
Text Indexing

Lecture 02: Inverted Index

Florian Kurpicz

The slides are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License cba: www.creativecommons.org/licenses/by-sa/4.0 | commit 59da60d compiled at 2024-10-25-16:15

KIT – The Research University in the Helmholtz Association www.kit.edu

https://creativecommons.org/licenses/by-sa/4.0/
https://www.kit.edu

Definition: Inverted Index
Given a set of documents and terms that are
contained in the documents, an inverted index stores
the terms and associated with each term t

the number of documents ft that contain t and

an ordered list L(t) of documents containing t

1 The old night keeper keeps the keep in the town

2 In the big old house in the big old gown

3 The house in the town had the big old keep

4 Where the old night keeper never did sleep

5 The night keeper keeps the keep in the night

6 And keeps in the dark and sleeps in the light

term t ft L(t)
and 1 [6]

big 2 [2, 3]

dark 1 [6]

· · · · · · · · ·
had 1 [3]

house 2 [2, 3]

in 5 [1, 2, 3, 5, 6]

· · · · · · · · ·

2/24 2024-10-25 Florian Kurpicz | Text Indexing | 02 Inverted Index Institute of Theoretical Informatics, Algorithm Engineering

The Inverted Index

Definition: Inverted Index
Given a set of documents and terms that are
contained in the documents, an inverted index stores
the terms and associated with each term t

the number of documents ft that contain t and

an ordered list L(t) of documents containing t

1 The old night keeper keeps the keep in the town

2 In the big old house in the big old gown

3 The house in the town had the big old keep

4 Where the old night keeper never did sleep

5 The night keeper keeps the keep in the night

6 And keeps in the dark and sleeps in the light

term t ft L(t)
and 1 [6]

big 2 [2, 3]

dark 1 [6]

· · · · · · · · ·
had 1 [3]

house 2 [2, 3]

in 5 [1, 2, 3, 5, 6]

· · · · · · · · ·

2/24 2024-10-25 Florian Kurpicz | Text Indexing | 02 Inverted Index Institute of Theoretical Informatics, Algorithm Engineering

The Inverted Index

Definition: Inverted Index
Given a set of documents and terms that are
contained in the documents, an inverted index stores
the terms and associated with each term t

the number of documents ft that contain t and

an ordered list L(t) of documents containing t

1 The old night keeper keeps the keep in the town

2 In the big old house in the big old gown

3 The house in the town had the big old keep

4 Where the old night keeper never did sleep

5 The night keeper keeps the keep in the night

6 And keeps in the dark and sleeps in the light

term t ft L(t)
and 1 [6]

big 2 [2, 3]

dark 1 [6]

· · · · · · · · ·
had 1 [3]

house 2 [2, 3]

in 5 [1, 2, 3, 5, 6]

· · · · · · · · ·

2/24 2024-10-25 Florian Kurpicz | Text Indexing | 02 Inverted Index Institute of Theoretical Informatics, Algorithm Engineering

The Inverted Index

Conjunctive Queries
Given two lists M and N, return all documents
contained in both lists: M ∩ N

Disjunctive Queries
Given two lists M and N, return all documents
contained in either list: M ∪ N

Phrase Queries
Given two terms t1 and t2, return all documents
containing t1t2 ò all previous discussed indices
can do so

1 The old night keeper keeps the keep in the town

2 In the big old house in the big old gown

3 The house in the town had the big old keep

4 Where the old night keeper never did sleep

5 The night keeper keeps the keep in the night

6 And keeps in the dark and sleeps in the light

term t ft L(t)
and 1 [6]

big 2 [2, 3]

dark 1 [6]

· · · · · · · · ·
had 1 [3]

house 2 [2, 3]

in 5 [1, 2, 3, 5, 6]

· · · · · · · · ·

3/24 2024-10-25 Florian Kurpicz | Text Indexing | 02 Inverted Index Institute of Theoretical Informatics, Algorithm Engineering

The Inverted Index: Queries

Conjunctive Queries
Given two lists M and N, return all documents
contained in both lists: M ∩ N

Disjunctive Queries
Given two lists M and N, return all documents
contained in either list: M ∪ N

Phrase Queries
Given two terms t1 and t2, return all documents
containing t1t2 ò all previous discussed indices
can do so

1 The old night keeper keeps the keep in the town

2 In the big old house in the big old gown

3 The house in the town had the big old keep

4 Where the old night keeper never did sleep

5 The night keeper keeps the keep in the night

6 And keeps in the dark and sleeps in the light

term t ft L(t)
and 1 [6]

big 2 [2, 3]

dark 1 [6]

· · · · · · · · ·
had 1 [3]

house 2 [2, 3]

in 5 [1, 2, 3, 5, 6]

· · · · · · · · ·

3/24 2024-10-25 Florian Kurpicz | Text Indexing | 02 Inverted Index Institute of Theoretical Informatics, Algorithm Engineering

The Inverted Index: Queries

Conjunctive Queries
Given two lists M and N, return all documents
contained in both lists: M ∩ N

Disjunctive Queries
Given two lists M and N, return all documents
contained in either list: M ∪ N

Phrase Queries
Given two terms t1 and t2, return all documents
containing t1t2 ò all previous discussed indices
can do so

1 The old night keeper keeps the keep in the town

2 In the big old house in the big old gown

3 The house in the town had the big old keep

4 Where the old night keeper never did sleep

5 The night keeper keeps the keep in the night

6 And keeps in the dark and sleeps in the light

term t ft L(t)
and 1 [6]

big 2 [2, 3]

dark 1 [6]

· · · · · · · · ·
had 1 [3]

house 2 [2, 3]

in 5 [1, 2, 3, 5, 6]

· · · · · · · · ·

3/24 2024-10-25 Florian Kurpicz | Text Indexing | 02 Inverted Index Institute of Theoretical Informatics, Algorithm Engineering

The Inverted Index: Queries

terms can be represented using tries

in each leaf, store pointer to list for term

simple representation

easy to add and remove terms

b

e

a

r

c

a

e b r

4/24 2024-10-25 Florian Kurpicz | Text Indexing | 02 Inverted Index Institute of Theoretical Informatics, Algorithm Engineering

Inverted Index: Representing the Terms (1/2)

use multiplicative hash function

h(t[1] . . . t[ℓ]) = ((
∑ℓ

i=1 ai · t[i])mod p)mod m

for prime p < m and

fixed random integers ai ∈ [1, p]

good worst cast guarantee

Prob[h(x) = h(y)] = O(1/m) for x ̸= y

5/24 2024-10-25 Florian Kurpicz | Text Indexing | 02 Inverted Index Institute of Theoretical Informatics, Algorithm Engineering

Inverted Index: Representing the Terms (2/2)

document ids are sorted

if ids are in [1,U], storing them requires ⌈lgU⌉
bits per id

Binary Codes
an integer x can be represented as binary (x)2

for fast access, all binary representations must
have the same width

Now
different ideas on how to better store ids

not all ideas work with all algorithms

different space usage and complexity

6/24 2024-10-25 Florian Kurpicz | Text Indexing | 02 Inverted Index Institute of Theoretical Informatics, Algorithm Engineering

Inverted Index: Document Lists

given a document list N = [d1, . . . , d|N|]

the document ids are sorted: d1 < · · · < d|N|

store first id

represent other ids by difference: δi = di − di−1

Definition: ∆-Encoding
A ∆-encoded document list N = [d1, . . . , d|N|] is
N = [d1, d2 − d1, . . . , d|N| − d|N−1|]

can this be compressed further?

accessing id requires scanning

Just ids:

N = [4, 11, 12, 30, 42, 54]

∆-encoded

N = [4, 7, 1, 18, 12, 12]

7/24 2024-10-25 Florian Kurpicz | Text Indexing | 02 Inverted Index Institute of Theoretical Informatics, Algorithm Engineering

Difference Encoding

given a document list N = [d1, . . . , d|N|]

the document ids are sorted: d1 < · · · < d|N|

store first id

represent other ids by difference: δi = di − di−1

Definition: ∆-Encoding
A ∆-encoded document list N = [d1, . . . , d|N|] is
N = [d1, d2 − d1, . . . , d|N| − d|N−1|]

can this be compressed further?

accessing id requires scanning

Just ids:

N = [4, 11, 12, 30, 42, 54]

∆-encoded

N = [4, 7, 1, 18, 12, 12]

7/24 2024-10-25 Florian Kurpicz | Text Indexing | 02 Inverted Index Institute of Theoretical Informatics, Algorithm Engineering

Difference Encoding

given a document list N = [d1, . . . , d|N|]

the document ids are sorted: d1 < · · · < d|N|

store first id

represent other ids by difference: δi = di − di−1

Definition: ∆-Encoding
A ∆-encoded document list N = [d1, . . . , d|N|] is
N = [d1, d2 − d1, . . . , d|N| − d|N−1|]

can this be compressed further?

accessing id requires scanning

Just ids:

N = [4, 11, 12, 30, 42, 54]

∆-encoded

N = [4, 7, 1, 18, 12, 12]

7/24 2024-10-25 Florian Kurpicz | Text Indexing | 02 Inverted Index Institute of Theoretical Informatics, Algorithm Engineering

Difference Encoding

Definition: Unary Codes
Given an integer x > 0, its unary code (x)1 is 1x−10

|(x)1| = x bits

encoded integers can be accessed using rank
and select queries

if 0 has to be encoded, all codes require an
additional bit

Just ids:

N = [4, 11, 12, 30, 42, 54]

∆-encoded

N = [4, 7, 1, 18, 12, 12]

Unary Codes:

N = [11101111110011701110111111111110]

8/24 2024-10-25 Florian Kurpicz | Text Indexing | 02 Inverted Index Institute of Theoretical Informatics, Algorithm Engineering

Unary Encoding

Definition: Unary Codes
Given an integer x > 0, its unary code (x)1 is 1x−10

|(x)1| = x bits

encoded integers can be accessed using rank
and select queries

if 0 has to be encoded, all codes require an
additional bit

Just ids:

N = [4, 11, 12, 30, 42, 54]

∆-encoded

N = [4, 7, 1, 18, 12, 12]

Unary Codes:

N = [11101111110011701110111111111110]

8/24 2024-10-25 Florian Kurpicz | Text Indexing | 02 Inverted Index Institute of Theoretical Informatics, Algorithm Engineering

Unary Encoding

Definition: Ternary Codes
Given an integer x > 0, represent x − 1 in ternary
using

00 to represent 0

01 to represent 1

10 to represent 2

and append 11 to each code to obtain its ternary
code (x)3

|(x)3| = 2⌊lg3(x − 1)⌋+ 2

Just ids:

N = [4, 11, 12, 30, 42, 54]

∆-encoded

N = [4, 7, 1, 18, 12, 12]

Unary Codes:

N = [11101111110011701110111111111110]

Ternary Codes:

N = [010011 100011 00 01101011

01001011 01001011]

9/24 2024-10-25 Florian Kurpicz | Text Indexing | 02 Inverted Index Institute of Theoretical Informatics, Algorithm Engineering

Ternary Encoding

Definition: Ternary Codes
Given an integer x > 0, represent x − 1 in ternary
using

00 to represent 0

01 to represent 1

10 to represent 2

and append 11 to each code to obtain its ternary
code (x)3

|(x)3| = 2⌊lg3(x − 1)⌋+ 2

Just ids:

N = [4, 11, 12, 30, 42, 54]

∆-encoded

N = [4, 7, 1, 18, 12, 12]

Unary Codes:

N = [11101111110011701110111111111110]

Ternary Codes:

N = [010011 100011 00 01101011

01001011 01001011]

9/24 2024-10-25 Florian Kurpicz | Text Indexing | 02 Inverted Index Institute of Theoretical Informatics, Algorithm Engineering

Ternary Encoding

Lemma: Zeckendorf’s Theorem
Let fi be the i-th Fibonacci number, then each integer
x > 0 can be represented as

n =
k∑

i=2

ci fi

with ci ∈ {0, 1} and ci + ci+1 < 2

Definition: Fibonacci Code
Given an integer x > 0 use the sequence of ci ’s
followed by a 1 as its Fibonacci code (x)ϕ

11 does not occur in any sequence

to compute find largest Fibonacci number fi ≤ x
and repeat process for x − fi
Fibonacci codes are smaller than ternary codes
for smaller integers

f2 = 1, f3 = 2, f4 = 3, f5 = 5, f6 = 8, f7 = 13

4: f2 + f4 = 1011

7: f3 + f5 = 01011

1: f2 = 11

18: f5 + f7 = 0001011

12: f2 + f4 + f6 = 101011

10/24 2024-10-25 Florian Kurpicz | Text Indexing | 02 Inverted Index Institute of Theoretical Informatics, Algorithm Engineering

Fibonacci Encoding

Lemma: Zeckendorf’s Theorem
Let fi be the i-th Fibonacci number, then each integer
x > 0 can be represented as

n =
k∑

i=2

ci fi

with ci ∈ {0, 1} and ci + ci+1 < 2

Definition: Fibonacci Code
Given an integer x > 0 use the sequence of ci ’s
followed by a 1 as its Fibonacci code (x)ϕ

11 does not occur in any sequence

to compute find largest Fibonacci number fi ≤ x
and repeat process for x − fi
Fibonacci codes are smaller than ternary codes
for smaller integers

f2 = 1, f3 = 2, f4 = 3, f5 = 5, f6 = 8, f7 = 13

4: f2 + f4 = 1011

7: f3 + f5 = 01011

1: f2 = 11

18: f5 + f7 = 0001011

12: f2 + f4 + f6 = 101011

10/24 2024-10-25 Florian Kurpicz | Text Indexing | 02 Inverted Index Institute of Theoretical Informatics, Algorithm Engineering

Fibonacci Encoding

Lemma: Zeckendorf’s Theorem
Let fi be the i-th Fibonacci number, then each integer
x > 0 can be represented as

n =
k∑

i=2

ci fi

with ci ∈ {0, 1} and ci + ci+1 < 2

Definition: Fibonacci Code
Given an integer x > 0 use the sequence of ci ’s
followed by a 1 as its Fibonacci code (x)ϕ

11 does not occur in any sequence

to compute find largest Fibonacci number fi ≤ x
and repeat process for x − fi
Fibonacci codes are smaller than ternary codes
for smaller integers

f2 = 1, f3 = 2, f4 = 3, f5 = 5, f6 = 8, f7 = 13

4: f2 + f4 = 1011

7: f3 + f5 = 01011

1: f2 = 11

18: f5 + f7 = 0001011

12: f2 + f4 + f6 = 101011

10/24 2024-10-25 Florian Kurpicz | Text Indexing | 02 Inverted Index Institute of Theoretical Informatics, Algorithm Engineering

Fibonacci Encoding

Definition: Elias-γ-Code
Given an integer x > 0, its Elias-gamma-code (x)γ
is

(x)γ = 0⌊lg x⌋(x)2

|(x)γ | = 2⌊lg x⌋+ 1 bit

first part gives length of binary representation

first bit of (x)2 is one bit

4: 00 100

7: 00 111

1: 1

18: 0000 10010

12: 000 1000

11/24 2024-10-25 Florian Kurpicz | Text Indexing | 02 Inverted Index Institute of Theoretical Informatics, Algorithm Engineering

Elias-γ-Encoding [Eli75]

Definition: Elias-γ-Code
Given an integer x > 0, its Elias-gamma-code (x)γ
is

(x)γ = 0⌊lg x⌋(x)2

|(x)γ | = 2⌊lg x⌋+ 1 bit

first part gives length of binary representation

first bit of (x)2 is one bit

4: 00 100

7: 00 111

1: 1

18: 0000 10010

12: 000 1000

11/24 2024-10-25 Florian Kurpicz | Text Indexing | 02 Inverted Index Institute of Theoretical Informatics, Algorithm Engineering

Elias-γ-Encoding [Eli75]

Definition: Elias-δ-Code
Given an integer x > 0, its Elias-δ-code (x)δ is

(x)δ = (⌊lg x⌋+ 1)γ(x)2[2..|(x)2|]

encode length of binary representation using
Elias-γ code

first bit of binary representation not required
anymore

|(x)δ| = 2⌊lg(⌊lg x⌋+ 1)⌋+ 1 + ⌊lg x⌋ bits

Elias-γ
4: 00 100

7: 00 111

1: 1

18: 0000 10010

12: 000 1000

Elias-δ
4: 0 11 00

7: 0 1111

1: 1

18: 00 101 0010

12: 00 100 100

12/24 2024-10-25 Florian Kurpicz | Text Indexing | 02 Inverted Index Institute of Theoretical Informatics, Algorithm Engineering

Elias-δ-Encoding [Eli75]

Definition: Elias-δ-Code
Given an integer x > 0, its Elias-δ-code (x)δ is

(x)δ = (⌊lg x⌋+ 1)γ(x)2[2..|(x)2|]

encode length of binary representation using
Elias-γ code

first bit of binary representation not required
anymore

|(x)δ| = 2⌊lg(⌊lg x⌋+ 1)⌋+ 1 + ⌊lg x⌋ bits

Elias-γ
4: 00 100

7: 00 111

1: 1

18: 0000 10010

12: 000 1000

Elias-δ
4: 0 11 00

7: 0 1111

1: 1

18: 00 101 0010

12: 00 100 100
12/24 2024-10-25 Florian Kurpicz | Text Indexing | 02 Inverted Index Institute of Theoretical Informatics, Algorithm Engineering

Elias-δ-Encoding [Eli75]

Definition: Elias-δ-Code
Given an integer x > 0, its Elias-δ-code (x)δ is

(x)δ = (⌊lg x⌋+ 1)γ(x)2[2..|(x)2|]

Definition: Elias-γ-Code
Given an integer x > 0, its Elias-gamma-code (x)γ
is

(x)γ = 0⌊lg x⌋(x)2

Exercise 1
Calculate the Elias-γ and Elias-δ encoding of 42.

00000 101010
00 110 01010

Exercise 2
Which integer is represented by the following Elias-δ
code?

001010111

→ 23

13/24 2024-10-25 Florian Kurpicz | Text Indexing | 02 Inverted Index Institute of Theoretical Informatics, Algorithm Engineering

Hands-on Elias-Encoding �

Definition: Elias-δ-Code
Given an integer x > 0, its Elias-δ-code (x)δ is

(x)δ = (⌊lg x⌋+ 1)γ(x)2[2..|(x)2|]

Definition: Elias-γ-Code
Given an integer x > 0, its Elias-gamma-code (x)γ
is

(x)γ = 0⌊lg x⌋(x)2

Exercise 1
Calculate the Elias-γ and Elias-δ encoding of 42.

00000 101010
00 110 01010

Exercise 2
Which integer is represented by the following Elias-δ
code?

001010111

→ 23

13/24 2024-10-25 Florian Kurpicz | Text Indexing | 02 Inverted Index Institute of Theoretical Informatics, Algorithm Engineering

Hands-on Elias-Encoding �

Definition: Elias-δ-Code
Given an integer x > 0, its Elias-δ-code (x)δ is

(x)δ = (⌊lg x⌋+ 1)γ(x)2[2..|(x)2|]

Definition: Elias-γ-Code
Given an integer x > 0, its Elias-gamma-code (x)γ
is

(x)γ = 0⌊lg x⌋(x)2

Exercise 1
Calculate the Elias-γ and Elias-δ encoding of 42.

00000 101010
00 110 01010

Exercise 2
Which integer is represented by the following Elias-δ
code?

001010111

→ 23

13/24 2024-10-25 Florian Kurpicz | Text Indexing | 02 Inverted Index Institute of Theoretical Informatics, Algorithm Engineering

Hands-on Elias-Encoding �

Definition: Elias-δ-Code
Given an integer x > 0, its Elias-δ-code (x)δ is

(x)δ = (⌊lg x⌋+ 1)γ(x)2[2..|(x)2|]

Definition: Elias-γ-Code
Given an integer x > 0, its Elias-gamma-code (x)γ
is

(x)γ = 0⌊lg x⌋(x)2

Exercise 1
Calculate the Elias-γ and Elias-δ encoding of 42.

00000 101010
00 110 01010

Exercise 2
Which integer is represented by the following Elias-δ
code?

001010111 → 23

13/24 2024-10-25 Florian Kurpicz | Text Indexing | 02 Inverted Index Institute of Theoretical Informatics, Algorithm Engineering

Hands-on Elias-Encoding �

Definition: Golomb Code
Given an integer x > 0 and a constant b > 0, the
Golomb code consists of

q = ⌊ x
b ⌋

r = x − qb = x % b

c = ⌈lg b⌉
with

(x)Gol(b) = (q)1(r)2

where (r)2 depends on its size

r < 2⌊lg b⌋−1: r requires ⌊lg b⌋ bits and starts
with a 0

r ≥ 2⌊lg b⌋−1: r requires ⌈lg b⌉ bits and starts
with a 1 and it encodes r − 2⌊lg b⌋−1

b has to be fixed for all codes

still variable length

for b = 5, there are 4 remainders:
00, 01, 100, 101, and 110

2⌊lg 5⌋−1 = 2

0, 1 < 2: 00 and 01 require 2 bits

2, 3, 4 ≥ 2: require 3 bits and encode 0, 1, 2
starting with 1

14/24 2024-10-25 Florian Kurpicz | Text Indexing | 02 Inverted Index Institute of Theoretical Informatics, Algorithm Engineering

Golomb Encoding [Gol66]

Definition: Golomb Code
Given an integer x > 0 and a constant b > 0, the
Golomb code consists of

q = ⌊ x
b ⌋

r = x − qb = x % b

c = ⌈lg b⌉
with

(x)Gol(b) = (q)1(r)2

where (r)2 depends on its size

r < 2⌊lg b⌋−1: r requires ⌊lg b⌋ bits and starts
with a 0

r ≥ 2⌊lg b⌋−1: r requires ⌈lg b⌉ bits and starts
with a 1 and it encodes r − 2⌊lg b⌋−1

b has to be fixed for all codes

still variable length

for b = 5, there are 4 remainders:
00, 01, 100, 101, and 110

2⌊lg 5⌋−1 = 2

0, 1 < 2: 00 and 01 require 2 bits

2, 3, 4 ≥ 2: require 3 bits and encode 0, 1, 2
starting with 1

14/24 2024-10-25 Florian Kurpicz | Text Indexing | 02 Inverted Index Institute of Theoretical Informatics, Algorithm Engineering

Golomb Encoding [Gol66]

Definition: Golomb Code
Given an integer x > 0 and a constant b > 0, the
Golomb code consists of

q = ⌊ x
b ⌋

r = x − qb = x % b

c = ⌈lg b⌉
with

(x)Gol(b) = (q)1(r)2

where (r)2 depends on its size

r < 2⌊lg b⌋−1: r requires ⌊lg b⌋ bits and starts
with a 0

r ≥ 2⌊lg b⌋−1: r requires ⌈lg b⌉ bits and starts
with a 1 and it encodes r − 2⌊lg b⌋−1

b has to be fixed for all codes

still variable length

for b = 5, there are 4 remainders:
00, 01, 100, 101, and 110

2⌊lg 5⌋−1 = 2

0, 1 < 2: 00 and 01 require 2 bits

2, 3, 4 ≥ 2: require 3 bits and encode 0, 1, 2
starting with 1

14/24 2024-10-25 Florian Kurpicz | Text Indexing | 02 Inverted Index Institute of Theoretical Informatics, Algorithm Engineering

Golomb Encoding [Gol66]

0 10 20 30 40 50

value

0

2

4

6

8

10

12

14

16
si

ze
unary

ternary

Fibonacci

Elias-γ

Elias-δ

Golomb (b = 5)

Golomb (b = 106)

15/24 2024-10-25 Florian Kurpicz | Text Indexing | 02 Inverted Index Institute of Theoretical Informatics, Algorithm Engineering

Comparison of Codes (1/2)

101 103 105 107 109 1011

value

0

20

40

60

80

100
si

ze
unary

ternary

Fibonacci

Elias-γ

Elias-δ

Golomb (b = 5)

Golomb (b = 106)

16/24 2024-10-25 Florian Kurpicz | Text Indexing | 02 Inverted Index Institute of Theoretical Informatics, Algorithm Engineering

Comparison of Codes (2/2)

Task
given terms t1, . . . , tk
intersect L(t1) ∩ L(t2) ∩ · · · ∩ L(tk)

pairwise intersection usually works best

intersection of two lists is of interest

start with two shortest and continue like that

Setting
two lists M and N with

|M| = m and |N| = n and

m ≤ n

different algorithms to intersect lists

assuming lists are ∆ encoded

17/24 2024-10-25 Florian Kurpicz | Text Indexing | 02 Inverted Index Institute of Theoretical Informatics, Algorithm Engineering

Back to Queries: Conjunctive Queries

Task
given terms t1, . . . , tk
intersect L(t1) ∩ L(t2) ∩ · · · ∩ L(tk)

pairwise intersection usually works best

intersection of two lists is of interest

start with two shortest and continue like that

Setting
two lists M and N with

|M| = m and |N| = n and

m ≤ n

different algorithms to intersect lists

assuming lists are ∆ encoded

17/24 2024-10-25 Florian Kurpicz | Text Indexing | 02 Inverted Index Institute of Theoretical Informatics, Algorithm Engineering

Back to Queries: Conjunctive Queries

Zipper
scan both lists as in binary merging

Lemma: Running Time Zipper
Intersecting two sorted lists of sizes m and n using
zipper requires O(m + n) time.

Proof (Sketch)
compare entries until one list is empty

if max{id : id ∈ N} < some element in M, then
all elements in N are compared

resulting in O(n + m) time

works well with ∆-encoding

in real implementations zipping is good until
n > 20m [BS05]

example on the board �

18/24 2024-10-25 Florian Kurpicz | Text Indexing | 02 Inverted Index Institute of Theoretical Informatics, Algorithm Engineering

Naive Scanning

Zipper
scan both lists as in binary merging

Lemma: Running Time Zipper
Intersecting two sorted lists of sizes m and n using
zipper requires O(m + n) time.

Proof (Sketch)
compare entries until one list is empty

if max{id : id ∈ N} < some element in M, then
all elements in N are compared

resulting in O(n + m) time

works well with ∆-encoding

in real implementations zipping is good until
n > 20m [BS05]

example on the board �

18/24 2024-10-25 Florian Kurpicz | Text Indexing | 02 Inverted Index Institute of Theoretical Informatics, Algorithm Engineering

Naive Scanning

Zipper
scan both lists as in binary merging

Lemma: Running Time Zipper
Intersecting two sorted lists of sizes m and n using
zipper requires O(m + n) time.

Proof (Sketch)
compare entries until one list is empty

if max{id : id ∈ N} < some element in M, then
all elements in N are compared

resulting in O(n + m) time

works well with ∆-encoding

in real implementations zipping is good until
n > 20m [BS05]

example on the board �

18/24 2024-10-25 Florian Kurpicz | Text Indexing | 02 Inverted Index Institute of Theoretical Informatics, Algorithm Engineering

Naive Scanning

Zipper
scan both lists as in binary merging

Lemma: Running Time Zipper
Intersecting two sorted lists of sizes m and n using
zipper requires O(m + n) time.

Proof (Sketch)
compare entries until one list is empty

if max{id : id ∈ N} < some element in M, then
all elements in N are compared

resulting in O(n + m) time

works well with ∆-encoding

in real implementations zipping is good until
n > 20m [BS05]

example on the board �

18/24 2024-10-25 Florian Kurpicz | Text Indexing | 02 Inverted Index Institute of Theoretical Informatics, Algorithm Engineering

Naive Scanning

Zipper
scan both lists as in binary merging

Lemma: Running Time Zipper
Intersecting two sorted lists of sizes m and n using
zipper requires O(m + n) time.

Proof (Sketch)
compare entries until one list is empty

if max{id : id ∈ N} < some element in M, then
all elements in N are compared

resulting in O(n + m) time

works well with ∆-encoding

in real implementations zipping is good until
n > 20m [BS05]

example on the board �

18/24 2024-10-25 Florian Kurpicz | Text Indexing | 02 Inverted Index Institute of Theoretical Informatics, Algorithm Engineering

Naive Scanning

Simple Binary Search
search each document in M in N using binary
search

Lemma: Running Time Simple Binary
Search
Intersecting two sorted lists of sizes m and n using a
simple binary search requires O(m lg n) time.

Proof (Sketch)
binary search on N because n ≥ m

for each id in N binary search in O(lg n) time

resulting in O(m lg n) total time

example on the board �

binary search not work with ∆-encoding

19/24 2024-10-25 Florian Kurpicz | Text Indexing | 02 Inverted Index Institute of Theoretical Informatics, Algorithm Engineering

Binary Search (1/2)

Simple Binary Search
search each document in M in N using binary
search

Lemma: Running Time Simple Binary
Search
Intersecting two sorted lists of sizes m and n using a
simple binary search requires O(m lg n) time.

Proof (Sketch)
binary search on N because n ≥ m

for each id in N binary search in O(lg n) time

resulting in O(m lg n) total time

example on the board �

binary search not work with ∆-encoding

19/24 2024-10-25 Florian Kurpicz | Text Indexing | 02 Inverted Index Institute of Theoretical Informatics, Algorithm Engineering

Binary Search (1/2)

Simple Binary Search
search each document in M in N using binary
search

Lemma: Running Time Simple Binary
Search
Intersecting two sorted lists of sizes m and n using a
simple binary search requires O(m lg n) time.

Proof (Sketch)
binary search on N because n ≥ m

for each id in N binary search in O(lg n) time

resulting in O(m lg n) total time

example on the board �

binary search not work with ∆-encoding

19/24 2024-10-25 Florian Kurpicz | Text Indexing | 02 Inverted Index Institute of Theoretical Informatics, Algorithm Engineering

Binary Search (1/2)

Simple Binary Search
search each document in M in N using binary
search

Lemma: Running Time Simple Binary
Search
Intersecting two sorted lists of sizes m and n using a
simple binary search requires O(m lg n) time.

Proof (Sketch)
binary search on N because n ≥ m

for each id in N binary search in O(lg n) time

resulting in O(m lg n) total time

example on the board �

binary search not work with ∆-encoding

19/24 2024-10-25 Florian Kurpicz | Text Indexing | 02 Inverted Index Institute of Theoretical Informatics, Algorithm Engineering

Binary Search (1/2)

Simple Binary Search
search each document in M in N using binary
search

Lemma: Running Time Simple Binary
Search
Intersecting two sorted lists of sizes m and n using a
simple binary search requires O(m lg n) time.

Proof (Sketch)
binary search on N because n ≥ m

for each id in N binary search in O(lg n) time

resulting in O(m lg n) total time

example on the board �

binary search not work with ∆-encoding

19/24 2024-10-25 Florian Kurpicz | Text Indexing | 02 Inverted Index Institute of Theoretical Informatics, Algorithm Engineering

Binary Search (1/2)

Double Binary Search
let pm = ⌊m

2 ⌋
search for M[pm] in N using binary search

let result be position pn

if M[pm] = N[pn] add M[pm] to result
continue recursively by intersecting

M[1, pm] ∩ N[1, pn] and
M[1 + pm, |M|] ∩ N[1 + pn, |N|]

Lemma: Running Time Double Binary
Search
Intersecting two sorted lists of sizes m and n using a
double binary search requires O(m lg n

m) time.

Proof (Sketch)
look at running time of binary search at each
recursion depth

depth 0: lgn

depth 1: 2 lg n
2

depth 2: 4 lg n
4

depth m: m lg n
m

Depth of recursion is at most lgm, therefore∑lg m
i=0

m
2i (lg

n
m + i) = m(lg n

m

∑lg m
i=0

1
2i +

∑lg m
i=0

1
2i)

total: O(m lg n
m)

example on board �

20/24 2024-10-25 Florian Kurpicz | Text Indexing | 02 Inverted Index Institute of Theoretical Informatics, Algorithm Engineering

Binary Search (2/2)

Double Binary Search
let pm = ⌊m

2 ⌋
search for M[pm] in N using binary search

let result be position pn

if M[pm] = N[pn] add M[pm] to result
continue recursively by intersecting

M[1, pm] ∩ N[1, pn] and
M[1 + pm, |M|] ∩ N[1 + pn, |N|]

Lemma: Running Time Double Binary
Search
Intersecting two sorted lists of sizes m and n using a
double binary search requires O(m lg n

m) time.

Proof (Sketch)
look at running time of binary search at each
recursion depth

depth 0: lgn

depth 1: 2 lg n
2

depth 2: 4 lg n
4

depth m: m lg n
m

Depth of recursion is at most lgm, therefore∑lg m
i=0

m
2i (lg

n
m + i) = m(lg n

m

∑lg m
i=0

1
2i +

∑lg m
i=0

1
2i)

total: O(m lg n
m)

example on board �

20/24 2024-10-25 Florian Kurpicz | Text Indexing | 02 Inverted Index Institute of Theoretical Informatics, Algorithm Engineering

Binary Search (2/2)

Double Binary Search
let pm = ⌊m

2 ⌋
search for M[pm] in N using binary search

let result be position pn

if M[pm] = N[pn] add M[pm] to result
continue recursively by intersecting

M[1, pm] ∩ N[1, pn] and
M[1 + pm, |M|] ∩ N[1 + pn, |N|]

Lemma: Running Time Double Binary
Search
Intersecting two sorted lists of sizes m and n using a
double binary search requires O(m lg n

m) time.

Proof (Sketch)
look at running time of binary search at each
recursion depth

depth 0: lgn

depth 1: 2 lg n
2

depth 2: 4 lg n
4

depth m: m lg n
m

Depth of recursion is at most lgm, therefore∑lg m
i=0

m
2i (lg

n
m + i) = m(lg n

m

∑lg m
i=0

1
2i +

∑lg m
i=0

1
2i)

total: O(m lg n
m)

example on board �

20/24 2024-10-25 Florian Kurpicz | Text Indexing | 02 Inverted Index Institute of Theoretical Informatics, Algorithm Engineering

Binary Search (2/2)

Double Binary Search
let pm = ⌊m

2 ⌋
search for M[pm] in N using binary search

let result be position pn

if M[pm] = N[pn] add M[pm] to result
continue recursively by intersecting

M[1, pm] ∩ N[1, pn] and
M[1 + pm, |M|] ∩ N[1 + pn, |N|]

Lemma: Running Time Double Binary
Search
Intersecting two sorted lists of sizes m and n using a
double binary search requires O(m lg n

m) time.

Proof (Sketch)
look at running time of binary search at each
recursion depth

depth 0: lgn

depth 1: 2 lg n
2

depth 2: 4 lg n
4

depth m: m lg n
m

Depth of recursion is at most lgm, therefore∑lg m
i=0

m
2i (lg

n
m + i) = m(lg n

m

∑lg m
i=0

1
2i +

∑lg m
i=0

1
2i)

total: O(m lg n
m)

example on board �

20/24 2024-10-25 Florian Kurpicz | Text Indexing | 02 Inverted Index Institute of Theoretical Informatics, Algorithm Engineering

Binary Search (2/2)

Exponential Search
assume that M[1..i] have been processed and

M[i] is closest to N[j] for some j

now find M[i + 1] in N by comparing it to
N[j],N[j + 1],N[j + 2],N[j + 4], . . . until

N[j + 2k] ≥ M[i + 1] ò if N[j + 2k = M[i + 1],
we are done with this iteration

binary search for M[i + 1] in N[j + 2k−1..j + 2k]

Lemma: Running Time Exponential Search
Intersecting two sorted lists of sizes m and n using a
exponential search requires O(m lg n

m) time.

Proof
searching for each element M[i] requires
O(lg di) time

di is distance between M[i − 1] and M[i] in N

O(
∑m

i lg di), which is maximal if di =
n
m

total: O(m lg n
m)

example on board �

works well if lists do not fit into main memory

still not working with ∆-encoding

21/24 2024-10-25 Florian Kurpicz | Text Indexing | 02 Inverted Index Institute of Theoretical Informatics, Algorithm Engineering

Exponential Search

Exponential Search
assume that M[1..i] have been processed and

M[i] is closest to N[j] for some j

now find M[i + 1] in N by comparing it to
N[j],N[j + 1],N[j + 2],N[j + 4], . . . until

N[j + 2k] ≥ M[i + 1] ò if N[j + 2k = M[i + 1],
we are done with this iteration

binary search for M[i + 1] in N[j + 2k−1..j + 2k]

Lemma: Running Time Exponential Search
Intersecting two sorted lists of sizes m and n using a
exponential search requires O(m lg n

m) time.

Proof
searching for each element M[i] requires
O(lg di) time

di is distance between M[i − 1] and M[i] in N

O(
∑m

i lg di), which is maximal if di =
n
m

total: O(m lg n
m)

example on board �

works well if lists do not fit into main memory

still not working with ∆-encoding

21/24 2024-10-25 Florian Kurpicz | Text Indexing | 02 Inverted Index Institute of Theoretical Informatics, Algorithm Engineering

Exponential Search

Exponential Search
assume that M[1..i] have been processed and

M[i] is closest to N[j] for some j

now find M[i + 1] in N by comparing it to
N[j],N[j + 1],N[j + 2],N[j + 4], . . . until

N[j + 2k] ≥ M[i + 1] ò if N[j + 2k = M[i + 1],
we are done with this iteration

binary search for M[i + 1] in N[j + 2k−1..j + 2k]

Lemma: Running Time Exponential Search
Intersecting two sorted lists of sizes m and n using a
exponential search requires O(m lg n

m) time.

Proof
searching for each element M[i] requires
O(lg di) time

di is distance between M[i − 1] and M[i] in N

O(
∑m

i lg di), which is maximal if di =
n
m

total: O(m lg n
m)

example on board �

works well if lists do not fit into main memory

still not working with ∆-encoding

21/24 2024-10-25 Florian Kurpicz | Text Indexing | 02 Inverted Index Institute of Theoretical Informatics, Algorithm Engineering

Exponential Search

Exponential Search
assume that M[1..i] have been processed and

M[i] is closest to N[j] for some j

now find M[i + 1] in N by comparing it to
N[j],N[j + 1],N[j + 2],N[j + 4], . . . until

N[j + 2k] ≥ M[i + 1] ò if N[j + 2k = M[i + 1],
we are done with this iteration

binary search for M[i + 1] in N[j + 2k−1..j + 2k]

Lemma: Running Time Exponential Search
Intersecting two sorted lists of sizes m and n using a
exponential search requires O(m lg n

m) time.

Proof
searching for each element M[i] requires
O(lg di) time

di is distance between M[i − 1] and M[i] in N

O(
∑m

i lg di), which is maximal if di =
n
m

total: O(m lg n
m)

example on board �

works well if lists do not fit into main memory

still not working with ∆-encoding

21/24 2024-10-25 Florian Kurpicz | Text Indexing | 02 Inverted Index Institute of Theoretical Informatics, Algorithm Engineering

Exponential Search

Exponential Search
assume that M[1..i] have been processed and

M[i] is closest to N[j] for some j

now find M[i + 1] in N by comparing it to
N[j],N[j + 1],N[j + 2],N[j + 4], . . . until

N[j + 2k] ≥ M[i + 1] ò if N[j + 2k = M[i + 1],
we are done with this iteration

binary search for M[i + 1] in N[j + 2k−1..j + 2k]

Lemma: Running Time Exponential Search
Intersecting two sorted lists of sizes m and n using a
exponential search requires O(m lg n

m) time.

Proof
searching for each element M[i] requires
O(lg di) time

di is distance between M[i − 1] and M[i] in N

O(
∑m

i lg di), which is maximal if di =
n
m

total: O(m lg n
m)

example on board �

works well if lists do not fit into main memory

still not working with ∆-encoding

21/24 2024-10-25 Florian Kurpicz | Text Indexing | 02 Inverted Index Institute of Theoretical Informatics, Algorithm Engineering

Exponential Search

Two-Level Representation
store every B-th element of the list in top-level

in addition to ∆-encoded ids

store original id for each sampled value in id-list

Binary Search
binary search on top-level

scan on list in relevant interval

example on board �

Skipper [MZ96]
scan top-level and

go down in ∆-encoded list as soon as possible

avoids complex binary search control structure

example on board �

22/24 2024-10-25 Florian Kurpicz | Text Indexing | 02 Inverted Index Institute of Theoretical Informatics, Algorithm Engineering

Engineered Representations

Two-Level Representation
store every B-th element of the list in top-level

in addition to ∆-encoded ids

store original id for each sampled value in id-list

Binary Search
binary search on top-level

scan on list in relevant interval

example on board �

Skipper [MZ96]
scan top-level and

go down in ∆-encoded list as soon as possible

avoids complex binary search control structure

example on board �

22/24 2024-10-25 Florian Kurpicz | Text Indexing | 02 Inverted Index Institute of Theoretical Informatics, Algorithm Engineering

Engineered Representations

Two-Level Representation
store every B-th element of the list in top-level

in addition to ∆-encoded ids

store original id for each sampled value in id-list

Binary Search
binary search on top-level

scan on list in relevant interval

example on board �

Skipper [MZ96]
scan top-level and

go down in ∆-encoded list as soon as possible

avoids complex binary search control structure

example on board �

22/24 2024-10-25 Florian Kurpicz | Text Indexing | 02 Inverted Index Institute of Theoretical Informatics, Algorithm Engineering

Engineered Representations

assume ids are in [0,U) with U = 22u

ids have to be random ò more details in paper

choose tuning parameter B ò determine
average bucket size

given a list N = [d1, . . . , dn] and kN = ⌈lg UB
n ⌉

per list, represent ids in
buckets bN

i containing
partial ids {dj mod 2kN : dj/2kN = i}

due to randomization, average bucket size is
between B/2 and B

elements in buckets can be ∆-encoded

example on board �

Intersection
for each element M[i] find bucket of N

can be same bucket as for M[i − 1], if so,
continue at position of M[i − 1] in bucket
ò continuing is important

scan bucket until element ≥ M[i] is found

if equal, output M[i]

Lemma: Running Time
Intersecting two sorted lists of sizes m and n using a
randomized inverted indices requires
O(m +min{n,Bm}) time.

23/24 2024-10-25 Florian Kurpicz | Text Indexing | 02 Inverted Index Institute of Theoretical Informatics, Algorithm Engineering

Intersection with Randomized Inverted Indices [ST07]

assume ids are in [0,U) with U = 22u

ids have to be random ò more details in paper

choose tuning parameter B ò determine
average bucket size

given a list N = [d1, . . . , dn] and kN = ⌈lg UB
n ⌉

per list, represent ids in
buckets bN

i containing
partial ids {dj mod 2kN : dj/2kN = i}

due to randomization, average bucket size is
between B/2 and B

elements in buckets can be ∆-encoded

example on board �

Intersection
for each element M[i] find bucket of N

can be same bucket as for M[i − 1], if so,
continue at position of M[i − 1] in bucket
ò continuing is important

scan bucket until element ≥ M[i] is found

if equal, output M[i]

Lemma: Running Time
Intersecting two sorted lists of sizes m and n using a
randomized inverted indices requires
O(m +min{n,Bm}) time.

23/24 2024-10-25 Florian Kurpicz | Text Indexing | 02 Inverted Index Institute of Theoretical Informatics, Algorithm Engineering

Intersection with Randomized Inverted Indices [ST07]

assume ids are in [0,U) with U = 22u

ids have to be random ò more details in paper

choose tuning parameter B ò determine
average bucket size

given a list N = [d1, . . . , dn] and kN = ⌈lg UB
n ⌉

per list, represent ids in
buckets bN

i containing
partial ids {dj mod 2kN : dj/2kN = i}

due to randomization, average bucket size is
between B/2 and B

elements in buckets can be ∆-encoded

example on board �

Intersection
for each element M[i] find bucket of N

can be same bucket as for M[i − 1], if so,
continue at position of M[i − 1] in bucket
ò continuing is important

scan bucket until element ≥ M[i] is found

if equal, output M[i]

Lemma: Running Time
Intersecting two sorted lists of sizes m and n using a
randomized inverted indices requires
O(m +min{n,Bm}) time.

23/24 2024-10-25 Florian Kurpicz | Text Indexing | 02 Inverted Index Institute of Theoretical Informatics, Algorithm Engineering

Intersection with Randomized Inverted Indices [ST07]

assume ids are in [0,U) with U = 22u

ids have to be random ò more details in paper

choose tuning parameter B ò determine
average bucket size

given a list N = [d1, . . . , dn] and kN = ⌈lg UB
n ⌉

per list, represent ids in
buckets bN

i containing
partial ids {dj mod 2kN : dj/2kN = i}

due to randomization, average bucket size is
between B/2 and B

elements in buckets can be ∆-encoded

example on board �

Intersection
for each element M[i] find bucket of N

can be same bucket as for M[i − 1], if so,
continue at position of M[i − 1] in bucket
ò continuing is important

scan bucket until element ≥ M[i] is found

if equal, output M[i]

Lemma: Running Time
Intersecting two sorted lists of sizes m and n using a
randomized inverted indices requires
O(m +min{n,Bm}) time.

23/24 2024-10-25 Florian Kurpicz | Text Indexing | 02 Inverted Index Institute of Theoretical Informatics, Algorithm Engineering

Intersection with Randomized Inverted Indices [ST07]

This Lecture
inverted index

space efficient encodings of document lists

efficient intersection algorithms

Next Lecture
suffix array (full-text index)

24/24 2024-10-25 Florian Kurpicz | Text Indexing | 02 Inverted Index Institute of Theoretical Informatics, Algorithm Engineering

Conclusion and Outlook

This Lecture
inverted index

space efficient encodings of document lists

efficient intersection algorithms

Next Lecture
suffix array (full-text index)

24/24 2024-10-25 Florian Kurpicz | Text Indexing | 02 Inverted Index Institute of Theoretical Informatics, Algorithm Engineering

Conclusion and Outlook

[BS05] Ricardo A. Baeza-Yates and Alejandro Salinger. “Experimental Analysis of a Fast Intersection
Algorithm for Sorted Sequences”. In: SPIRE. Volume 3772. Lecture Notes in Computer Science.
Springer, 2005doi10.1007/11575832_2, pages 13–24.

[Eli75] Peter Elias. “Universal Codeword Sets and Representations of the Integers”. In: IEEE Trans. Inf.
Theory 21.2 (1975), pages 194–203. DOI: 10.1109/TIT.1975.1055349.

[Gol66] Solomon W. Golomb. “Run-length Encodings (Corresp.)”. In: IEEE Trans. Inf. Theory 12.3 (1966),
pages 399–401. DOI: 10.1109/TIT.1966.1053907.

[MZ96] Alistair Moffat and Justin Zobel. “Self-Indexing Inverted Files for Fast Text Retrieval”. In: ACM Trans.
Inf. Syst. 14.4 (1996), pages 349–379.

[ST07] Peter Sanders and Frederik Transier. “Intersection in Integer Inverted Indices”. In: ALENEX. SIAM,
2007. DOI: 10.1137/1.9781611972870.7.

25/24 2024-10-25 Florian Kurpicz | Text Indexing | 02 Inverted Index Institute of Theoretical Informatics, Algorithm Engineering

Bibliography I

https://doi.org/10.1109/TIT.1975.1055349
https://doi.org/10.1109/TIT.1966.1053907
https://doi.org/10.1137/1.9781611972870.7

	Appendix

