https://pingo.scc.kit.edu/524651
Recap: Retroactive Data Structures

- BBST for Q_∞ changed for each update
- BBST where leaves are inserts ordered by time augmented with
 - for each node x store $\max\{v' \notin Q_\infty : v'$ inserted in subtree of $x\}$
- BBST where leaves are all updates ordered by time augmented with
 - leaves store 0 for inserts with $v \in Q_\infty$, 1 for inserts with $v \notin Q_\infty$ and -1 for delete-mins
 - inner nodes store subtree sums
 - inner nodes store smallest prefix sum in subtree
Given ordered integers S from a universe $\mathcal{U} = [1, u]$, a rank and select index can answer

- $\text{rank}(x) = |\{y \in S : y < x\}|$
- $\text{select}(i) = S[\arg\min_j(\text{rank}(j) = i + 1)]$

- can be used to answer predecessor queries
- a bit vector with rank and select suffices

- bit vector requires $u + o(u)$ bits
- compressing bit vector to save space (if sparse)
- Elias-Fano requires how much space?

PINGO
- $|S|(2 + \log\lceil \frac{u}{|S|} \rceil)$ bits
how to represent S from a universe $\mathcal{U} = [1, u]$

- let $S = \langle x_1, x_2, \ldots, x_n \rangle$ be a sorted sequence
- map each element $x_i \in S$ to point (i, x_i)
- points are in Cartesian plane

$S = \langle 10, 18, 22, 24, 27, 31, 43 \rangle$

$C = \begin{bmatrix} 0 & 3 & 2 & -1 & -3 & -4 & 3 \end{bmatrix}$
Approximating S in Cartesian Plane

- find function f passing through all points
 - $x_i = f(i)$
- BUT f should be fast to compute and require little space
- use linear approximation with error ϵ
- store error correction in array C
- correction can be very big

$S = \langle 10, 18, 22, 24, 27, 31, 43 \rangle$

$C = \langle 0, 3, 2, -1, -3, -4, 3 \rangle$
use piece-wise linear approximation (PLA)
- sequence of segments with error bound by ϵ
- smallest number of segments can be computed in $O(n)$ time [O’R81]
- let there be ℓ segments

Definition: Representation of a Segment

The i-th segment starting with (j, x_j) is represented as triple $s_i = (r_i, \alpha_i, \beta_i)$, where
- $r_i = j$,
- α_i is the slope, and
- β_i is the intercept

\[C = \begin{bmatrix} 0 & 2 & 0 & 0 & 0 & 1 & 0 \end{bmatrix} \]

\[S = \langle 10, 18, 22, 24, 27, 31, 43 \rangle \]
Piece-Wise Linear Approximation (2/2)

- use function to approximate point in \(i \)-th segment
 \[
 f_i(j) = (j - r_i) \cdot \alpha_i + \beta_i
 \]
- use correction to obtain correct value
 \[
 \lfloor f_i(j) \rfloor + C[j] = x_j
 \]
- \(C[j] = x_j - \lfloor f_i(j) \rfloor \)
- \(C[j] \in \{-\epsilon, -\epsilon + 1, \ldots, -1, 0, 1, \ldots, \epsilon - 1, \epsilon\} \)
- let \(c \geq 2 \) be the number of bits used per correction
 \[
 \epsilon = 2^c - 1
 \]
 \(c = 0 \) results in \(\epsilon = 0 \)
 \(c = 1 \) possible?
- what time does it take to recover \(x_j \)?
 \(O(\log \ell) \) time to find the segment
 constant time within segment
What is Missing?

- use linear functions to approximate values
- corrections allow recovering values
- compression of data structure
- rank and select support
- (space-)optimal segmentation

\[C = \langle 10, 18, 22, 24, 27, 31, 43 \rangle \]

\[S = \langle 10, 18, 22, 24, 27, 31, 43 \rangle \]
Compressing the Representation (1/2)

- Larger ϵ results in smaller “expected” number of segments ℓ
- Smaller c results in smaller correction and in larger ℓ,
- $\epsilon = \max\{0, 2^c - 1\}$

- ℓ depends on the distribution of points
- $\ell \leq \min\{u/(2\epsilon), n/2\}$ [FV20]

Definition: Number of Segments

Let $\{x_1, \ldots, x_n\}$ be a sorted sequence of distinct integers from in $[1, u]$. Given $0 \leq c \leq \lfloor \log u \rfloor$, there are ℓ segments in the optimal PLA of maximum error $\epsilon = \max\{0, 2^c - 1\}$ for $\{(i, x_i) : i = 1, \ldots, n\}$

Lemma: Space-Requirements (uncompressed)

$\{x_1, \ldots, x_n\}$ as defined before can be represented using $nc + 2\ell(\log n + \log u)$ bits of space.

Proof (Sketch)

Each segment $s_i = (r_i, \alpha_i, \beta_i)$ requires
- r_i: log n bits of space,
- α_i: log $u + \log n$ bits of space
- β_i: log u bits of space

- can we compress r_i's, α_i's, or β_i's? ©PINGO
Lemma: Space-Requirements (Elias-Fano)

\{x_1, \ldots, x_n\} as defined before can be represented using \(nc + \ell(2 \log \frac{un}{\ell} + 4 + o(1))\) bits of space.

Proof (Sketch)

- \(r_i\)'s are increasing sequence of \(\ell\) integers in [1, \(n\)]
- \(\beta_i\)'s are increasing sequence of \(\ell\) integers in [1, \(u\)]
- use Elias-Fano coding

- \(C\) can also be compressed
- using entropy compressed indices

Lemma: Space-Requirements (Compressed)

\{x_1, \ldots, x_n\} as defined before can be represented using \(nH_0(C) + o(nc) + \ell(2 \log \frac{un}{\ell} + 4 + o(1))\) bits of space. Access time is \(O(c)\).
Rank and Select Support

- rank and select use predecessor data structure on \(r_i \)'s
- select is “easier” than rank

Lemma: Learned Select

Select on \(\{x_1, \ldots, x_n\} \) as defined before is supported in \(O(1) \) time requiring
\[n(c + 1 + o(1)) + \ell(2 \log u + \log n) \] bits of space.

Proof (Sketch)

- use bit vector marking \(r_i \)'s
- \(n + o(n) \) bits of space
- about one bit per element in \(S \)

- naive \(rank(x) \) needs binary search
- find maximum \(i \) with \(select(i) \leq x \)
- requires \(O(\log n) \) time

- better: binary search on segments
- within segment: get “position” of \(x \)
- use maximum error to find interval for binary search

Lemma: Learned Rank

Rank on \(\{x_1, \ldots, x_n\} \) as defined before is supported in \(O(\log \ell + c) \) time requiring no additional space.
Details on Rank Support

- error is bounded: \(|f_j(i) - x_i| \leq \epsilon \)
- search for \(x_i \leq x < x_{i+1} \)
- rank is one \(i \) with \(f_j(i) - \epsilon \leq x \leq f_j(i) + \epsilon \)

\[f_j(i) = (i - r_j) \cdot \alpha_j + \beta_j \]

- \((i - r_j) \cdot \alpha_j + \beta_j - \epsilon \leq x < (i + 1 - r_j) \cdot \alpha_j + \beta_j + \epsilon \)
- solve for \(i \)
- \(\frac{x - \beta_j}{\alpha_j} + r_j - \left(\frac{\epsilon}{\alpha_j} + 1 \right) < i \leq \frac{x - \beta_j}{\alpha_j} + r_j + \left(\frac{\epsilon}{\alpha_j} \right) \)
Finding Optimal Data Partitioning

- fixed number c for corrections
- now: choose different error $\epsilon = \max\{0, 2^c - 1\}$ for each segment
- how to find optimal partitioning?

Let G be directed acyclic graph
- one node for each $\{x_1, \ldots, x_n\}$ plus sink node at end of sequence
- edge (i, j) with weight $w(i, j, c)$ indicates that there exists a segment compressing x_i, \ldots, x_j using $w(i, j, c) = (j - i)c + \kappa$ bits of space

Lemma: Optimal Partitioning

The shortest path in G from node 1 to $n + 1$ corresponds to the PLA with minimal cost for $\{x_1, \ldots, x_n\}$

- finding shortest using brute-force not feasible
- requires $O(n^2 \log u)$ time [O’R81]
- can be done in $O(n \log u)$ time
 - solution is at most $\kappa \ell$ bits larger than optimal solution
data has been encoded (and compressed)
now: indexing data
in external memory model
learned index is alternative to B-tree

<table>
<thead>
<tr>
<th>Data Structure</th>
<th>Space</th>
<th>I/Os</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-tree</td>
<td>(\Theta(n))</td>
<td>(O(\log_B(n)))</td>
</tr>
<tr>
<td>PGM-Index</td>
<td>(\Theta(m_{\text{opt}}))</td>
<td>(O(\log_B(m_{\text{opt}})))</td>
</tr>
</tbody>
</table>

\[m_{\text{opt}} \leq n \] is optimal number of segments

Definition: External Memory Model (Recap)
- internal memory of \(M\) words
- instances of size \(N \gg M\)
- unlimited external memory
- transfer blocks of size \(B\) between memories

- measure number of blocks I/Os
- scanning \(N\) elements: \(\Theta(N/B)\)
- sorting \(N\) elements: \(\Theta\left(\frac{N}{B} \log_{\frac{M}{B}} \frac{N}{B}\right)\)
The PGM-Index [FV20]

- what do we not need when indexing instead of encoding?
- now S has to be stored
- how do we access elements in S
 - e.g., predecessor
 - trick used before requires too much space
- store key instead position
- recurs on first keys of each segment

For Queries
- $\epsilon = \Theta(B)$
- load $2\epsilon + 1$ blocks per level

$C = \begin{bmatrix} 0 & 2 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$

$S = \langle 10, 18, 22, 24, 27, 31, 43 \rangle$
Evaluation

https://onlineumfrage.kit.edu/evasys/online/online.php?p=CZSUW
Conclusion and Outlook

This Lecture
- learned data structures

Next Lecture
- one more interesting data structure
- results of the project/competition
- Q&A

Advanced Data Structures

- retroactive PQ
- String B-tree
- SA & LCP
- Successor
- CSA
- RMQ
- learned DS
- static/dynamic BV
- static/dynamic succ. trees
- range min-max tree
- succ. graphs