⌉}
max{2, ⌈0.21ℓ+ 0.9⌉}

last level is leaf level

find bijections

Bucket 0 Bucket 1 Bucket 2

Input objects

15/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

RecSplit Overview [EGV20a]

partition keys into buckets of size b

for each bucket compute splitting trees

split keys into smaller sets

stop when sets have size ℓ

upper aggregation levels have fanout 2
lower two aggregation levels have fanout

max{2, ⌈0.35ℓ+ 0.55⌉}
max{2, ⌈0.21ℓ+ 0.9⌉}

last level is leaf level

find bijections

Bucket 0 Bucket 1 Bucket 2

Input objects

15/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

RecSplit Overview [EGV20a]

partition keys into buckets of size b

for each bucket compute splitting trees

split keys into smaller sets

stop when sets have size ℓ

upper aggregation levels have fanout 2
lower two aggregation levels have fanout

max{2, ⌈0.35ℓ+ 0.55⌉}
max{2, ⌈0.21ℓ+ 0.9⌉}

last level is leaf level

find bijections

Bucket 0 Bucket 1 Bucket 2

Input objects

15/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

RecSplit Overview [EGV20a]

tree structure is well defined

store information for each node in preorder

store hash function for each splitter

encode function using Golomb-Rice

encodings of splitting trees stored in one bit
vector
use Elias-Fano to store

size of buckets
starting position of bucket in bit vector

Bucket 0 Bucket 1 Bucket 2

Input objects

16/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

RecSplit Splitting Tree

tree structure is well defined

store information for each node in preorder

store hash function for each splitter

encode function using Golomb-Rice

encodings of splitting trees stored in one bit
vector
use Elias-Fano to store

size of buckets
starting position of bucket in bit vector

Bucket 0 Bucket 1 Bucket 2

Input objects

16/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

RecSplit Splitting Tree

Definition: Golomb Code
Given an integer x > 0 and a constant b > 0, the
Golomb code consists of

q = ⌊ x
b ⌋

r = x − qb = x % b

c = ⌈lg b⌉
with

(x)Gol(b) = (q)1(r)2

where (r)2 depends on its size

r < 2⌊lg b⌋−1: r requires ⌊lg b⌋ bits and starts
with a 0

r ≥ 2⌊lg b⌋−1: r requires ⌈lg b⌉ bits and starts
with a 1 and it encodes r − 2⌊lg b⌋−1

b has to be fixed for all codes

still variable length

Golomb-Rice is special case where r is power
of two

for b = 5, there are 4 remainders:
00, 01, 100, 101, and 110

2⌊lg 5⌋−1 = 2

0, 1 < 2: 00 and 01 require 2 bits

2, 3, 4 ≥ 2: require 3 bits and encode 0, 1, 2
starting with 1

17/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

Golomb Encoding [Gol66]

Definition: Golomb Code
Given an integer x > 0 and a constant b > 0, the
Golomb code consists of

q = ⌊ x
b ⌋

r = x − qb = x % b

c = ⌈lg b⌉
with

(x)Gol(b) = (q)1(r)2

where (r)2 depends on its size

r < 2⌊lg b⌋−1: r requires ⌊lg b⌋ bits and starts
with a 0

r ≥ 2⌊lg b⌋−1: r requires ⌈lg b⌉ bits and starts
with a 1 and it encodes r − 2⌊lg b⌋−1

b has to be fixed for all codes

still variable length

Golomb-Rice is special case where r is power
of two

for b = 5, there are 4 remainders:
00, 01, 100, 101, and 110

2⌊lg 5⌋−1 = 2

0, 1 < 2: 00 and 01 require 2 bits

2, 3, 4 ≥ 2: require 3 bits and encode 0, 1, 2
starting with 1

17/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

Golomb Encoding [Gol66]

Definition: Golomb Code
Given an integer x > 0 and a constant b > 0, the
Golomb code consists of

q = ⌊ x
b ⌋

r = x − qb = x % b

c = ⌈lg b⌉
with

(x)Gol(b) = (q)1(r)2

where (r)2 depends on its size

r < 2⌊lg b⌋−1: r requires ⌊lg b⌋ bits and starts
with a 0

r ≥ 2⌊lg b⌋−1: r requires ⌈lg b⌉ bits and starts
with a 1 and it encodes r − 2⌊lg b⌋−1

b has to be fixed for all codes

still variable length

Golomb-Rice is special case where r is power
of two

for b = 5, there are 4 remainders:
00, 01, 100, 101, and 110

2⌊lg 5⌋−1 = 2

0, 1 < 2: 00 and 01 require 2 bits

2, 3, 4 ≥ 2: require 3 bits and encode 0, 1, 2
starting with 1

17/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

Golomb Encoding [Gol66]

Definition: Golomb Code
Given an integer x > 0 and a constant b > 0, the
Golomb code consists of

q = ⌊ x
b ⌋

r = x − qb = x % b

c = ⌈lg b⌉
with

(x)Gol(b) = (q)1(r)2

where (r)2 depends on its size

r < 2⌊lg b⌋−1: r requires ⌊lg b⌋ bits and starts
with a 0

r ≥ 2⌊lg b⌋−1: r requires ⌈lg b⌉ bits and starts
with a 1 and it encodes r − 2⌊lg b⌋−1

b has to be fixed for all codes

still variable length

Golomb-Rice is special case where r is power
of two

for b = 5, there are 4 remainders:
00, 01, 100, 101, and 110

2⌊lg 5⌋−1 = 2

0, 1 < 2: 00 and 01 require 2 bits

2, 3, 4 ≥ 2: require 3 bits and encode 0, 1, 2
starting with 1

17/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

Golomb Encoding [Gol66]

0 10 20 30 40 50

value

0

2

4

6

8

10

12

14

16
si

ze
unary

ternary

Fibonacci

Elias-γ

Elias-δ

Golomb (b = 5)

Golomb (b = 106)

18/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

Comparison of Codes (1/2)

101 103 105 107 109 1011

value

0

20

40

60

80

100
si

ze
unary

ternary

Fibonacci

Elias-γ

Elias-δ

Golomb (b = 5)

Golomb (b = 106)

19/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

Comparison of Codes (2/2)

find perfect hash function for keys in leaves

test hash functions brute force

use hash value modulo ℓ

set bit in “bit vector” of length ℓ

all bits set indicates bijection

Bucket 0 Bucket 1 Bucket 2

Input objects

20/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

RecSplit Leaves

find bucket

follow splitting tree

accumulate number of objects to the left

use bijection in leaf
result is sum of

objects in previous buckets
objects to the left in splitting tree
value of bijection

Bucket 0 Bucket 1 Bucket 2

Input objects

21/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

RecSplit Queries

Dominik Bez, Florian Kurpicz,
Hans-Peter Lehmann, and Peter Sanders.
“High Performance Construction of RecSplit
Based Minimal Perfect Hash Functions”. In:
ESA. volume 274. LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2023,
19:1–19:16. DOI:
10.4230/LIPICS.ESA.2023.19

based on a Domink Bez’ Master’s thesis

22/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

Parallel RecSplit

https://doi.org/10.4230/LIPICS.ESA.2023.19

randomly distribute objects in leaf in two sets A
and B

hash objects in both set

two “bit vectors”: cyclic shift one until all bits are
set when ORed

store hash function and rotation

Lemma: Rotation Fitting
Let |A| = A, |B| = B, and P(R) be the probability of
finding a bijection using rotation fitting. Let P(B)
denote the probability of finding a bijection using
RecSplit’s brute force strategy. Then,
P(R) → mP(B) for m → ∞.

10 20
0

10

20

m

E
xp

ec
te

d
fa

ct
or

hi
gh

er
pr

ob
ab

ili
ty

10 20

0

0.1

0.2

0.3

m

E
xp

ec
.

sp
ac

e
ov

er
he

ad
(B

its
/O

bj
ec

t)

23/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

randomly distribute objects in leaf in two sets A
and B

hash objects in both set

two “bit vectors”: cyclic shift one until all bits are
set when ORed

store hash function and rotation

Lemma: Rotation Fitting
Let |A| = A, |B| = B, and P(R) be the probability of
finding a bijection using rotation fitting. Let P(B)
denote the probability of finding a bijection using
RecSplit’s brute force strategy. Then,
P(R) → mP(B) for m → ∞.

10 20
0

10

20

m

E
xp

ec
te

d
fa

ct
or

hi
gh

er
pr

ob
ab

ili
ty

10 20

0

0.1

0.2

0.3

m

E
xp

ec
.

sp
ac

e
ov

er
he

ad
(B

its
/O

bj
ec

t)

23/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

randomly distribute objects in leaf in two sets A
and B

hash objects in both set

two “bit vectors”: cyclic shift one until all bits are
set when ORed

store hash function and rotation

Lemma: Rotation Fitting
Let |A| = A, |B| = B, and P(R) be the probability of
finding a bijection using rotation fitting. Let P(B)
denote the probability of finding a bijection using
RecSplit’s brute force strategy. Then,
P(R) → mP(B) for m → ∞.

10 20
0

10

20

m

E
xp

ec
te

d
fa

ct
or

hi
gh

er
pr

ob
ab

ili
ty

10 20

0

0.1

0.2

0.3

m

E
xp

ec
.

sp
ac

e
ov

er
he

ad
(B

its
/O

bj
ec

t)

23/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

Proof (Sketch)
consider number of different injective functions
under cyclic shifts

bit vector of length m with B set bits

total number of equivalence classes under
rotation is 1

m

∑
d divides gcd(A,B) ϕ(d)

(m/d
B/d

)
probability of the event I that there is a rotation
has the m least significant bits set is

P(I) ≥ m
1∑

d divides gcd(A,B) ϕ(d)
(m/d
B/d

) ,
ϕ(i) = |{j ≤ i : gcd(i, j) = 1}| is Euler’s totient
function

Proof (Sketch, cnt.)
determine the probability P(R) using the events

A: popcount(a)=A
B: popcount(b)=B
B: found bijection using brute-force

24/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

Rotation Fitting (2/3)

Proof (Sketch, ctn.)

P(R) = P(A)P(B)P(I)

≥ m!

(m − A)!mA · m!

(m − B)!mB · P(I) = m!

mm · m!

A!B!
· P(I) = P(B) · m!

A!B!
· P(I)

≥ P(B) · m!

A!B!
· m

1∑
d|gcd(A,B) ϕ(d)

(m/d
b/d

) = P(B) · m · m!

m! + (A!B!)
∑

d |gcd(A,B),d ̸=1 ϕ(d)
(m/d

b/d

)
= P(B) · m · 1

1 +
∑

d|gcd(A,B),d ̸=1 ϕ(d)
(m/d)!A!B!

m!(A/d)!(B/d)!

∼ P(B) · m · 1

1 +
∑

d|gcd(A,B),d ̸=1 ϕ(d)
√

d AA−A/dBB−B/d

mm−m/d

→ P(B) · m for m → ∞

25/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

Rotation Fitting (3/3)

Computing on the GPU
several streaming multiprocessors (SMs)

each SM contains many arithmetic logic units
(ALUs)

several threads operat in lock-step (warp)

to hide latencies, each SM is oversubscribed
with more threads than ALUs

in CUDA, kernels are functions that can be
executed on the GPU

a kernel is executed on a grid of thread blocks

use GPU to determine splitting and bijections

Kernel

Kernel

Kernel

8888888888 8

24 24 24 16

72Kernel

88Kernel

26/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

Parallel RecSplit on the GPU

Intel i7 11700 processor with 8 cores (16
hardware threads (HT)), base clock: 2.5 GHz

AVX-512.

Ubuntu 22.04 with Linux 5.15.0

NVIDIA RTX 3090 GPU

AMD EPYC 7702P processor with 64 cores
(128 hardware threads), base clock: 2.0 GHz

AVX2

Ubuntu 20.04 with Linux 5.4.0

GNU C++ compiler v.11.2.0 (-O3
-march=native)

27/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

Experimental Evaluation

1.6 1.7 1.8

103

104

105

106

Bits per object

O
bj

ec
ts

/s
ec

on
d

1.6 1.7 1.8

1

2

3

Bits per object

S
pe

ed
up

Brute force
Rotation fitting

28/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

Rotation Fitting

Configuration Method Bijections Threads B/Obj Constr. Speedup

ℓ = 16, b = 2000 RecSplit [EGV20b] Brute force 1 1.560 1175.4 1
RecSplit Brute force 16 1.560 206.5 5
SIMDRecSplit Rotation fitting 1 1.560 138.0 8
SIMDRecSplit Rotation fitting 16 1.560 27.9 42
GPURecSplit Brute force GPU 1.560 1.8 655
GPURecSplit Rotation fitting GPU 1.560 1.0 1173

ℓ = 18, b = 50 RecSplit [EGV20b] Brute force 1 1.707 2942.9 1
RecSplit Brute force 16 1.713 504.0 5
SIMDRecSplit Rotation fitting 1 1.709 58.3 50
SIMDRecSplit Rotation fitting 16 1.708 12.3 239
GPURecSplit Brute force GPU 1.708 5.2 564
GPURecSplit Rotation fitting GPU 1.709 0.5 5438

ℓ = 24, b = 2000 GPURecSplit Brute force GPU 1.496 2300.9 —
GPURecSplit Rotation fitting GPU 1.496 467.9 —

29/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

Overview Results

1.5 2 2.5 3 3.5

0

5

10

15

Bits/Object

Th
ro

ug
hp

ut
(M

O
bj

ec
ts

/s
)

8-core Intel
1 Thread

1.5 2 2.5 3 3.5

0

20

40

60

80

Bits/Object

8-core Intel
16 Threads

1.5 2 2.5 3 3.5

0

5

10

Bits/Object

64-core AMD
1 Thread

1.5 2 2.5 3 3.5

0

50

100

150

Bits/Object

64-core AMD
128 Threads

BBHash [Lim+17] CHD [BBD09b] PTHash [PT21b] PTHash-HEM [PT21a]
RecSplit [EGV20b] SIMDRecSplit SicHash [LSW23]

30/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

Comparison with Competitors

This Lecture
conclusion retroactive data structures

minimal perfect hash functions

Next Lecture (15.07.2024)
NO LECTURE ON 08.07.2024

learned data structures

Oral Exams and Project
registration exams and project will open this
week

exam dates: 19.08., 20.08., 26.08.,28.08.,
30.08., 09.09, and 11.09.

Advanced Data Structures

static/dynamic

BV
static/dynamic

succ. trees

range min-max tree succ. graphs

Successor RMQ

SA & LCPString B-tree

CSA

retroactive

PQ

31/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

Conclusion and Outlook

This Lecture
conclusion retroactive data structures

minimal perfect hash functions

Next Lecture (15.07.2024)
NO LECTURE ON 08.07.2024

learned data structures

Oral Exams and Project
registration exams and project will open this
week

exam dates: 19.08., 20.08., 26.08.,28.08.,
30.08., 09.09, and 11.09.

Advanced Data Structures

static/dynamic

BV
static/dynamic

succ. trees

range min-max tree succ. graphs

Successor RMQ

SA & LCPString B-tree

CSA

retroactive

PQ

31/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

Conclusion and Outlook

This Lecture
conclusion retroactive data structures

minimal perfect hash functions

Next Lecture (15.07.2024)
NO LECTURE ON 08.07.2024

learned data structures

Oral Exams and Project
registration exams and project will open this
week

exam dates: 19.08., 20.08., 26.08.,28.08.,
30.08., 09.09, and 11.09.

Advanced Data Structures

static/dynamic

BV
static/dynamic

succ. trees

range min-max tree succ. graphs

Successor RMQ

SA & LCPString B-tree

CSA

retroactive

PQ

31/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

Conclusion and Outlook

[BBD09a] Djamal Belazzougui, Fabiano C. Botelho, and Martin Dietzfelbinger. “Hash, Displace, and
Compress”. In: ESA. Volume 5757. Lecture Notes in Computer Science. Springer, 2009,
pages 682–693. DOI: 10.1007/978-3-642-04128-0_61.

[BBD09b] Djamal Belazzougui, Fabiano C. Botelho, and Martin Dietzfelbinger. “Hash, Displace, and
Compress”. In: ESA. Volume 5757. Lecture Notes in Computer Science. Springer, 2009,
pages 682–693. DOI: 10.1007/978-3-642-04128-0_61.

[Bez+23] Dominik Bez, Florian Kurpicz, Hans-Peter Lehmann, and Peter Sanders. “High Performance
Construction of RecSplit Based Minimal Perfect Hash Functions”. In: ESA. Volume 274. LIPIcs.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023, 19:1–19:16. DOI:
10.4230/LIPICS.ESA.2023.19.

[BPZ13] Fabiano C. Botelho, Rasmus Pagh, and Nivio Ziviani. “Practical perfect hashing in nearly optimal
space”. In: Inf. Syst. 38.1 (2013), pages 108–131. DOI: 10.1016/j.is.2012.06.002.

32/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

Bibliography I

https://doi.org/10.1007/978-3-642-04128-0_61
https://doi.org/10.1007/978-3-642-04128-0_61
https://doi.org/10.4230/LIPICS.ESA.2023.19
https://doi.org/10.1016/j.is.2012.06.002

[EGV20a] Emmanuel Esposito, Thomas Mueller Graf, and Sebastiano Vigna. “RecSplit: Minimal Perfect
Hashing via Recursive Splitting”. In: ALENEX. SIAM, 2020, pages 175–185. DOI:
10.1137/1.9781611976007.14.

[EGV20b] Emmanuel Esposito, Thomas Mueller Graf, and Sebastiano Vigna. “RecSplit: Minimal Perfect
Hashing via Recursive Splitting”. In: ALENEX. SIAM, 2020, pages 175–185. DOI:
10.1137/1.9781611976007.14.

[Gol66] Solomon W. Golomb. “Run-length Encodings (Corresp.)”. In: IEEE Trans. Inf. Theory 12.3 (1966),
pages 399–401. DOI: 10.1109/TIT.1966.1053907.

[Lim+17] Antoine Limasset, Guillaume Rizk, Rayan Chikhi, and Pierre Peterlongo. “Fast and Scalable
Minimal Perfect Hashing for Massive Key Sets”. In: SEA. Volume 75. LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2017, 25:1–25:16. DOI: 10.4230/LIPICS.SEA.2017.25.

33/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

Bibliography II

https://doi.org/10.1137/1.9781611976007.14
https://doi.org/10.1137/1.9781611976007.14
https://doi.org/10.1109/TIT.1966.1053907
https://doi.org/10.4230/LIPICS.SEA.2017.25

[LSW23] Hans-Peter Lehmann, Peter Sanders, and Stefan Walzer. “SicHash – Small Irregular Cuckoo
Tables for Perfect Hashing”. In: ALENEX. SIAM, 2023, pages 176–189. DOI:
10.1137/1.9781611977561.CH15.

[PT21a] Giulio Ermanno Pibiri and Roberto Trani. “Parallel and External-Memory Construction of Minimal
Perfect Hash Functions with PTHash”. In: CoRR abs/2106.02350 (2021).

[PT21b] Giulio Ermanno Pibiri and Roberto Trani. “PTHash: Revisiting FCH Minimal Perfect Hashing”. In:
SIGIR. ACM, 2021, pages 1339–1348. DOI: 10.1145/3404835.3462849.

34/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

Bibliography III

https://doi.org/10.1137/1.9781611977561.CH15
https://doi.org/10.1145/3404835.3462849

	Appendix

