

Advanced Data Structures

Lecture 12: Sparse Sets and Variable Bit-Length Arrays

Florian Kurpicz

Recap: Learned Data Structures

- use piece-wise linear approximation
- store corrections
- compress everything

Open Questions

- are y-intersections monotonic increasing
- are $\log u + \log n$ bits enough to store slope

Recap: The PGM-Index [FV20]

- now S has to be stored
- how do we access elements in S
 - e.g., predecessor
- trick used before requires too much space
- store key instead position
- recurs on first keys of each segment 💷

For Queries

- \bullet $\epsilon = \Theta(B)$
- load $2\epsilon + 1$ blocks per level 🔄

Variable Bit-Length Arrays

- not all elements require the same space
- arrays with w bits per element can waste space
- e.g., integers can be encoded with space proportional to their size

Definition: Variable Bit-Length Data

Let a[1..n] be an array containing entries of size |a[i]| bits for $i \in [1, n]$.

Sampling (1/2)

• encode a using close to $N = \sum_{i=1}^{n} |a[i]|$ bits

Definition: Sampling

Sample the starting position of every k-th element in array s.

Lemma: VLA with Sampling

Using sampling, storing a requires $N + O(n \log N/k)$ bits of space. Accessing a single element requires O(k) time.

- space can be reduced using Elias-Fano coding
- access time depends on input size unless k = O(1)

Sampling (2/2)

Definition: Two-Level Sampling

In addition to sampling every k-th element, also sample the offset to the closest preceding sampled element for each non-sampled element.

Lemma: VLA with Two-Level Sampling

Using two-level sampling, storing a requires $N + O(n \log N/k)$ bits of space for the first level and additional

$$n \cdot \max_{i \in \{0,k,2k,\dots\}} \lceil \log \sum_{j=1}^{k-1} |a[i+k]| \rceil$$

bits of space for the second level.

- for elements of polylogarithmic size, this means
 O(n log log n) additional bits of space
- constant access time
- example on the board <a>=

Directly Addressable Codes (1/2) [BLN09]

- now, encode problem instead of indexing
- partition variable bit-length elements
- mark if not last partition
- similar to VByte encoding [WZ99]

Definition: Directly Addressable Codes

Each element is partitioned into length- ℓ slices. Every elements k-th (fixed-length) slice is stored in a_k . Use bit vector v_k to mark elements that continue in a_{k+1} .

a = [011 11 11 10 010 010 011 0001 0	0011
$a_1 = egin{bmatrix} 000 & 11 & 11 & 10 & 00 & 00 & 00 & 00$	
$a_2 = egin{bmatrix} 11 & 10 & 10 & 11 & 01 & 11 \\ v_2 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$	

Directly Addressable Codes (2/2)

Lemma: VLA with Directly Addressable Codes

Using Directly Addressable codes, storing *a* requires at most $\ell n + N/\ell$ bits of space.

Proof (Sketch

- lacktriangle at most $\ell-1$ bits wasted in first slice
- one bit needed to mark each slice
- can be made more space-efficient
- choose different partition size for each level

An Efficient Representation of a Sparse Set [BT93]

- represent a sparse (dynamic) set $S \subseteq [1, u]$
- using bit vector
 - u bits of space
 - iterating, clearing, comparing requires |S| select queries
 - inserting requires rebuilding select support
 - without select support O(u) time operations
- use custom representation

Definition: Sparse Set Representation

The sparse set consists of a *dense* set d and a *sparse* set s. Let S contain n elements. To insert $i \notin S$ in S, set d[n] = i and s[i] = n.

double the space for efficient operations

insert(i)

- \bullet d[n] = i
- \bullet s[i] = n
- n++

is_in_set(i)

• return s[i] < n and d[s[i]] == i

iterate

- for *i* in 1..*n*
 - yield d[i]

clear

n = 0

remove_from_set(i)

- if not is_in_set(i)
 - return
- tmp = d[n-1]
- \bullet d[s[i]] = tmp
- $\bullet s[tmp] = s[i]$
- n-

Recap: Advanced Data Structures

- bit vectors with rank and select support
- succinct trees (1) LOUDS, BP, DUFUDS
- succinct planar graphs
- predecessor data structures Elias-Fano, y-fast trie
- range minimum queries (1) three solutions
- persistent data structures (1) partial and full persistence
- orthogonal range search the kd-trees, range trees, layered range trees

- binary space partition BSP-tree
- PaCHash
- compressed suffix array 1 Elias-Fano with quotenting and recursive
- String B-trees
- retroactive data structures (1) decomposable search problems, partial retroactive PQs
- minimal perfect hashing ® BDZ, CHD, RecSplit
- learned data structures (1) encoding and indexing
- sparse sets and variable bit-length arrays

Preparation Oral Exam

everybody can choose first topic

Now, some examples

Bibliography I

- [BLN09] Nieves R. Brisaboa, Susana Ladra, and Gonzalo Navarro. "Directly Addressable Variable-Length Codes". In: *SPIRE*. Volume 5721. Lecture Notes in Computer Science. Springer, 2009, pages 122–130. DOI: 10.1007/978-3-642-03784-9_12.
- [BT93] Preston Briggs and Linda Torczon. "An Efficient Representation for Sparse Sets". In: LOPLAS 2.1-4 (1993), pages 59–69. DOI: 10.1145/176454.176484.
- [FV20] Paolo Ferragina and Giorgio Vinciguerra. "The PGM-index: A Fully-Dynamic Compressed Learned Index with Provable Worst-Case Bounds". In: Proc. VLDB Endow. 13.8 (2020), pages 1162–1175. DOI: 10.14778/3389133.3389135.
- [WZ99] Hugh E. Williams and Justin Zobel. "Compressing Integers for Fast File Access". In: *Comput. J.* 42.3 (1999), pages 193–201. DOI: 10.1093/C0MJNL/42.3.193.