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use piece-wise linear approximation

store corrections

compress everything

Open Questions
are y -intersections monotonic increasing

are log u + log n bits enough to store slope
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Recap: Learned Data Structures



now S has to be stored
how do we access elements in S

e.g., predecessor

trick used before requires too much space

store key instead position

recurs on first keys of each segment �

For Queries
ϵ = Θ(B)

load 2ϵ+ 1 blocks per level �
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S = ⟨10, 18, 22, 24, 27, 31, 43⟩
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Recap: The PGM-Index [FV20]



not all elements require the
same space

arrays with w bits per element
can waste space

e.g., integers can be encoded
with space proportional to
their size

Definition: Variable
Bit-Length Data
Let a[1..n] be an array containing
entries of size |a[i]| bits for
i ∈ [1, n].
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Variable Bit-Length Arrays



encode a using close to N =
∑n

i=1 |a[i]| bits

Definition: Sampling
Sample the starting position of every k -th element in
array s.

Lemma: VLA with Sampling
Using sampling, storing a requires N + O(n logN/k)
bits of space. Accessing a single element requires
O(k) time.

011 11 11 10 010 010 011 0001 0011a =

1 6 10 16 23s =

space can be reduced using Elias-Fano coding

access time depends on input size unless
k = O(1)
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Definition: Two-Level Sampling
In addition to sampling every k -th element, also
sample the offset to the closest preceding sampled
element for each non-sampled element.

Lemma: VLA with Two-Level Sampling
Using two-level sampling, storing a requires
N + O(n logN/k) bits of space for the first level and
additional

n · max
i∈{0,k,2k,... }

⌈log
k−1∑
j=1

|a[i + k ]|⌉

bits of space for the second level.

011 11 11 10 010 010 011 0001 0011a =

1 6 10 16 23s =

3 2 3 3s′ =

for elements of polylogarithmic size, this means
O(n log log n) additional bits of space

constant access time

example on the board �
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now, encode problem instead of indexing

partition variable bit-length elements

mark if not last partition

similar to VByte encoding [WZ99]

Definition: Directly Addressable Codes
Each element is partitioned into length-ℓ slices.
Every elements k -th (fixed-length) slice is stored in
ak . Use bit vector vk to mark elements that continue
in ak+1.

011 11 11 10 010 010 011 0001 0011a =

00 11 11 10 00 00 00 00 00a1 =

1 0 0 0 1 1 1 1 1bv1 =

11 10 10 11 01 11a2 =

0 0 0 0 0 0bv2 =
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Directly Addressable Codes (1/2) [BLN09]



Lemma: VLA with Directly Addressable
Codes
Using Directly Addressable codes, storing a requires
at most ℓn + N/ℓ bits of space.

Proof (Sketch)
at most ℓ− 1 bits wasted in first slice

one bit needed to mark each slice

can be made more space-efficient

choose different partition size for each level

011 11 11 10 010 010 011 0001 0011a =

00 11 11 10 00 00 00 00 00a1 =

1 0 0 0 1 1 1 1 1bv1 =

11 10 10 11 01 11a2 =

0 0 0 0 0 0bv2 =
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Directly Addressable Codes (2/2)



represent a sparse (dynamic) set S ⊆ [1, u]
using bit vector

u bits of space
iterating, clearing, comparing requires |S|
select queries
inserting requires rebuilding select support
without select support O(u) time operations

use custom representation

Definition: Sparse Set Representation
The sparse set consists of a dense set d and a
sparse set s. Let S contain n elements. To insert
i ̸∈ S in S, set d [n] = i and s[i] = n.

5 1 4d =

1 2 0s =

double the space for efficient operations
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An Efficient Representation of a Sparse Set [BT93]
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insert(i)
d [n] = i

s[i] = n

n++

is_in_set(i)
return s[i] < n and d [s[i]] == i

iterate
for i in 1..n

yield d[i]

clear
n = 0

remove_from_set(i)
if not is_in_set(i)

return

tmp = d [n − 1]

d [s[i]] = tmp

s[tmp] = s[i]

n–
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bit vectors with rank and select support

succinct trees ò LOUDS, BP, DUFUDS

succinct planar graphs

predecessor data structures ò Elias-Fano,
y-fast trie

range minimum queries ò three solutions

persistent data structures ò partial and full
persistence

orthogonal range search ò kd-trees, range
trees, layered range trees

binary space partition ò BSP-tree

PaCHash

compressed suffix array ò Elias-Fano with
quotenting and recursive

String B-trees

retroactive data structures ò decomposable
search problems, partial retroactive PQs

minimal perfect hashing ò BDZ, CHD, RecSplit

learned data structures ò encoding and
indexing

sparse sets and variable bit-length arrays
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Recap: Advanced Data Structures



everybody can choose first topic

Now, some examples

12/12 2024-07-22 Florian Kurpicz | Advanced Data Structures | 12 Sparse Sets and Variable Bit-Length Arrays Institute of Theoretical Informatics, Algorithm Engineering

Preparation Oral Exam
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