
Advanced Data Structures

Lecture 12: Sparse Sets and Variable Bit-Length Arrays

Florian Kurpicz

The slides are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License cba: www.creativecommons.org/licenses/by-sa/4.0 | commit c70729e compiled at 2024-07-22-11:14

KIT – The Research University in the Helmholtz Association www.kit.edu

https://creativecommons.org/licenses/by-sa/4.0/
https://www.kit.edu

use piece-wise linear approximation

store corrections

compress everything

Open Questions
are y -intersections monotonic increasing

are log u + log n bits enough to store slope

1 2 3 4 5 6 7 8

10

18
22
24
27

31

43

0 2 0 0 0 1 0C =

2/12 2024-07-22 Florian Kurpicz | Advanced Data Structures | 12 Sparse Sets and Variable Bit-Length Arrays Institute of Theoretical Informatics, Algorithm Engineering

Recap: Learned Data Structures

now S has to be stored
how do we access elements in S

e.g., predecessor

trick used before requires too much space

store key instead position

recurs on first keys of each segment �

For Queries
ϵ = Θ(B)

load 2ϵ+ 1 blocks per level �
1 2 3 4 5 6 7 8

10

18
22
24
27

31

43

0 2 0 0 0 1 0C =

S = ⟨10, 18, 22, 24, 27, 31, 43⟩

3/12 2024-07-22 Florian Kurpicz | Advanced Data Structures | 12 Sparse Sets and Variable Bit-Length Arrays Institute of Theoretical Informatics, Algorithm Engineering

Recap: The PGM-Index [FV20]

not all elements require the
same space

arrays with w bits per element
can waste space

e.g., integers can be encoded
with space proportional to
their size

Definition: Variable
Bit-Length Data
Let a[1..n] be an array containing
entries of size |a[i]| bits for
i ∈ [1, n].

0 10 20 30 40 50

value

0

2

4

6

8

10

12

14

16

si
ze

unary

ternary

Fibonacci

Elias-γ

Elias-δ

Golomb (b = 5)

Golomb (b = 106)

4/12 2024-07-22 Florian Kurpicz | Advanced Data Structures | 12 Sparse Sets and Variable Bit-Length Arrays Institute of Theoretical Informatics, Algorithm Engineering

Variable Bit-Length Arrays

not all elements require the
same space

arrays with w bits per element
can waste space

e.g., integers can be encoded
with space proportional to
their size

Definition: Variable
Bit-Length Data
Let a[1..n] be an array containing
entries of size |a[i]| bits for
i ∈ [1, n].

101 103 105 107 109 1011

value

0

20

40

60

80

100

si
ze

unary

ternary

Fibonacci

Elias-γ

Elias-δ

Golomb (b = 5)

Golomb (b = 106)

4/12 2024-07-22 Florian Kurpicz | Advanced Data Structures | 12 Sparse Sets and Variable Bit-Length Arrays Institute of Theoretical Informatics, Algorithm Engineering

Variable Bit-Length Arrays

encode a using close to N =
∑n

i=1 |a[i]| bits

Definition: Sampling
Sample the starting position of every k -th element in
array s.

Lemma: VLA with Sampling
Using sampling, storing a requires N + O(n logN/k)
bits of space. Accessing a single element requires
O(k) time.

011 11 11 10 010 010 011 0001 0011a =

1 6 10 16 23s =

space can be reduced using Elias-Fano coding

access time depends on input size unless
k = O(1)

5/12 2024-07-22 Florian Kurpicz | Advanced Data Structures | 12 Sparse Sets and Variable Bit-Length Arrays Institute of Theoretical Informatics, Algorithm Engineering

Sampling (1/2)

encode a using close to N =
∑n

i=1 |a[i]| bits

Definition: Sampling
Sample the starting position of every k -th element in
array s.

Lemma: VLA with Sampling
Using sampling, storing a requires N + O(n logN/k)
bits of space. Accessing a single element requires
O(k) time.

011 11 11 10 010 010 011 0001 0011a =

1 6 10 16 23s =

space can be reduced using Elias-Fano coding

access time depends on input size unless
k = O(1)

5/12 2024-07-22 Florian Kurpicz | Advanced Data Structures | 12 Sparse Sets and Variable Bit-Length Arrays Institute of Theoretical Informatics, Algorithm Engineering

Sampling (1/2)

encode a using close to N =
∑n

i=1 |a[i]| bits

Definition: Sampling
Sample the starting position of every k -th element in
array s.

Lemma: VLA with Sampling
Using sampling, storing a requires N + O(n logN/k)
bits of space. Accessing a single element requires
O(k) time.

011 11 11 10 010 010 011 0001 0011a =

1 6 10 16 23s =

space can be reduced using Elias-Fano coding

access time depends on input size unless
k = O(1)

5/12 2024-07-22 Florian Kurpicz | Advanced Data Structures | 12 Sparse Sets and Variable Bit-Length Arrays Institute of Theoretical Informatics, Algorithm Engineering

Sampling (1/2)

encode a using close to N =
∑n

i=1 |a[i]| bits

Definition: Sampling
Sample the starting position of every k -th element in
array s.

Lemma: VLA with Sampling
Using sampling, storing a requires N + O(n logN/k)
bits of space. Accessing a single element requires
O(k) time.

011 11 11 10 010 010 011 0001 0011a =

1 6 10 16 23s =

space can be reduced using Elias-Fano coding

access time depends on input size unless
k = O(1)

5/12 2024-07-22 Florian Kurpicz | Advanced Data Structures | 12 Sparse Sets and Variable Bit-Length Arrays Institute of Theoretical Informatics, Algorithm Engineering

Sampling (1/2)

Definition: Two-Level Sampling
In addition to sampling every k -th element, also
sample the offset to the closest preceding sampled
element for each non-sampled element.

Lemma: VLA with Two-Level Sampling
Using two-level sampling, storing a requires
N + O(n logN/k) bits of space for the first level and
additional

n · max
i∈{0,k,2k,... }

⌈log
k−1∑
j=1

|a[i + k]|⌉

bits of space for the second level.

011 11 11 10 010 010 011 0001 0011a =

1 6 10 16 23s =

3 2 3 3s′ =

for elements of polylogarithmic size, this means
O(n log log n) additional bits of space

constant access time

example on the board �

6/12 2024-07-22 Florian Kurpicz | Advanced Data Structures | 12 Sparse Sets and Variable Bit-Length Arrays Institute of Theoretical Informatics, Algorithm Engineering

Sampling (2/2)

Definition: Two-Level Sampling
In addition to sampling every k -th element, also
sample the offset to the closest preceding sampled
element for each non-sampled element.

Lemma: VLA with Two-Level Sampling
Using two-level sampling, storing a requires
N + O(n logN/k) bits of space for the first level and
additional

n · max
i∈{0,k,2k,... }

⌈log
k−1∑
j=1

|a[i + k]|⌉

bits of space for the second level.

011 11 11 10 010 010 011 0001 0011a =

1 6 10 16 23s =

3 2 3 3s′ =

for elements of polylogarithmic size, this means
O(n log log n) additional bits of space

constant access time

example on the board �

6/12 2024-07-22 Florian Kurpicz | Advanced Data Structures | 12 Sparse Sets and Variable Bit-Length Arrays Institute of Theoretical Informatics, Algorithm Engineering

Sampling (2/2)

Definition: Two-Level Sampling
In addition to sampling every k -th element, also
sample the offset to the closest preceding sampled
element for each non-sampled element.

Lemma: VLA with Two-Level Sampling
Using two-level sampling, storing a requires
N + O(n logN/k) bits of space for the first level and
additional

n · max
i∈{0,k,2k,... }

⌈log
k−1∑
j=1

|a[i + k]|⌉

bits of space for the second level.

011 11 11 10 010 010 011 0001 0011a =

1 6 10 16 23s =

3 2 3 3s′ =

for elements of polylogarithmic size, this means
O(n log log n) additional bits of space

constant access time

example on the board �

6/12 2024-07-22 Florian Kurpicz | Advanced Data Structures | 12 Sparse Sets and Variable Bit-Length Arrays Institute of Theoretical Informatics, Algorithm Engineering

Sampling (2/2)

now, encode problem instead of indexing

partition variable bit-length elements

mark if not last partition

similar to VByte encoding [WZ99]

Definition: Directly Addressable Codes
Each element is partitioned into length-ℓ slices.
Every elements k -th (fixed-length) slice is stored in
ak . Use bit vector vk to mark elements that continue
in ak+1.

011 11 11 10 010 010 011 0001 0011a =

00 11 11 10 00 00 00 00 00a1 =

1 0 0 0 1 1 1 1 1bv1 =

11 10 10 11 01 11a2 =

0 0 0 0 0 0bv2 =

7/12 2024-07-22 Florian Kurpicz | Advanced Data Structures | 12 Sparse Sets and Variable Bit-Length Arrays Institute of Theoretical Informatics, Algorithm Engineering

Directly Addressable Codes (1/2) [BLN09]

Lemma: VLA with Directly Addressable
Codes
Using Directly Addressable codes, storing a requires
at most ℓn + N/ℓ bits of space.

Proof (Sketch)
at most ℓ− 1 bits wasted in first slice

one bit needed to mark each slice

can be made more space-efficient

choose different partition size for each level

011 11 11 10 010 010 011 0001 0011a =

00 11 11 10 00 00 00 00 00a1 =

1 0 0 0 1 1 1 1 1bv1 =

11 10 10 11 01 11a2 =

0 0 0 0 0 0bv2 =

8/12 2024-07-22 Florian Kurpicz | Advanced Data Structures | 12 Sparse Sets and Variable Bit-Length Arrays Institute of Theoretical Informatics, Algorithm Engineering

Directly Addressable Codes (2/2)

represent a sparse (dynamic) set S ⊆ [1, u]
using bit vector

u bits of space
iterating, clearing, comparing requires |S|
select queries
inserting requires rebuilding select support
without select support O(u) time operations

use custom representation

Definition: Sparse Set Representation
The sparse set consists of a dense set d and a
sparse set s. Let S contain n elements. To insert
i ̸∈ S in S, set d [n] = i and s[i] = n.

5 1 4d =

1 2 0s =

double the space for efficient operations

9/12 2024-07-22 Florian Kurpicz | Advanced Data Structures | 12 Sparse Sets and Variable Bit-Length Arrays Institute of Theoretical Informatics, Algorithm Engineering

An Efficient Representation of a Sparse Set [BT93]

represent a sparse (dynamic) set S ⊆ [1, u]
using bit vector

u bits of space
iterating, clearing, comparing requires |S|
select queries
inserting requires rebuilding select support
without select support O(u) time operations

use custom representation

Definition: Sparse Set Representation
The sparse set consists of a dense set d and a
sparse set s. Let S contain n elements. To insert
i ̸∈ S in S, set d [n] = i and s[i] = n.

5 1 4d =

1 2 0s =

double the space for efficient operations

9/12 2024-07-22 Florian Kurpicz | Advanced Data Structures | 12 Sparse Sets and Variable Bit-Length Arrays Institute of Theoretical Informatics, Algorithm Engineering

An Efficient Representation of a Sparse Set [BT93]

represent a sparse (dynamic) set S ⊆ [1, u]
using bit vector

u bits of space
iterating, clearing, comparing requires |S|
select queries
inserting requires rebuilding select support
without select support O(u) time operations

use custom representation

Definition: Sparse Set Representation
The sparse set consists of a dense set d and a
sparse set s. Let S contain n elements. To insert
i ̸∈ S in S, set d [n] = i and s[i] = n.

5 1 4d =

1 2 0s =

double the space for efficient operations

9/12 2024-07-22 Florian Kurpicz | Advanced Data Structures | 12 Sparse Sets and Variable Bit-Length Arrays Institute of Theoretical Informatics, Algorithm Engineering

An Efficient Representation of a Sparse Set [BT93]

insert(i)
d [n] = i

s[i] = n

n++

is_in_set(i)
return s[i] < n and d [s[i]] == i

iterate
for i in 1..n

yield d[i]

clear
n = 0

remove_from_set(i)
if not is_in_set(i)

return

tmp = d [n − 1]

d [s[i]] = tmp

s[tmp] = s[i]

n–

10/12 2024-07-22 Florian Kurpicz | Advanced Data Structures | 12 Sparse Sets and Variable Bit-Length Arrays Institute of Theoretical Informatics, Algorithm Engineering

Operations on the Sparse Set

insert(i)
d [n] = i

s[i] = n

n++

is_in_set(i)
return s[i] < n and d [s[i]] == i

iterate
for i in 1..n

yield d[i]

clear
n = 0

remove_from_set(i)
if not is_in_set(i)

return

tmp = d [n − 1]

d [s[i]] = tmp

s[tmp] = s[i]

n–

10/12 2024-07-22 Florian Kurpicz | Advanced Data Structures | 12 Sparse Sets and Variable Bit-Length Arrays Institute of Theoretical Informatics, Algorithm Engineering

Operations on the Sparse Set

insert(i)
d [n] = i

s[i] = n

n++

is_in_set(i)
return s[i] < n and d [s[i]] == i

iterate
for i in 1..n

yield d[i]

clear
n = 0

remove_from_set(i)
if not is_in_set(i)

return

tmp = d [n − 1]

d [s[i]] = tmp

s[tmp] = s[i]

n–

10/12 2024-07-22 Florian Kurpicz | Advanced Data Structures | 12 Sparse Sets and Variable Bit-Length Arrays Institute of Theoretical Informatics, Algorithm Engineering

Operations on the Sparse Set

insert(i)
d [n] = i

s[i] = n

n++

is_in_set(i)
return s[i] < n and d [s[i]] == i

iterate
for i in 1..n

yield d[i]

clear
n = 0

remove_from_set(i)
if not is_in_set(i)

return

tmp = d [n − 1]

d [s[i]] = tmp

s[tmp] = s[i]

n–

10/12 2024-07-22 Florian Kurpicz | Advanced Data Structures | 12 Sparse Sets and Variable Bit-Length Arrays Institute of Theoretical Informatics, Algorithm Engineering

Operations on the Sparse Set

insert(i)
d [n] = i

s[i] = n

n++

is_in_set(i)
return s[i] < n and d [s[i]] == i

iterate
for i in 1..n

yield d[i]

clear
n = 0

remove_from_set(i)
if not is_in_set(i)

return

tmp = d [n − 1]

d [s[i]] = tmp

s[tmp] = s[i]

n–

10/12 2024-07-22 Florian Kurpicz | Advanced Data Structures | 12 Sparse Sets and Variable Bit-Length Arrays Institute of Theoretical Informatics, Algorithm Engineering

Operations on the Sparse Set

bit vectors with rank and select support

succinct trees ò LOUDS, BP, DUFUDS

succinct planar graphs

predecessor data structures ò Elias-Fano,
y-fast trie

range minimum queries ò three solutions

persistent data structures ò partial and full
persistence

orthogonal range search ò kd-trees, range
trees, layered range trees

binary space partition ò BSP-tree

PaCHash

compressed suffix array ò Elias-Fano with
quotenting and recursive

String B-trees

retroactive data structures ò decomposable
search problems, partial retroactive PQs

minimal perfect hashing ò BDZ, CHD, RecSplit

learned data structures ò encoding and
indexing

sparse sets and variable bit-length arrays

11/12 2024-07-22 Florian Kurpicz | Advanced Data Structures | 12 Sparse Sets and Variable Bit-Length Arrays Institute of Theoretical Informatics, Algorithm Engineering

Recap: Advanced Data Structures

everybody can choose first topic

Now, some examples

12/12 2024-07-22 Florian Kurpicz | Advanced Data Structures | 12 Sparse Sets and Variable Bit-Length Arrays Institute of Theoretical Informatics, Algorithm Engineering

Preparation Oral Exam

everybody can choose first topic

Now, some examples

12/12 2024-07-22 Florian Kurpicz | Advanced Data Structures | 12 Sparse Sets and Variable Bit-Length Arrays Institute of Theoretical Informatics, Algorithm Engineering

Preparation Oral Exam

[BLN09] Nieves R. Brisaboa, Susana Ladra, and Gonzalo Navarro. “Directly Addressable Variable-Length
Codes”. In: SPIRE. Volume 5721. Lecture Notes in Computer Science. Springer, 2009,
pages 122–130. DOI: 10.1007/978-3-642-03784-9_12.

[BT93] Preston Briggs and Linda Torczon. “An Efficient Representation for Sparse Sets”. In: LOPLAS 2.1-4
(1993), pages 59–69. DOI: 10.1145/176454.176484.

[FV20] Paolo Ferragina and Giorgio Vinciguerra. “The PGM-index: A Fully-Dynamic Compressed Learned
Index with Provable Worst-Case Bounds”. In: Proc. VLDB Endow. 13.8 (2020), pages 1162–1175.
DOI: 10.14778/3389133.3389135.

[WZ99] Hugh E. Williams and Justin Zobel. “Compressing Integers for Fast File Access”. In: Comput. J. 42.3
(1999), pages 193–201. DOI: 10.1093/COMJNL/42.3.193.

13/12 2024-07-22 Florian Kurpicz | Advanced Data Structures | 12 Sparse Sets and Variable Bit-Length Arrays Institute of Theoretical Informatics, Algorithm Engineering

Bibliography I

https://doi.org/10.1007/978-3-642-03784-9_12
https://doi.org/10.1145/176454.176484
https://doi.org/10.14778/3389133.3389135
https://doi.org/10.1093/COMJNL/42.3.193

	Appendix

