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Recap: Retroactive Data Structures

@ BBST for Q-

@ BBST where leaves are inserts ordered by time
augmented with
a for each node x store
max{v’ ¢ Q: v’ inserted in subtree of x}

® BBST where leaves are all updates ordered by
time augmented with
® |eaves store 0 for inserts with v € Qo, 1 for
inserts with v ¢ Q.. and —1 for delete-mins
® inner nodes store subtree sums
® inner nodes store smallest prefix sum in subtree
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Setting: Rank and Select Dictionary

Given ordered integers S from a universe U = [1, u]
a rank and select index can answer

® rank(x) = |{y € S: y < x}|
u select(i) = Slarg min;(rank(j) = i + 1)]

® can be use to answer predecessor queries
® 3 bit vector with rank and select suffices
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Setting: Rank and Select Dictionary A“(IT

Karlsruhe Institute of Technology

Given ordered integers S from a universe U = [1, u] ® bit vector requires u + o(u) bits
a rank and select index can answer

® rank(x) = |{y € S: y < x}|
u select(i) = Slarg min;(rank(j) = i + 1)]

® compressing bit vector to save space (if sparse)
@ Elias-Fano requires how much space?

Bet
e PINGO
® can be use to answer predecessor queries

® 3 bit vector with rank and select suffices
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Setting: Rank and Select Dictionary A“(IT

Karlsruhe Institute of Technology

Given ordered integers S from a universe U = [1, u] ® bit vector requires u + o(u) bits
a rank and select index can answer

® rank(x) = |{y € S: y < x}|
u select(i) = Slarg min;(rank(j) = i + 1)]

® compressing bit vector to save space (if sparse)

@ Elias-Fano requires how much space?
“ 1 PINGO
® |S|(2 + log[ 15 1) bits

® can be use to answer predecessor queries
® 3 bit vector with rank and select suffices
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Learned Rank and Select Index [BFV21]

how to represent S from a universe U = [1, u]
let S = (x4, X2, ..., X,) be a sorted sequence
map each element x; € S to point (i, x;)

points are in Cartesian plane
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® S =(10,18,22,24,27,31,43)
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Approximating S in Cartesian Plane

& find function f passing through all points p

@ BUT f should be fast to compute and require
little space

® use linear approximation with error e

® S =(10,18,22,24,27,31,43)
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Approximating S in Cartesian Plane

& find function f passing through all points p

@ BUT f should be fast to compute and require
little space

® use linear approximation with error e
& store error correction in array C

®m S=(10,18,22,24,27,31,43)
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Approximating S in Cartesian Plane

find function f passing through all points p

BUT f should be fast to compute and require
little space

use linear approximation with error e

store error correction in array C

correction can be very big

®m S=(10,18,22,24,27,31,43)
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Piece-Wise Linear Approximation (1/2)

718

® use piece-wise linear approximation (PLA)

& sequence of segments with error bound by e 43 |

@ smallest number of segments can be computed
in O(n) time [O’'R81]
a |et there be ¢ segments
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1 2 3 4 5 6 7 8

® S=(10,18,22,24,27,31,43)
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Piece-Wise Linear Approximation (1/2)

® use piece-wise linear approximation (PLA) p

& sequence of segments with error bound by e R e * - - --

@ smallest number of segments can be computed
in O(n) time [O’'R81]

a |et there be ¢ segments

The i-th segment starting with (j, X;) is represented
as triple s; = (r;, «, B;), where

® =

® (; is the slope, and
. . ® S=(10,18,22,24,27,31,4
® 3 is the intercept (10,18,22,24,27,31,43)
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Piece-Wise Linear Approximation (2/2)

@ use function to approximate point in /-th
segment

() =G —n)-ai+ Bi
® use correction to obtain correct value

()] + Cll = x;
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KIT

Piece-Wise Linear Approximation (2/2)

@ use function to approximate point in /-th
segment

() =G —n)-ai+ Bi
® use correction to obtain correct value

()] + Cll = x;

= Clj] = x — (/)]
@ Cljle{—-¢,—€+1,...,—-1,0,1,...,e —1,¢}
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Piece-Wise Linear Approximation (2/2)
@ use function to approximate point in /-th @ |et ¢ > 2 be the number of bits used per
segment correction

mec=2°—1

i) =0—n) cit+Bi ® c=0resultsine =0

® use correction to obtain correct value

()] + Cll = x;

= Clj] = x — (/)]
@ Cljle{—-¢,—€+1,...,—-1,0,1,...,e —1,¢}
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Piece-Wise Linear Approximation (2/2)
@ use function to approximate point in /-th @ |et ¢ > 2 be the number of bits used per
segment correction

®c=2°—-1

® c=0resultsine=0

() =G —n)-ai+ Bi
® use correction to obtain correct value

()] + Cll = x;

= Clj] = x — (/)]
@ Cljle{—-¢,—€+1,...,—-1,0,1,...,e —1,¢}
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Piece-Wise Linear Approximation (2/2)

@ use function to approximate point in /-th let ¢ > 2 be the number of bits used per

segment correction
e=2°—1
c=0resultsine=0

() =G —n)-ai+ Bi
® use correction to obtain correct value

()] + Cll = x;

what time does it take to recover x;? hfé‘f PINGO

= Clj] = x — (/)]
@ Cljle{—-¢,—€+1,...,—-1,0,1,...,e —1,¢}
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Piece-Wise Linear Approximation (2/2)

@ use function to approximate point in /-th let ¢ > 2 be the number of bits used per

segment correction
e=2°—1
c=0resultsine=0

() =G —n)-ai+ Bi
® use correction to obtain correct value

()] + Cll = x;

® what time does it take to recover x;? hfé‘f PINGO
w Clj] = x — [f())] ® O(log¥) time to find the segment
@ Cljle{—-¢,—€+1,...,—-1,0,1,...,e —1,¢} ® constant time within segment
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What is Missing?

use linear functions to approximate values p

corrections allow recovering values 434 - . - — -

compression of data structure

rank and select support

(space-)optimal segmentation

1 2 3 4 5 6 7 8

®m S=(10,18,22,24,27,31,43)
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Compressing the Representation (1/2)

® |arger € results in smaller “expected” number of
segments £

® smaller ¢ results in smaller correction and in
larger £
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KIT

Compressing the Representation (1/2)

® |arger € results in smaller “expected” number of
segments £

® smaller ¢ results in smaller correction and in
larger £

a / depends on the distribution of points
a ¢ < min{u/(2¢),n/2} [FV20]
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Compressing the Representation (1/2)

® |arger € results in smaller “expected” number of
segments £

® smaller ¢ results in smaller correction and in
larger £

a / depends on the distribution of points
a ¢ < min{u/(2¢),n/2} [FV20]

Let {x1,...,xn} be a sorted sequence of distinct
integers from in [1, u]. Given 0 < ¢ < |log u|, there
are £ segments in the optimal PLA of maximum error
e =max{0,2° — 1} for {(i,x;): i=1,...,n}

10/18 2024-07-15 Florian Kurpicz | Advanced Data Structures | 11 Learned Data Structures Institute of Theoretical Informatics, Algorithm Engineering


https://kurpicz.org

Ui

Compressing the Representation (1/2)

® |arger e results in smaller “expected” number of Lemma: Space-Requirements

segments ¢ (uncompressed)
& smaller c results in smaller correction and in {x1,...,X,} as defined before can be represented
larger £ @ ¢ = max{0,2° — 1} using nc + 2¢(log n + log u) bits of space.

a / depends on the distribution of points
® ¢ < min{u/(2¢),n/2} [FV20]

Definition: Number of Segments

Let {x1,...,xn} be a sorted sequence of distinct
integers from in [1, u]. Given 0 < ¢ < |log u|, there
are ¢ segments in the optimal PLA of maximum error
e =max{0,2° — 1} for {(i,x;): i=1,...,n}
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Compressing the Representation (1/2)

® |arger € results in smaller “expected” number of

segments £
® smaller ¢ results in smaller correction and in {X1 - ;Xn} as defined before can be represented
larger £ using nc + 2¢(log n + log u) bits of space.

® / depends on the distribution of points
® ¢ < min{u/(2¢), n/2} [FV20] Each segment s; = (r;, o, 3;) requires
® r;: log n bits of space,
® q;: log u+ log n bits of space
Let {xy,...,x,} be a sorted sequence of distinct ® 3:: log u bits of space
integers from in [1, u]. Given 0 < ¢ < |log u|, there
are £ segments in the optimal PLA of maximum error
e =max{0,2° — 1} for {(i,x;): i=1,...,n}
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KIT

Compressing the Representation (1/2)

® |arger € results in smaller “expected” number of

segments £
® smaller ¢ results in smaller correction and in {X1 - ;Xn} as defined before can be represented
larger £ using nc + 2¢(log n + log u) bits of space.

a / depends on the distribution of points
w ¢ < min{u/(2¢),n/2} [FV20] Each segment s; = (r;, o, 3;) requires
® r;: log n bits of space,
® q;: log u+ log n bits of space
Let {xy,...,x,} be a sorted sequence of distinct ® 3:: log u bits of space
integers from in [1, u]. Given 0 < ¢ < |log u|, there

are £ segments in the optimal PLA of maximum error -
€ = max{0,2° — 1} for {(i,x;): i=1,...,n} ® can we compress f;'s, s, or §;'s? &5 PINGO
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Compressing the Representation (2/2)

{x1,..., X} as defined before can be represented
using nc + £(2log % + 4 + o(1)) bits of space.
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Compressing the Representation (2/2)

{x1,..., X} as defined before can be represented
using nc + £(2log % + 4 + o(1)) bits of space.

® r;’s are increasing sequence of £ integers in
[1, 7]

@ [/’s are increasing sequence of £ integers in
[1, 4]

@ use Elias-Fano coding
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Compressing the Representation (2/2)

@ (C can also be compressed

{xy,..., X} as defined before can be represented ® using entropy compressed indices
using nc + £(2log % + 4 + o(1)) bits of space.

® r;’s are increasing sequence of £ integers in
[1, 7]

@ [/’s are increasing sequence of £ integers in
[1, 4]

@ use Elias-Fano coding
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Compressing the Representation (2/2)
Lemma: Space-Requirements (Elias-Fano) ® C can also be compressed
{x1,..., Xy} as defined before can be represented ® using entropy compressed indices

using nc + £(2log & + 4 + o(1)) bits of space.
Lemma: Space-Requirements

(Compressed)
® r;’s are increasing sequence of £ integers in {x1,...,xs} as defined before can be represented
[1,n] using nHy(C) + o(nc) + {(2log 7 + 4 + o(1)) bits
® f3/s are increasing sequence of £ integers in of space. Access time is O(c).

[1, 4]
@ use Elias-Fano coding
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Rank and Select Support

® rank and select use predecessor data structure
onr’s
® select is “easier” than rank

Selecton {xi, ..., x,} as defined before is
supported in O(1) time requiring
n(c+1+0(1)) + ¢(2log u + log n) bits of space.
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Rank and Select Support

® rank and select use predecessor data structure
onr’s
® select is “easier” than rank

Selecton {xi, ..., x,} as defined before is
supported in O(1) time requiring
n(c+1+0(1)) + ¢(2log u + log n) bits of space.

® use bit vector marking r;’s
® n+ o(n) bits of space
® about one bit per element in S
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Rank and Select Support

® rank and select use predecessor data structure
onr’s
® select is “easier” than rank

Selecton {xi, ..., x,} as defined before is
supported in O(1) time requiring
n(c+1+0(1)) + ¢(2log u + log n) bits of space.

® use bit vector marking r;’s
® n+ o(n) bits of space
® about one bit per element in S
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® naive rank(x) needs binary search
® find maximum i with select(i) < x
® requires O(log n) time

12/18 2024-07-15 Florian Kurpicz | Advanced Data Structures | 11 Learned Data Structures Institute of Theoretical Informatics, Algorithm Engineering



KIT

Rank and Select Support
® rank and select use predecessor data structure ® naive rank(x) needs binary search
on ri’s ® find maximum / with select(i) < x

® select is “easier” than rank ® requires O(log n) time

] ] @ better: binary search on segments
Selecton {xi, ..., x,} as defined before is

supported in O(1) time requiring
n(c+ 1+ 0(1)) + £(2log u + log n) bits of space. ® use maximum error to find interval for binary
search

® within segment: get “position” of x

® use bit vector marking r;’s
® n+ o(n) bits of space
® about one bit per element in S
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Rank and Select Support
® rank and select use predecessor data structure ® naive rank(x) needs binary search
on ri’s ® find maximum / with select(i) < x

® select is “easier” than rank ® requires O(log n) time

® better: binary search on segments

Selecton {xi, ..., x,} as defined before is o e
supported in O(1) time requiring ® within segment: get “position” of x
n(c+ 1+ o(1)) + £(2log u + log n) bits of space. ® use maximum error to find interval for binary
search
® use bit vector marking r;’s
Rank on {xi, ..., X,} as defined before is supported

® n+ ofn) bits of space in O(log ¢ + c¢) time requiring no additional space.

® about one bit per element in S
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Details on Rank Support £/

® error is bounded: |£i(i) — xi| < e
® search for x; < x < Xjt1
® rank is one j with fi(i/) — e < x < f(i) + ¢

@ (i—n)oj+pi—e<x<(i+1-r) aj+6j+e
& solve for J
e Sh (s <i<Zhyn4(L)
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a fixed number c for corrections

® now: choose different error e = max{0,2° — 1}
for each segment

® how to find optimal partitioning?
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Finding Optimal Data Partitioning

14/18

fixed number c for corrections

® now: choose different error e = max{0,2° — 1}

for each segment
how to find optimal partitioning?

@ |et G be directed acyclic graph

one node for each {xi, ..., x,} plus sink node
at end of sequence

edge (i, j) with weight w(i, j, ¢) indicates that

there exists a segment compressing Xx;, . . ., X;
using w(i, j,c) = (j — i)c + & bits of space
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Finding Optimal Data Partitioning

14/18

fixed number c for corrections

® now: choose different error e = max{0,2° — 1}

for each segment
how to find optimal partitioning?

@ |et G be directed acyclic graph

one node for each {xi, ..., x,} plus sink node
at end of sequence

edge (i, j) with weight w(i, j, ¢) indicates that

there exists a segment compressing Xx;, . . ., X;
using w(i, j,c) = (j — i)c + & bits of space

KIT

Karlsruhe Institute of Technology

The shortest path in G from node 1to n+ 1
corresponds to the PLA with minimal cost for

{x1,..., X}
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Finding Optimal Data Partitioning

14/18

fixed number c for corrections

® now: choose different error e = max{0,2° — 1}

for each segment
how to find optimal partitioning?

@ |et G be directed acyclic graph

one node for each {xi, ..., x,} plus sink node
at end of sequence

edge (i, j) with weight w(i, j, ¢) indicates that

there exists a segment compressing Xx;, . . ., X;
using w(i, j,c) = (j — i)c + & bits of space
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The shortest path in G from node 1to n+ 1
corresponds to the PLA with minimal cost for

{x1,..., X}

a finding shortest using brute-force not feasible
= requires O(r? log u) time [O’R81]
® can be done in O(nlog u) time

® solution is at most x4 bits larger than optimal
solution
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From Encoding to Indexing

® data has been encoded (and compressed)
® now: indexing data internal memory of M words
® in external memory model instances of size N > M

® |earned index is alternative to B-tree unlimited external memory

transfer blocks of size B between memories

® measure number of blocks I/Os
® scanning N elements: ©(N/B)
= sorting N elements: ©(j5 logu )
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From Encoding to Indexing

15/18

® data has been encoded (and compressed)
® now: indexing data
® in external memory model

® |earned index is alternative to B-tree

Data Structure Space I/Os

B=tree O(n) O(logg(n))
PGM-Index O(mgpt)  O(logg(Mopt))

® My < nis optimal number of segments
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internal memory of M words

instances of size N > M

unlimited external memory

transfer blocks of size B between memories

® measure number of blocks I/Os

® scanning N elements: ©(N/B)

= sorting N elements: ©(j5 logu )
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The PGM-Index [FV20]

16/18

@ what do we not need when indexing instead of
g

encoding?

2024-07-15

*‘a PINGO

.S:
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The PGM-Index [FV20]

16/18

® what do we not need when indexing instead of
encoding? : “.r‘eg PINGO

® now S has to be stored

® how do we access elements in S
® e.g., predecessor

& frick used before requires too much space
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1 2 3 4 5 6 7 8

® S=(10,18,22,24,27,31,43)

Institute of Theoretical Informatics, Algorithm Engineering


https://kurpicz.org

The PGM-Index [FV20]

® what do we not need when indexing instead of
encoding? : “.r‘eg PINGO

® now S has to be stored

® how do we access elements in S
® e.g., predecessor

& frick used before requires too much space

& store key instead position
® recurs on first keys of each segment

16/18 2024-07-15
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431 ----- - .- ----

1 2 3 4 5 6 7 8

® S=(10,18,22,24,27,31,43)
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The PGM-Index [FV20]

16/18

@ what do we not need when indexing instead of

5 ElRgE
encoding? §§3 PINGO

® now S has to be stored
® how do we access elements in S

® e.g., predecessor
trick used before requires too much space

& store key instead position
® recurs on first keys of each segment £

For Queries
®c=0(B)
® load 2¢ + 1 blocks per level &)

KIT

Karlsruhe Institute of Technology

431 --------------- *----

1 2 3 4 5 6 7 8

® S=(10,18,22,24,27,31,43)
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Evaluation

https://onlineumfrage.kit.edu/evasys/online/
online.php?p=CZSUW
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Conclusion and Outlook

This Lecture Advanced Data Structures

® |earned data structures

retroactive

PQ String B-tree | SA & LCP |

Successor | CSA | RMQ |

learned DS static/dynamic static/dynamic
BV succ. trees

range min-max tree succ. graphs
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