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Recap: Retroactive Data Structures

Definition: Partial Retroactivity

3/31

® INSERT(t, operation): insert operation at time ¢ QUERY is only allowed for t = co @ now
® DELETE(t): delete operation at time t

® QUERY(t, query): ask query at time t Definition: Full Retroactivity

QUERY is allowed at any time t

& for a priority queue updates are

Definition: Nonoblivious Retroactivity

® insert
a delete-min INSERT, DELETE, and QUERY at any time t but also
® time is integer @ for simplicity otherwise use identify changed QUERY results

order-maintenance data structure

inselrt(7)inselrt(2)inse|rt(3) del-lmin del-lmin . queries

(') 1I 2 3 4 now time
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Priority Queues: Partial Retroactivity (1/6)

& priority queue with 1
® insert
& delete-min

@ delete-min makes PQ non-commutative

value

A priority queue can be partial retroactive with only
O(log m) overhead per partially retroactive operation

T
time
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Priority Queues: Partial Retroactivity (2/6)

@ what is the problem with 1

® INSERT(t,delete-min())
® INSERT(t,insert(i))

® INSERT(t,delete-min()) creates chain-reaction

® INSERT(t,insert(i)) creates chain-reaction

value

@ can we solve DELETE(t delete -min()) using
INSERT(t,insert(i))? gPINGO

® insert deleted minimum right after deletion

T
time
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Priority Queues: Partial Retroactivity (3/6)

let Q; be elements in PQ at time t 4

what values are in Q,.?
what value inserts INSERT(t, insert(v)) in Qu

values is max{v, v': v’ deleted at time > t}

maintaining deleted elements is hard

value

Atime t' is a bridge if Qv C Qs ‘

" time

® all elements present at t’ are present at t., . . Eeim
? &

® what times are bridges? e PINGO
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Priority Queues: Partial Retroactivity (4/6)
If time t' is closest bridge preceding time t, then ® max{v’: v/ deleted attime > t} € {V' ¢
Q. : V' inserted at time > t'}
max{v’: v’ deleted at time > t} ® if v/ is deleted at some time > ¢

® then it is notin Q.

max{V’ ¢ Q. : V' inserted at time > t'} ® what values are in Q.?
® what value inserts INSERT(¢, insert(v)) in Quo
® max{v,Vv' ¢ Q: V inserted at time > t'}
® max{V' ¢ Qu: V' inserted attime > t'} €
{V': V' deleted at time > t}
= if maximum value is deleted between t" and t

® then this time is a bridge
® contradicting that ¢’ is bridge preceding t
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Priority Queues: Partial Retroactivity (5/6)

® keep track of inserted values

® use balanced binary search trees for O(log m)
overhead

@ BBST for Q.
@ BBST where leaves are inserts ordered by time
augmented with
® for each node x store
max{v’ ¢ Qs : v’ inserted in subtree of x}
® BBST where leaves are all updates ordered by
time augmented with
® |eaves store 0 for inserts with v € Q, 1 for
inserts with v ¢ Q. and —1 for delete-mins
® inner nodes store subtree sums
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® how can we find bridges? 2 PINGO
@ use third BBST and find prefix of updates

summing to 0

® requires O(log n) time as we traverse tree at

most twice
® this results in bridge t’

® use second BBST to identify maximum value
not in Q. on path to

® since BBST is augmented with these values,
this requires O(log n) time

® update all BBSTs in O(log n) time
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Priority Queues: Partial Retroactivity (6/6)

A priority queue can be partial retroactive with only
O(log m) overhead per partially retroactive operation

® requires three BBSTs
® updates need to update all BBSTs
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h:{0,...,u—1} = {0,...,m—1} Definition: Universal

& choose h from family H with
n objects Pren[h(x) = h(y)] = O(1/m) for all
x£yel

. Lo - .
hash table of size m & m close {0 1 family is small to enable efficient encoding

.
® from universe U = {0,...,u—1}
.
anm<Lu

@ h(x) = (ax mod u) mod mfor0 < a<p

Definition: Totally Random a'(“’)p being pr("“e 0 )
® h(x) = ax » (logu — log m) for m, u being
® Plh(x) =f] =1/m powers of two
® independent of h(y) forall x # y € U

® requires ©(ulog m) bits of space to store @ oo

. is thi i i 2%
e Why is this family easier to store? &

- PINGO
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Hashing (2/2) IT

Definition: k-wise Independent Definition: Simple Tabulation Hashing

@ choose h from family H with ® view x as vector xy, . .., X of characters
P[h(x1) = ;& ... &h(x) = t] = O(1/m") for

& totally random hash table T; for each character
distinct xy,...,xc € U

® h(x) = Ti(xy) xor ... xor Ts(xc)

@ implies universal
@ Why can we use totally random hash tables?

, 22 PINGO
B h(x) = ((Zf‘:_(; aix') mod p) mod m for i
0<ag <pand0< a_1<p
: = ® O(cu'/°) space

® pairwise (k = 2) independence is stronger than ®= O(c) time to compute
universal @ 3-wise independent

® h(x) = ((ax + b) mod u) mod m
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Minimal Perfect Hashing

Definition: Perfect Hash Function Definition: Minimal Perfect Hash Function

& injective hash function @ bijective hash function
® maps n objects to m slots ® maps n objects to m = n slots
® h: N—[0,n)

® |ower space bound for m = (1 + €)n s

L & |ower space bound as for PHF with € = 0:

1
log e — €log | i a4
oge~ 1.

& for m close to n there are likely collisions .
® no collisions

® can we make PHF to MPHF? %§‘§ PINGO
[OEas
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BDZ (RAM) Algorithm [BPZ13]

& for each object calculate three potential slots
(ho, hy, and hy)

® for each slot that contains only one object,
remove the object from all its other slots

® one slot per object
@ if that does not work use other hash functions
® use rank data structure to map slots to [0, n)

& example on the board

1.95 bits per object when m = 1.23n
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® how to check if hash function works

® interpret each slot as node in a hypergraph

® objects are edges

® if graph is peelable, we have a feasible mapping

A hypergraph is peelable, if it is possible to obtain a
graph without edges by iteratively taking away edges
that contain a node with degree 1

& example on the board
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Compress, Hash, and Displace [BBD09a]
® partition keys into buckets ® can be used as PHF
wsetm=(1+¢€)n ® there are a lot of tricks w.r.t. bucket sizes and
® sort partitions by size size distributions
® starting with largest bucket, find universal hash ® requires around 2.05 bits per object

function mapping all keys to empty slots

® if key mapped to non-empty slot, try next hash
function

a for each bucket store universal hash function
® use rank data structure to map slots to [0, n)

@ example on the board

14/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering



RecSplit Overview [EGV20a]

partition keys into buckets of size b
for each bucket compute splitting trees
split keys into smaller sets

stop when sets have size ¢

upper aggregation levels have fanout 2
® |ower two aggregation levels have fanout

® max{2, [0.35( + 0.55]}
® max{2,[0.21¢ + 0.9}

@ |ast level is leaf level
& find bijections

Input objects

KIT

Karlsruhe Institute of Technology

L

Bucket 0

Bucket 1

Bucket 2
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RecSplit Splitting Tree
@ free structure is well defined Input objects
& store information for each node in preorder m
& store hash function for each splitter Bucket 0 Bucket 1 Bucket 2
® encode function using Golomb-Rice

® encodings of splitting trees stored in one bit
vector
@ uyse Elias-Fano to store

& size of buckets
® starting position of bucket in bit vector
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Golomb Encoding [Gol66]

® b has to be fixed for all codes

Given an integer x > 0 and a constant b > 0, the ® still variable length
Golomb code consists of

wg=|3] @ Golomb-Rice is special case where r is power
Ir:x-qb:x%b of two
®c=[lgh]

i & for b = 5, there are 4 remainders:

00,01,100,101, and 110
m ollgs]-1 — o
® 0,1 < 2: 00 and 01 require 2 bits

® 2 3,4 > 2: require 3 bits and encode 0, 1,2
starting with 1

(X)Gol(b) = (9)1(r)2
where (r), depends on its size

w r < 2l'8b]=1: rrequires |Ig b] bits and starts
witha 0

w r > 2ll8bl=1: rrequires [Ig b] bits and starts
with a 1 and it encodes r — 2l'st] -1
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Comparison of Codes (1/2)
16
—— unary
14 4 ——— ternary
—— Fibonacci
12 4 /—/ —— Elias-y
—— Elias-¢

10 77 Golomb (b =5)
yi 77 / Golomb (b = 10°)

size
o 3
L L

‘

| w

value
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Comparison of Codes (2/2)

100
—— unary
——— ternary
80 ——— Fibonacci
—— Elias-y
—— Elias-d
60 - —— Golomb (b =5)
° ~—— Golomb (b = 106)
40 A
20 A
0 T T T T T T
10! 103 10° 107 10° 10t
value
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RecSplit Leaves
& find perfect hash function for keys in leaves Input objects
® test hash functions brute force m
® use hash value modulo ¢ Bucket 0 Bucket 1 Bucket 2
& set bit in “bit vector” of length ¢
® all bits set indicates bijection
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RecSplit Queries

find bucket Input objects

follow splitting tree m

accumulate number of objects to the left Bucket 0 Bucket 1 Bucket 2

use bijection in leaf

result is sum of
® objects in previous buckets
® objects to the left in splitting tree
® value of bijection
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Parallel RecSplit

® Dominik Bez, Florian Kurpicz,
Hans-Peter Lehmann, and Peter Sanders.
“High Performance Construction of RecSplit
Based Minimal Perfect Hash Functions”. In:
ESA. volume 274. LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum flr Informatik, 2023,
19:1-19:16. DOI:
10.4230/LIPICS.ESA.2023.19

| based on a Domink Bez’ Master’s thesis

22/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering


https://doi.org/10.4230/LIPICS.ESA.2023.19

® randomly distribute objects in leaf in two sets A

and B Let |A| = A, |B| = B, and P(R) be the probability of
® hash objects in both set finding a bijection using rotation fitting. Let IP(B)
denote the probability of finding a bijection using
RecSplit’s brute force strategy. Then,
P(R) — mP(B) for m — oo.

& two “bit vectors”: cyclic shift one until all bits are
set when ORed

@ store hash function and rotation

=
w
T

n
o
T
=
n
T

-

o
T

©

o
T

Expected factor
higher probability
Expec. space overhead
(Bits/Object)

o
I
o
T
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Rotation Fitting (2/3) ﬂ(IT

® consider number of different injective functions ® determine the probability IP(R) using the events
under cyclic shifts
® bit vector of length m with B set bits ® A: popcount(a)=A
® 3: popcount(b)=B

- :
total number of equivalence classesmu/r;(;er L .

i e 1
rotation is 7= 3~ giviges ged(A,B) ¢(d) (]B/d
® probability of the event Z that there is a rotation
has the m least significant bits set is

1
d 3
Zd divides gcd(A,B) (b(d) (E;d)

o() = |{j < i: ged(i,j) = 1}| is Euler’s totient
function

P(Z)>m
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Rotation Fitting (3/3) ﬂ(IT

Karlsruhe Institute of Technology

m! m! m! m! m!

2 A m_Bme L= g g P =F(B) - g - B(@)
! 1 m!
> P(B) - . =TP(B)-m- - =
AlB! Zd|gcd(A B) ¢( )(b/d) m! + (AIBI) Zd|gcd A,B),d#1 ¢( )(b/g)
1
= IP(B) -m- m/d)IAIBI
1+ Yaigod(a8), 021 $0) AT BTN
~P(B)-m L

’ A—A/dRB—B/d
T+ Zdlgcd(A,B),d;ﬂ ¢( )\FAmmi]‘i;/d
— IP(B) - mfor m — oo
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Parallel RecSplit on the GPU ﬂIT

Computing on the GPU

@ several streaming multiprocessors (SMs)

® each SM contains many arithmetic logic units
(ALUs)

® several threads operat in lock-step (warp)

® to hide latencies, each SM is oversubscribed
with more threads than ALUs

® in CUDA, kernels are functions that can be
executed on the GPU
® g kernel is executed on a grid of thread blocks

@ use GPU to determine splitting and bijections
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Experimental Evaluation

® [ntel i7 11700 processor with 8 cores (16
hardware threads (HT)), base clock: 2.5 GHz

| AVX-512.
& Ubuntu 22.04 with Linux 5.15.0
a NVIDIA RTX 3090 GPU

& AMD EPYC 7702P processor with 64 cores
(128 hardware threads), base clock: 2.0 GHz

| AVX2
@ Ubuntu 20.04 with Linux 5.4.0

® GNU C++ compiler v.11.2.0 (-03
-march=native)
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10° Ennnnnin
© E
c -
[e]
8 105 ST = A I I
(2] -
5 o
3] B
2 4
o) I
o) 10 g
103 ............................................
L i } !

Bits per object
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—e— Brute force
—— Rotation fitting
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Bits per object
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Overview Results
Configuration Method Bijections Threads B/Obj Constr. Speedup
¢ =16,b =2000 RecSplit[EGV20b] Brute force 1 1560 1175.4 1

RecSplit Brute force 16 1.560 206.5 5
SIMDRecSplit Rotation fitting 1 1560 138.0 8
SIMDRecSplit Rotation fitting 16 1.560 27.9 42
GPURecSplit Brute force GPU 1.560 1.8 655
GPURecSplit Rotation fitting GPU 1.560 1.0 1173
¢{=18,b =50 RecSplit [EGV20b] Brute force 1 1.707 2942.9 1
RecSplit Brute force 16 1.713  504.0 5
SIMDRecSplit Rotation fitting 1 1.709 58.3 50
SIMDRecSplit Rotation fitting 16 1.708 12.3 239
GPURecSplit Brute force GPU 1.708 5.2 564
GPURecSplit Rotation fitting GPU 1.709 0.5 5438
¢ =24,b=2000 GPURecSplit Brute force GPU 1.496 2300.9 —
GPURecSplit Rotation fitting GPU 1.496 467.9 —
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Comparison with Competitors
8-core Intel 8-core Intel 64-core AMD 64-core AMD
1 Thread 16 Threads 1 Thread 128 Threads
a 80 |- 150 |-
(2]
8" 60 |- 10
re) 100 -
@)
\E] 10 40 |-
1—31 5 ° S0
] i L
o
£ 0 0 0 0
15 2 25 3 35 15 2 25 3 35 15 2 25 3 35 15 2 25 3 35
Bits/Object Bits/Object Bits/Object Bits/Object

BBHash [Lim+17] —«— CHD [BBD09b] —e&— PTHash [PT21b] —«— PTHash-HEM [PT21a]
RecSplit [EGV20b] —+— SIMDRecSplit —e— SicHash [LSW23]
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Conclusion and Outlook

This Lecture Advanced Data Structures

® conclusion retroactive data structures otronctive
® minimal perfect hash functions PQ String B-tree | SA &LCP |

Next Lecture (15.07.2024)

CSAl :
® NO LECTURE ON 08.07.2024 Successorl RMQ |

® |earned data structures

Oral Exams and Pro'ect static/dynamic static/dynamic
| BV succ. trees
& registration exams and project will open this
week |
® exam dates: 19.08., 20.08., 26.08.,28.08., range min-max tree succ. graphs

30.08., 09.09, and 11.09.
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