Advanced Data Structures

Lecture 11: Learned Data Structures

Florian Kurpicz
Recap: Retroactive Data Structures

- BBST for Q_{∞} changed for each update
- BBST where leaves are inserts ordered by time augmented with
 - for each node x store $\max\{v' \notin Q_{\infty} : v' \text{ inserted in subtree of } x\}$
- BBST where leaves are all updates ordered by time augmented with
 - leaves store 0 for inserts with $v \in Q_{\infty}$, 1 for inserts with $v \notin Q_{\infty}$ and -1 for delete-mins
 - inner nodes store subtree sums
 - inner nodes store smallest prefix sum in subtree
Setting: Rank and Select Dictionary

Given ordered integers S from a universe $\mathcal{U} = [1, u]$

a rank and select index can answer

- $\text{rank}(x) = |\{y \in S : y < x\}|$
- $\text{select}(i) = S[\arg \min_j(\text{rank}(j) = i + 1)]$

- can be use to answer predecessor queries
- a bit vector with rank and select suffices
Given ordered integers S from a universe $\mathcal{U} = [1, u]$ a rank and select index can answer:

- $\text{rank}(x) = |\{y \in S: y < x\}|$
- $\text{select}(i) = S[\text{arg min}_j(\text{rank}(j) = i + 1)]$

- can be used to answer predecessor queries
- A bit vector with rank and select suffices

- Bit vector requires $u + o(u)$ bits
- Compressing bit vector to save space (if sparse)
- Elias-Fano requires how much space?

PINGO
Given ordered integers S from a universe $\mathcal{U} = [1, u]$, a rank and select index can answer:

- $\text{rank}(x) = |\{y \in S : y < x\}|$
- $\text{select}(i) = S[\text{arg min}_j(\text{rank}(j) = i + 1)]$

- can be used to answer predecessor queries
- a bit vector with rank and select suffices

- bit vector requires $u + o(u)$ bits
- compressing bit vector to save space (if sparse)
- Elias-Fano requires how much space?

PINGO
- $|S|(2 + \log \lceil \frac{u}{|S|} \rceil)$ bits
how to represent S from a universe $\mathcal{U} = [1, u]$
- let $S = \langle x_1, x_2, \ldots, x_n \rangle$ be a sorted sequence
- map each element $x_i \in S$ to point (i, x_i)
- points are in Cartesian plane

$S = \langle 10, 18, 22, 24, 27, 31, 43 \rangle$
Approximating S in Cartesian Plane

- find function f passing through all points $x_i = f(i)$
- BUT f should be fast to compute and require little space
- use linear approximation with error ϵ

$S = \langle 10, 18, 22, 24, 27, 31, 43 \rangle$
find function f passing through all points

$x_i = f(i)$

BUT f should be fast to compute and require little space

use linear approximation with error ϵ

store error correction in array C

$S = \langle 10, 18, 22, 24, 27, 31, 43 \rangle$

$C = \langle 0, 3, 2, -1, -3, -4, 3 \rangle$
find function f passing through all points

$x_i = f(i)$

BUT f should be fast to compute and require little space

use linear approximation with error ϵ

store error correction in array C

correction can be very big

$S = \langle 10, 18, 22, 24, 27, 31, 43 \rangle$
use piece-wise linear approximation (PLA)
sequence of segments with error bound by ϵ
smallest number of segments can be computed in $O(n)$ time [O’R81]
let there be ℓ segments

Definition: Representation of a Segment
The i-th segment starting with (j, x_j) is represented as triple $s_i = (r_i, \alpha_i, \beta_i)$, where $r_i = j$, α_i is the slope, and β_i is the intercept

件-S = \langle 10, 18, 22, 24, 27, 31, 43 \rangle
use piece-wise linear approximation (PLA)
sequence of segments with error bound by ϵ
smallest number of segments can be computed in $O(n)$ time \[\text{[O’R81]}\]
let there be ℓ segments

Definition: Representation of a Segment

The i-th segment starting with (j, x_j) is represented as triple $s_i = (r_i, \alpha_i, \beta_i)$, where
- $r_i = j$,
- α_i is the slope, and
- β_i is the intercept
use function to approximate point in i-th segment

$$f_i(j) = (j - r_i) \cdot \alpha_i + \beta_i$$

use correction to obtain correct value

$$\lfloor f_i(j) \rfloor + C[j] = x_j$$
use function to approximate point in i-th segment

$$f_i(j) = (j - r_i) \cdot \alpha_i + \beta_i$$

use correction to obtain correct value

$$\lfloor f_i(j) \rfloor + C[j] = x_j$$

- $C[j] = x_j - \lfloor f_i(j) \rfloor$
- $C[j] \in \{-\epsilon, -\epsilon + 1, \ldots, -1, 0, 1, \ldots, \epsilon - 1, \epsilon\}$
Piece-Wise Linear Approximation (2/2)

- use function to approximate point in \(i \)-th segment
 \[f_i(j) = (j - r_i) \cdot \alpha_i + \beta_i \]
- use correction to obtain correct value
 \[\lfloor f_i(j) \rfloor + C[j] = x_j \]

- \(C[j] = x_j - \lfloor f_i(j) \rfloor \)
- \(C[j] \in \{-\epsilon, -\epsilon + 1, \ldots, -1, 0, 1, \ldots, \epsilon - 1, \epsilon\} \)

- let \(c \geq 2 \) be the number of bits used per correction
 \[\epsilon = 2^c - 1 \]
 \(c = 0 \) results in \(\epsilon = 0 \)
use function to approximate point in i-th segment

$$f_i(j) = (j - r_i) \cdot \alpha_i + \beta_i$$

use correction to obtain correct value

$$\lfloor f_i(j) \rfloor + C[j] = x_j$$

- $C[j] = x_j - \lfloor f_i(j) \rfloor$
- $C[j] \in \{-\epsilon, -\epsilon + 1, \ldots, -1, 0, 1, \ldots, \epsilon - 1, \epsilon\}$

- let $c \geq 2$ be the number of bits used per correction
- $\epsilon = 2^c - 1$
- $c = 0$ results in $\epsilon = 0$
- $c = 1$ possible?

PINGO
use function to approximate point in i-th segment

$$f_i(j) = (j - r_i) \cdot \alpha_i + \beta_i$$

use correction to obtain correct value

$$\lfloor f_i(j) \rfloor + C[j] = x_j$$

- $C[j] = x_j - \lfloor f_i(j) \rfloor$
- $C[j] \in \{-\epsilon, -\epsilon + 1, \ldots, -1, 0, 1, \ldots, \epsilon - 1, \epsilon\}$

- let $c \geq 2$ be the number of bits used per correction
- $\epsilon = 2^c - 1$
- $c = 0$ results in $\epsilon = 0$
- $c = 1$ possible?

- what time does it take to recover x_j?
Piece-Wise Linear Approximation (2/2)

- Use function to approximate point in i-th segment
 \[f_i(j) = (j - r_i) \cdot \alpha_i + \beta_i \]
- Use correction to obtain correct value
 \[\lfloor f_i(j) \rfloor + C[j] = x_j \]
- \(C[j] = x_j - \lfloor f_i(j) \rfloor \)
- \(C[j] \in \{-\epsilon, -\epsilon + 1, \ldots, -1, 0, 1, \ldots, \epsilon - 1, \epsilon\} \)

- Let $c \geq 2$ be the number of bits used per correction
 \(\epsilon = 2^c - 1 \)
 \(c = 0 \) results in \(\epsilon = 0 \)
 \(c = 1 \) possible?

- What time does it take to recover x_j?
 \(O(\log \ell) \) time to find the segment
 Constant time within segment
What is Missing?

- use linear functions to approximate values
- corrections allow recovering values

- compression of data structure
- rank and select support
- (space-)optimal segmentation

\[S = \langle 10, 18, 22, 24, 27, 31, 43 \rangle \]

\[C = 0 \ 2 \ 0 \ 0 \ 0 \ 1 \ 0 \]
Compressing the Representation (1/2)

- larger ϵ results in smaller "expected" number of segments ℓ
- smaller c results in smaller correction and in larger ℓ
 \[
 \ell \geq \max\{0, 2^c - 1\}
 \]
Compressing the Representation (1/2)

- larger ϵ results in smaller “expected” number of segments ℓ
- smaller c results in smaller correction and in larger ℓ
 \[
 \ell \in \epsilon = \max\{0, 2^c - 1\}
 \]
- ℓ depends on the distribution of points
- $\ell \leq \min\{u/(2\epsilon), n/2\}$ [FV20]
Compressing the Representation (1/2)

- larger ϵ results in smaller “expected” number of segments ℓ
- smaller c results in smaller correction and in larger $\ell \quad \epsilon = \max\{0, 2^c - 1\}$

- ℓ depends on the distribution of points
- $\ell \leq \min\{u/(2\epsilon), n/2\}$ \[\text{[FV20]}\]

Definition: Number of Segments

Let $\{x_1, \ldots, x_n\}$ be a sorted sequence of distinct integers from in $[1, u]$. Given $0 \leq c \leq \lfloor \log u \rfloor$, there are ℓ segments in the optimal PLA of maximum error $\epsilon = \max\{0, 2^c - 1\}$ for $\{(i, x_i) : i = 1, \ldots, n\}$
Compressing the Representation (1/2)

- larger ϵ results in smaller “expected” number of segments ℓ
- smaller c results in smaller correction and in larger $\ell \leq \epsilon = \max\{0, 2^c - 1\}$
- ℓ depends on the distribution of points
- $\ell \leq \min\{u/(2\epsilon), n/2\}$ [FV20]

Lemma: Space-Requirements (uncompressed)

$\{x_1, \ldots, x_n\}$ as defined before can be represented using $nc + 2\ell(\log n + \log u)$ bits of space.

Definition: Number of Segments

Let $\{x_1, \ldots, x_n\}$ be a sorted sequence of distinct integers from in $[1, u]$. Given $0 \leq c \leq \lfloor \log u \rfloor$, there are ℓ segments in the optimal PLA of maximum error $\epsilon = \max\{0, 2^c - 1\}$ for $\{(i, x_i) : i = 1, \ldots, n\}$.
Compressing the Representation (1/2)

- Larger ϵ results in smaller “expected” number of segments ℓ.
- Smaller c results in smaller correction and in larger ℓ.
- ℓ depends on the distribution of points.
- $\ell \leq \min\{u/(2\epsilon), n/2\}$ [FV20]

Definition: Number of Segments

Let $\{x_1, \ldots, x_n\}$ be a sorted sequence of distinct integers from in $[1, u]$. Given $0 \leq c \leq \lfloor \log u \rfloor$, there are ℓ segments in the optimal PLA of maximum error $\epsilon = \max\{0, 2^c - 1\}$ for $\{(i, x_i) : i = 1, \ldots, n\}$.

Lemma: Space-Requirements (uncompressed)

$\{x_1, \ldots, x_n\}$ as defined before can be represented using $nc + 2\ell(\log n + \log u)$ bits of space.

Proof (Sketch)

Each segment $s_i = (r_i, \alpha_i, \beta_i)$ requires
- r_i: log n bits of space,
- α_i: log $u + \log n$ bits of space (rational number)
- β_i: log u bits of space
Compressing the Representation (1/2)

- larger ϵ results in smaller “expected” number of segments ℓ
- smaller c results in smaller correction and in larger ℓ if $\epsilon = \max\{0, 2^c - 1\}$
- ℓ depends on the distribution of points
- $\ell \leq \min\{u/(2\epsilon), n/2\}$ [FV20]

Definition: Number of Segments

Let $\{x_1, \ldots, x_n\}$ be a sorted sequence of distinct integers from in $[1, u]$. Given $0 \leq c \leq \lfloor \log u \rfloor$, there are ℓ segments in the optimal PLA of maximum error $\epsilon = \max\{0, 2^c - 1\}$ for $\{(i, x_i): i = 1, \ldots, n\}$

Lemma: Space-Requirements (uncompressed)

$\{x_1, \ldots, x_n\}$ as defined before can be represented using $nc + 2\ell (\log n + \log u)$ bits of space.

Proof (Sketch)

Each segment $s_i = (r_i, \alpha_i, \beta_i)$ requires
- r_i: log n bits of space,
- α_i: log $u + \log n$ bits of space [rational number]
- β_i: log u bits of space
Lemma: Space-Requirements (Elias-Fano)

\{x_1, \ldots, x_n\} as defined before can be represented using \(nc + \ell(2 \log \frac{un}{\ell} + 4 + o(1))\) bits of space.
Lemma: Space-Requirements (Elias-Fano)

\(\{x_1, \ldots, x_n\} \) as defined before can be represented using
\[nc + \ell \left(2 \log \frac{u}{\ell} + 4 + o(1) \right) \]
bits of space.

Proof (Sketch)

- \(r_i \)'s are increasing sequence of \(\ell \) integers in
 \([1, n]\)
- \(\beta_i \)'s are increasing sequence of \(\ell \) integers in
 \([1, u]\)
- use Elias-Fano coding
Lemma: Space-Requirements (Elias-Fano)

\{x_1, \ldots, x_n\} as defined before can be represented using \(nc + \ell (2 \log \frac{un}{\ell} + 4 + o(1))\) bits of space.

Proof (Sketch)

- \(r_i\)'s are increasing sequence of \(\ell\) integers in \([1, n]\)
- \(\beta_i\)'s are increasing sequence of \(\ell\) integers in \([1, u]\)
- use Elias-Fano coding

- \(C\) can also be compressed
- using entropy compressed indices
Lemma: Space-Requirements (Elias-Fano)

\{x_1, \ldots, x_n\} as defined before can be represented using \(nc + \ell(2 \log \frac{un}{\ell} + 4 + o(1))\) bits of space.

Proof (Sketch)

- \(r_i\)'s are increasing sequence of \(\ell\) integers in \([1, n]\)
- \(\beta_i\)'s are increasing sequence of \(\ell\) integers in \([1, u]\)
- use Elias-Fano coding

Lemma: Space-Requirements (Compressed)

\(C\) can also be compressed

\(\text{using entropy compressed indices} \)

\{x_1, \ldots, x_n\} as defined before can be represented using \(nH_0(C) + o(nc) + \ell(2 \log \frac{un}{\ell} + 4 + o(1))\) bits of space. Access time is \(O(c)\).
Rank and Select Support

- rank and select use predecessor data structure on r_i's
- select is “easier” than rank

Lemma: Learned Select

Select on $\{x_1, \ldots, x_n\}$ as defined before is supported in $O(1)$ time requiring $n(c + 1 + o(1)) + \ell(2 \log u + \log n)$ bits of space.

Proof (Sketch)

- use bit vector marking r_i's $n + o(n)$ bits of space
- about one bit per element in S
- naive rank (x) needs binary search
- find maximum i with select $(i) \leq x$
- requires $O(\log n)$ time
- better: binary search on segments within segment: get “position” of x
- use maximum error to find interval for binary search
Rank and Select Support

- rank and select use predecessor data structure on r_i's
- select is “easier” than rank

Lemma: Learned Select

Select on $\{x_1, \ldots, x_n\}$ as defined before is supported in $O(1)$ time requiring $n(c + 1 + o(1)) + \ell(2 \log u + \log n)$ bits of space.

Proof (Sketch)

- use bit vector marking r_i's
- $n + o(n)$ bits of space
- about one bit per element in S
Rank and Select Support

- rank and select use predecessor data structure on r_i’s
- select is “easier” than rank

Lemma: Learned Select
Select on \{x_1, \ldots, x_n\} as defined before is supported in $O(1)$ time requiring $n(c + 1 + o(1)) + \ell(2 \log u + \log n)$ bits of space.

Proof (Sketch)
- use bit vector marking r_i’s
- $n + o(n)$ bits of space
- about one bit per element in S
Rank and Select Support

- rank and select use predecessor data structure on \(r_i \)’s
- select is “easier” than rank

Lemma: Learned Select

Select on \(\{x_1, \ldots, x_n\} \) as defined before is supported in \(O(1) \) time requiring \(n(c + 1 + o(1)) + \ell(2 \log u + \log n) \) bits of space.

Proof (Sketch)

- use bit vector marking \(r_i \)’s
- \(n + o(n) \) bits of space
- about one bit per element in \(S \)

- naive \(\text{rank}(x) \) needs binary search
- find maximum \(i \) with \(\text{select}(i) \leq x \)
- requires \(O(\log n) \) time

- better: binary search on segments
- within segment: get “position” of \(x \)
- use maximum error to find interval for binary search

12/18 2024-07-15 Florian Kurpicz | Advanced Data Structures | 11 Learned Data Structures
Institute of Theoretical Informatics, Algorithm Engineering
Rank and Select Support

- rank and select use predecessor data structure on \(r_i \)'s
- select is "easier" than rank

Lemma: Learned Select
Select on \(\{x_1, \ldots, x_n\} \) as defined before is supported in \(O(1) \) time requiring \(n(c + 1 + o(1)) + \ell(2 \log u + \log n) \) bits of space.

Proof (Sketch)
- use bit vector marking \(r_i \)'s
- \(n + o(n) \) bits of space
- about one bit per element in \(S \)

naive \(\text{rank}(x) \) needs binary search
- find maximum \(i \) with \(\text{select}(i) \leq x \)
- requires \(O(\log n) \) time

better: binary search on segments
- within segment: get "position" of \(x \)
- use maximum error to find interval for binary search

Lemma: Learned Rank
Rank on \(\{x_1, \ldots, x_n\} \) as defined before is supported in \(O(\log \ell + c) \) time requiring no additional space.
Details on Rank Support

- error is bounded: $|f_j(i) - x_i| \leq \epsilon$
- search for $x_i \leq x < x_{i+1}$
- rank is one i with $f_j(i) - \epsilon \leq x \leq f_j(i) + \epsilon$

$$f_j(i) = (i - r_j) \cdot \alpha_j + \beta_j$$

- $(i - r_j) \cdot \alpha_j + \beta_j - \epsilon \leq x < (i + 1 - r_j) \cdot \alpha_j + \beta_j + \epsilon$
- solve for i
- $\frac{x - \beta_j}{\alpha_j} + r_j - \left(\frac{\epsilon}{\alpha_j} + 1 \right) < i \leq \frac{x - \beta_j}{\alpha_j} + r_j + \left(\frac{\epsilon}{\alpha_j} \right)$
Finding Optimal Data Partitioning

- fixed number c for corrections
- now: choose different error $\epsilon = \max\{0, 2^c - 1\}$ for each segment
- how to find optimal partitioning?
Finding Optimal Data Partitioning

- fixed number c for corrections
- now: choose different error $\epsilon = \max\{0, 2^c - 1\}$ for each segment
- how to find optimal partitioning?

- let G be directed acyclic graph
- one node for each $\{x_1, \ldots, x_n\}$ plus sink node at end of sequence
- edge (i, j) with weight $w(i, j, c)$ indicates that there exists a segment compressing x_i, \ldots, x_j using $w(i, j, c) = (j - i)c + \kappa$ bits of space
Finding Optimal Data Partitioning

- fixed number c for corrections
- now: choose different error $\epsilon = \max\{0, 2^c - 1\}$ for each segment
- how to find optimal partitioning?

Lemma: Optimal Partitioning

The shortest path in G from node 1 to $n + 1$ corresponds to the PLA with minimal cost for \{x_1, \ldots, x_n\}

- let G be directed acyclic graph
- one node for each \{x_1, \ldots, x_n\} plus sink node at end of sequence
- edge (i, j) with weight $w(i, j, c)$ indicates that there exists a segment compressing x_i, \ldots, x_j using $w(i, j, c) = (j - i)c + \kappa$ bits of space
Finding Optimal Data Partitioning

- fixed number c for corrections
- now: choose different error $\epsilon = \max\{0, 2^c - 1\}$ for each segment
- how to find optimal partitioning?

Lemma: Optimal Partitioning

The shortest path in G from node 1 to $n + 1$ corresponds to the PLA with minimal cost for $\{x_1, \ldots, x_n\}$

- finding shortest using brute-force not feasible
- requires $O(n^2 \log u)$ time [O'R81]
- can be done in $O(n \log u)$ time
 - solution is at most $\kappa \ell$ bits larger than optimal solution
data has been encoded (and compressed)
ow: indexing data
in external memory model
learned index is alternative to B-tree

Definition: External Memory Model (Recap)
- internal memory of M words
- instances of size $N \gg M$
- unlimited external memory
- transfer blocks of size B between memories

- measure number of blocks I/Os
- scanning N elements: $\Theta(N/B)$
- sorting N elements: $\Theta({N \over B} \log_{M/B} {N \over B})$
From Encoding to Indexing

- data has been encoded (and compressed)
- now: indexing data
- in external memory model
- learned index is alternative to B-tree

<table>
<thead>
<tr>
<th>Data Structure</th>
<th>Space</th>
<th>I/Os</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-tree</td>
<td>(\Theta(n))</td>
<td>(O(\log_B(n)))</td>
</tr>
<tr>
<td>PGM-Index</td>
<td>(\Theta(m_{\text{opt}}))</td>
<td>(O(\log_B(m_{\text{opt}})))</td>
</tr>
</tbody>
</table>

- \(m_{\text{opt}} \leq n\) is optimal number of segments

Definition: External Memory Model (Recap)

- internal memory of \(M\) words
- instances of size \(N \gg M\)
- unlimited external memory
- transfer blocks of size \(B\) between memories

- measure number of blocks I/Os
- scanning \(N\) elements: \(\Theta(N/B)\)
- sorting \(N\) elements: \(\Theta(\frac{N}{B} \log_{\frac{M}{B}} N)\)
The PGM-Index [FV20]

- what do we not need when indexing instead of encoding?

PINGO

\[S = \langle 10, 18, 22, 24, 27, 31, 43 \rangle \]
The PGM-Index [FV20]

- what do we not need when indexing instead of encoding? PINGO
- now S has to be stored
- how do we access elements in S
 - e.g., predecessor
- trick used before requires too much space

$S = \langle 10, 18, 22, 24, 27, 31, 43 \rangle$
The PGM-Index [FV20]

- what do we not need when indexing instead of encoding?
- now S has to be stored
- how do we access elements in S
 - e.g., predecessor
 - trick used before requires too much space

- store key instead position
- recurs on first keys of each segment

- $S = \langle 10, 18, 22, 24, 27, 31, 43 \rangle$
The PGM-Index [FV20]

- what do we not need when indexing instead of encoding? PINGO
- now S has to be stored
- how do we access elements in S
 - e.g., predecessor
 - trick used before requires too much space

- store *key* instead position
- recurs on first *keys* of each segment

For Queries

- $\epsilon = \Theta(B)$
- load $2\epsilon + 1$ blocks per level

$S = \langle 10, 18, 22, 24, 27, 31, 43 \rangle$
Evaluation

https://onlineumfrage.kit.edu/evasys/online/online.php?p=CZSUW
Conclusion and Outlook

This Lecture

- learned data structures

Advanced Data Structures

- retroactive PQ
- String B-tree
- SA & LCP
- Successor
- CSA
- RMQ
- learned DS
- static/dynamic BV
- static/dynamic succ. trees
- range min-max tree
- succ. graphs
Conclusion and Outlook

This Lecture
- learned data structures

Next Lecture
- one more interesting data structure
- results of the project/competition
- Q&A

Advanced Data Structures
- retroactive PQ
- String B-tree
- SA & LCP
- Successor
- CSA
- RMQ
- learned DS
- static/dynamic BV
- static/dynamic succ. trees
- range min-max tree
- succ. graphs