Advanced Data Structures

Lecture 11: Learned Data Structures
Florian Kurpicz

The slides are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (®)(1)(0): www.creativecommons.org/licenses/by-sa/4.0 |commit c70729e compiled at 2024-07-15-13:10

https://pingo.scc.kit.edu/524651

Recap: Retroactive Data Structures

- BBST for Q_{∞} (i) changed for each update
- BBST where leaves are inserts ordered by time augmented with
- for each node x store
$\max \left\{v^{\prime} \notin Q_{\infty}: v^{\prime}\right.$ inserted in subtree of $\left.x\right\}$
- BBST where leaves are all updates ordered by time augmented with
- leaves store 0 for inserts with $v \in Q_{\infty}$, 1 for inserts with $v \notin Q_{\infty}$ and -1 for delete-mins
- inner nodes store subtree sums
- inner nodes store smallest prefix sum in subtree

Setting: Rank and Select Dictionary

Given ordered integers S from a universe $\mathcal{U}=[1, u]$ a rank and select index can answer

- rank $(x)=|\{y \in S: y<x\}|$
- $\operatorname{select}(i)=S\left[\arg \min _{j}(\operatorname{rank}(j)=i+1)\right]$
- can be use to answer predecessor queries
- a bit vector with rank and select suffices

Setting: Rank and Select Dictionary

Given ordered integers S from a universe $\mathcal{U}=[1, u]$ a rank and select index can answer

- $\operatorname{rank}(x)=|\{y \in S: y<x\}|$
- $\operatorname{select}(i)=S\left[\arg \min _{j}(\operatorname{rank}(j)=i+1)\right]$
- can be use to answer predecessor queries
- a bit vector with rank and select suffices
- bit vector requires $u+o(u)$ bits
- compressing bit vector to save space (if sparse)
- Elias-Fano requires how much space?

Setting: Rank and Select Dictionary

Given ordered integers S from a universe $\mathcal{U}=[1, u]$ a rank and select index can answer

- $\operatorname{rank}(x)=|\{y \in S: y<x\}|$
- $\operatorname{select}(i)=S\left[\arg \min _{j}(\operatorname{rank}(j)=i+1)\right]$
- can be use to answer predecessor queries
- a bit vector with rank and select suffices
- bit vector requires $u+o(u)$ bits
- compressing bit vector to save space (if sparse)
- Elias-Fano requires how much space?

- $|S|\left(2+\log \left\lceil\frac{u}{|S|}\right\rceil\right)$ bits

Learned Rank and Select Index [BFV21]

- how to represent S from a universe $\mathcal{U}=[1, u]$
- let $S=\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle$ be a sorted sequence
- map each element $x_{i} \in S$ to point $\left(i, x_{i}\right)$
- points are in Cartesian plane

Approximating S in Cartesian Plane

- find function f passing through all points
(i) $x_{i}=f(i)$
- BUT f should be fast to compute and require little space
- use linear approximation with error ϵ

Approximating S in Cartesian Plane

- find function f passing through all points
(i) $x_{i}=f(i)$
- BUT f should be fast to compute and require little space
- use linear approximation with error ϵ
- store error correction in array C

Approximating S in Cartesian Plane

- find function f passing through all points
(i) $x_{i}=f(i)$
- BUT f should be fast to compute and require little space
- use linear approximation with error ϵ
- store error correction in array C
- correction can be very big

Piece-Wise Linear Approximation (1/2)

- use piece-wise linear approximation (PLA)
- sequence of segments with error bound by ϵ
- smallest number of segments can be computed in $O(n)$ time [O'R81]
- let there be ℓ segments

Piece-Wise Linear Approximation (1/2)

- use piece-wise linear approximation (PLA)
- sequence of segments with error bound by ϵ
- smallest number of segments can be computed in $O(n)$ time [O'R81]
- let there be ℓ segments

Definition: Representation of a Segment

The i-th segment starting with $\left(j, x_{j}\right)$ is represented as triple $s_{i}=\left(r_{i}, \alpha_{i}, \beta_{i}\right)$, where

- $r_{i}=j$,
- α_{i} is the slope, and
- β_{i} is the intercept

Piece-Wise Linear Approximation (2/2)

- use function to approximate point in i-th segment

$$
f_{i}(j)=\left(j-r_{i}\right) \cdot \alpha_{i}+\beta_{i}
$$

- use correction to obtain correct value

$$
\left\lfloor f_{i}(j)\right\rfloor+C[j]=x_{j}
$$

Piece-Wise Linear Approximation (2/2)

- use function to approximate point in i-th segment

$$
f_{i}(j)=\left(j-r_{i}\right) \cdot \alpha_{i}+\beta_{i}
$$

- use correction to obtain correct value

$$
\left\lfloor f_{i}(j)\right\rfloor+C[j]=x_{j}
$$

- $C[j]=x_{j}-\left\lfloor f_{i}(j)\right\rfloor$
- $C[j] \in\{-\epsilon,-\epsilon+1, \ldots,-1,0,1, \ldots, \epsilon-1, \epsilon\}$

Piece-Wise Linear Approximation (2/2)

- use function to approximate point in i-th segment

$$
f_{i}(j)=\left(j-r_{i}\right) \cdot \alpha_{i}+\beta_{i}
$$

- use correction to obtain correct value

$$
\left\lfloor f_{i}(j)\right\rfloor+C[j]=x_{j}
$$

- $C[j]=x_{j}-\left\lfloor f_{i}(j)\right\rfloor$
- $C[j] \in\{-\epsilon,-\epsilon+1, \ldots,-1,0,1, \ldots, \epsilon-1, \epsilon\}$
- let $c \geq 2$ be the number of bits used per correction
- $\epsilon=2^{c}-1$
- $c=0$ results in $\epsilon=0$

Piece-Wise Linear Approximation (2/2)

- use function to approximate point in i-th segment

$$
f_{i}(j)=\left(j-r_{i}\right) \cdot \alpha_{i}+\beta_{i}
$$

- use correction to obtain correct value

$$
\left\lfloor f_{i}(j)\right\rfloor+C[j]=x_{j}
$$

- $C[j]=x_{j}-\left\lfloor f_{i}(j)\right\rfloor$
- $C[j] \in\{-\epsilon,-\epsilon+1, \ldots,-1,0,1, \ldots, \epsilon-1, \epsilon\}$
- let $c \geq 2$ be the number of bits used per correction
- $\epsilon=2^{c}-1$
- $c=0$ results in $\epsilon=0$

Piece-Wise Linear Approximation (2/2)

- use function to approximate point in i-th segment

$$
f_{i}(j)=\left(j-r_{i}\right) \cdot \alpha_{i}+\beta_{i}
$$

- use correction to obtain correct value

$$
\left\lfloor f_{i}(j)\right\rfloor+C[j]=x_{j}
$$

- $C[j]=x_{j}-\left\lfloor f_{i}(j)\right\rfloor$
- $C[j] \in\{-\epsilon,-\epsilon+1, \ldots,-1,0,1, \ldots, \epsilon-1, \epsilon\}$
- let $c \geq 2$ be the number of bits used per correction
- $\epsilon=2^{c}-1$
- $c=0$ results in $\epsilon=0$

Piece-Wise Linear Approximation (2/2)

- use function to approximate point in i-th segment

$$
f_{i}(j)=\left(j-r_{i}\right) \cdot \alpha_{i}+\beta_{i}
$$

- use correction to obtain correct value

$$
\left\lfloor f_{i}(j)\right\rfloor+C[j]=x_{j}
$$

- $C[j]=x_{j}-\left\lfloor f_{i}(j)\right\rfloor$
- $C[j] \in\{-\epsilon,-\epsilon+1, \ldots,-1,0,1, \ldots, \epsilon-1, \epsilon\}$
- let $c \geq 2$ be the number of bits used per correction
- $\epsilon=2^{c}-1$
- $c=0$ results in $\epsilon=0$

- $O(\log \ell)$ time to find the segment
- constant time within segment

What is Missing?

- use linear functions to approximate values
- corrections allow recovering values
- compression of data structure
- rank and select support
- (space-)optimal segmentation

Compressing the Representation (1/2)

- larger ϵ results in smaller "expected" number of segments ℓ
- smaller c results in smaller correction and in larger $\ell\left(\right.$ (i) $\epsilon=\max \left\{0,2^{c}-1\right\}$

Compressing the Representation (1/2)

- larger ϵ results in smaller "expected" number of segments ℓ
- smaller c results in smaller correction and in larger $\ell\left(\right.$ (i) $\epsilon=\max \left\{0,2^{C}-1\right\}$
- ℓ depends on the distribution of points
- $\ell \leq \min \{u /(2 \epsilon), n / 2\}[F V 20]$

Compressing the Representation (1/2)

Karlsruhe Institute of Technology

- larger ϵ results in smaller "expected" number of segments ℓ
- smaller c results in smaller correction and in larger $\ell\left(\right.$ (i) $\epsilon=\max \left\{0,2^{C}-1\right\}$
- ℓ depends on the distribution of points
- $\ell \leq \min \{u /(2 \epsilon), n / 2\}[F V 20]$

Definition: Number of Segments

Let $\left\{x_{1}, \ldots, x_{n}\right\}$ be a sorted sequence of distinct integers from in $[1, u]$. Given $0 \leq c \leq\lfloor\log u\rfloor$, there are ℓ segments in the optimal PLA of maximum error $\epsilon=\max \left\{0,2^{c}-1\right\}$ for $\left\{\left(i, x_{i}\right): i=1, \ldots, n\right\}$

Compressing the Representation (1/2)

- larger ϵ results in smaller "expected" number of segments ℓ
- smaller c results in smaller correction and in larger $\ell\left(\right.$ (i) $\epsilon=\max \left\{0,2^{C}-1\right\}$
- ℓ depends on the distribution of points
- $\ell \leq \min \{u /(2 \epsilon), n / 2\}[F V 20]$

Definition: Number of Segments

Let $\left\{x_{1}, \ldots, x_{n}\right\}$ be a sorted sequence of distinct integers from in $[1, u]$. Given $0 \leq c \leq\lfloor\log u\rfloor$, there are ℓ segments in the optimal PLA of maximum error $\epsilon=\max \left\{0,2^{c}-1\right\}$ for $\left\{\left(i, x_{i}\right): i=1, \ldots, n\right\}$

Lemma: Space-Requirements (uncompressed)

$\left\{x_{1}, \ldots, x_{n}\right\}$ as defined before can be represented using $n c+2 \ell(\log n+\log u)$ bits of space.

Compressing the Representation (1/2)

- larger ϵ results in smaller "expected" number of segments ℓ
- smaller c results in smaller correction and in larger $\ell(1) \epsilon=\max \left\{0,2^{c}-1\right\}$
- ℓ depends on the distribution of points
- $\ell \leq \min \{u /(2 \epsilon), n / 2\}[F V 20]$

Definition: Number of Segments

Let $\left\{x_{1}, \ldots, x_{n}\right\}$ be a sorted sequence of distinct integers from in $[1, u]$. Given $0 \leq c \leq\lfloor\log u\rfloor$, there are ℓ segments in the optimal PLA of maximum error $\epsilon=\max \left\{0,2^{c}-1\right\}$ for $\left\{\left(i, x_{i}\right): i=1, \ldots, n\right\}$

Lemma: Space-Requirements (uncompressed)

$\left\{x_{1}, \ldots, x_{n}\right\}$ as defined before can be represented using $n c+2 \ell(\log n+\log u)$ bits of space.

Proof (Sketch)

Each segment $s_{i}=\left(r_{i}, \alpha_{i}, \beta_{i}\right)$ requires

- $r_{i}: \log n$ bits of space,
- $\alpha_{i}: \log u+\log n$ bits of space (i) rational number
- β_{i} : $\log u$ bits of space

Compressing the Representation (1/2)

- larger ϵ results in smaller "expected" number of segments ℓ
- smaller c results in smaller correction and in larger $\ell(1) \epsilon=\max \left\{0,2^{c}-1\right\}$
- ℓ depends on the distribution of points
- $\ell \leq \min \{u /(2 \epsilon), n / 2\}[F V 20]$

Definition: Number of Segments

Let $\left\{x_{1}, \ldots, x_{n}\right\}$ be a sorted sequence of distinct integers from in $[1, u\rfloor$. Given $0 \leq c \leq\lfloor\log u\rfloor$, there are ℓ segments in the optimal PLA of maximum error $\epsilon=\max \left\{0,2^{c}-1\right\}$ for $\left\{\left(i, x_{i}\right): i=1, \ldots, n\right\}$

Lemma: Space-Requirements (uncompressed)

$\left\{x_{1}, \ldots, x_{n}\right\}$ as defined before can be represented using $n c+2 \ell(\log n+\log u)$ bits of space.

Proof (Sketch)

Each segment $s_{i}=\left(r_{i}, \alpha_{i}, \beta_{i}\right)$ requires

- $r_{i}: \log n$ bits of space,
- $\alpha_{i}: \log u+\log n$ bits of space (i) rational number
- β_{i} : $\log u$ bits of space

Compressing the Representation (2/2)

Lemma: Space-Requirements (Elias-Fano)

$\left\{x_{1}, \ldots, x_{n}\right\}$ as defined before can be represented using $n c+\ell\left(2 \log \frac{u n}{\ell}+4+o(1)\right)$ bits of space.

Compressing the Representation (2/2)

Lemma: Space-Requirements (Elias-Fano)

$\left\{x_{1}, \ldots, x_{n}\right\}$ as defined before can be represented using $n c+\ell\left(2 \log \frac{u n}{\ell}+4+o(1)\right)$ bits of space.

Proof (Sketch)

- r_{i} 's are increasing sequence of ℓ integers in $[1, n]$
- β_{i} 's are increasing sequence of ℓ integers in $[1, u]$
- use Elias-Fano coding

Compressing the Representation (2/2)

Lemma: Space-Requirements (Elias-Fano)

$\left\{x_{1}, \ldots, x_{n}\right\}$ as defined before can be represented using $n c+\ell\left(2 \log \frac{u n}{\ell}+4+o(1)\right)$ bits of space.

Proof (Sketch)

- r_{i} 's are increasing sequence of ℓ integers in $[1, n]$
- β_{i} 's are increasing sequence of ℓ integers in $[1, u]$
- use Elias-Fano coding
- C can also be compressed
- using entropy compressed indices

Compressing the Representation (2/2)

Lemma: Space-Requirements (Elias-Fano)

$\left\{x_{1}, \ldots, x_{n}\right\}$ as defined before can be represented using $n c+\ell\left(2 \log \frac{u n}{\ell}+4+o(1)\right)$ bits of space.

Proof (Sketch)

- r_{i} 's are increasing sequence of ℓ integers in $[1, n]$
- β_{i} 's are increasing sequence of ℓ integers in $[1, u]$
- use Elias-Fano coding
- C can also be compressed
- using entropy compressed indices

Lemma: Space-Requirements (Compressed)

$\left\{x_{1}, \ldots, x_{n}\right\}$ as defined before can be represented using $n H_{0}(C)+o(n c)+\ell\left(2 \log \frac{u n}{\ell}+4+o(1)\right)$ bits of space. Access time is $O(c)$.

Rank and Select Support

- rank and select use predecessor data structure on r_{i} 's
- select is "easier" than rank

Lemma: Learned Select

Select on $\left\{x_{1}, \ldots, x_{n}\right\}$ as defined before is supported in $O(1)$ time requiring
$n(c+1+o(1))+\ell(2 \log u+\log n)$ bits of space.

Rank and Select Support

- rank and select use predecessor data structure on r_{i} 's
- select is "easier" than rank

Lemma: Learned Select

Select on $\left\{x_{1}, \ldots, x_{n}\right\}$ as defined before is supported in $O(1)$ time requiring
$n(c+1+o(1))+\ell(2 \log u+\log n)$ bits of space.

Proof (Sketch)

- use bit vector marking r_{i} 's
- $n+o(n)$ bits of space
- about one bit per element in S

Rank and Select Support

- rank and select use predecessor data structure on r_{i} 's
- select is "easier" than rank

Lemma: Learned Select

Select on $\left\{x_{1}, \ldots, x_{n}\right\}$ as defined before is supported in $O(1)$ time requiring
$n(c+1+o(1))+\ell(2 \log u+\log n)$ bits of space.

Proof (Sketch)

- use bit vector marking r_{i} 's
- $n+o(n)$ bits of space
- about one bit per element in S

Rank and Select Support

- rank and select use predecessor data structure on r_{i} 's
- select is "easier" than rank

Lemma: Learned Select

Select on $\left\{x_{1}, \ldots, x_{n}\right\}$ as defined before is supported in $O(1)$ time requiring $n(c+1+o(1))+\ell(2 \log u+\log n)$ bits of space.

Proof (Sketch)

- use bit vector marking r_{i} 's
- $n+o(n)$ bits of space
- about one bit per element in S
- naive $\operatorname{rank}(x)$ needs binary search
- find maximum i with $\operatorname{select}(i) \leq x$
- requires $O(\log n)$ time
- better: binary search on segments
- within segment: get "position" of x
- use maximum error to find interval for binary search

Rank and Select Support

- rank and select use predecessor data structure on r_{i} 's
- select is "easier" than rank

Lemma: Learned Select

Select on $\left\{x_{1}, \ldots, x_{n}\right\}$ as defined before is supported in $O(1)$ time requiring $n(c+1+o(1))+\ell(2 \log u+\log n)$ bits of space.

Proof (Sketch)

- use bit vector marking r_{i} 's
- $n+o(n)$ bits of space
- about one bit per element in S
- naive $\operatorname{rank}(x)$ needs binary search
- find maximum i with $\operatorname{select}(i) \leq x$
- requires $O(\log n)$ time
- better: binary search on segments
- within segment: get "position" of x
- use maximum error to find interval for binary search

Lemma: Learned Rank

Rank on $\left\{x_{1}, \ldots, x_{n}\right\}$ as defined before is supported in $O(\log \ell+c)$ time requiring no additional space.

Details on Rank Support

- error is bounded: $\left|f_{j}(i)-x_{i}\right| \leq \epsilon$
- search for $x_{i} \leq x<x_{i+1}$
- rank is one i with $f_{j}(i)-\epsilon \leq x \leq f_{j}(i)+\epsilon$

$$
f_{j}(i)=\left(i-r_{i}\right) \cdot \alpha_{j}+\beta_{j}
$$

- $\left(i-r_{j}\right) \cdot \alpha_{j}+\beta_{j}-\epsilon \leq x<\left(i+1-r_{j}\right) \cdot \alpha_{j}+\beta_{j}+\epsilon$
- solve for i
- $\frac{x-\beta_{j}}{\alpha_{j}}+r_{j}-\left(\frac{\epsilon}{\alpha_{j}}+1\right)<i \leq \frac{x-\beta_{j}}{\alpha_{j}}+r_{j}+\left(\frac{\epsilon}{\alpha_{j}}\right)$

Finding Optimal Data Partitioning

- fixed number c for corrections
- now: choose different error $\epsilon=\max \left\{0,2^{c}-1\right\}$ for each segment
- how to find optimal partitioning?

Finding Optimal Data Partitioning

- fixed number c for corrections
- now: choose different error $\epsilon=\max \left\{0,2^{c}-1\right\}$ for each segment
- how to find optimal partitioning?
- let G be directed acyclic graph
- one node for each $\left\{x_{1}, \ldots, x_{n}\right\}$ plus sink node at end of sequence
- edge (i, j) with weight $w(i, j, c)$ indicates that there exists a segment compressing x_{i}, \ldots, x_{j} using $w(i, j, c)=(j-i) c+\kappa$ bits of space

Finding Optimal Data Partitioning

- fixed number c for corrections
- now: choose different error $\epsilon=\max \left\{0,2^{c}-1\right\}$ for each segment
- how to find optimal partitioning?
- let G be directed acyclic graph
- one node for each $\left\{x_{1}, \ldots, x_{n}\right\}$ plus sink node at end of sequence
- edge (i, j) with weight $w(i, j, c)$ indicates that there exists a segment compressing x_{i}, \ldots, x_{j} using $w(i, j, c)=(j-i) c+\kappa$ bits of space

Lemma: Optimal Partitioning

The shortest path in G from node 1 to $n+1$ corresponds to the PLA with minimal cost for $\left\{x_{1}, \ldots, x_{n}\right\}$

Finding Optimal Data Partitioning

- fixed number c for corrections
- now: choose different error $\epsilon=\max \left\{0,2^{C}-1\right\}$ for each segment
- how to find optimal partitioning?
- let G be directed acyclic graph
- one node for each $\left\{x_{1}, \ldots, x_{n}\right\}$ plus sink node at end of sequence
- edge (i, j) with weight $w(i, j, c)$ indicates that there exists a segment compressing x_{i}, \ldots, x_{j} using $w(i, j, c)=(j-i) c+\kappa$ bits of space

Lemma: Optimal Partitioning

The shortest path in G from node 1 to $n+1$ corresponds to the PLA with minimal cost for $\left\{x_{1}, \ldots, x_{n}\right\}$

- finding shortest using brute-force not feasible
- requires $O\left(n^{2} \log u\right)$ time [O'R81]
- can be done in $O(n \log u)$ time
- solution is at most $\kappa \ell$ bits larger than optimal solution

From Encoding to Indexing

- data has been encoded (and compressed)
- now: indexing data
- in external memory model
- learned index is alternative to B-tree

Definition: External Memory Model (Recap)

- internal memory of M words
- instances of size $N \gg M$
- unlimited external memory
- transfer blocks of size B between memories
- measure number of blocks I/Os
- scanning N elements: $\Theta(N / B)$
- sorting N elements: $\Theta\left(\frac{N}{B} \log _{\frac{M}{B}} \frac{N}{B}\right)$

From Encoding to Indexing

- data has been encoded (and compressed)
- now: indexing data
- in external memory model
- learned index is alternative to B-tree

Data Structure	Space	I/Os
B=tree	$\Theta(n)$	$O\left(\log _{B}(n)\right)$
PGM-Index	$\Theta\left(m_{\text {opt }}\right)$	$O\left(\log _{B}\left(m_{\text {opt }}\right)\right)$

- $m_{\text {opt }} \leq n$ is optimal number of segments

Definition: External Memory Model (Recap)

- internal memory of M words
- instances of size $N \gg M$
- unlimited external memory
- transfer blocks of size B between memories
- measure number of blocks I / Os
- scanning N elements: $\Theta(N / B)$
- sorting N elements: $\Theta\left(\frac{N}{B} \log _{\frac{M}{B}} \frac{N}{B}\right)$

The PGM-Index [FV20]

- what do we not need when indexing instead of

The PGM-Index [FV20]

- what do we not need when indexing instead of

- now S has to be stored
- how do we access elements in S
- e.g., predecessor
- trick used before requires too much space

The PGM-Index [FV20]

- what do we not need when indexing instead of

- now S has to be stored
- how do we access elements in S
- e.g., predecessor
- trick used before requires too much space
- store key instead position
- recurs on first keys of each segment

The PGM-Index [FV20]

- what do we not need when indexing instead of

- now S has to be stored
- how do we access elements in S
- e.g., predecessor
- trick used before requires too much space
- store key instead position
- recurs on first keys of each segment

For Queries

- $\epsilon=\Theta(B)$

- load $2 \epsilon+1$ blocks per level \qquad

Evaluation

[^0]
Conclusion and Outlook

This Lecture

- learned data structures

Advanced Data Structures

Conclusion and Outlook

This Lecture

- learned data structures

Next Lecture

- one more interesting data structure
- results of the project/competition
- Q\&A

Advanced Data Structures

[^0]: https://onlineumfrage.kit.edu/evasys/online/ online. php?p=CZSUW

