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Definition: Inverted Index
Given a set of documents and terms that are
contained in the documents, an inverted index stores
the terms and associated with each term t

the number of documents ft that contain t and

an ordered list L(t) of documents containing t

1 The old night keeper keeps the keep in the town

2 In the big old house in the big old gown

3 The house in the town had the big old keep

4 Where the old night keeper never did sleep

5 The night keeper keeps the keep in the night

6 And keeps in the dark and sleeps in the light

term t ft L(t)
and 1 [6]

big 2 [2, 3]

dark 1 [6]

· · · · · · · · ·
had 1 [3]

house 2 [2, 3]

in 5 [1, 2, 3, 5, 6]

· · · · · · · · ·
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Conjunctive Queries
Given two lists M and N, return all documents
contained in both lists: M ∩ N

Disjunctive Queries
Given two lists M and N, return all documents
contained in either list: M ∪ N

Phrase Queries
Given two terms t1 and t2, return all documents
containing t1t2 ò all previous discussed indices
can do so
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terms can be represented using tries

in each leaf, store pointer to list for term

simple representation

easy to add and remove terms

b

e

a

r

c

a

e b r
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use multiplicative hash function

h(t[1] . . . t[ℓ]) = ((
∑ℓ

i=1 ai · t[i])mod p)mod m

for prime p < m and

fixed random integers ai ∈ [1, p]

good worst cast guarantee

Prob[h(x) = h(y)] = O(1/m) for x ̸= y
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document ids are sorted

if ids are in [1,U], storing them requires ⌈lgU⌉
bits per id

Binary Codes
an integer x can be represented as binary (x)2

for fast access, all binary representations must
have the same width

Now
different ideas on how to better store ids

not all ideas work with all algorithms

different space usage and complexity
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given a document list N = [d1, . . . , d|N|]

the document ids are sorted: d1 < · · · < d|N|

store first id

represent other ids by difference: δi = di − di−1

Definition: ∆-Encoding
A ∆-encoded document list N = [d1, . . . , d|N|] is
N = [d1, d2 − d1, . . . , d|N| − d|N−1|]

can this be compressed further?

accessing id requires scanning

Just ids:

N = [4, 11, 12, 30, 42, 54]

∆-encoded

N = [4, 7, 1, 18, 12, 12]

7/24 2024-10-25 Florian Kurpicz | Text Indexing | 02 Inverted Index Institute of Theoretical Informatics, Algorithm Engineering

Difference Encoding



given a document list N = [d1, . . . , d|N|]

the document ids are sorted: d1 < · · · < d|N|

store first id

represent other ids by difference: δi = di − di−1

Definition: ∆-Encoding
A ∆-encoded document list N = [d1, . . . , d|N|] is
N = [d1, d2 − d1, . . . , d|N| − d|N−1|]

can this be compressed further?

accessing id requires scanning

Just ids:

N = [4, 11, 12, 30, 42, 54]

∆-encoded

N = [4, 7, 1, 18, 12, 12]

7/24 2024-10-25 Florian Kurpicz | Text Indexing | 02 Inverted Index Institute of Theoretical Informatics, Algorithm Engineering

Difference Encoding



given a document list N = [d1, . . . , d|N|]

the document ids are sorted: d1 < · · · < d|N|

store first id

represent other ids by difference: δi = di − di−1

Definition: ∆-Encoding
A ∆-encoded document list N = [d1, . . . , d|N|] is
N = [d1, d2 − d1, . . . , d|N| − d|N−1|]

can this be compressed further?

accessing id requires scanning

Just ids:

N = [4, 11, 12, 30, 42, 54]

∆-encoded

N = [4, 7, 1, 18, 12, 12]

7/24 2024-10-25 Florian Kurpicz | Text Indexing | 02 Inverted Index Institute of Theoretical Informatics, Algorithm Engineering

Difference Encoding



Definition: Unary Codes
Given an integer x > 0, its unary code (x)1 is 1x−10

|(x)1| = x bits

encoded integers can be accessed using rank
and select queries

if 0 has to be encoded, all codes require an
additional bit

Just ids:

N = [4, 11, 12, 30, 42, 54]

∆-encoded

N = [4, 7, 1, 18, 12, 12]

Unary Codes:

N = [11101111110011701110111111111110]
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Definition: Ternary Codes
Given an integer x > 0, represent x − 1 in ternary
using

00 to represent 0

01 to represent 1

10 to represent 2

and append 11 to each code to obtain its ternary
code (x)3

|(x)3| = 2⌊lg3(x − 1)⌋+ 2

Just ids:

N = [4, 11, 12, 30, 42, 54]

∆-encoded

N = [4, 7, 1, 18, 12, 12]

Unary Codes:

N = [11101111110011701110111111111110]

Ternary Codes:

N = [010011 100011 00 01101011

01001011 01001011]
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Lemma: Zeckendorf’s Theorem
Let fi be the i-th Fibonacci number, then each integer
x > 0 can be represented as

n =
k∑

i=2

ci fi

with ci ∈ {0, 1} and ci + ci+1 < 2

Definition: Fibonacci Code
Given an integer x > 0 use the sequence of ci ’s
followed by a 1 as its Fibonacci code (x)ϕ

11 does not occur in any sequence

to compute find largest Fibonacci number fi ≤ x
and repeat process for x − fi
Fibonacci codes are smaller than ternary codes
for smaller integers

f2 = 1, f3 = 2, f4 = 3, f5 = 5, f6 = 8, f7 = 13

4: f2 + f4 = 1011

7: f3 + f5 = 01011

1: f2 = 11

18: f5 + f7 = 0001011

12: f2 + f4 + f6 = 101011
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Definition: Elias-γ-Code
Given an integer x > 0, its Elias-gamma-code (x)γ
is

(x)γ = 0⌊lg x⌋(x)2

|(x)γ | = 2⌊lg x⌋+ 1 bit

first part gives length of binary representation

first bit of (x)2 is one bit

4: 00 100

7: 00 111

1: 1

18: 0000 10010

12: 000 1000
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Definition: Elias-δ-Code
Given an integer x > 0, its Elias-δ-code (x)δ is

(x)δ = (⌊lg x⌋+ 1)γ(x)2[2..|(x)2|]

encode length of binary representation using
Elias-γ code

first bit of binary representation not required
anymore

|(x)δ| = 2⌊lg(⌊lg x⌋+ 1)⌋+ 1 + ⌊lg x⌋ bits

Elias-γ
4: 00 100

7: 00 111

1: 1

18: 0000 10010

12: 000 1000

Elias-δ
4: 0 11 00

7: 0 1111

1: 1

18: 00 101 0010

12: 00 100 100
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Definition: Elias-δ-Code
Given an integer x > 0, its Elias-δ-code (x)δ is

(x)δ = (⌊lg x⌋+ 1)γ(x)2[2..|(x)2|]

Definition: Elias-γ-Code
Given an integer x > 0, its Elias-gamma-code (x)γ
is

(x)γ = 0⌊lg x⌋(x)2

Exercise 1
Calculate the Elias-γ and Elias-δ encoding of 42.

00000 101010
00 110 01010

Exercise 2
Which integer is represented by the following Elias-δ
code?

001010111

→ 23
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Definition: Golomb Code
Given an integer x > 0 and a constant b > 0, the
Golomb code consists of

q = ⌊ x
b ⌋

r = x − qb = x % b

c = ⌈lg b⌉
with

(x)Gol(b) = (q)1(r)2

where (r)2 depends on its size

r < 2⌊lg b⌋−1: r requires ⌊lg b⌋ bits and starts
with a 0

r ≥ 2⌊lg b⌋−1: r requires ⌈lg b⌉ bits and starts
with a 1 and it encodes r − 2⌊lg b⌋−1

b has to be fixed for all codes

still variable length

for b = 5, there are 4 remainders:
00, 01, 100, 101, and 110

2⌊lg 5⌋−1 = 2

0, 1 < 2: 00 and 01 require 2 bits

2, 3, 4 ≥ 2: require 3 bits and encode 0, 1, 2
starting with 1
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Task
given terms t1, . . . , tk
intersect L(t1) ∩ L(t2) ∩ · · · ∩ L(tk)

pairwise intersection usually works best

intersection of two lists is of interest

start with two shortest and continue like that

Setting
two lists M and N with

|M| = m and |N| = n and

m ≤ n

different algorithms to intersect lists

assuming lists are ∆ encoded
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Zipper
scan both lists as in binary merging

Lemma: Running Time Zipper
Intersecting two sorted lists of sizes m and n using
zipper requires O(m + n) time.

Proof (Sketch)
compare entries until one list is empty

if max{id : id ∈ N} < some element in M, then
all elements in N are compared

resulting in O(n + m) time

works well with ∆-encoding

in real implementations zipping is good until
n > 20m [BS05]

example on the board �
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Simple Binary Search
search each document in M in N using binary
search

Lemma: Running Time Simple Binary
Search
Intersecting two sorted lists of sizes m and n using a
simple binary search requires O(m lg n) time.

Proof (Sketch)
binary search on N because n ≥ m

for each id in N binary search in O(lg n) time

resulting in O(m lg n) total time

example on the board �

binary search not work with ∆-encoding
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Double Binary Search
let pm = ⌊m

2 ⌋
search for M[pm] in N using binary search

let result be position pn

if M[pm] = N[pn] add M[pm] to result
continue recursively by intersecting

M[1, pm] ∩ N[1, pn] and
M[1 + pm, |M|] ∩ N[1 + pn, |N|]

Lemma: Running Time Double Binary
Search
Intersecting two sorted lists of sizes m and n using a
double binary search requires O(m lg n

m ) time.

Proof (Sketch)
look at running time of binary search at each
recursion depth

depth 0: lgn

depth 1: 2 lg n
2

depth 2: 4 lg n
4

depth m: m lg n
m

Depth of recursion is at most lgm, therefore∑lg m
i=0

m
2i (lg

n
m + i) = m(lg n

m

∑lg m
i=0

1
2i +

∑lg m
i=0

1
2i )

total: O(m lg n
m )

example on board �
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Exponential Search
assume that M[1..i] have been processed and

M[i] is closest to N[j] for some j

now find M[i + 1] in N by comparing it to
N[j],N[j + 1],N[j + 2],N[j + 4], . . . until

N[j + 2k ] ≥ M[i + 1] ò if N[j + 2k = M[i + 1],
we are done with this iteration

binary search for M[i + 1] in N[j + 2k−1..j + 2k ]

Lemma: Running Time Exponential Search
Intersecting two sorted lists of sizes m and n using a
exponential search requires O(m lg n

m ) time.

Proof
searching for each element M[i] requires
O(lg di) time

di is distance between M[i − 1] and M[i] in N

O(
∑m

i lg di), which is maximal if di =
n
m

total: O(m lg n
m )

example on board �

works well if lists do not fit into main memory

still not working with ∆-encoding
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Two-Level Representation
store every B-th element of the list in top-level

in addition to ∆-encoded ids

store original id for each sampled value in id-list

Binary Search
binary search on top-level

scan on list in relevant interval

example on board �

Skipper [MZ96]
scan top-level and

go down in ∆-encoded list as soon as possible

avoids complex binary search control structure

example on board �
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assume ids are in [0,U) with U = 22u

ids have to be random ò more details in paper

choose tuning parameter B ò determine
average bucket size

given a list N = [d1, . . . , dn] and kN = ⌈lg UB
n ⌉

per list, represent ids in
buckets bN

i containing
partial ids {dj mod 2kN : dj/2kN = i}

due to randomization, average bucket size is
between B/2 and B

elements in buckets can be ∆-encoded

example on board �

Intersection
for each element M[i] find bucket of N

can be same bucket as for M[i − 1], if so,
continue at position of M[i − 1] in bucket
ò continuing is important

scan bucket until element ≥ M[i] is found

if equal, output M[i]

Lemma: Running Time
Intersecting two sorted lists of sizes m and n using a
randomized inverted indices requires
O(m +min{n,Bm}) time.
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This Lecture
inverted index

space efficient encodings of document lists

efficient intersection algorithms

Next Lecture
suffix array (full-text index)
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