KIT

Karlsruhe Institute of Technology

Advanced Data Structures

Lecture 10: Retroactive Data Structures (cnt.) and Minimal Perfect Hashing
Florian Kurpicz

The slides are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License @ ®®: www.creativecommons.org/licenses/by-sa/4.0 | commit c70729e compiled at 2024-07-01-12:41

KIT — The Research University in the Helmholtz Association WWW. kit.edu

https://creativecommons.org/licenses/by-sa/4.0/
https://www.kit.edu

PINGO it

Karlsruhe Institute of Technology

https://pingo.scc.kit.edu/489786

2/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

https://pingo.scc.kit.edu/489786
https://pingo.scc.kit.edu/489786

Ui

Recap: Retroactive Data Structures

Definition: Partial Retroactivity

3/31

® INSERT(t, operation): insert operation at time ¢ QUERY is only allowed for t = co @ now
® DELETE(t): delete operation at time t

® QUERY(t, query): ask query at time t Definition: Full Retroactivity

QUERY is allowed at any time t

& for a priority queue updates are

Definition: Nonoblivious Retroactivity

® insert
a delete-min INSERT, DELETE, and QUERY at any time t but also
® time is integer @ for simplicity otherwise use identify changed QUERY results

order-maintenance data structure

inselrt(7)inselrt(2)inse|rt(3) del-lmin del-lmin . queries

(') 1I 2 3 4 now time

2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

KIT

Priority Queues: Partial Retroactivity (1/6)

& priority queue with 1
® insert
& delete-min

@ delete-min makes PQ non-commutative

value

A priority queue can be partial retroactive with only
O(log m) overhead per partially retroactive operation

T
time

4/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

KIT

Priority Queues: Partial Retroactivity (2/6)

@ what is the problem with 1

® INSERT(t,delete-min())
® INSERT(t,insert(i))

® INSERT(t,delete-min()) creates chain-reaction

® INSERT(t,insert(i)) creates chain-reaction

value

@ can we solve DELETE(t delete -min()) using
INSERT(t,insert(i))? gPINGO

® insert deleted minimum right after deletion

T
time

5/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

https://kurpicz.org

KIT

Priority Queues: Partial Retroactivity (3/6)

let Q; be elements in PQ at time t 4

what values are in Q,.?
what value inserts INSERT(t, insert(v)) in Qu

values is max{v, v': v’ deleted at time > t}

maintaining deleted elements is hard

value

Atime t' is a bridge if Qv C Qs ‘

" time

® all elements present at t’ are present at t., . . Eeim
? &

® what times are bridges? e PINGO

6/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

https://kurpicz.org

KIT

Priority Queues: Partial Retroactivity (4/6)
If time t' is closest bridge preceding time t, then ® max{v’: v/ deleted attime > t} € {V' ¢
Q. : V' inserted at time > t'}
max{v’: v’ deleted at time > t} ® if v/ is deleted at some time > ¢

® then it is notin Q.

max{V’ ¢ Q. : V' inserted at time > t'} ® what values are in Q.?
® what value inserts INSERT(¢, insert(v)) in Quo
® max{v,Vv' ¢ Q: V inserted at time > t'}
® max{V' ¢ Qu: V' inserted attime > t'} €
{V': V' deleted at time > t}
= if maximum value is deleted between t" and t

® then this time is a bridge
® contradicting that ¢’ is bridge preceding t

7131 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

8/31 2024-07-01

Priority Queues: Partial Retroactivity (5/6)

® keep track of inserted values

® use balanced binary search trees for O(log m)
overhead

@ BBST for Q.
@ BBST where leaves are inserts ordered by time
augmented with
® for each node x store
max{v’ ¢ Qs : v’ inserted in subtree of x}
® BBST where leaves are all updates ordered by
time augmented with
® |eaves store 0 for inserts with v € Q, 1 for
inserts with v ¢ Q. and —1 for delete-mins
® inner nodes store subtree sums

KIT

Karlsruhe Institute of Technology

® how can we find bridges? 2 PINGO
@ use third BBST and find prefix of updates

summing to 0

® requires O(log n) time as we traverse tree at

most twice
® this results in bridge t’

® use second BBST to identify maximum value
not in Q. on path to

® since BBST is augmented with these values,
this requires O(log n) time

® update all BBSTs in O(log n) time

Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

https://kurpicz.org

KIT

Priority Queues: Partial Retroactivity (6/6)

A priority queue can be partial retroactive with only
O(log m) overhead per partially retroactive operation

® requires three BBSTs
® updates need to update all BBSTs

9/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

Hashing (1/2) IT

h:{0,...,u—1} = {0,...,m—1} Definition: Universal

& choose h from family H with
n objects Pren[h(x) = h(y)] = O(1/m) for all
x£yel

. Lo - .
hash table of size m & m close {0 1 family is small to enable efficient encoding

.
® from universe U = {0,...,u—1}
.
anm<Lu

@ h(x) = (ax mod u) mod mfor0 < a<p

Definition: Totally Random a'(“’)p being pr("“e 0)
® h(x) = ax » (logu — log m) for m, u being
® Plh(x) =f] =1/m powers of two
® independent of h(y) forall x # y € U

® requires ©(ulog m) bits of space to store @ oo

. is thi i i 2%
e Why is this family easier to store? &

- PINGO

10/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

https://kurpicz.org

Hashing (2/2) IT

Definition: k-wise Independent Definition: Simple Tabulation Hashing

@ choose h from family H with ® view x as vector xy, . .., X of characters
P[h(x1) = ;& ... &h(x) = t] = O(1/m") for

& totally random hash table T; for each character
distinct xy,...,xc € U

® h(x) = Ti(xy) xor ... xor Ts(xc)

@ implies universal
@ Why can we use totally random hash tables?

, 22 PINGO
B h(x) = ((Zf‘:_(; aix') mod p) mod m for i
0<ag <pand0< a_1<p
: = ® O(cu'/°) space

® pairwise (k = 2) independence is stronger than ®= O(c) time to compute
universal @ 3-wise independent

® h(x) = ((ax + b) mod u) mod m

11/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

https://kurpicz.org

Ui

Minimal Perfect Hashing

Definition: Perfect Hash Function Definition: Minimal Perfect Hash Function

& injective hash function @ bijective hash function
® maps n objects to m slots ® maps n objects to m = n slots
® h: N—[0,n)

® |ower space bound for m = (1 + €)n s

L & |ower space bound as for PHF with € = 0:

1
log e — €log | i a4
oge~ 1.

& for m close to n there are likely collisions .
® no collisions

® can we make PHF to MPHF? %§‘§ PINGO
[OEas

12/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

https://kurpicz.org

BDZ (RAM) Algorithm [BPZ13]

& for each object calculate three potential slots
(ho, hy, and hy)

® for each slot that contains only one object,
remove the object from all its other slots

® one slot per object
@ if that does not work use other hash functions
® use rank data structure to map slots to [0, n)

& example on the board

1.95 bits per object when m = 1.23n

13/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

KIT

Karlsruhe Institute of Technology

® how to check if hash function works

® interpret each slot as node in a hypergraph

® objects are edges

® if graph is peelable, we have a feasible mapping

A hypergraph is peelable, if it is possible to obtain a
graph without edges by iteratively taking away edges
that contain a node with degree 1

& example on the board

KIT

Compress, Hash, and Displace [BBD09a]
® partition keys into buckets ® can be used as PHF
wsetm=(1+¢€)n ® there are a lot of tricks w.r.t. bucket sizes and
® sort partitions by size size distributions
® starting with largest bucket, find universal hash ® requires around 2.05 bits per object

function mapping all keys to empty slots

® if key mapped to non-empty slot, try next hash
function

a for each bucket store universal hash function
® use rank data structure to map slots to [0, n)

@ example on the board

14/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

RecSplit Overview [EGV20a]

partition keys into buckets of size b
for each bucket compute splitting trees
split keys into smaller sets

stop when sets have size ¢

upper aggregation levels have fanout 2
® |ower two aggregation levels have fanout

® max{2, [0.35(+ 0.55]}
® max{2,[0.21¢ + 0.9}

@ |ast level is leaf level
& find bijections

Input objects

KIT

Karlsruhe Institute of Technology

L

Bucket 0

Bucket 1

Bucket 2

15/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

KIT

RecSplit Splitting Tree
@ free structure is well defined Input objects
& store information for each node in preorder m
& store hash function for each splitter Bucket 0 Bucket 1 Bucket 2
® encode function using Golomb-Rice

® encodings of splitting trees stored in one bit
vector
@ uyse Elias-Fano to store

& size of buckets
® starting position of bucket in bit vector

16/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

KIT

Golomb Encoding [Gol66]

® b has to be fixed for all codes

Given an integer x > 0 and a constant b > 0, the ® still variable length
Golomb code consists of

wg=|3] @ Golomb-Rice is special case where r is power
Ir:x-qb:x%b of two
®c=[lgh]

i & for b = 5, there are 4 remainders:

00,01,100,101, and 110
m ollgs]-1 — o
® 0,1 < 2: 00 and 01 require 2 bits

® 2 3,4 > 2: require 3 bits and encode 0, 1,2
starting with 1

(X)Gol(b) = (9)1(r)2
where (r), depends on its size

w r < 2l'8b]=1: rrequires |Ig b] bits and starts
witha 0

w r > 2ll8bl=1: rrequires [Ig b] bits and starts
with a 1 and it encodes r — 2l'st] -1

17/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

KIT

Comparison of Codes (1/2)
16
—— unary
14 4 ——— ternary
—— Fibonacci
12 4 /—/ —— Elias-y
—— Elias-¢

10 77 Golomb (b =5)
yi 77 / Golomb (b = 10°)

size
o 3
L L

‘

| w

value

18/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

SKIT

Comparison of Codes (2/2)

100
—— unary
——— ternary
80 ——— Fibonacci
—— Elias-y
—— Elias-d
60 - —— Golomb (b =5)
° ~—— Golomb (b = 106)
40 A
20 A
0 T T T T T T
10! 103 10° 107 10° 10t
value

19/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

KIT

RecSplit Leaves
& find perfect hash function for keys in leaves Input objects
® test hash functions brute force m
® use hash value modulo ¢ Bucket 0 Bucket 1 Bucket 2
& set bit in “bit vector” of length ¢
® all bits set indicates bijection

20/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

KIT

RecSplit Queries

find bucket Input objects

follow splitting tree m

accumulate number of objects to the left Bucket 0 Bucket 1 Bucket 2

use bijection in leaf

result is sum of
® objects in previous buckets
® objects to the left in splitting tree
® value of bijection

21/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

KIT

Parallel RecSplit

® Dominik Bez, Florian Kurpicz,
Hans-Peter Lehmann, and Peter Sanders.
“High Performance Construction of RecSplit
Based Minimal Perfect Hash Functions”. In:
ESA. volume 274. LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum flr Informatik, 2023,
19:1-19:16. DOI:
10.4230/LIPICS.ESA.2023.19

| based on a Domink Bez’ Master’s thesis

22/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

https://doi.org/10.4230/LIPICS.ESA.2023.19

® randomly distribute objects in leaf in two sets A

and B Let |A| = A, |B| = B, and P(R) be the probability of
® hash objects in both set finding a bijection using rotation fitting. Let IP(B)
denote the probability of finding a bijection using
RecSplit’s brute force strategy. Then,
P(R) — mP(B) for m — oo.

& two “bit vectors”: cyclic shift one until all bits are
set when ORed

@ store hash function and rotation

=
w
T

n
o
T
=
n
T

-

o
T

©

o
T

Expected factor
higher probability
Expec. space overhead
(Bits/Object)

o
I
o
T

23/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

Rotation Fitting (2/3) ﬂ(IT

® consider number of different injective functions ® determine the probability IP(R) using the events
under cyclic shifts
® bit vector of length m with B set bits ® A: popcount(a)=A
® 3: popcount(b)=B

- :
total number of equivalence classesmu/r;(;er L .

i e 1
rotation is 7= 3~ giviges ged(A,B) ¢(d) (]B/d
® probability of the event Z that there is a rotation
has the m least significant bits set is

1
d 3
Zd divides gcd(A,B) (b(d) (E;d)

o() = |{j < i: ged(i,j) = 1}| is Euler’s totient
function

P(Z)>m

24/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

Rotation Fitting (3/3) ﬂ(IT

Karlsruhe Institute of Technology

m! m! m! m! m!

2 A m_Bme L= g g P =F(B) - g - B(@)
! 1 m!
> P(B) - . =TP(B)-m- - =
AlB! Zd|gcd(A B) ¢()(b/d) m! + (AIBI) Zd|gcd A,B),d#1 ¢()(b/g)
1
= IP(B) -m- m/d)IAIBI
1+ Yaigod(a8), 021 $0) AT BTN
~P(B)-m L

’ A—A/dRB—B/d
T+ Zdlgcd(A,B),d;ﬂ ¢()\FAmmi]‘i;/d
— IP(B) - mfor m — oo

25/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

Parallel RecSplit on the GPU ﬂIT

Computing on the GPU

@ several streaming multiprocessors (SMs)

® each SM contains many arithmetic logic units
(ALUs)

® several threads operat in lock-step (warp)

® to hide latencies, each SM is oversubscribed
with more threads than ALUs

® in CUDA, kernels are functions that can be
executed on the GPU
® g kernel is executed on a grid of thread blocks

@ use GPU to determine splitting and bijections

26/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

KIT

Experimental Evaluation

® [ntel i7 11700 processor with 8 cores (16
hardware threads (HT)), base clock: 2.5 GHz

| AVX-512.
& Ubuntu 22.04 with Linux 5.15.0
a NVIDIA RTX 3090 GPU

& AMD EPYC 7702P processor with 64 cores
(128 hardware threads), base clock: 2.0 GHz

| AVX2
@ Ubuntu 20.04 with Linux 5.4.0

® GNU C++ compiler v.11.2.0 (-03
-march=native)

27/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

Rotation Fitting

10° Ennnnnin
© E
c -
[e]
8 105 ST = A I I
(2] -
5 o
3] B
2 4
o) I
o) 10 g
103 ..
L i } !

Bits per object

28/31 2024-07-01

—e— Brute force
—— Rotation fitting

KIT

Karlsruhe Institute of Technology

Bits per object

Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

KIT

Overview Results
Configuration Method Bijections Threads B/Obj Constr. Speedup
¢ =16,b =2000 RecSplit[EGV20b] Brute force 1 1560 1175.4 1

RecSplit Brute force 16 1.560 206.5 5
SIMDRecSplit Rotation fitting 1 1560 138.0 8
SIMDRecSplit Rotation fitting 16 1.560 27.9 42
GPURecSplit Brute force GPU 1.560 1.8 655
GPURecSplit Rotation fitting GPU 1.560 1.0 1173
¢{=18,b =50 RecSplit [EGV20b] Brute force 1 1.707 2942.9 1
RecSplit Brute force 16 1.713 504.0 5
SIMDRecSplit Rotation fitting 1 1.709 58.3 50
SIMDRecSplit Rotation fitting 16 1.708 12.3 239
GPURecSplit Brute force GPU 1.708 5.2 564
GPURecSplit Rotation fitting GPU 1.709 0.5 5438
¢ =24,b=2000 GPURecSplit Brute force GPU 1.496 2300.9 —
GPURecSplit Rotation fitting GPU 1.496 467.9 —

29/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

KT

Comparison with Competitors
8-core Intel 8-core Intel 64-core AMD 64-core AMD
1 Thread 16 Threads 1 Thread 128 Threads
a 80 |- 150 |-
(2]
8" 60 |- 10
re) 100 -
@)
\E] 10 40 |-
1—31 5 ° S0
] i L
o
£ 0 0 0 0
15 2 25 3 35 15 2 25 3 35 15 2 25 3 35 15 2 25 3 35
Bits/Object Bits/Object Bits/Object Bits/Object

BBHash [Lim+17] —«— CHD [BBD09b] —e&— PTHash [PT21b] —«— PTHash-HEM [PT21a]
RecSplit [EGV20b] —+— SIMDRecSplit —e— SicHash [LSW23]

30/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

KIT

Conclusion and Outlook

This Lecture Advanced Data Structures

® conclusion retroactive data structures otronctive
® minimal perfect hash functions PQ String B-tree | SA &LCP |

Next Lecture (15.07.2024)

CSAl :
® NO LECTURE ON 08.07.2024 Successorl RMQ |

® |earned data structures

Oral Exams and Pro'ect static/dynamic static/dynamic
| BV succ. trees
& registration exams and project will open this
week |
® exam dates: 19.08., 20.08., 26.08.,28.08., range min-max tree succ. graphs

30.08., 09.09, and 11.09.

31/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

KIT

Bibliography |

[BBD09a] Djamal Belazzougui, Fabiano C. Botelho, and Martin Dietzfelbinger. “Hash, Displace, and
Compress”. In: ESA. Volume 5757. Lecture Notes in Computer Science. Springer, 2009,
pages 682—693. DOI: 10.1007/978-3-642-04128-0_61.

[BBD0O9b] Djamal Belazzougui, Fabiano C. Botelho, and Martin Dietzfelbinger. “Hash, Displace, and
Compress”. In: ESA. Volume 5757. Lecture Notes in Computer Science. Springer, 2009,
pages 682—693. DOI: 10.1007/978-3-642-04128-0_61.

[Bez+23] Dominik Bez, Florian Kurpicz, Hans-Peter Lehmann, and Peter Sanders. “High Performance
Construction of RecSplit Based Minimal Perfect Hash Functions”. In: ESA. Volume 274. LIPIcs.
Schloss Dagstuhl - Leibniz-Zentrum far Informatik, 2023, 19:1-19:16. DOI:
10.4230/LIPICS.ESA.2023.19.

[BPZ13] Fabiano C. Botelho, Rasmus Pagh, and Nivio Ziviani. “Practical perfect hashing in nearly optimal
space”. In: Inf. Syst. 38.1 (2013), pages 108—131. DOI: 10.1016/j.1is.2012.06.002.

32/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

https://doi.org/10.1007/978-3-642-04128-0_61
https://doi.org/10.1007/978-3-642-04128-0_61
https://doi.org/10.4230/LIPICS.ESA.2023.19
https://doi.org/10.1016/j.is.2012.06.002

KIT

Bibliography Il

[EGV20a] Emmanuel Esposito, Thomas Mueller Graf, and Sebastiano Vigna. “RecSplit: Minimal Perfect
Hashing via Recursive Splitting”. In: ALENEX. SIAM, 2020, pages 175-185. DOI:
10.1137/1.9781611976007. 14.

[EGV20b] Emmanuel Esposito, Thomas Mueller Graf, and Sebastiano Vigna. “RecSplit: Minimal Perfect
Hashing via Recursive Splitting”. In: ALENEX. SIAM, 2020, pages 175-185. DOI:
10.1137/1.9781611976007.14.

[Gol66] Solomon W. Golomb. “Run-length Encodings (Corresp.)”. In: IEEE Trans. Inf. Theory 12.3 (1966),
pages 399-401. DOI: 10.1109/TIT.1966.1053907.

[Lim+17] Antoine Limasset, Guillaume Rizk, Rayan Chikhi, and Pierre Peterlongo. “Fast and Scalable
Minimal Perfect Hashing for Massive Key Sets”. In: SEA. Volume 75. LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum fir Informatik, 2017, 25:1-25:16. DOI: 10.4230/LIPICS.SEA.2017.25.

33/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

https://doi.org/10.1137/1.9781611976007.14
https://doi.org/10.1137/1.9781611976007.14
https://doi.org/10.1109/TIT.1966.1053907
https://doi.org/10.4230/LIPICS.SEA.2017.25

KIT

Bibliography Il

[LSW23] Hans-Peter Lehmann, Peter Sanders, and Stefan Walzer. “SicHash — Small Irregular Cuckoo
Tables for Perfect Hashing”. In: ALENEX. SIAM, 2023, pages 176—189. DOI:
10.1137/1.9781611977561.CH15.

[PT214] Giulio Ermanno Pibiri and Roberto Trani. “Parallel and External-Memory Construction of Minimal
Perfect Hash Functions with PTHash”. In: CoRR abs/2106.02350 (2021).

[PT21b] Giulio Ermanno Pibiri and Roberto Trani. “PTHash: Revisiting FCH Minimal Perfect Hashing”. In:
SIGIR. ACM, 2021, pages 1339-1348. DOI: 10.1145/3404835.3462849.

34/31 2024-07-01 Florian Kurpicz | Advanced Data Structures | 10 Retroactive DS (cnt.) & Minimal Perfect Hashing Institute of Theoretical Informatics, Algorithm Engineering

https://doi.org/10.1137/1.9781611977561.CH15
https://doi.org/10.1145/3404835.3462849

	Appendix

