Recap: Retroactive Data Structures

Operations

- **INSERT\((t, operation)\):** insert operation at time \(t\)
- **DELETE\((t)\):** delete operation at time \(t\)
- **QUERY\((t, query)\):** ask \(query\) at time \(t\)

- for a priority queue updates are
 - insert
 - delete-min

- time is integer ⬤ for simplicity otherwise use order-maintenance data structure

Example

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>now</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>insert(7)</td>
<td>insert(2)</td>
<td>insert(3)</td>
<td>del-min</td>
<td>del-min</td>
<td>queries</td>
<td></td>
</tr>
</tbody>
</table>
Recap: Retroactive Data Structures

Operations
- INSERT(t, operation): insert operation at time t
- DELETE(t): delete operation at time t
- QUERY(t, query): ask query at time t

- for a priority queue updates are
 - insert
 - delete-min

- time is integer $\in \mathbb{N}$ for simplicity otherwise use order-maintenance data structure

Definition: Partial Retroactivity
QUERY is only allowed for $t = \infty$ now
Recap: Retroactive Data Structures

Operations

- **INSERT**\((t, \text{operation})\): insert operation at time \(t\)
- **DELETE**\((t)\): delete operation at time \(t\)
- **QUERY**\((t, \text{query})\): ask query at time \(t\)

- for a priority queue updates are
 - insert
 - delete-min

- **time** is integer ♦ for simplicity otherwise use order-maintenance data structure

Definition: Partial Retroactivity

QUERY is only allowed for \(t = \infty\) ♦ now

Definition: Full Retroactivity

QUERY is allowed at any time \(t\)

```
insert(7) insert(2) insert(3) del-min del-min queries
0 1 2 3 4 now time
```
Recap: Retroactive Data Structures

Operations

- \(\text{INSERT}(t, \text{operation}) \): insert operation at time \(t \)
- \(\text{DELETE}(t) \): delete operation at time \(t \)
- \(\text{QUERY}(t, \text{query}) \): ask query at time \(t \)

For a priority queue, updates are
- insert
- delete-min

Time is integer for simplicity; otherwise, use order-maintenance data structure.

Definition: Partial Retroactivity

\(\text{QUERY} \) is only allowed for \(t = \infty \) now.

Definition: Full Retroactivity

\(\text{QUERY} \) is allowed at any time \(t \).

Definition: Nonoblivious Retroactivity

\(\text{INSERT}, \text{DELETE}, \) and \(\text{QUERY} \) at any time \(t \) but also identify changed \(\text{QUERY} \) results.

Recap: Retroactive Data Structures
Priority Queues: Partial Retroactivity (1/6)

- priority queue with
 - insert
 - delete-min
- delete-min makes PQ non-commutative

Lemma: Partial Retroactive PQ
A priority queue can be partial retroactive with only $O(\log m)$ overhead per partially retroactive operation
Priority Queues: Partial Retroactivity (1/6)

- priority queue with
 - insert
 - delete-min
- delete-min makes PQ non-commutative

Lemma: Partial Retroactive PQ

A priority queue can be partial retroactive with only $O(\log m)$ overhead per partially retroactive operation
Priority Queues: Partial Retroactivity (1/6)

- Priority queue with
 - Insert
 - Delete-min
- Delete-min makes PQ non-commutative

Lemma: Partial Retroactive PQ

A priority queue can be partial retroactive with only $O(\log m)$ overhead per partially retroactive operation.
what is the problem with

- \texttt{INSERT(t, delete-min())}
- \texttt{INSERT(t, insert(i))}

INSERT(t, delete-min()) creates chain-reaction
INSERT(t, insert(i)) creates chain-reaction

can we solve

DELETE(t, delete-min())
using

INSERT(t, insert(i))

PINGO
what is the problem with
- INSERT(t, delete-min())
- INSERT(t, insert(i))

- INSERT(t, delete-min()) creates chain-reaction
- INSERT(t, insert(i)) creates chain-reaction
what is the problem with
- INSERT(t, delete-min())
- INSERT(t, insert(i))

- INSERT(t, delete-min()) creates chain-reaction
- INSERT(t, insert(i)) creates chain-reaction
what is the problem with
 - \text{INSERT}(t, \text{delete-min}())
 - \text{INSERT}(t, \text{insert}(i))

- \text{INSERT}(t, \text{delete-min}()) creates chain-reaction
- \text{INSERT}(t, \text{insert}(i)) creates chain-reaction

- can we solve \text{DELETE}(t, \text{delete-min}()) using \text{INSERT}(t, \text{insert}(i))? PINGO
what is the problem with
- \text{INSERT}(t, \text{delete-min}())
- \text{INSERT}(t, \text{insert}(i))

- \text{INSERT}(t, \text{delete-min}()) creates chain-reaction
- \text{INSERT}(t, \text{insert}(i)) creates chain-reaction

- can we solve \text{DELETE}(t, \text{delete-min}()) using \text{INSERT}(t, \text{insert}(i))?
 - \text{PINGO}
- insert deleted minimum right after deletion
Priority Queues: Partial Retroactivity (3/6)

- Let Q_t be elements in PQ at time t
- What values are in Q_∞? Partial retroactivity
- What value inserts $\text{INSERT}(t, \text{insert}(v))$ in Q_∞
- Values is $\max\{v, v': v' \text{ deleted at time } \geq t\}$
- Maintaining deleted elements is hard
- Can change a lot

Diagram:

- Y-axis: Value
- X-axis: Time
- Multiple lines representing values and times
let Q_t be elements in PQ at time t

- what values are in Q_∞? partial retroactivity
- what value inserts $\text{INSERT}(t, \text{insert}(v))$ in Q_∞
- values is $\max\{v, v': v' \text{ deleted at time } \geq t\}$
- maintaining deleted elements is hard can change a lot

Definition: Bridge

A time t' is a bridge if $Q_{t'} \subseteq Q_\infty$

- all elements present at t' are present at t_∞
Let Q_t be elements in PQ at time t.

- What values are in Q_{∞}? partial retroactivity
- What value inserts $\text{INSERT}(t, \text{insert}(v))$ in Q_{∞}?
- Values is $\max\{v, v': v' \text{ deleted at time } \geq t\}$
- Maintaining deleted elements is hard can change a lot

Definition: Bridge

A time t' is a bridge if $Q_{t'} \subseteq Q_{\infty}$

- All elements present at t' are present at t_{∞}

What times are bridges?
Priority Queues: Partial Retroactivity (3/6)

- Let Q_t be elements in PQ at time t.

- What values are in Q_∞? \footnote{partial retroactivity}
- What value inserts $\text{INSERT}(t, \text{insert}(v))$ in Q_∞?
- What is $\max\{v, v': v' \text{ deleted at time } \geq t\}$?
- Maintaining deleted elements is hard \footnote{can change a lot}

Definition: Bridge

A time t' is a bridge if $Q_{t'} \subseteq Q_\infty$.

- All elements present at t' are present at t_∞.

What times are bridges? PINGO
Lemma: Deletions after Bridges

If time t' is closest bridge preceding time t, then

$$\max \{v' : v' \text{ deleted at time } \geq t\} = \max \{v' \not\in Q_{\infty} : v' \text{ inserted at time } \geq t'\}$$
Lemma: Deletions after Bridges

If time t' is closest bridge preceding time t, then

$$\max\{v': v' \text{ deleted at time } \geq t\} = \max\{v' \notin Q_\infty: v' \text{ inserted at time } \geq t'\}$$

Proof (Sketch)

- $\max\{v' \notin Q_\infty: v' \text{ inserted at time } \geq t'\} \in \{v': v' \text{ deleted at time } \geq t\}$
 - if maximum value is deleted between t' and t
 - then this time is a bridge
 - contradicting that t' is bridge preceding t
Lemma: Deletions after Bridges

If time t' is closest bridge preceding time t, then

$$\max\{v': v' \text{ deleted at time } \geq t\}$$

$$= \max\{v' \notin Q_\infty: v' \text{ inserted at time } \geq t'\}$$

Proof (Sketch, cnt.)

- $\max\{v': v' \text{ deleted at time } \geq t\} \in \{v' \notin Q_\infty: v' \text{ inserted at time } \geq t'\}$
 - if v' is deleted at some time $\geq t$
 - then it is not in Q_∞

Proof (Sketch)

- $\max\{v' \notin Q_\infty: v' \text{ inserted at time } \geq t'\} \in \{v': v' \text{ deleted at time } \geq t\}$
 - if maximum value is deleted between t' and t
 - then this time is a bridge
 - contradicting that t' is bridge preceding t
Lemma: Deletions after Bridges

If time t' is closest bridge preceding time t, then

$$\max\{v': v' \text{ deleted at time } \geq t\}$$

$$= \max\{v' \notin Q_\infty: v' \text{ inserted at time } \geq t'\}$$

Proof (Sketch)

- max{$v': v' \text{ deleted at time } \geq t\} \subseteq \{v': v' \text{ deleted at time } \geq t\}$
 - if maximum value is deleted between t' and t
 - then this time is a bridge
 - contradicting that t' is bridge preceding t

Proof (Sketch, cnt.)

- max{$v': v' \text{ deleted at time } \geq t\} \subseteq \{v': v' \text{ deleted at time } \geq t\} \
 - if v' is deleted at some time $\geq t$
 - then it is not in Q_∞

- what values are in Q_∞? partial retroactivity
- what value inserts INSERT(t, insert(v)) in Q_∞
- max{$v, v' \notin Q_\infty: v' \text{ inserted at time } \geq t'\}$
Priority Queues: Partial Retroactivity (5/6)

- keep track of inserted values
- use balanced binary search trees for $O(\log m)$ overhead
Priority Queues: Partial Retroactivity (5/6)

- keep track of inserted values
- use balanced binary search trees for $O(\log m)$ overhead

- BBST for Q_∞ changed for each update
Priority Queues: Partial Retroactivity (5/6)

- keep track of inserted values
- use balanced binary search trees for $O(\log m)$ overhead

BBST for Q_∞ changed for each update
- BBST where leaves are inserts ordered by time augmented with
 - for each node x store
 - $\max\{v' \notin Q_\infty : v' \text{ inserted in subtree of } x\}$

How can we find bridges?
- Use third BBST and find prefix of updates summing to 0
 - requires $O(\log n)$ time as we traverse tree at most twice
 - this results in bridge t'
- Use second BBST to identify maximum value not in Q_∞ on path to t'
 - since BBST is augmented with these values, this requires $O(\log n)$ time

Update all BBSTs in $O(\log n)$ time
Priority Queues: Partial Retroactivity (5/6)

- keep track of inserted values
- use balanced binary search trees for $O(\log m)$ overhead

- BBST for Q_∞ changed for each update
- BBST where leaves are inserts ordered by time augmented with
 - for each node x store $\max\{v' \notin Q_\infty : v'$ inserted in subtree of $x\}$
- BBST where leaves are all updates ordered by time augmented with
 - leaves store 0 for inserts with $v \in Q_\infty$, 1 for inserts with $v \notin Q_\infty$ and -1 for delete-mins
 - inner nodes store subtree sums
Priority Queues: Partial Retroactivity (5/6)

- keep track of inserted values
- use balanced binary search trees for $O(\log m)$ overhead

- BBST for Q_∞ changed for each update
- BBST where leaves are inserts ordered by time augmented with
 - for each node x store $\max\{v' \notin Q_\infty : v'$ inserted in subtree of $x\}$
- BBST where leaves are all updates ordered by time augmented with
 - leaves store 0 for inserts with $v \in Q_\infty$, 1 for inserts with $v \notin Q_\infty$ and -1 for delete-mins
 - inner nodes store subtree sums

- how can we find bridges? PINGO
keep track of inserted values
use balanced binary search trees for $O(\log m)$ overhead

BBST for Q_∞ changed for each update
BBST where leaves are inserts ordered by time augmented with
 for each node x store $\max\{v' \notin Q_\infty : v'$ inserted in subtree of $x\}$
BBST where leaves are all updates ordered by time augmented with
 leaves store 0 for inserts with $v \in Q_\infty$, 1 for inserts with $v \notin Q_\infty$ and -1 for delete-mins
 inner nodes store subtree sums

how can we find bridges?
use third BBST and find prefix of updates summing to 0
requires $O(\log n)$ time as we traverse tree at most twice
this results in bridge t'
Priority Queues: Partial Retroactivity (5/6)

- keep track of inserted values
- use balanced binary search trees for $O(\log m)$ overhead

- BBST for Q_∞ is changed for each update
- BBST where leaves are inserts ordered by time augmented with
 - for each node x store $\max\{v' \notin Q_\infty : v' \text{ inserted in subtree of } x\}$
 - BBST where leaves are all updates ordered by time augmented with
 - leaves store 0 for inserts with $v \in Q_\infty$, 1 for inserts with $v \notin Q_\infty$ and -1 for delete-mins
 - inner nodes store subtree sums

- how can we find bridges? PINGO
 - use third BBST and find prefix of updates summing to 0
 - requires $O(\log n)$ time as we traverse tree at most twice
 - this results in bridge t'

- use second BBST to identify maximum value not in Q_∞ on path to t'
 - since BBST is augmented with these values, this requires $O(\log n)$ time
Priority Queues: Partial Retroactivity (5/6)

- keep track of inserted values
- use balanced binary search trees for $O(\log m)$ overhead

BBST for Q_∞ changed for each update
- BBST where leaves are inserts ordered by time augmented with
 - for each node x store $\max\{v' \notin Q_\infty : v'$ inserted in subtree of $x\}$
- BBST where leaves are all updates ordered by time augmented with
 - leaves store 0 for inserts with $v \in Q_\infty$, 1 for inserts with $v \notin Q_\infty$ and -1 for delete-mins
 - inner nodes store subtree sums

- how can we find bridges? PINGO
- use third BBST and find prefix of updates summing to 0
- requires $O(\log n)$ time as we traverse tree at most twice
- this results in bridge t'

- use second BBST to identify maximum value not in Q_∞ on path to t'
- since BBST is augmented with these values, this requires $O(\log n)$ time

- update all BBSTs in $O(\log n)$ time
Lemma: Partial Retroactive PQ

A priority queue can be partial retroactive with only $O(\log m)$ overhead per partially retroactive operation.

- requires three BBSTs
- updates need to update all BBSTs
Hashing (1/2)

- $h: \{0, \ldots, u - 1\} \rightarrow \{0, \ldots, m - 1\}$

- n objects
- from universe $U = \{0, \ldots, u - 1\}$
- hash table of size $m \in \{m \text{ close to } n\}$
- $m \ll u$
Hashing (1/2)

- $h: \{0, \ldots, u - 1\} \rightarrow \{0, \ldots, m - 1\}$

- n objects
- from universe $U = \{0, \ldots, u - 1\}$
- hash table of size $m \in m$ close to n
- $m \ll u$

Definition: Totally Random

- $P[h(x) = t] = 1/m$
- independent of $h(y)$ for all $x \neq y \in U$
- requires $\Theta(u \log m)$ bits of space to store too big
Hashing (1/2)

- $h: \{0, \ldots, u-1\} \rightarrow \{0, \ldots, m-1\}$
- n objects
- from universe $U = \{0, \ldots, u-1\}$
- hash table of size $m \gg m$ close to n
- $m \ll u$

Definition: Totally Random

- $\Pr[h(x) = t] = 1/m$
- independent of $h(y)$ for all $x \neq y \in U$
- requires $\Theta(u \log m)$ bits of space to store too big

Definition: Universal

- choose h from family H with $\Pr_{h \in H}[h(x) = h(y)] = O(1/m)$ for all $x \neq y \in U$
- family is small to enable efficient encoding
Hashing (1/2)

- **h:** \(\{0, \ldots, u - 1\} \rightarrow \{0, \ldots, m - 1\} \)
- \(n \) objects
- from universe \(U = \{0, \ldots, u - 1\} \)
- hash table of size \(m \) close to \(n \)
- \(m \ll u \)

Definition: Totally Random

- \(\mathbb{P}[h(x) = t] = 1/m \)
- independent of \(h(y) \) for all \(x \neq y \in U \)
- requires \(\Theta(u \log m) \) bits of space to store too big

Definition: Universal

- choose \(h \) from family \(H \) with
 \[\mathbb{P}_{h \in H}[h(x) = h(y)] = O(1/m) \text{ for all } x \neq y \in U \]
- family is small to enable efficient encoding

- \(h(x) = (ax \mod u) \mod m \) for \(0 < a < p \) and \(p \) being prime \(> u \)
- \(h(x) = ax \gg (\log u - \log m) \) for \(m, u \) being powers of two

Why is this family easier to store?
Definition: \(k \)-wise Independent

- choose \(h \) from family \(H \) with
 \[
 \mathbb{P}[h(x_1) = t_1 \& \ldots \& h(x_k) = t_k] = O(1/m^k)
 \]
 for distinct \(x_1, \ldots, x_k \in U \).
Definition: \(k \)-wise Independent

- choose \(h \) from family \(H \) with
 \[
 \Pr[h(x_1) = t_1 \& \ldots \& h(x_k) = t_k] = O\left(\frac{1}{m^k}\right) \text{ for distinct } x_1, \ldots, x_k \in U
 \]
- implies universal
Definition: k-wise Independent

- Choose h from family H with
 \[\mathbb{P}\left[h(x_1) = t_1 \& \ldots \& h(x_k) = t_k\right] = O\left(\frac{1}{m^k}\right) \]
 for distinct $x_1, \ldots, x_k \in U$

- Implies universal

\[h(x) = \left(\sum_{i=0}^{k-1} a_i x^i \mod p\right) \mod m \]
 for $0 \leq a_i < p$ and $0 < a_{k-1} < p$

- Pairwise ($k = 2$) independence is stronger than universal

\[h(x) = \left(\left(ax + b\right) \mod u\right) \mod m \]
Definition: \(k\)-wise Independent

- choose \(h\) from family \(H\) with
 \[P[h(x_1) = t_1 \& \ldots \& h(x_k) = t_k] = O(1/m^k) \]
 for distinct \(x_1, \ldots, x_k \in U\)

- implies universal

\[h(x) = ((\sum_{i=0}^{k-1} a_i x^i) \mod p) \mod m \]
for \(0 \leq a_i < p\) and \(0 < a_{k-1} < p\)

- pairwise \((k = 2)\) independence is stronger than universal

\[h(x) = ((ax + b) \mod u) \mod m \]

Definition: Simple Tabulation Hashing

- view \(x\) as vector \(x_1, \ldots, x_c\) of characters
- totally random hash table \(T_i\) for each character
- \(h(x) = T_1(x_1) \text{xor} \ldots \text{xor} T_c(x_c)\)
Definition: *k*-wise Independent

- choose \(h \) from family \(H \) with
 \[\mathbb{P}[h(x_1) = t_1 \& \ldots \& h(x_k) = t_k] = O(1/m^k) \]
 for distinct \(x_1, \ldots, x_k \in U \)

- implies universal

- \(h(x) = ((\sum_{i=0}^{k-1} a_i x^i) \mod p) \mod m \) for
 \(0 \leq a_i < p \) and \(0 < a_{k-1} < p \)

- pairwise (\(k = 2 \)) independence is stronger than universal

- \(h(x) = ((ax + b) \mod u) \mod m \)

Definition: Simple Tabulation Hashing

- view \(x \) as vector \(x_1, \ldots, x_c \) of characters

- totally random hash table \(T_i \) for each character

- \(h(x) = T_1(x_1) \ \text{xor} \ldots \ \text{xor} \ T_c(x_c) \)

- Why can we use totally random hash tables?

PINGO
Definition: k-wise Independent
- Choose h from family H with
 $$\Pr[h(x_1) = t_1 & \ldots & h(x_k) = t_k] = O(1/m^k)$$
 for distinct $x_1, \ldots, x_k \in U$
- Implies universal
- $h(x) = ((\sum_{i=0}^{k-1} a_i x^i) \mod p) \mod m$ for $0 \leq a_i < p$ and $0 < a_{k-1} < p$
- Pairwise $(k = 2)$ independence is stronger than universal
- $h(x) = ((ax + b) \mod u) \mod m$

Definition: Simple Tabulation Hashing
- View x as vector x_1, \ldots, x_c of characters
- Totally random hash table T_i for each character
- $h(x) = T_1(x_1) \oplus \ldots \oplus T_c(x_c)$
- Why can we use totally random hash tables?
- $O(cu^{1/c})$ space
- $O(c)$ time to compute
- 3-wise independent
Definition: Perfect Hash Function

- injective hash function
- maps \(n \) objects to \(m \) slots

- lower space bound for \(m = (1 + \epsilon)n \) is

\[
\log e - \epsilon \log \frac{1 + \epsilon}{\epsilon}
\]

- for \(m \) close to \(n \) there are likely collisions
Minimal Perfect Hashing

Definition: Perfect Hash Function
- injective hash function
- maps \(n \) objects to \(m \) slots

 lower space bound for \(m = (1 + \epsilon)n \) is

 \[
 \log e - \epsilon \log \frac{1 + \epsilon}{\epsilon}
 \]

 for \(m \) close to \(n \) there are likely collisions

Definition: Minimal Perfect Hash Function
- bijective hash function
- maps \(n \) objects to \(m = n \) slots
- \(h: N \rightarrow [0, n) \)

 lower space bound as for PHF with \(\epsilon = 0 \):

 \[
 \log e \approx 1.44
 \]

 no collisions
Minimal Perfect Hashing

Definition: Perfect Hash Function
- injective hash function
- maps n objects to m slots
- lower space bound for $m = (1 + \epsilon)n$ is
 \[\log e - \epsilon \log \frac{1 + \epsilon}{\epsilon} \]
- for m close to n there are likely collisions

Definition: Minimal Perfect Hash Function
- bijective hash function
- maps n objects to $m = n$ slots
- $h: N \rightarrow [0, n)$
- lower space bound as for PHF with $\epsilon = 0$:
 \[\log e \approx 1.44 \]
- no collisions
- can we make PHF to MPHF?
for each object calculate three potential slots \((h_0, h_1, \text{ and } h_2)\)

for each slot that contains only one object, remove the object from all its other slots

one slot per object

if that does not work use other hash functions

use rank data structure to map slots to \([0, n)\)

example on the board

1.95 bits per object when \(m = 1.23n\)
for each object calculate three potential slots \((h_0, h_1, \text{ and } h_2)\)

for each slot that contains only one object, remove the object from all its other slots

one slot per object

if that does not work use other hash functions

use rank data structure to map slots to \([0, n)\)

how to check if hash function works
interpret each slot as node in a hypergraph
objects are edges
if graph is peelable, we have a feasible mapping

Definition: Peelable

A hypergraph is peelable, if it is possible to obtain a graph without edges by iteratively taking away edges that contain a node with degree 1

1.95 bits per object when \(m = 1.23n\)
partition keys into buckets
set $m = (1 + \epsilon)n \approx 1.01n$
sort partitions by size
starting with largest bucket, find universal hash function mapping all keys to empty slots
if key mapped to non-empty slot, try next hash function
for each bucket store universal hash function
use rank data structure to map slots to $[0, n)$

example on the board
partition keys into buckets

set \(m = (1 + \epsilon)n \gtrsim 1.01n \)

sort partitions by size

starting with largest bucket, find universal hash function mapping all keys to empty slots

if key mapped to non-empty slot, try next hash function

for each bucket store universal hash function

use rank data structure to map slots to \([0, n)\)

can be used as PHF

there are a lot of tricks w.r.t. bucket sizes and size distributions

requires around 2.05 bits per object

example on the board 📝
RecSplit Overview [EGV20a]

- partition keys into buckets of size b
- for each bucket compute splitting trees
- split keys into smaller sets
- stop when sets have size ℓ

Input objects

Bucket 0

Bucket 1

Bucket 2
RecSplit Overview [EGV20a]

- partition keys into buckets of size b
- for each bucket compute splitting trees
- split keys into smaller sets
- stop when sets have size ℓ

- upper aggregation levels have fanout 2
- lower two aggregation levels have fanout
 - $\max\{2, \lceil 0.35\ell + 0.55 \rceil \}$
 - $\max\{2, \lceil 0.21\ell + 0.9 \rceil \}$
RecSplit Overview \([\text{EGV20a}]\)

- Partition keys into buckets of size \(b\)
- For each bucket compute splitting trees
- Split keys into smaller sets
- Stop when sets have size \(\ell\)

- Upper aggregation levels have fanout 2
- Lower two aggregation levels have fanout
 - \(\max\{2, \lceil 0.35\ell + 0.55 \rceil\}\)
 - \(\max\{2, \lceil 0.21\ell + 0.9 \rceil\}\)

- Last level is leaf level
- Find bijections
RecSplit Splitting Tree

- tree structure is well defined
- store information for each node in preorder
- store hash function for each splitter
- encode function using Golomb-Rice

![Diagram of RecSplit Splitting Tree]

Input objects

Bucket 0

Bucket 1

Bucket 2

[Input objects diagram with tree structures for each bucket]
RecSplit Splitting Tree

- tree structure is well defined
- store information for each node in preorder
- store hash function for each splitter
- encode function using Golomb-Rice

- encodings of splitting trees stored in one bit vector
- use Elias-Fano to store
 - size of buckets
 - starting position of bucket in bit vector
Definition: Golomb Code

Given an integer \(x > 0 \) and a constant \(b > 0 \), the Golomb code consists of

- \(q = \left\lfloor \frac{x}{b} \right\rfloor \)
- \(r = x - qb = x \% b \)
- \(c = \lceil \lg b \rceil \)

with

\[
(x)_{\text{Gol}(b)} = (q)_1 (r)_2
\]

where \((r)_2\) depends on its size

- \(r < 2^{\lceil \lg b \rceil - 1} \): \(r \) requires \(\lceil \lg b \rceil \) bits and starts with a 0
- \(r \geq 2^{\lceil \lg b \rceil - 1} \): \(r \) requires \(\lceil \lg b \rceil \) bits and starts with a 1 and it encodes \(r - 2^{\lceil \lg b \rceil - 1} \)
Golomb Encoding [Gol66]

Definition: Golomb Code

Given an integer $x > 0$ and a constant $b > 0$, the Golomb code consists of:

- $q = \left\lfloor \frac{x}{b} \right\rfloor$
- $r = x - qb = x \% b$
- $c = \lceil \lg b \rceil$

with

$$(x)_{\text{Gol}(b)} = (q)_1(r)_2$$

where $(r)_2$ depends on its size:

- $r < 2^{\lceil \lg b \rceil - 1}$: r requires $\lceil \lg b \rceil$ bits and starts with a 0
- $r \geq 2^{\lceil \lg b \rceil - 1}$: r requires $\lceil \lg b \rceil$ bits and starts with a 1 and it encodes $r - 2^{\lceil \lg b \rceil - 1}$

- b has to be fixed for all codes
- still variable length
Golomb Encoding [Gol66]

Definition: Golomb Code

Given an integer $x > 0$ and a constant $b > 0$, the Golomb code consists of

- $q = \lfloor \frac{x}{b} \rfloor$
- $r = x - qb = x \% b$
- $c = \lceil \lg b \rceil$

with

$$(x)_{\text{Gol}(b)} = (q)_1 (r)_2$$

where $(r)_2$ depends on its size

- $r < 2^{\lfloor \lg b \rfloor - 1}$: r requires $\lfloor \lg b \rfloor$ bits and starts with a 0
- $r \geq 2^{\lfloor \lg b \rfloor - 1}$: r requires $\lceil \lg b \rceil$ bits and starts with a 1 and it encodes $r - 2^{\lceil \lg b \rceil - 1}$

- b has to be fixed for all codes
- still variable length
- Golomb-Rice is special case where r is power of two
Definition: Golomb Code

Given an integer $x > 0$ and a constant $b > 0$, the Golomb code consists of

- $q = \left\lfloor \frac{x}{b} \right\rfloor$
- $r = x - qb = x \mod b$
- $c = \lceil \log_2 b \rceil$

with

$$(x)_{\text{Gol}}(b) = (q)_1 (r)_2$$

where $(r)_2$ depends on its size

- $r < 2^\lceil \log_2 b \rceil - 1$: r requires $\lceil \log_2 b \rceil$ bits and starts with a 0
- $r \geq 2^\lceil \log_2 b \rceil - 1$: r requires $\lceil \log_2 b \rceil$ bits and starts with a 1 and it encodes $r - 2^\lceil \log_2 b \rceil - 1$

b has to be fixed for all codes

- still variable length

Golomb-Rice is special case where r is power of two

- for $b = 5$, there are 4 remainders: 00, 01, 100, 101, and 110
- $2^\lceil \log_2 5 \rceil - 1 = 2$
- 0, 1 < 2: 00 and 01 require 2 bits
- 2, 3, 4 ≥ 2: require 3 bits and encode 0, 1, 2 starting with 1
Comparison of Codes (1/2)

- unary
- ternary
- Fibonacci
- Elias-γ
- Elias-δ
- Golomb ($b = 5$)
- Golomb ($b = 10^6$)
Comparison of Codes (2/2)

![Graph comparing various coding schemes: unary, ternary, Fibonacci, Elias-γ, Elias-δ, Golomb (b = 5), Golomb (b = 10^6).]
RecSplit Leaves

- find perfect hash function for keys in leaves
- test hash functions brute force
- use hash value modulo ℓ
- set bit in “bit vector” of length ℓ
- all bits set indicates bijection
RecSplit Queries

- find bucket
- follow splitting tree
- accumulate number of objects to the left
- use bijection in leaf
- result is sum of
 - objects in previous buckets
 - objects to the left in splitting tree
 - value of bijection
Parallel RecSplit

based on a Domink Bez’ Master’s thesis
- randomly distribute objects in leaf in two sets A and B
- hash objects in both set
- two “bit vectors”: cyclic shift one until all bits are set when 0Red
- store hash function \textit{and} rotation

\textbf{Lemma: Rotation Fitting}

\begin{align*}
|A| &= A, \\
|B| &= B, \\
P(R) &= \text{the probability of finding a bijection using rotation fitting}, \\
P(B) &= \text{the probability of finding a bijection using \RecSplit's brute force strategy}.
\end{align*}

Then, $P(R) \to_m P(B)$ for $m \to \infty$.

\textbf{Expected factor higher probability}\n
\textbf{Expected space overhead (Bits/Object)}
- randomly distribute objects in leaf in two sets A and B
- hash objects in both set
- two “bit vectors”: cyclic shift one until all bits are set when ORed
- store hash function and rotation

\[
\begin{align*}
\text{Expected factor} & \quad \text{higher probability} \\
\end{align*}
\]

\[
\begin{align*}
\text{Exp. space overhead} & \quad \text{(Bits/Object)} \\
\end{align*}
\]
randomly distribute objects in leaf in two sets A and B
hash objects in both set
two “bit vectors”: cyclic shift one until all bits are set when ORed
store hash function and rotation

Lemma: Rotation Fitting

Let $|A| = \mathbb{A}$, $|B| = \mathbb{B}$, and $P(R)$ be the probability of finding a bijection using rotation fitting. Let $P(B)$ denote the probability of finding a bijection using RecSplit’s brute force strategy. Then, $P(R) \to mP(B)$ for $m \to \infty$.

Graphs:
- Expected factor higher probability
- Expec. space overhead (Bits/Object)
Rotation Fitting (2/3)

Proof (Sketch)
- consider number of different injective functions under cyclic shifts
- bit vector of length \(m \) with \(B \) set bits
- total number of equivalence classes under rotation is
 \[
 \frac{1}{m} \sum_{d \mid \gcd(A,B)} \phi \left(\frac{m}{d} \right) \left(\frac{m}{d} \right) \phi \left(\frac{B}{d} \right).
 \]
- probability of the event \(I \) that there is a rotation has the \(m \) least significant bits set is
 \[
 P(I) \geq \frac{1}{\sum_{d \mid \gcd(A,B)} \phi \left(\frac{m}{d} \right) \left(\frac{B}{d} \right)}
 \]
- \(\phi(i) = |\{j \leq i : \gcd(i,j) = 1\}| \) is Euler's totient function

Proof (Sketch, cnt.)
- determine the probability \(P(R) \) using the events
 - \(A \): \(\text{popcount}(a) = A \)
 - \(B \): \(\text{popcount}(b) = B \)
 - \(B \): found bijection using brute-force
Proof (Sketch, ctn.)

\[
\mathbb{P}(R) = \mathbb{P}(A)\mathbb{P}(B)\mathbb{P}(I) \\
\geq \frac{m!}{(m-A)!m^A} \cdot \frac{m!}{(m-B)!m^B} \cdot \mathbb{P}(I) = \frac{m!}{m^m} \cdot \frac{m!}{A!B!} \cdot \mathbb{P}(I) = \mathbb{P}(B) \cdot \frac{m!}{A!B!} \cdot \mathbb{P}(I) \\
\geq \mathbb{P}(B) \cdot \frac{m!}{A!B!} \cdot \frac{1}{\sum_{d|\gcd(A,B)} \phi(d)\left(\frac{m/d}{b/d}\right)} = \mathbb{P}(B) \cdot m \cdot \frac{1}{m! + (A!B!) \sum_{d|\gcd(A,B), d \neq 1} \phi(d)\left(\frac{m/d}{b/d}\right)} \\
= \mathbb{P}(B) \cdot m \cdot \frac{1}{1 + \sum_{d|\gcd(A,B), d \neq 1} \phi(d)\left(\frac{m/d}{A/d}!\frac{B/d}{B/d}\right)} \\
\sim \mathbb{P}(B) \cdot m \cdot \frac{1}{1 + \sum_{d|\gcd(A,B), d \neq 1} \phi(d)\sqrt{d} \frac{A^A - A/d}{m^m - m/d} \frac{B^B - B/d}{m^m - m/d}} \\
\to \mathbb{P}(B) \cdot m \text{ for } m \to \infty
\]
Parallel RecSplit on the GPU

Computing on the GPU

- several streaming multiprocessors (SMs)
- each SM contains many arithmetic logic units (ALUs)
- several threads operate in lock-step (warp)
- to hide latencies, each SM is oversubscribed with more threads than ALUs
- in CUDA, kernels are functions that can be executed on the GPU
- a kernel is executed on a grid of thread blocks

- use GPU to determine splitting and bijections
Experimental Evaluation

- Intel i7 11700 processor with 8 cores (16 hardware threads (HT)), base clock: 2.5 GHz
- AVX-512.
- Ubuntu 22.04 with Linux 5.15.0
- NVIDIA RTX 3090 GPU

- AMD EPYC 7702P processor with 64 cores (128 hardware threads), base clock: 2.0 GHz
- AVX2
- Ubuntu 20.04 with Linux 5.4.0

- GNU C++ compiler v.11.2.0 (-O3 -march=native)
Rotation Fitting

- **Brute force**
- **Rotation fitting**
Overview Results

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Method</th>
<th>Bijections</th>
<th>Threads</th>
<th>B/Obj</th>
<th>Constr.</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\ell = 16, b = 2000$</td>
<td>RecSplit [EGV20b]</td>
<td>Brute force</td>
<td>1</td>
<td>1.560</td>
<td>1175.4</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>RecSplit</td>
<td>Brute force</td>
<td>16</td>
<td>1.560</td>
<td>206.5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>SIMDRecSplit</td>
<td>Rotation fitting</td>
<td>1</td>
<td>1.560</td>
<td>138.0</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>SIMDRecSplit</td>
<td>Rotation fitting</td>
<td>16</td>
<td>1.560</td>
<td>27.9</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>GPURecSplit</td>
<td>Brute force</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GPURecSplit</td>
<td>Rotation fitting</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\ell = 18, b = 50$</td>
<td>RecSplit [EGV20b]</td>
<td>Brute force</td>
<td>1</td>
<td>1.707</td>
<td>2942.9</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>RecSplit</td>
<td>Brute force</td>
<td>16</td>
<td>1.713</td>
<td>504.0</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>SIMDRecSplit</td>
<td>Rotation fitting</td>
<td>1</td>
<td>1.709</td>
<td>58.3</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>SIMDRecSplit</td>
<td>Rotation fitting</td>
<td>16</td>
<td>1.708</td>
<td>12.3</td>
<td>239</td>
</tr>
<tr>
<td></td>
<td>GPURecSplit</td>
<td>Brute force</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GPURecSplit</td>
<td>Rotation fitting</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\ell = 24, b = 2000$</td>
<td>GPURecSplit</td>
<td>Brute force</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GPURecSplit</td>
<td>Rotation fitting</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Comparison with Competitors

- **8-core Intel**
 - 1 Thread
 - Throughput (MObjects/s): 0 to 15
 - Bits/Object: 1.5 to 3.5

- **8-core Intel**
 - 16 Threads
 - Throughput (MObjects/s): 0 to 80
 - Bits/Object: 1.5 to 3.5

- **64-core AMD**
 - 1 Thread
 - Throughput (MObjects/s): 0 to 10
 - Bits/Object: 1.5 to 3.5

- **64-core AMD**
 - 128 Threads
 - Throughput (MObjects/s): 0 to 150
 - Bits/Object: 1.5 to 3.5

Comparison with Competitors:

- BBHash [Lim+17]
- CHD [BBD09b]
- PTHash [PT21b]
- PTHash-HEM [PT21a]
- RecSplit [EGV20b]
- SIMDRecSplit
- SicHash [LSW23]
Conclusion and Outlook

This Lecture
- conclusion retroactive data structures
- minimal perfect hash functions

Advanced Data Structures

- retroactive PQ
- String B-tree
- SA & LCP
- Successor
- CSA
- RMQ
- static/dynamic BV
- static/dynamic succ. trees
- range min-max tree
- succ. graphs
Conclusion and Outlook

This Lecture
- conclusion retroactive data structures
- minimal perfect hash functions

Next Lecture (15.07.2024)
- NO LECTURE ON 08.07.2024
- learned data structures
Conclusion and Outlook

This Lecture
- conclusion retroactive data structures
- minimal perfect hash functions

Next Lecture (15.07.2024)
- NO LECTURE ON 08.07.2024
- learned data structures

Oral Exams and Project
- registration exams and project will open this week
Bibliography I

Bibliography II

Bibliography III

