
Advanced Data Structures

Lecture 11: Learned Data Structures

Florian Kurpicz

The slides are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License cba: www.creativecommons.org/licenses/by-sa/4.0 | commit c70729e compiled at 2024-07-15-13:10

KIT – The Research University in the Helmholtz Association www.kit.edu

https://creativecommons.org/licenses/by-sa/4.0/
https://www.kit.edu

https://pingo.scc.kit.edu/524651

2/18 2024-07-15 Florian Kurpicz | Advanced Data Structures | 11 Learned Data Structures Institute of Theoretical Informatics, Algorithm Engineering

PINGO

https://pingo.scc.kit.edu/524651
https://pingo.scc.kit.edu/524651

BBST for Q∞ ò changed for each update
BBST where leaves are inserts ordered by time
augmented with

for each node x store
max{v ′ /∈ Q∞ : v ′ inserted in subtree of x}

BBST where leaves are all updates ordered by
time augmented with

leaves store 0 for inserts with v ∈ Q∞, 1 for
inserts with v /∈ Q∞ and −1 for delete-mins
inner nodes store subtree sums
inner nodes store smallest prefix sum in subtree

va
lu

e

time

A C

3/18 2024-07-15 Florian Kurpicz | Advanced Data Structures | 11 Learned Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Recap: Retroactive Data Structures

Given ordered integers S from a universe U = [1, u]
a rank and select index can answer

rank(x) = |{y ∈ S : y < x}|
select(i) = S[argminj(rank(j) = i + 1)]

can be use to answer predecessor queries

a bit vector with rank and select suffices

bit vector requires u + o(u) bits

compressing bit vector to save space (if sparse)
Elias-Fano requires how much space?

PINGO

|S|(2 + log⌈ u
|S|⌉) bits

4/18 2024-07-15 Florian Kurpicz | Advanced Data Structures | 11 Learned Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Setting: Rank and Select Dictionary

https://kurpicz.org

Given ordered integers S from a universe U = [1, u]
a rank and select index can answer

rank(x) = |{y ∈ S : y < x}|
select(i) = S[argminj(rank(j) = i + 1)]

can be use to answer predecessor queries

a bit vector with rank and select suffices

bit vector requires u + o(u) bits

compressing bit vector to save space (if sparse)
Elias-Fano requires how much space?

PINGO

|S|(2 + log⌈ u
|S|⌉) bits

4/18 2024-07-15 Florian Kurpicz | Advanced Data Structures | 11 Learned Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Setting: Rank and Select Dictionary

https://kurpicz.org

Given ordered integers S from a universe U = [1, u]
a rank and select index can answer

rank(x) = |{y ∈ S : y < x}|
select(i) = S[argminj(rank(j) = i + 1)]

can be use to answer predecessor queries

a bit vector with rank and select suffices

bit vector requires u + o(u) bits

compressing bit vector to save space (if sparse)
Elias-Fano requires how much space?

PINGO
|S|(2 + log⌈ u

|S|⌉) bits

4/18 2024-07-15 Florian Kurpicz | Advanced Data Structures | 11 Learned Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Setting: Rank and Select Dictionary

https://kurpicz.org

how to represent S from a universe U = [1, u]

let S = ⟨x1, x2, . . . , xn⟩ be a sorted sequence

map each element xi ∈ S to point (i, xi)

points are in Cartesian plane

1 2 3 4 5 6 7 8

10

18
22
24
27

31

43

0 3 2 -1 -3 -4 3C =

S = ⟨10, 18, 22, 24, 27, 31, 43⟩

5/18 2024-07-15 Florian Kurpicz | Advanced Data Structures | 11 Learned Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Learned Rank and Select Index [BFV21]

find function f passing through all points
ò xi = f (i)

BUT f should be fast to compute and require
little space

use linear approximation with error ϵ

store error correction in array C

correction can be very big

1 2 3 4 5 6 7 8

10

18
22
24
27

31

43

0 3 2 -1 -3 -4 3C =

S = ⟨10, 18, 22, 24, 27, 31, 43⟩

6/18 2024-07-15 Florian Kurpicz | Advanced Data Structures | 11 Learned Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Approximating S in Cartesian Plane

find function f passing through all points
ò xi = f (i)

BUT f should be fast to compute and require
little space

use linear approximation with error ϵ

store error correction in array C

correction can be very big

1 2 3 4 5 6 7 8

10

18
22
24
27

31

43

0 3 2 -1 -3 -4 3C =

S = ⟨10, 18, 22, 24, 27, 31, 43⟩

6/18 2024-07-15 Florian Kurpicz | Advanced Data Structures | 11 Learned Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Approximating S in Cartesian Plane

find function f passing through all points
ò xi = f (i)

BUT f should be fast to compute and require
little space

use linear approximation with error ϵ

store error correction in array C

correction can be very big

1 2 3 4 5 6 7 8

10

18
22
24
27

31

43

0 3 2 -1 -3 -4 3C =

S = ⟨10, 18, 22, 24, 27, 31, 43⟩

6/18 2024-07-15 Florian Kurpicz | Advanced Data Structures | 11 Learned Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Approximating S in Cartesian Plane

use piece-wise linear approximation (PLA)

sequence of segments with error bound by ϵ

smallest number of segments can be computed
in O(n) time [O’R81]

let there be ℓ segments

Definition: Representation of a Segment
The i-th segment starting with (j, xj) is represented
as triple si = (ri , αi , βi), where

ri = j ,

αi is the slope, and

βi is the intercept

1 2 3 4 5 6 7 8

10

18
22
24
27

31

43

0 2 0 0 0 1 0C =

S = ⟨10, 18, 22, 24, 27, 31, 43⟩

7/18 2024-07-15 Florian Kurpicz | Advanced Data Structures | 11 Learned Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Piece-Wise Linear Approximation (1/2)

use piece-wise linear approximation (PLA)

sequence of segments with error bound by ϵ

smallest number of segments can be computed
in O(n) time [O’R81]

let there be ℓ segments

Definition: Representation of a Segment
The i-th segment starting with (j, xj) is represented
as triple si = (ri , αi , βi), where

ri = j ,

αi is the slope, and

βi is the intercept

1 2 3 4 5 6 7 8

10

18
22
24
27

31

43

0 2 0 0 0 1 0C =

S = ⟨10, 18, 22, 24, 27, 31, 43⟩

7/18 2024-07-15 Florian Kurpicz | Advanced Data Structures | 11 Learned Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Piece-Wise Linear Approximation (1/2)

use function to approximate point in i-th
segment

fi(j) = (j − ri) · αi + βi

use correction to obtain correct value

⌊fi(j)⌋+ C[j] = xj

C[j] = xj − ⌊fi(j)⌋
C[j] ∈ {−ϵ,−ϵ+ 1, . . . ,−1, 0, 1, . . . , ϵ− 1, ϵ}

let c ≥ 2 be the number of bits used per
correction

ϵ = 2c − 1

c = 0 results in ϵ = 0

c = 1 possible? PINGO

what time does it take to recover xj? PINGO

O(log ℓ) time to find the segment

constant time within segment

8/18 2024-07-15 Florian Kurpicz | Advanced Data Structures | 11 Learned Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Piece-Wise Linear Approximation (2/2)

https://kurpicz.org
https://kurpicz.org

use function to approximate point in i-th
segment

fi(j) = (j − ri) · αi + βi

use correction to obtain correct value

⌊fi(j)⌋+ C[j] = xj

C[j] = xj − ⌊fi(j)⌋
C[j] ∈ {−ϵ,−ϵ+ 1, . . . ,−1, 0, 1, . . . , ϵ− 1, ϵ}

let c ≥ 2 be the number of bits used per
correction

ϵ = 2c − 1

c = 0 results in ϵ = 0

c = 1 possible? PINGO

what time does it take to recover xj? PINGO

O(log ℓ) time to find the segment

constant time within segment

8/18 2024-07-15 Florian Kurpicz | Advanced Data Structures | 11 Learned Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Piece-Wise Linear Approximation (2/2)

https://kurpicz.org
https://kurpicz.org

use function to approximate point in i-th
segment

fi(j) = (j − ri) · αi + βi

use correction to obtain correct value

⌊fi(j)⌋+ C[j] = xj

C[j] = xj − ⌊fi(j)⌋
C[j] ∈ {−ϵ,−ϵ+ 1, . . . ,−1, 0, 1, . . . , ϵ− 1, ϵ}

let c ≥ 2 be the number of bits used per
correction

ϵ = 2c − 1

c = 0 results in ϵ = 0

c = 1 possible? PINGO

what time does it take to recover xj? PINGO

O(log ℓ) time to find the segment

constant time within segment

8/18 2024-07-15 Florian Kurpicz | Advanced Data Structures | 11 Learned Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Piece-Wise Linear Approximation (2/2)

https://kurpicz.org
https://kurpicz.org

use function to approximate point in i-th
segment

fi(j) = (j − ri) · αi + βi

use correction to obtain correct value

⌊fi(j)⌋+ C[j] = xj

C[j] = xj − ⌊fi(j)⌋
C[j] ∈ {−ϵ,−ϵ+ 1, . . . ,−1, 0, 1, . . . , ϵ− 1, ϵ}

let c ≥ 2 be the number of bits used per
correction

ϵ = 2c − 1

c = 0 results in ϵ = 0

c = 1 possible? PINGO

what time does it take to recover xj? PINGO

O(log ℓ) time to find the segment

constant time within segment

8/18 2024-07-15 Florian Kurpicz | Advanced Data Structures | 11 Learned Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Piece-Wise Linear Approximation (2/2)

https://kurpicz.org
https://kurpicz.org

use function to approximate point in i-th
segment

fi(j) = (j − ri) · αi + βi

use correction to obtain correct value

⌊fi(j)⌋+ C[j] = xj

C[j] = xj − ⌊fi(j)⌋
C[j] ∈ {−ϵ,−ϵ+ 1, . . . ,−1, 0, 1, . . . , ϵ− 1, ϵ}

let c ≥ 2 be the number of bits used per
correction

ϵ = 2c − 1

c = 0 results in ϵ = 0

c = 1 possible? PINGO

what time does it take to recover xj? PINGO

O(log ℓ) time to find the segment

constant time within segment

8/18 2024-07-15 Florian Kurpicz | Advanced Data Structures | 11 Learned Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Piece-Wise Linear Approximation (2/2)

https://kurpicz.org
https://kurpicz.org

use function to approximate point in i-th
segment

fi(j) = (j − ri) · αi + βi

use correction to obtain correct value

⌊fi(j)⌋+ C[j] = xj

C[j] = xj − ⌊fi(j)⌋
C[j] ∈ {−ϵ,−ϵ+ 1, . . . ,−1, 0, 1, . . . , ϵ− 1, ϵ}

let c ≥ 2 be the number of bits used per
correction

ϵ = 2c − 1

c = 0 results in ϵ = 0

c = 1 possible? PINGO

what time does it take to recover xj? PINGO

O(log ℓ) time to find the segment

constant time within segment

8/18 2024-07-15 Florian Kurpicz | Advanced Data Structures | 11 Learned Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Piece-Wise Linear Approximation (2/2)

https://kurpicz.org
https://kurpicz.org

use linear functions to approximate values

corrections allow recovering values

compression of data structure

rank and select support

(space-)optimal segmentation

1 2 3 4 5 6 7 8

10

18
22
24
27

31

43

0 2 0 0 0 1 0C =

S = ⟨10, 18, 22, 24, 27, 31, 43⟩

9/18 2024-07-15 Florian Kurpicz | Advanced Data Structures | 11 Learned Data Structures Institute of Theoretical Informatics, Algorithm Engineering

What is Missing?

larger ϵ results in smaller “expected” number of
segments ℓ

smaller c results in smaller correction and in
larger ℓ ò ϵ = max{0, 2c − 1}

ℓ depends on the distribution of points

ℓ ≤ min{u/(2ϵ), n/2} [FV20]

Definition: Number of Segments
Let {x1, . . . , xn} be a sorted sequence of distinct
integers from in [1, u]. Given 0 ≤ c ≤ ⌊log u⌋, there
are ℓ segments in the optimal PLA of maximum error
ϵ = max{0, 2c − 1} for {(i, xi) : i = 1, . . . , n}

Lemma: Space-Requirements
(uncompressed)
{x1, . . . , xn} as defined before can be represented
using nc + 2ℓ(log n + log u) bits of space.

Proof (Sketch)
Each segment si = (ri , αi , βi) requires

ri : log n bits of space,

αi : log u + log n bits of space ò rational number

βi : log u bits of space

can we compress ri ’s, αi ’s, or βi ’s? PINGO

10/18 2024-07-15 Florian Kurpicz | Advanced Data Structures | 11 Learned Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Compressing the Representation (1/2)

https://kurpicz.org

larger ϵ results in smaller “expected” number of
segments ℓ

smaller c results in smaller correction and in
larger ℓ ò ϵ = max{0, 2c − 1}

ℓ depends on the distribution of points

ℓ ≤ min{u/(2ϵ), n/2} [FV20]

Definition: Number of Segments
Let {x1, . . . , xn} be a sorted sequence of distinct
integers from in [1, u]. Given 0 ≤ c ≤ ⌊log u⌋, there
are ℓ segments in the optimal PLA of maximum error
ϵ = max{0, 2c − 1} for {(i, xi) : i = 1, . . . , n}

Lemma: Space-Requirements
(uncompressed)
{x1, . . . , xn} as defined before can be represented
using nc + 2ℓ(log n + log u) bits of space.

Proof (Sketch)
Each segment si = (ri , αi , βi) requires

ri : log n bits of space,

αi : log u + log n bits of space ò rational number

βi : log u bits of space

can we compress ri ’s, αi ’s, or βi ’s? PINGO

10/18 2024-07-15 Florian Kurpicz | Advanced Data Structures | 11 Learned Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Compressing the Representation (1/2)

https://kurpicz.org

larger ϵ results in smaller “expected” number of
segments ℓ

smaller c results in smaller correction and in
larger ℓ ò ϵ = max{0, 2c − 1}

ℓ depends on the distribution of points

ℓ ≤ min{u/(2ϵ), n/2} [FV20]

Definition: Number of Segments
Let {x1, . . . , xn} be a sorted sequence of distinct
integers from in [1, u]. Given 0 ≤ c ≤ ⌊log u⌋, there
are ℓ segments in the optimal PLA of maximum error
ϵ = max{0, 2c − 1} for {(i, xi) : i = 1, . . . , n}

Lemma: Space-Requirements
(uncompressed)
{x1, . . . , xn} as defined before can be represented
using nc + 2ℓ(log n + log u) bits of space.

Proof (Sketch)
Each segment si = (ri , αi , βi) requires

ri : log n bits of space,

αi : log u + log n bits of space ò rational number

βi : log u bits of space

can we compress ri ’s, αi ’s, or βi ’s? PINGO

10/18 2024-07-15 Florian Kurpicz | Advanced Data Structures | 11 Learned Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Compressing the Representation (1/2)

https://kurpicz.org

larger ϵ results in smaller “expected” number of
segments ℓ

smaller c results in smaller correction and in
larger ℓ ò ϵ = max{0, 2c − 1}

ℓ depends on the distribution of points

ℓ ≤ min{u/(2ϵ), n/2} [FV20]

Definition: Number of Segments
Let {x1, . . . , xn} be a sorted sequence of distinct
integers from in [1, u]. Given 0 ≤ c ≤ ⌊log u⌋, there
are ℓ segments in the optimal PLA of maximum error
ϵ = max{0, 2c − 1} for {(i, xi) : i = 1, . . . , n}

Lemma: Space-Requirements
(uncompressed)
{x1, . . . , xn} as defined before can be represented
using nc + 2ℓ(log n + log u) bits of space.

Proof (Sketch)
Each segment si = (ri , αi , βi) requires

ri : log n bits of space,

αi : log u + log n bits of space ò rational number

βi : log u bits of space

can we compress ri ’s, αi ’s, or βi ’s? PINGO

10/18 2024-07-15 Florian Kurpicz | Advanced Data Structures | 11 Learned Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Compressing the Representation (1/2)

https://kurpicz.org

larger ϵ results in smaller “expected” number of
segments ℓ

smaller c results in smaller correction and in
larger ℓ ò ϵ = max{0, 2c − 1}

ℓ depends on the distribution of points

ℓ ≤ min{u/(2ϵ), n/2} [FV20]

Definition: Number of Segments
Let {x1, . . . , xn} be a sorted sequence of distinct
integers from in [1, u]. Given 0 ≤ c ≤ ⌊log u⌋, there
are ℓ segments in the optimal PLA of maximum error
ϵ = max{0, 2c − 1} for {(i, xi) : i = 1, . . . , n}

Lemma: Space-Requirements
(uncompressed)
{x1, . . . , xn} as defined before can be represented
using nc + 2ℓ(log n + log u) bits of space.

Proof (Sketch)
Each segment si = (ri , αi , βi) requires

ri : log n bits of space,

αi : log u + log n bits of space ò rational number

βi : log u bits of space

can we compress ri ’s, αi ’s, or βi ’s? PINGO

10/18 2024-07-15 Florian Kurpicz | Advanced Data Structures | 11 Learned Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Compressing the Representation (1/2)

https://kurpicz.org

larger ϵ results in smaller “expected” number of
segments ℓ

smaller c results in smaller correction and in
larger ℓ ò ϵ = max{0, 2c − 1}

ℓ depends on the distribution of points

ℓ ≤ min{u/(2ϵ), n/2} [FV20]

Definition: Number of Segments
Let {x1, . . . , xn} be a sorted sequence of distinct
integers from in [1, u]. Given 0 ≤ c ≤ ⌊log u⌋, there
are ℓ segments in the optimal PLA of maximum error
ϵ = max{0, 2c − 1} for {(i, xi) : i = 1, . . . , n}

Lemma: Space-Requirements
(uncompressed)
{x1, . . . , xn} as defined before can be represented
using nc + 2ℓ(log n + log u) bits of space.

Proof (Sketch)
Each segment si = (ri , αi , βi) requires

ri : log n bits of space,

αi : log u + log n bits of space ò rational number

βi : log u bits of space

can we compress ri ’s, αi ’s, or βi ’s? PINGO

10/18 2024-07-15 Florian Kurpicz | Advanced Data Structures | 11 Learned Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Compressing the Representation (1/2)

https://kurpicz.org

Lemma: Space-Requirements (Elias-Fano)
{x1, . . . , xn} as defined before can be represented
using nc + ℓ(2 log un

ℓ + 4 + o(1)) bits of space.

Proof (Sketch)
ri ’s are increasing sequence of ℓ integers in
[1, n]

βi ’s are increasing sequence of ℓ integers in
[1, u]

use Elias-Fano coding

C can also be compressed

using entropy compressed indices

Lemma: Space-Requirements
(Compressed)
{x1, . . . , xn} as defined before can be represented
using nH0(C) + o(nc) + ℓ(2 log un

ℓ + 4 + o(1)) bits
of space. Access time is O(c).

11/18 2024-07-15 Florian Kurpicz | Advanced Data Structures | 11 Learned Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Compressing the Representation (2/2)

Lemma: Space-Requirements (Elias-Fano)
{x1, . . . , xn} as defined before can be represented
using nc + ℓ(2 log un

ℓ + 4 + o(1)) bits of space.

Proof (Sketch)
ri ’s are increasing sequence of ℓ integers in
[1, n]

βi ’s are increasing sequence of ℓ integers in
[1, u]

use Elias-Fano coding

C can also be compressed

using entropy compressed indices

Lemma: Space-Requirements
(Compressed)
{x1, . . . , xn} as defined before can be represented
using nH0(C) + o(nc) + ℓ(2 log un

ℓ + 4 + o(1)) bits
of space. Access time is O(c).

11/18 2024-07-15 Florian Kurpicz | Advanced Data Structures | 11 Learned Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Compressing the Representation (2/2)

Lemma: Space-Requirements (Elias-Fano)
{x1, . . . , xn} as defined before can be represented
using nc + ℓ(2 log un

ℓ + 4 + o(1)) bits of space.

Proof (Sketch)
ri ’s are increasing sequence of ℓ integers in
[1, n]

βi ’s are increasing sequence of ℓ integers in
[1, u]

use Elias-Fano coding

C can also be compressed

using entropy compressed indices

Lemma: Space-Requirements
(Compressed)
{x1, . . . , xn} as defined before can be represented
using nH0(C) + o(nc) + ℓ(2 log un

ℓ + 4 + o(1)) bits
of space. Access time is O(c).

11/18 2024-07-15 Florian Kurpicz | Advanced Data Structures | 11 Learned Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Compressing the Representation (2/2)

Lemma: Space-Requirements (Elias-Fano)
{x1, . . . , xn} as defined before can be represented
using nc + ℓ(2 log un

ℓ + 4 + o(1)) bits of space.

Proof (Sketch)
ri ’s are increasing sequence of ℓ integers in
[1, n]

βi ’s are increasing sequence of ℓ integers in
[1, u]

use Elias-Fano coding

C can also be compressed

using entropy compressed indices

Lemma: Space-Requirements
(Compressed)
{x1, . . . , xn} as defined before can be represented
using nH0(C) + o(nc) + ℓ(2 log un

ℓ + 4 + o(1)) bits
of space. Access time is O(c).

11/18 2024-07-15 Florian Kurpicz | Advanced Data Structures | 11 Learned Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Compressing the Representation (2/2)

rank and select use predecessor data structure
on ri ’s

select is “easier” than rank

Lemma: Learned Select
Select on {x1, . . . , xn} as defined before is
supported in O(1) time requiring
n(c + 1 + o(1)) + ℓ(2 log u + log n) bits of space.

Proof (Sketch)
use bit vector marking ri ’s

n + o(n) bits of space

about one bit per element in S

naive rank(x) needs binary search

find maximum i with select(i) ≤ x

requires O(log n) time

better: binary search on segments

within segment: get “position” of x

use maximum error to find interval for binary
search �

Lemma: Learned Rank
Rank on {x1, . . . , xn} as defined before is supported
in O(log ℓ+ c) time requiring no additional space.

12/18 2024-07-15 Florian Kurpicz | Advanced Data Structures | 11 Learned Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Rank and Select Support

rank and select use predecessor data structure
on ri ’s

select is “easier” than rank

Lemma: Learned Select
Select on {x1, . . . , xn} as defined before is
supported in O(1) time requiring
n(c + 1 + o(1)) + ℓ(2 log u + log n) bits of space.

Proof (Sketch)
use bit vector marking ri ’s

n + o(n) bits of space

about one bit per element in S

naive rank(x) needs binary search

find maximum i with select(i) ≤ x

requires O(log n) time

better: binary search on segments

within segment: get “position” of x

use maximum error to find interval for binary
search �

Lemma: Learned Rank
Rank on {x1, . . . , xn} as defined before is supported
in O(log ℓ+ c) time requiring no additional space.

12/18 2024-07-15 Florian Kurpicz | Advanced Data Structures | 11 Learned Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Rank and Select Support

rank and select use predecessor data structure
on ri ’s

select is “easier” than rank

Lemma: Learned Select
Select on {x1, . . . , xn} as defined before is
supported in O(1) time requiring
n(c + 1 + o(1)) + ℓ(2 log u + log n) bits of space.

Proof (Sketch)
use bit vector marking ri ’s

n + o(n) bits of space

about one bit per element in S

naive rank(x) needs binary search

find maximum i with select(i) ≤ x

requires O(log n) time

better: binary search on segments

within segment: get “position” of x

use maximum error to find interval for binary
search �

Lemma: Learned Rank
Rank on {x1, . . . , xn} as defined before is supported
in O(log ℓ+ c) time requiring no additional space.

12/18 2024-07-15 Florian Kurpicz | Advanced Data Structures | 11 Learned Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Rank and Select Support

rank and select use predecessor data structure
on ri ’s

select is “easier” than rank

Lemma: Learned Select
Select on {x1, . . . , xn} as defined before is
supported in O(1) time requiring
n(c + 1 + o(1)) + ℓ(2 log u + log n) bits of space.

Proof (Sketch)
use bit vector marking ri ’s

n + o(n) bits of space

about one bit per element in S

naive rank(x) needs binary search

find maximum i with select(i) ≤ x

requires O(log n) time

better: binary search on segments

within segment: get “position” of x

use maximum error to find interval for binary
search �

Lemma: Learned Rank
Rank on {x1, . . . , xn} as defined before is supported
in O(log ℓ+ c) time requiring no additional space.

12/18 2024-07-15 Florian Kurpicz | Advanced Data Structures | 11 Learned Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Rank and Select Support

rank and select use predecessor data structure
on ri ’s

select is “easier” than rank

Lemma: Learned Select
Select on {x1, . . . , xn} as defined before is
supported in O(1) time requiring
n(c + 1 + o(1)) + ℓ(2 log u + log n) bits of space.

Proof (Sketch)
use bit vector marking ri ’s

n + o(n) bits of space

about one bit per element in S

naive rank(x) needs binary search

find maximum i with select(i) ≤ x

requires O(log n) time

better: binary search on segments

within segment: get “position” of x

use maximum error to find interval for binary
search �

Lemma: Learned Rank
Rank on {x1, . . . , xn} as defined before is supported
in O(log ℓ+ c) time requiring no additional space.

12/18 2024-07-15 Florian Kurpicz | Advanced Data Structures | 11 Learned Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Rank and Select Support

error is bounded: |fj(i)− xi | ≤ ϵ

search for xi ≤ x < xi+1

rank is one i with fj(i)− ϵ ≤ x ≤ fj(i) + ϵ

fj(i) = (i − ri) · αj + βj

(i − rj) ·αj +βj −ϵ ≤ x < (i +1− rj) ·αj +βj +ϵ

solve for i
x−βj

αj
+ rj − (ϵ

αj
+ 1) < i ≤ x−βj

αj
+ rj + (ϵ

αj
)

13/18 2024-07-15 Florian Kurpicz | Advanced Data Structures | 11 Learned Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Details on Rank Support �

fixed number c for corrections

now: choose different error ϵ = max{0, 2c − 1}
for each segment

how to find optimal partitioning?

let G be directed acyclic graph

one node for each {x1, . . . , xn} plus sink node
at end of sequence

edge (i, j) with weight w(i, j, c) indicates that
there exists a segment compressing xi , . . . , xj

using w(i, j, c) = (j − i)c + κ bits of space �

Lemma: Optimal Partitioning
The shortest path in G from node 1 to n + 1
corresponds to the PLA with minimal cost for
{x1, . . . , xn}

finding shortest using brute-force not feasible

requires O(n2 log u) time [O’R81]
can be done in O(n log u) time

solution is at most κℓ bits larger than optimal
solution

14/18 2024-07-15 Florian Kurpicz | Advanced Data Structures | 11 Learned Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Finding Optimal Data Partitioning

fixed number c for corrections

now: choose different error ϵ = max{0, 2c − 1}
for each segment

how to find optimal partitioning?

let G be directed acyclic graph

one node for each {x1, . . . , xn} plus sink node
at end of sequence

edge (i, j) with weight w(i, j, c) indicates that
there exists a segment compressing xi , . . . , xj

using w(i, j, c) = (j − i)c + κ bits of space �

Lemma: Optimal Partitioning
The shortest path in G from node 1 to n + 1
corresponds to the PLA with minimal cost for
{x1, . . . , xn}

finding shortest using brute-force not feasible

requires O(n2 log u) time [O’R81]
can be done in O(n log u) time

solution is at most κℓ bits larger than optimal
solution

14/18 2024-07-15 Florian Kurpicz | Advanced Data Structures | 11 Learned Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Finding Optimal Data Partitioning

fixed number c for corrections

now: choose different error ϵ = max{0, 2c − 1}
for each segment

how to find optimal partitioning?

let G be directed acyclic graph

one node for each {x1, . . . , xn} plus sink node
at end of sequence

edge (i, j) with weight w(i, j, c) indicates that
there exists a segment compressing xi , . . . , xj

using w(i, j, c) = (j − i)c + κ bits of space �

Lemma: Optimal Partitioning
The shortest path in G from node 1 to n + 1
corresponds to the PLA with minimal cost for
{x1, . . . , xn}

finding shortest using brute-force not feasible

requires O(n2 log u) time [O’R81]
can be done in O(n log u) time

solution is at most κℓ bits larger than optimal
solution

14/18 2024-07-15 Florian Kurpicz | Advanced Data Structures | 11 Learned Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Finding Optimal Data Partitioning

fixed number c for corrections

now: choose different error ϵ = max{0, 2c − 1}
for each segment

how to find optimal partitioning?

let G be directed acyclic graph

one node for each {x1, . . . , xn} plus sink node
at end of sequence

edge (i, j) with weight w(i, j, c) indicates that
there exists a segment compressing xi , . . . , xj

using w(i, j, c) = (j − i)c + κ bits of space �

Lemma: Optimal Partitioning
The shortest path in G from node 1 to n + 1
corresponds to the PLA with minimal cost for
{x1, . . . , xn}

finding shortest using brute-force not feasible

requires O(n2 log u) time [O’R81]
can be done in O(n log u) time

solution is at most κℓ bits larger than optimal
solution

14/18 2024-07-15 Florian Kurpicz | Advanced Data Structures | 11 Learned Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Finding Optimal Data Partitioning

data has been encoded (and compressed)

now: indexing data

in external memory model

learned index is alternative to B-tree

Data Structure Space I/Os

B=tree Θ(n) O(logB(n))
PGM-Index Θ(mopt) O(logB(mopt))

mopt ≤ n is optimal number of segments

Definition: External Memory Model (Recap)
internal memory of M words

instances of size N ≫ M

unlimited external memory

transfer blocks of size B between memories

measure number of blocks I/Os

scanning N elements: Θ(N/B)

sorting N elements: Θ(N
B log M

B

N
B)

15/18 2024-07-15 Florian Kurpicz | Advanced Data Structures | 11 Learned Data Structures Institute of Theoretical Informatics, Algorithm Engineering

From Encoding to Indexing

data has been encoded (and compressed)

now: indexing data

in external memory model

learned index is alternative to B-tree

Data Structure Space I/Os

B=tree Θ(n) O(logB(n))
PGM-Index Θ(mopt) O(logB(mopt))

mopt ≤ n is optimal number of segments

Definition: External Memory Model (Recap)
internal memory of M words

instances of size N ≫ M

unlimited external memory

transfer blocks of size B between memories

measure number of blocks I/Os

scanning N elements: Θ(N/B)

sorting N elements: Θ(N
B log M

B

N
B)

15/18 2024-07-15 Florian Kurpicz | Advanced Data Structures | 11 Learned Data Structures Institute of Theoretical Informatics, Algorithm Engineering

From Encoding to Indexing

what do we not need when indexing instead of
encoding? PINGO

now S has to be stored
how do we access elements in S

e.g., predecessor

trick used before requires too much space

store key instead position

recurs on first keys of each segment �

For Queries
ϵ = Θ(B)

load 2ϵ+ 1 blocks per level �

1 2 3 4 5 6 7 8

10

18
22
24
27

31

43

0 2 0 0 0 1 0C =

S = ⟨10, 18, 22, 24, 27, 31, 43⟩

16/18 2024-07-15 Florian Kurpicz | Advanced Data Structures | 11 Learned Data Structures Institute of Theoretical Informatics, Algorithm Engineering

The PGM-Index [FV20]

https://kurpicz.org

what do we not need when indexing instead of
encoding? PINGO

now S has to be stored
how do we access elements in S

e.g., predecessor

trick used before requires too much space

store key instead position

recurs on first keys of each segment �

For Queries
ϵ = Θ(B)

load 2ϵ+ 1 blocks per level �

1 2 3 4 5 6 7 8

10

18
22
24
27

31

43

0 2 0 0 0 1 0C =

S = ⟨10, 18, 22, 24, 27, 31, 43⟩

16/18 2024-07-15 Florian Kurpicz | Advanced Data Structures | 11 Learned Data Structures Institute of Theoretical Informatics, Algorithm Engineering

The PGM-Index [FV20]

https://kurpicz.org

what do we not need when indexing instead of
encoding? PINGO

now S has to be stored
how do we access elements in S

e.g., predecessor

trick used before requires too much space

store key instead position

recurs on first keys of each segment �

For Queries
ϵ = Θ(B)

load 2ϵ+ 1 blocks per level �

1 2 3 4 5 6 7 8

10

18
22
24
27

31

43

0 2 0 0 0 1 0C =

S = ⟨10, 18, 22, 24, 27, 31, 43⟩

16/18 2024-07-15 Florian Kurpicz | Advanced Data Structures | 11 Learned Data Structures Institute of Theoretical Informatics, Algorithm Engineering

The PGM-Index [FV20]

https://kurpicz.org

what do we not need when indexing instead of
encoding? PINGO

now S has to be stored
how do we access elements in S

e.g., predecessor

trick used before requires too much space

store key instead position

recurs on first keys of each segment �

For Queries
ϵ = Θ(B)

load 2ϵ+ 1 blocks per level �

1 2 3 4 5 6 7 8

10

18
22
24
27

31

43

0 2 0 0 0 1 0C =

S = ⟨10, 18, 22, 24, 27, 31, 43⟩

16/18 2024-07-15 Florian Kurpicz | Advanced Data Structures | 11 Learned Data Structures Institute of Theoretical Informatics, Algorithm Engineering

The PGM-Index [FV20]

https://kurpicz.org

https://onlineumfrage.kit.edu/evasys/online/

online.php?p=CZSUW

17/18 2024-07-15 Florian Kurpicz | Advanced Data Structures | 11 Learned Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Evaluation

https://onlineumfrage.kit.edu/evasys/online/online.php?p=CZSUW
https://onlineumfrage.kit.edu/evasys/online/online.php?p=CZSUW
https://onlineumfrage.kit.edu/evasys/online/online.php?p=CZSUW

This Lecture
learned data structures

Next Lecture
one more interesting data structure

results of the project/competition

Q&A

Advanced Data Structures

static/dynamic

BV
static/dynamic

succ. trees

range min-max tree succ. graphs

Successor RMQ

SA & LCPString B-tree

CSA

retroactive

PQ

learned DS

18/18 2024-07-15 Florian Kurpicz | Advanced Data Structures | 11 Learned Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Conclusion and Outlook

This Lecture
learned data structures

Next Lecture
one more interesting data structure

results of the project/competition

Q&A

Advanced Data Structures

static/dynamic

BV
static/dynamic

succ. trees

range min-max tree succ. graphs

Successor RMQ

SA & LCPString B-tree

CSA

retroactive

PQ

learned DS

18/18 2024-07-15 Florian Kurpicz | Advanced Data Structures | 11 Learned Data Structures Institute of Theoretical Informatics, Algorithm Engineering

Conclusion and Outlook

