

#### **Advanced Data Structures**

#### Lecture 11: Learned Data Structures

Florian Kurpicz



### **PINGO**





https://pingo.scc.kit.edu/524651

## **Recap: Retroactive Data Structures**



- BBST for  $Q_{\infty}$  changed for each update
- BBST where leaves are inserts ordered by time augmented with
  - for each node x store  $\max\{v' \notin Q_{\infty} : v' \text{ inserted in subtree of } x\}$
- BBST where leaves are all updates ordered by time augmented with
  - leaves store 0 for inserts with  $v \in Q_{\infty}$ , 1 for inserts with  $v \notin Q_{\infty}$  and -1 for delete-mins
  - inner nodes store subtree sums
  - inner nodes store smallest prefix sum in subtree







Given ordered integers S from a universe  $\mathcal{U} = [1, u]$  a rank and select index can answer

- $rank(x) = |\{y \in S: y < x\}|$
- $select(i) = S[arg min_i(rank(j) = i + 1)]$
- can be use to answer predecessor queries
- a bit vector with rank and select suffices

## **Setting: Rank and Select Dictionary**



Given ordered integers S from a universe  $\mathcal{U} = [1, u]$  a rank and select index can answer

- $rank(x) = |\{y \in S: y < x\}|$
- $select(i) = S[arg min_i(rank(j) = i + 1)]$
- can be use to answer predecessor queries
- a bit vector with rank and select suffices

- bit vector requires u + o(u) bits
- compressing bit vector to save space (if sparse)
- Elias-Fano requires how much space?
  PINGO

## **Setting: Rank and Select Dictionary**



Given ordered integers S from a universe  $\mathcal{U} = [1, u]$  a rank and select index can answer

- $rank(x) = |\{y \in S: y < x\}|$
- $select(i) = S[arg min_i(rank(j) = i + 1)]$
- can be use to answer predecessor gueries
- a bit vector with rank and select suffices

- bit vector requires u + o(u) bits
- compressing bit vector to save space (if sparse)
- Elias-Fano requires how much space?
  PINGO
  - $|S|(2 + \log \lceil \frac{u}{|S|} \rceil)$  bits

## Learned Rank and Select Index [BFV21]



- how to represent *S* from a universe  $\mathcal{U} = [1, u]$
- let  $S = \langle x_1, x_2, \dots, x_n \rangle$  be a sorted sequence
- map each element  $x_i \in S$  to point  $(i, x_i)$
- points are in Cartesian plane



## **Approximating** S in Cartesian Plane



- find function f passing through all points
   x<sub>i</sub> = f(i)
- BUT f should be fast to compute and require little space
- lacktriangle use linear approximation with error  $\epsilon$



## **Approximating** S in Cartesian Plane



- find function f passing through all points
   x<sub>i</sub> = f(i)
- BUT f should be fast to compute and require little space
- lacktriangle use linear approximation with error  $\epsilon$
- store error correction in array C



## **Approximating** S in Cartesian Plane



- find function f passing through all points
   x<sub>i</sub> = f(i)
- BUT f should be fast to compute and require little space
- lacktriangle use linear approximation with error  $\epsilon$
- store error correction in array C
- correction can be very big





- use piece-wise linear approximation (PLA)
- lacktriangle sequence of segments with error bound by  $\epsilon$
- smallest number of segments can be computed in O(n) time [O'R81]
- lacktriangle let there be  $\ell$  segments





- use piece-wise linear approximation (PLA)
- lacktriangle sequence of segments with error bound by  $\epsilon$
- smallest number of segments can be computed in O(n) time [O'R81]
- lacktriangle let there be  $\ell$  segments

### Definition: Representation of a Segment

The *i*-th segment starting with  $(j, x_j)$  is represented as triple  $s_i = (r_i, \alpha_i, \beta_i)$ , where

- $r_i = j$ ,
- lacksquare  $\alpha_i$  is the slope, and
- lacksquare  $\beta_i$  is the intercept







use function to approximate point in *i*-th segment

$$f_i(j) = (j - r_i) \cdot \alpha_i + \beta_i$$

$$\lfloor f_i(j)\rfloor + C[j] = x_j$$





use function to approximate point in i-th segment

$$f_i(j) = (j - r_i) \cdot \alpha_i + \beta_i$$

$$\lfloor f_i(j) \rfloor + C[j] = x_j$$

- $C[j] = x_i |f_i(j)|$
- $C[j] \in \{-\epsilon, -\epsilon + 1, \dots, -1, 0, 1, \dots, \epsilon 1, \epsilon\}$



use function to approximate point in i-th segment

$$f_i(j) = (j - r_i) \cdot \alpha_i + \beta_i$$

$$\lfloor f_i(j) \rfloor + C[j] = x_j$$

- $C[j] = x_j \lfloor f_i(j) \rfloor$
- $C[j] \in \{-\epsilon, -\epsilon + 1, \dots, -1, 0, 1, \dots, \epsilon 1, \epsilon\}$

- let c ≥ 2 be the number of bits used per correction
- $\epsilon = 2^{c} 1$
- c = 0 results in  $\epsilon = 0$



use function to approximate point in i-th segment

$$f_i(j) = (j - r_i) \cdot \alpha_i + \beta_i$$

$$\lfloor f_i(j) \rfloor + C[j] = x_j$$

- $C[j] = x_j \lfloor f_i(j) \rfloor$
- $C[j] \in \{-\epsilon, -\epsilon + 1, \dots, -1, 0, 1, \dots, \epsilon 1, \epsilon\}$

- let c ≥ 2 be the number of bits used per correction
- $\epsilon = 2^{c} 1$
- c = 0 results in  $\epsilon = 0$
- c = 1 possible? PINGO



use function to approximate point in *i*-th segment

$$f_i(j) = (j - r_i) \cdot \alpha_i + \beta_i$$

use correction to obtain correct value

$$\lfloor f_i(j) \rfloor + C[j] = x_i$$

- $C[j] = x_i |f_i(j)|$
- $C[j] \in \{-\epsilon, -\epsilon + 1, \dots, -1, 0, 1, \dots, \epsilon 1, \epsilon\}$

- let  $c \ge 2$  be the number of bits used per correction
- $\epsilon = 2^{c} 1$
- $\mathbf{c} = \mathbf{0}$  results in  $\epsilon = \mathbf{0}$
- c = 1 possible? PINGO

what time does it take to recover x<sub>i</sub>? PINGO



use function to approximate point in i-th segment

$$f_i(j) = (j - r_i) \cdot \alpha_i + \beta_i$$

$$\lfloor f_i(j) \rfloor + C[j] = x_j$$

- $C[j] = x_i |f_i(j)|$
- $C[i] \in \{-\epsilon, -\epsilon + 1, \dots, -1, 0, 1, \dots, \epsilon 1, \epsilon\}$

- let  $c \ge 2$  be the number of bits used per correction
- $\epsilon = 2^{c} 1$
- $\mathbf{c} = \mathbf{0}$  results in  $\epsilon = \mathbf{0}$
- c = 1 possible? PINGO
- what time does it take to recover x<sub>j</sub>? PINGO



- lacksquare  $O(\log \ell)$  time to find the segment
- constant time within segment

## What is Missing?



- use linear functions to approximate values
- corrections allow recovering values
- compression of data structure
- rank and select support
- (space-)optimal segmentation







- $\blacksquare$  larger  $\epsilon$  results in smaller "expected" number of segments  $\ell$
- smaller c results in smaller correction and in larger  $\ell$   $\oplus$   $\epsilon = \max\{0, 2^c 1\}$





- $\blacksquare$  larger  $\epsilon$  results in smaller "expected" number of segments  $\ell$
- smaller c results in smaller correction and in larger  $\ell$  **0**  $\epsilon = \max\{0, 2^c 1\}$
- lacktriangle depends on the distribution of points
- $\ell \leq \min\{u/(2\epsilon), n/2\}$  [FV20]





- lacktriangle larger  $\epsilon$  results in smaller "expected" number of segments  $\ell$
- smaller c results in smaller correction and in larger  $\ell \oplus \epsilon = \max\{0, 2^c - 1\}$
- $\bullet$  depends on the distribution of points
- $\ell < \min\{u/(2\epsilon), n/2\}$  [FV20]

#### **Definition: Number of Segments**

Let  $\{x_1, \ldots, x_n\}$  be a sorted sequence of distinct integers from in [1, u]. Given  $0 \le c \le |\log u|$ , there are  $\ell$  segments in the optimal PLA of maximum error  $\epsilon = \max\{0, 2^c - 1\} \text{ for } \{(i, x_i) : i = 1, \dots, n\}$ 

## Compressing the Representation (1/2)



- $\blacksquare$  larger  $\epsilon$  results in smaller "expected" number of segments  $\ell$
- smaller c results in smaller correction and in larger ℓ ⊕ ε = max{0, 2<sup>c</sup> − 1}
- lacktriangleright depends on the distribution of points
- $\ell \leq \min\{u/(2\epsilon), n/2\}$  [FV20]

#### **Definition: Number of Segments**

Let  $\{x_1, \ldots, x_n\}$  be a sorted sequence of distinct integers from in [1, u]. Given  $0 \le c \le \lfloor \log u \rfloor$ , there are  $\ell$  segments in the optimal PLA of maximum error  $\epsilon = \max\{0, 2^c - 1\}$  for  $\{(i, x_i): i = 1, \ldots, n\}$ 

## Lemma: Space-Requirements (uncompressed)

 $\{x_1, \ldots, x_n\}$  as defined before can be represented using  $nc + 2\ell(\log n + \log u)$  bits of space.

## Compressing the Representation (1/2)



- $\blacksquare$  larger  $\epsilon$  results in smaller "expected" number of segments  $\ell$
- smaller c results in smaller correction and in larger ℓ • e max{0, 2<sup>c</sup> − 1}
- lacktriangledown depends on the distribution of points
- $\ell \leq \min\{u/(2\epsilon), n/2\}$  [FV20]

#### Definition: Number of Segments

Let  $\{x_1, \ldots, x_n\}$  be a sorted sequence of distinct integers from in [1, u]. Given  $0 \le c \le \lfloor \log u \rfloor$ , there are  $\ell$  segments in the optimal PLA of maximum error  $\epsilon = \max\{0, 2^c - 1\}$  for  $\{(i, x_i): i = 1, \ldots, n\}$ 

## Lemma: Space-Requirements (uncompressed)

 $\{x_1, \ldots, x_n\}$  as defined before can be represented using  $nc + 2\ell(\log n + \log u)$  bits of space.

#### Proof (Sketch

Each segment  $s_i = (r_i, \alpha_i, \beta_i)$  requires

- $ightharpoonup r_i$ : log n bits of space,
- $\alpha_i$ :  $\log u + \log n$  bits of space rational number
- $\beta_i$ : log *u* bits of space

## Compressing the Representation (1/2)



- lacktriangle larger  $\epsilon$  results in smaller "expected" number of segments  $\ell$
- smaller c results in smaller correction and in larger  $\ell \bullet \epsilon = \max\{0, 2^c - 1\}$
- $\bullet$  depends on the distribution of points
- $\ell \leq \min\{u/(2\epsilon), n/2\}$  [FV20]

#### **Definition: Number of Segments**

Let  $\{x_1, \ldots, x_n\}$  be a sorted sequence of distinct integers from in [1, u]. Given  $0 \le c \le |\log u|$ , there are  $\ell$  segments in the optimal PLA of maximum error  $\epsilon = \max\{0, 2^c - 1\} \text{ for } \{(i, x_i) : i = 1, \dots, n\}$ 

## Lemma: Space-Requirements (uncompressed)

 $\{x_1,\ldots,x_n\}$  as defined before can be represented using  $nc + 2\ell(\log n + \log u)$  bits of space.

Each segment  $s_i = (r_i, \alpha_i, \beta_i)$  requires

- $r_i$ : log *n* bits of space,
- $\bullet$   $\alpha_i$ :  $\log u + \log n$  bits of space  $\bullet$  rational number
- $\beta_i$ : log u bits of space

• can we compress  $r_i$ 's,  $\alpha_i$ 's, or  $\beta_i$ 's? PINGO





## Compressing the Representation (2/2)

#### Lemma: Space-Requirements (Elias-Fano)

 $\{x_1,\ldots,x_n\}$  as defined before can be represented using  $nc + \ell(2 \log \frac{un}{\ell} + 4 + o(1))$  bits of space.



## Compressing the Representation (2/2)

#### Lemma: Space-Requirements (Elias-Fano)

 $\{x_1,\ldots,x_n\}$  as defined before can be represented using  $nc + \ell(2\log\frac{un}{\ell} + 4 + o(1))$  bits of space.

#### Proof (Sketch)

- $r_i$ 's are increasing sequence of  $\ell$  integers in [1, n]
- $\beta_i$ 's are increasing sequence of  $\ell$  integers in [1, u]
- use Elias-Fano coding





#### Lemma: Space-Requirements (Elias-Fano)

 $\{x_1,\ldots,x_n\}$  as defined before can be represented using  $nc + \ell(2\log\frac{un}{\ell} + 4 + o(1))$  bits of space.

#### Proof (Sketch)

- $r_i$ 's are increasing sequence of  $\ell$  integers in [1, n]
- $\beta_i$ 's are increasing sequence of  $\ell$  integers in [1, u]
- use Elias-Fano coding

- C can also be compressed
- using entropy compressed indices





#### Lemma: Space-Requirements (Elias-Fano)

 $\{x_1,\ldots,x_n\}$  as defined before can be represented using  $nc + \ell(2\log \frac{un}{\ell} + 4 + o(1))$  bits of space.

#### Proof (Sketch)

- $r_i$ 's are increasing sequence of  $\ell$  integers in [1, n]
- $\beta_i$ 's are increasing sequence of  $\ell$  integers in [1, u]
- use Elias-Fano coding

- C can also be compressed
- using entropy compressed indices

# Lemma: Space-Requirements (Compressed)

 $\{x_1,\ldots,x_n\}$  as defined before can be represented using  $nH_0(C)+o(nc)+\ell(2\log\frac{un}{\ell}+4+o(1))$  bits of space. Access time is O(c).



- rank and select use predecessor data structure on r<sub>i</sub>'s
- select is "easier" than rank

#### Lemma: Learned Select

Select on  $\{x_1, \ldots, x_n\}$  as defined before is supported in O(1) time requiring  $n(c+1+o(1)) + \ell(2 \log u + \log n)$  bits of space.



- rank and select use predecessor data structure on r<sub>i</sub>'s
- select is "easier" than rank

#### Lemma: Learned Select

Select on  $\{x_1, \ldots, x_n\}$  as defined before is supported in O(1) time requiring  $n(c+1+o(1))+\ell(2\log u+\log n)$  bits of space.

#### Proof (Sketch

- use bit vector marking r<sub>i</sub>'s
- -n + o(n) bits of space
- about one bit per element in S



- rank and select use predecessor data structure on r<sub>i</sub>'s
- select is "easier" than rank

#### Lemma: Learned Select

Select on  $\{x_1, \ldots, x_n\}$  as defined before is supported in O(1) time requiring  $n(c+1+o(1))+\ell(2\log u+\log n)$  bits of space.

#### Proof (Sketch)

- use bit vector marking r<sub>i</sub>'s
- -n + o(n) bits of space
- about one bit per element in S

- naive rank(x) needs binary search
- find maximum i with select(i) ≤ x
- requires O(log n) time



- rank and select use predecessor data structure on r<sub>i</sub>'s
- select is "easier" than rank

#### Lemma: Learned Select

Select on  $\{x_1, \ldots, x_n\}$  as defined before is supported in O(1) time requiring  $n(c+1+o(1))+\ell(2\log u+\log n)$  bits of space.

#### Proof (Sketch)

- use bit vector marking r<sub>i</sub>'s
- n + o(n) bits of space
- about one bit per element in S

- naive rank(x) needs binary search
- find maximum i with select(i) ≤ x
- requires O(log n) time
- better: binary search on segments
- within segment: get "position" of x
- use maximum error to find interval for binary search



- rank and select use predecessor data structure on r<sub>i</sub>'s
- select is "easier" than rank

#### Lemma: Learned Select

Select on  $\{x_1, \ldots, x_n\}$  as defined before is supported in O(1) time requiring  $n(c+1+o(1))+\ell(2\log u+\log n)$  bits of space.

### Proof (Sketch)

- use bit vector marking r<sub>i</sub>'s
- n + o(n) bits of space
- about one bit per element in S

- naive rank(x) needs binary search
- find maximum i with select(i) ≤ x
- requires O(log n) time
- better: binary search on segments
- within segment: get "position" of x
- use maximum error to find interval for binary search

#### Lemma: Learned Rank

Rank on  $\{x_1, \ldots, x_n\}$  as defined before is supported in  $O(\log \ell + c)$  time requiring no additional space.





- error is bounded:  $|f_i(i) x_i| \le \epsilon$
- search for  $x_i \le x < x_{i+1}$
- rank is one *i* with  $f_i(i) \epsilon \le x \le f_i(i) + \epsilon$

$$f_j(i) = (i - r_i) \cdot \alpha_j + \beta_j$$

- $(i-r_j) \cdot \alpha_j + \beta_j \epsilon \le x < (i+1-r_j) \cdot \alpha_j + \beta_j + \epsilon$
- solve for i





- fixed number c for corrections
- now: choose different error  $\epsilon = \max\{0, 2^c 1\}$  for each segment
- how to find optimal partitioning?





- fixed number c for corrections
- now: choose different error  $\epsilon = \max\{0, 2^c 1\}$ for each segment
- how to find optimal partitioning?
- let G be directed acyclic graph
- one node for each  $\{x_1, \ldots, x_n\}$  plus sink node at end of sequence
- edge (i,j) with weight w(i,j,c) indicates that there exists a segment compressing  $x_i, \ldots, x_i$ using  $w(i, j, c) = (j - i)c + \kappa$  bits of space

# **Finding Optimal Data Partitioning**



- fixed number c for corrections
- now: choose different error  $\epsilon = \max\{0, 2^c 1\}$  for each segment
- how to find optimal partitioning?
- let G be directed acyclic graph
- one node for each  $\{x_1, \ldots, x_n\}$  plus sink node at end of sequence
- edge (i,j) with weight w(i,j,c) indicates that there exists a segment compressing  $x_i, \ldots, x_j$  using  $w(i,j,c) = (j-i)c + \kappa$  bits of space

### Lemma: Optimal Partitioning

The shortest path in *G* from node 1 to n+1 corresponds to the PLA with minimal cost for  $\{x_1, \ldots, x_n\}$ 

# **Finding Optimal Data Partitioning**



- fixed number c for corrections
- now: choose different error  $\epsilon = \max\{0, 2^c 1\}$  for each segment
- how to find optimal partitioning?
- let G be directed acyclic graph
- one node for each  $\{x_1, \ldots, x_n\}$  plus sink node at end of sequence
- edge (i,j) with weight w(i,j,c) indicates that there exists a segment compressing  $x_i, \ldots, x_j$  using  $w(i,j,c) = (j-i)c + \kappa$  bits of space

### Lemma: Optimal Partitioning

The shortest path in G from node 1 to n+1 corresponds to the PLA with minimal cost for  $\{x_1, \ldots, x_n\}$ 

- finding shortest using brute-force not feasible
- requires  $O(n^2 \log u)$  time [O'R81]
- can be done in  $O(n \log u)$  time
  - solution is at most  $\kappa\ell$  bits larger than optimal solution

## From Encoding to Indexing



- data has been encoded (and compressed)
- now: indexing data
- in external memory model
- learned index is alternative to B-tree

#### Definition: External Memory Model (Recap)

- internal memory of M words
- instances of size  $N \gg M$
- unlimited external memory
- transfer blocks of size B between memories
- measure number of blocks I/Os
- scanning N elements:  $\Theta(N/B)$
- sorting *N* elements:  $\Theta(\frac{N}{B}\log_{\frac{M}{B}}\frac{N}{B})$

## From Encoding to Indexing



- data has been encoded (and compressed)
- now: indexing data
- in external memory model
- learned index is alternative to B-tree

| Data Structure      | Space                                   | I/Os                                             |
|---------------------|-----------------------------------------|--------------------------------------------------|
| B=tree<br>PGM-Index | $\Theta(n)$<br>$\Theta(m_{\text{opt}})$ | $\frac{O(\log_B(n))}{O(\log_B(m_{\text{opt}}))}$ |

•  $m_{\text{opt}} \leq n$  is optimal number of segments

### Definition: External Memory Model (Recap)

- internal memory of M words
- instances of size N ≫ M
- unlimited external memory
- transfer blocks of size B between memories
- measure number of blocks I/Os
- scanning N elements:  $\Theta(N/B)$
- sorting *N* elements:  $\Theta(\frac{N}{B}\log_{\frac{M}{B}}\frac{N}{B})$



what do we not need when indexing instead of encoding? PINGO





- what do we not need when indexing instead of encoding? PINGO
- now S has to be stored
- how do we access elements in S
  - e.g., predecessor
- trick used before requires too much space





- what do we not need when indexing instead of encoding? PINGO
- now S has to be stored
- how do we access elements in S
  - e.g., predecessor
- trick used before requires too much space
- store key instead position
- recurs on first *keys* of each segment





- what do we not need when indexing instead of encoding? PINGO
- now S has to be stored
- how do we access elements in S
  - e.g., predecessor
- trick used before requires too much space
- store key instead position
- recurs on first keys of each segment <a>=</a>

#### For Queries

- $\bullet$   $\epsilon = \Theta(B)$
- lacktriangle load  $2\epsilon+1$  blocks per level  $\blacksquare$



#### **Evaluation**





https://onlineumfrage.kit.edu/evasys/online/ online.php?p=CZSUW

#### **Conclusion and Outlook**



#### This Lecture

learned data structures



#### **Conclusion and Outlook**



#### This Lecture

learned data structures

#### **Next Lecture**

- one more interesting data structure
- results of the project/competition
- Q&A

