

Advanced Data Structures

Lecture 11: Learned Data Structures

Florian Kurpicz

The slides are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License @ ① ③: www.creativecommons.org/licenses/by-sa/4.0 | commit c70729e compiled at 2024-07-15-13:11

www.kit.edu

PINGO

https://pingo.scc.kit.edu/524651

Recap: Retroactive Data Structures

- BBST for Q_{∞} I changed for each update
- BBST where leaves are inserts ordered by time augmented with
 - for each node x store max{v' ∉ Q_∞: v' inserted in subtree of x}
- BBST where leaves are all updates ordered by time augmented with
 - leaves store 0 for inserts with v ∈ Q_∞, 1 for inserts with v ∉ Q_∞ and −1 for delete-mins
 - inner nodes store subtree sums
 - inner nodes store smallest prefix sum in subtree

Setting: Rank and Select Dictionary

Given ordered integers *S* from a universe U = [1, u] a rank and select index can answer

- $rank(x) = |\{y \in S : y < x\}|$
- select(i) = $S[\arg\min_j(rank(j) = i + 1)]$
- can be use to answer predecessor queries
- a bit vector with rank and select suffices

- bit vector requires u + o(u) bits
- compressing bit vector to save space (if sparse)
- Elias-Fano requires how much space?
 PINGO

•
$$|S|(2 + \log \lfloor \frac{u}{|S|} \rfloor)$$
 bits

Learned Rank and Select Index [BFV21]

- how to represent *S* from a universe U = [1, u]
- let $S = \langle x_1, x_2, \dots, x_n \rangle$ be a sorted sequence
- map each element $x_i \in S$ to point (i, x_i)
- points are in Cartesian plane

Approximating S in Cartesian Plane

- find function *f* passing through all points
 x_i = *f*(*i*)
- BUT f should be fast to compute and require little space
- use linear approximation with error ϵ
- store error correction in array C
- correction can be very big

Piece-Wise Linear Approximation (1/2)

- use piece-wise linear approximation (PLA)
- sequence of segments with error bound by ϵ
- smallest number of segments can be computed in O(n) time [O'R81]
- let there be l segments

Definition: Representation of a Segment

The *i*-th segment starting with (j, x_j) is represented as triple $s_i = (r_i, \alpha_i, \beta_i)$, where

•
$$r_i = j$$
,

- α_i is the slope, and
- β_i is the intercept

Piece-Wise Linear Approximation (2/2)

use function to approximate point in *i*-th segment

 $f_i(j) = (j - r_i) \cdot \alpha_i + \beta_i$

use correction to obtain correct value

 $\lfloor f_i(j) \rfloor + C[j] = x_j$

•
$$C[j] = x_j - \lfloor f_i(j) \rfloor$$

• $C[j] \in \{-\epsilon, -\epsilon + 1, ..., -1, 0, 1, ..., \epsilon - 1, \epsilon\}$

- let c ≥ 2 be the number of bits used per correction
- $\epsilon = 2^c 1$

•
$$c = 0$$
 results in $\epsilon = 0$

- c = 1 possible? PINGO
- what time does it take to recover x_j? PINGO
- $O(\log \ell)$ time to find the segment
- constant time within segment

What is Missing?

- use linear functions to approximate values
- corrections allow recovering values
- compression of data structure
- rank and select support
- (space-)optimal segmentation

Compressing the Representation (1/2)

- larger ϵ results in smaller "expected" number of segments ℓ
- smaller *c* results in smaller correction and in larger ℓ ϵ = max{0, 2^c − 1}
- ℓ depends on the distribution of points
- $\ell \leq \min\{u/(2\epsilon), n/2\}$ [FV20]

Definition: Number of Segments

Let $\{x_1, \ldots, x_n\}$ be a sorted sequence of distinct integers from in [1, u]. Given $0 \le c \le \lfloor \log u \rfloor$, there are ℓ segments in the optimal PLA of maximum error $\epsilon = \max\{0, 2^c - 1\}$ for $\{(i, x_i) : i = 1, \ldots, n\}$

Lemma: Space-Requirements (uncompressed)

 $\{x_1, \ldots, x_n\}$ as defined before can be represented using $nc + 2\ell(\log n + \log u)$ bits of space.

Proof (Sketch)

Each segment $s_i = (r_i, \alpha_i, \beta_i)$ requires

- *r_i*: log *n* bits of space,
- α_i : log $u + \log n$ bits of space () rational number
- β_i : log *u* bits of space

• can we compress r_i 's, α_i 's, or β_i 's? **PINGO**

Compressing the Representation (2/2)

Lemma: Space-Requirements (Elias-Fano)

 $\{x_1, \ldots, x_n\}$ as defined before can be represented using $nc + \ell(2 \log \frac{un}{\ell} + 4 + o(1))$ bits of space.

Proof (Sketch)

- *r_i*'s are increasing sequence of ℓ integers in [1, *n*]
- β_i 's are increasing sequence of ℓ integers in [1, u]
- use Elias-Fano coding

- *C* can also be compressed
- using entropy compressed indices

Lemma: Space-Requirements (Compressed)

 $\{x_1, \ldots, x_n\}$ as defined before can be represented using $nH_0(C) + o(nc) + \ell(2 \log \frac{un}{\ell} + 4 + o(1))$ bits of space. Access time is O(c).

Rank and Select Support

- rank and select use predecessor data structure on r_i's
- select is "easier" than rank

Lemma: Learned Select

Select on $\{x_1, \ldots, x_n\}$ as defined before is supported in O(1) time requiring $n(c+1+o(1)) + \ell(2\log u + \log n)$ bits of space.

Proof (Sketch)

- use bit vector marking r_i's
- n + o(n) bits of space
- about one bit per element in S

- naive rank(x) needs binary search
- find maximum *i* with $select(i) \le x$
- requires O(log n) time
- better: binary search on segments
- within segment: get "position" of x
- use maximum error to find interval for binary search

Lemma: Learned Rank

Rank on $\{x_1, \ldots, x_n\}$ as defined before is supported in $O(\log \ell + c)$ time requiring no additional space.

Karlsruhe Institute of Technology

Details on Rank Support

- error is bounded: $|f_j(i) x_i| \le \epsilon$
- search for $x_i \leq x < x_{i+1}$
- rank is one *i* with $f_j(i) \epsilon \le x \le f_j(i) + \epsilon$

$f_j(i) = (i - r_i) \cdot \alpha_j + \beta_j$

- $(i-r_j) \cdot \alpha_j + \beta_j \epsilon \le x < (i+1-r_j) \cdot \alpha_j + \beta_j + \epsilon$
- solve for i

•
$$\frac{x-\beta_j}{\alpha_j} + r_j - (\frac{\epsilon}{\alpha_j} + 1) < i \le \frac{x-\beta_j}{\alpha_j} + r_j + (\frac{\epsilon}{\alpha_j})$$

Finding Optimal Data Partitioning

- fixed number c for corrections
- now: choose different error \(\epsilon = \max\{0, 2^c 1\)\}\) for each segment
- how to find optimal partitioning?
- let G be directed acyclic graph
- one node for each {x₁,..., x_n} plus sink node at end of sequence
- edge (i, j) with weight w(i, j, c) indicates that there exists a segment compressing x_i,..., x_j using w(i, j, c) = (j - i)c + κ bits of space

Lemma: Optimal Partitioning

The shortest path in *G* from node 1 to n + 1 corresponds to the PLA with minimal cost for $\{x_1, \ldots, x_n\}$

- finding shortest using brute-force not feasible
- requires $O(n^2 \log u)$ time [O'R81]
- can be done in $O(n \log u)$ time
 - solution is at most $\kappa\ell$ bits larger than optimal solution

From Encoding to Indexing

- data has been encoded (and compressed)
- now: indexing data
- in external memory model
- learned index is alternative to B-tree

Data Structure	Space	I/Os
B=tree	$\Theta(n)$	$O(\log_B(n))$
PGM-Index	$\Theta(m_{opt})$	$O(\log_B(m_{opt}))$

• $m_{\text{opt}} \leq n$ is optimal number of segments

Definition: External Memory Model (Recap)

- internal memory of *M* words
- instances of size $N \gg M$
- unlimited external memory
- transfer blocks of size B between memories
- measure number of blocks I/Os
- scanning N elements: $\Theta(N/B)$
- sorting *N* elements: $\Theta(\frac{N}{B} \log_{\frac{M}{B}} \frac{N}{B})$

The PGM-Index [FV20]

- what do we not need when indexing instead of encoding? PINGO
- now S has to be stored
- how do we access elements in S
 - e.g., predecessor
- trick used before requires too much space
- store key instead position
- recurs on first keys of each segment I

For Queries

- $\epsilon = \Theta(B)$
- load $2\epsilon + 1$ blocks per level 💷

Evaluation

https://onlineumfrage.kit.edu/evasys/online/

online.php?p=CZSUW

17/18 2024-07-15 Florian Kurpicz | Advanced Data Structures | 11 Learned Data Structures

Institute of Theoretical Informatics, Algorithm Engineering

Conclusion and Outlook

This Lecture

learned data structures

Next Lecture

- one more interesting data structure
- results of the project/competition

Q&A

