KIT

Karlsruhe Institute of Technology

Advanced Data Structures

Lecture 12: Sparse Sets and Variable Bit-Length Arrays
Florian Kurpicz

The slides are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License @ ®®: www.creativecommons.org/licenses/by-sa/4.0 | commit 70729 compiled at 2024-07-22-11:14

KIT — The Research University in the Helmholtz Association WWW. kit.edu

https://creativecommons.org/licenses/by-sa/4.0/
https://www.kit.edu

KIT

Recap: Learned Data Structures

® use piece-wise linear approximation
& store corrections 43 PR
@ compress everything

Open Questions

® are y-intersections monotonic increasing
® are log u + log n bits enough to store slope

212 2024-07-22 Florian Kurpicz | Advanced Data Structures | 12 Sparse Sets and Variable Bit-Length Arrays Institute of Theoretical Informatics, Algorithm Engineering

Recap: The PGM-Index [FV20] ﬂIT

® now S has to be stored
® how do we access elements in S P73 o -
® e g., predecessor

® frick used before requires too much space

& store key instead position
® recurs on first keys of each segment £+

For Queries
®c=0(B)
® load 2¢ + 1 blocks per level £

1 2 3 4 5 6 7 8

® S=(10,18,22,24,27,31,43)

312 2024-07-22 Florian Kurpicz | Advanced Data Structures | 12 Sparse Sets and Variable Bit-Length Arrays Institute of Theoretical Informatics, Algorithm Engineering

Ui

Variable Bit-Length Arrays

& not all elements require the
same space 16

= unary
® arrays with w bits per element 141 —— ternary
can waste space

——— Fibonacci
121 —— Elias-y
® e.g., integers can be encoded —— FElias-d

with space proportional to)] / [1F // - 22:225 Eiiiée)
their size 5 81 T 7 /74, 7
6.
Definition: Variable
. 4.
Bit-Length Data
Let a[1..n] be an array containing]
entries of size |ai]| bits for 0 o " " " p
i€ [1 9 n]. value

412 2024-07-22 Florian Kurpicz | Advanced Data Structures | 12 Sparse Sets and Variable Bit-Length Arrays Institute of Theoretical Informatics, Algorithm Engineering

Ui

Variable Bit-Length Arrays

& not all elements require the

same space 100
— unary
® arrays with w bits per element —— ternary
can waste space 801 — Fibonacci
—— Elias-y
® e.g., integers can be encoded — Eliaws s
. . 60 4 —— Golomb (b=5
m(t:rsspace proportional to . colomb (5 10°)
1ze N
40 4

Definition: Variable

Bit-Length Data 20
Let a[1..n] be an array containing

entries of size |ai]| bits for 0
ie1,n].

412 2024-07-22 Florian Kurpicz | Advanced Data Structures | 12 Sparse Sets and Variable Bit-Length Arrays Institute of Theoretical Informatics, Algorithm Engineering

Sampling (1/2) A“(IT

Karlsruhe Institute of Technology

® encode ausing closeto N = 7, |a[i]| bits

512 2024-07-22 Florian Kurpicz | Advanced Data Structures | 12 Sparse Sets and Variable Bit-Length Arrays Institute of Theoretical Informatics, Algorithm Engineering

Sampling (1/2) IT

® encode ausing closeto N = 7, |a[i]| bits a=
Definition: Sampling
Sample the starting position of every k-th element in s =
array s.

5/12 2024-07-22 Florian Kurpicz | Advanced Data Structures | 12 Sparse Sets and Variable Bit-Length Arrays Institute of Theoretical Informatics, Algorithm Engineering

Sampling (1/2) (IT

® encode ausing closeto N = 7, |a[i]| bits a=

Definition: Sampling

Sample the starting position of every k-th element in s =
array s.

Lemma: VLA with Sampling

Using sampling, storing a requires N + O(nlog N/k)
bits of space. Accessing a single element requires
O(k) time.

5/12 2024-07-22 Florian Kurpicz | Advanced Data Structures | 12 Sparse Sets and Variable Bit-Length Arrays Institute of Theoretical Informatics, Algorithm Engineering

5/12 2024-07-22

Sampling (1/2)

® encode ausing closeto N = 7, |a[i]| bits

Definition: Sampling

Sample the starting position of every k-th element in
array s.

Lemma: VLA with Sampling

Using sampling, storing a requires N + O(nlog N/k)
bits of space. Accessing a single element requires
O(k) time.

Florian Kurpicz | Advanced Data Structures | 12 Sparse Sets and Variable Bit-Length Arrays

Ui

Karlsruhe Institute of Technology

® space can be reduced using Elias-Fano coding

® gccess time depends on input size unless
k= 0(1)

Institute of Theoretical Informatics, Algorithm Engineering

Ui

Sampling (2/2)

Definition: Two-Level Sampling 2

In addition to sampling every k-th element, also
sample the offset to the closest preceding sampled
element for each non-sampled element.

6/12 2024-07-22 Florian Kurpicz | Advanced Data Structures | 12 Sparse Sets and Variable Bit-Length Arrays Institute of Theoretical Informatics, Algorithm Engineering

Ui

Sampling (2/2)

Definition: Two-Level Sampling 2

In addition to sampling every k-th element, also
sample the offset to the closest preceding sampled
element for each non-sampled element.

S =
Lemma: VLA with Two-Level Sampling
Using two-level sampling, storing a requires
N —+ O(nlog N/k) bits of space for the first level and ' = -
additional

k—1
. I i+ k
5 i

bits of space for the second level.

6/12 2024-07-22 Florian Kurpicz | Advanced Data Structures | 12 Sparse Sets and Variable Bit-Length Arrays Institute of Theoretical Informatics, Algorithm Engineering

Ui

Sampling (2/2)

I
Il

Definition: Two-Level Sampling

In addition to sampling every k-th element, also
sample the offset to the closest preceding sampled
element for each non-sampled element.

Lemma: VLA with Two-Level Sampling

Using two-level sampling, storing a requires
N —+ O(nlog N/k) bits of space for the first level and ' = -
additional
Bt ® for elements of polylogarithmic size, this means
n- max ﬂogz \ai + K][] O(nlog log n) additional bits of space
i€{0,k;2k,... } j=1 ® constant access time

a s.]
bits of space for the second level. CEENED @l L2 ezl

6/12 2024-07-22 Florian Kurpicz | Advanced Data Structures | 12 Sparse Sets and Variable Bit-Length Arrays Institute of Theoretical Informatics, Algorithm Engineering

Directly Addressable Codes (1/2) [BLNO09] ﬂIT

® now, encode problem instead of indexing a= | 011 | 11 | 11 | 10 | 010 | 010 | 011 | 0001 | 0011 |

& partition variable bit-length elements

® mark if not last partition aj

a similar to VByte encoding [WZ99] bvy =

Definition: Directly Addressable Codes a =[11]10]10]11]01]11]
Each element is partitioned into length-¢ slices. bv, = [B] . . [o] . [o]

Every elements k-th (fixed-length) slice is stored in
ax. Use bit vector v, to mark elements that continue
in Ak41-

72 2024-07-22 Florian Kurpicz | Advanced Data Structures | 12 Sparse Sets and Variable Bit-Length Arrays Institute of Theoretical Informatics, Algorithm Engineering

Directly Addressable Codes (2/2) ﬂIT

éercr;ma: VLA with Directly Addressable a=[e11]11]11]10] 010 016 011 0001 0011]
odes

Using Directly Addressable codes, storing a requires a = _
at most £n + N/{ bits of space.
bvy =[] [e] (o] [o] [a] (@] [[[

ap =
® at most ¢ — 1 bits wasted in first slice brs —
® one bit needed to mark each slice 2o

® can be made more space-efficient
® choose different partition size for each level

8/12 2024-07-22 Florian Kurpicz | Advanced Data Structures | 12 Sparse Sets and Variable Bit-Length Arrays Institute of Theoretical Informatics, Algorithm Engineering

An Efficient Representation of a Sparse Set [BT93]

® represent a sparse (dynamic) set S C [1, u]
® ysing bit vector

® y bits of space

® jterating, clearing, comparing requires |S|
select queries

® inserting requires rebuilding select support

® without select support O(u) time operations

® use custom representation

912 2024-07-22 Florian Kurpicz | Advanced Data Structures | 12 Sparse Sets and Variable Bit-Length Arrays

KIT

Karlsruhe Institute of Technology

Institute of Theoretical Informatics, Algorithm Engineering

KIT

An Efficient Representation of a Sparse Set [BT93]
® represent a sparse (dynamic) set S C [1, u] d=[5[1]4] [[| | | |
® ysing bit vector
® y bits of space s:\ |1| | |2|0| | | ‘

® jterating, clearing, comparing requires |S|
select queries

® inserting requires rebuilding select support

® without select support O(u) time operations

® use custom representation

The sparse set consists of a dense set d and a
sparse set s. Let S contain n elements. To insert
i ¢ Sin S, setd[n] =iand s[i] = n.

912 2024-07-22 Florian Kurpicz | Advanced Data Structures | 12 Sparse Sets and Variable Bit-Length Arrays Institute of Theoretical Informatics, Algorithm Engineering

An Efficient Representation of a Sparse Set [BT93]

® represent a sparse (dynamic) set S C [1, u]
® ysing bit vector

® y bits of space

® jterating, clearing, comparing requires |S|
select queries

® inserting requires rebuilding select support

® without select support O(u) time operations

® use custom representation

The sparse set consists of a dense set d and a
sparse set s. Let S contain n elements. To insert
i ¢ Sin S, setd[n] =iand s[i] = n.

9/12 2024-07-22

Florian Kurpicz | Advanced Data Structures | 12 Sparse Sets and Variable Bit-Length Arrays

KIT

Karlsruhe Institute of Technology

d=[5[tfa] [[[]]]

s=[[+ [[efo] [[]

& double the space for efficient operations

Institute of Theoretical Informatics, Algorithm Engineering

Ui

Operations on the Sparse Set

insert(/)
® d[n] =i
®slil=n
| N++

10112 2024-07-22 Florian Kurpicz | Advanced Data Structures | 12 Sparse Sets and Variable Bit-Length Arrays Institute of Theoretical Informatics, Algorithm Engineering

Ui

Operations on the Sparse Set
insert(f)

® d[n] =i

®s[il=n

| N++
is_in_set(/)

® return s[i] < nand d[s[i]] == i

10112 2024-07-22 Florian Kurpicz | Advanced Data Structures | 12 Sparse Sets and Variable Bit-Length Arrays Institute of Theoretical Informatics, Algorithm Engineering

Ui

Operations on the Sparse Set
insert(f)

® d[n] =i

®s[il=n

| N++
is_in_set(/)

® return s[i] < nand d[s[i]] == i

a foriint..n
® yield dfi]

10112 2024-07-22 Florian Kurpicz | Advanced Data Structures | 12 Sparse Sets and Variable Bit-Length Arrays Institute of Theoretical Informatics, Algorithm Engineering

Ui

Operations on the Sparse Set

insert(/)
wdn] =i ®n=0
®s[il=n
| N++

is_in_set(/)

® return s[i] < nand d[s[i]] == i

a foriint..n
® yield dfi]

10112 2024-07-22 Florian Kurpicz | Advanced Data Structures | 12 Sparse Sets and Variable Bit-Length Arrays Institute of Theoretical Informatics, Algorithm Engineering

SKIT

Operations on the Sparse Set
insert(/)
wdn]=i "n=0
®s[il=n

remove_from_set(/)

| N++
a if not is_in_set(/)

iS_in_Set(i) . ret;r[" "
Q fmp = d|n—
u d[s[i] = tmp
« sfime] = sl
® foriini..n e -
= yield d[i]

® return s[i] < nand d[s[i]] == i

1012 2024-07-22 Florian Kurpicz | Advanced Data Structures | 12 Sparse Sets and Variable Bit-Length Arrays Institute of Theoretical Informatics, Algorithm Engineering

Recap: Advanced Data Structures

1112

bit vectors with rank and select support
succinct trees

succinct planar graphs

predecessor data structures

range minimum queries

® persistent data structures

orthogonal range search

2024-07-22

Florian Kurpicz | Advanced Data Structures | 12 Sparse Sets and Variable Bit-Length Arrays

KIT

Karlsruhe Institute of Technology

binary space partition

@ PaCHash
® compressed suffix array

String B-trees

@ retroactive data structures

minimal perfect hashing

® |earned data structures

sparse sets and variable bit-length arrays

Institute of Theoretical Informatics, Algorithm Engineering

KIT

Preparation Oral Exam

everybody can choose first topic

12/12 2024-07-22 Florian Kurpicz | Advanced Data Structures | 12 Sparse Sets and Variable Bit-Length Arrays Institute of Theoretical Informatics, Algorithm Engineering

KIT

Preparation Oral Exam

everybody can choose first topic

Now, some examples

12/12 2024-07-22 Florian Kurpicz | Advanced Data Structures | 12 Sparse Sets and Variable Bit-Length Arrays Institute of Theoretical Informatics, Algorithm Engineering

KIT

Bibliography |

[BLNO9] Nieves R. Brisaboa, Susana Ladra, and Gonzalo Navarro. “Directly Addressable Variable-Length
Codes”. In: SPIRE. Volume 5721. Lecture Notes in Computer Science. Springer, 2009,
pages 122—130. DOI: 10.1007/978-3-642-03784-9_12.

[BT93] Preston Briggs and Linda Torczon. “An Efficient Representation for Sparse Sets”. In: LOPLAS 2.1-4
(1993), pages 59—-69. DOI: 10.1145/176454.176484.

[FV20] Paolo Ferragina and Giorgio Vinciguerra. “The PGM-index: A Fully-Dynamic Compressed Learned
Index with Provable Worst-Case Bounds”. In: Proc. VLDB Endow. 13.8 (2020), pages 1162—1175.
DOI:10.14778/3389133.3389135.

[WZ99] Hugh E. Williams and Justin Zobel. “Compressing Integers for Fast File Access”. In: Comput. J. 42.3
(1999), pages 193-201. DOI: 10.1093/COMINL/42.3.193.

1312 2024-07-22 Florian Kurpicz | Advanced Data Structures | 12 Sparse Sets and Variable Bit-Length Arrays Institute of Theoretical Informatics, Algorithm Engineering

https://doi.org/10.1007/978-3-642-03784-9_12
https://doi.org/10.1145/176454.176484
https://doi.org/10.14778/3389133.3389135
https://doi.org/10.1093/COMJNL/42.3.193

	Appendix

