Advanced Data Structures

Lecture 12: Sparse Sets and Variable Bit-Length Arrays

Florian Kurpicz
Recap: Learned Data Structures

- use piece-wise linear approximation
- store corrections
- compress everything

Open Questions

- are y-intersections monotonic increasing
- are $\log u + \log n$ bits enough to store slope
Recap: The PGM-Index [FV20]

- now S has to be stored
- how do we access elements in S
 - e.g., predecessor
- trick used before requires too much space

- store key instead position
- recurs on first keys of each segment

For Queries

- $\epsilon = \Theta(B)$
- load $2\epsilon + 1$ blocks per level

$S = \langle 10, 18, 22, 24, 27, 31, 43 \rangle$
Variable Bit-Length Arrays

- not all elements require the same space
- arrays with \(w \) bits per element can waste space
- e.g., integers can be encoded with space proportional to their size

Definition: Variable Bit-Length Data

Let \(a[1..n] \) be an array containing entries of size \(|a[i]| \) bits for \(i \in [1, n] \).
Sampling (1/2)

- encode a using close to $N = \sum_{i=1}^{n} |a[i]|$ bits

Definition: Sampling

Sample the starting position of every k-th element in array s.

Lemma: VLA with Sampling

Using sampling, storing a requires $N + O(n \log N/k)$ bits of space. Accessing a single element requires $O(k)$ time.

- space can be reduced using Elias-Fano coding
- access time depends on input size unless $k = O(1)$
Definition: Two-Level Sampling

In addition to sampling every k-th element, also sample the offset to the closest preceding sampled element for each non-sampled element.

Lemma: VLA with Two-Level Sampling

Using two-level sampling, storing a requires $N + O(n \log N / k)$ bits of space for the first level and additional

$$n \cdot \max_{i \in \{0,k,2k,\ldots\}} \left\lceil \log \sum_{j=1}^{k-1} |a[i + k]| \right\rceil$$

bits of space for the second level.

For elements of polylogarithmic size, this means $O(n \log \log n)$ additional bits of space.

- constant access time
- example on the board 📚

![Diagram](image_url)
now, encode problem instead of indexing
- partition variable bit-length elements
- mark if not last partition
- similar to VByte encoding [WZ99]

Definition: Directly Addressable Codes
Each element is partitioned into length-\(\ell\) slices. Every elements \(k\)-th (fixed-length) slice is stored in \(a_k\). Use bit vector \(v_k\) to mark elements that continue in \(a_{k+1}\).
Lemma: VLA with Directly Addressable Codes

Using Directly Addressable codes, storing an element \(a \) requires at most \(\ell n + \frac{N}{\ell} \) bits of space.

Proof (Sketch)

- at most \(\ell - 1 \) bits wasted in first slice
- one bit needed to mark each slice

- can be made more space-efficient
- choose different partition size for each level

\[
\begin{align*}
 a &= \begin{array}{cccccccccccc}
 0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 1
 \end{array} \\
 a_1 &= \begin{array}{cccccccccccc}
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
 \end{array}
\end{align*}
\]
An Efficient Representation of a Sparse Set [BT93]

- represent a sparse (dynamic) set $S \subseteq [1, u]$ using bit vector
 - u bits of space
 - iterating, clearing, comparing requires $|S|$ select queries
 - inserting requires rebuilding select support
 - without select support $O(u)$ time operations
- use custom representation

Definition: Sparse Set Representation

The sparse set consists of a *dense* set d and a *sparse* set s. Let S contain n elements. To insert $i \notin S$ in S, set $d[n] = i$ and $s[i] = n$.

![Sparse Set Representation Diagram](image-url)
Operations on the Sparse Set

insert(i)
- $d[n] = i$
- $s[i] = n$
- $n++$

is_in_set(i)
- return $s[i] < n$ and $d[s[i]] == i$

iterate
- for i in 1..n
 - yield $d[i]$

clear
- $n = 0$

remove_from_set(i)
- if not is_in_set(i)
 - return
 - $tmp = d[n - 1]$
 - $d[s[i]] = tmp$
 - $s[tmp] = s[i]$
 - $n--$
Recap: Advanced Data Structures

- Bit vectors with rank and select support
- Succinct trees: LOUDS, BP, DUFUDS
- Succinct planar graphs
- Predecessor data structures: Elias-Fano, y-fast trie
- Range minimum queries: three solutions
- Persistent data structures: partial and full persistence
- Orthogonal range search: kd-trees, range trees, layered range trees
- Binary space partition: BSP-tree
- PaCHash
- Compressed suffix array: Elias-Fano with quotenting and recursive
- String B-trees
- Retroactive data structures: decomposable search problems, partial retroactive PQs
- Minimal perfect hashing: BDZ, CHD, RecSplit
- Learned data structures: encoding and indexing
- Sparse sets and variable bit-length arrays
everybody can choose first topic

Now, some examples
Bibliography I

