
Text Indexing

Lecture 05: Text-Compression

Florian Kurpicz

The slides are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License cba: www.creativecommons.org/licenses/by-sa/4.0 | commit 59da60d compiled at 2024-11-18-12:48

KIT – The Research University in the Helmholtz Association www.kit.edu

https://creativecommons.org/licenses/by-sa/4.0/
https://www.kit.edu


https://pingo.scc.kit.edu/651997

2/25 2024-11-18 Florian Kurpicz | Text Indexing | 05 Text-Compression Institute of Theoretical Informatics, Algorithm Engineering

PINGO

https://pingo.scc.kit.edu/651997
https://pingo.scc.kit.edu/651997


Definition: Suffix Array [GBS92; MM93]
Given a text T of length n, the suffix array (SA) is a
permutation of [1..n], such that for i ≤ j ∈ [1..n]

T [SA[i]..n] ≤ T [SA[j]..n]

Definition: Longest Common Prefix Array
Given a text T of length n and its SA, the LCP-array
is defined as

LCP[i] =


0 i = 1

max{ℓ : T [SA[i]..SA[i] + ℓ) =

T [SA[i − 1]..SA[i − 1] + ℓ)} i ̸= 1

$ a a a a a b b b b b c c
$ b b b b a a b c c a a

a b c c $ b a a a b b
b a a a c $ b b b c
c $ b b a b c a a
a b c b a a $ b
b a a c $ b b
c $ b a b a
a b b a $
b a b $
b $ a
a $
$

1 2 3 4 5 6 7 8 9 10 11 12 13

T a b a b c a b c a b b a $

SA 13 12 1 9 6 3 11 2 10 7 4 8 5

LCP 0 0 1 2 2 5 0 2 1 1 4 0 3
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Recap: Suffix Array and LCP-Array



Types of Compression
lossy compression
ò audio, video, pictures, . . .

lossless compression
ò audio, text, . . .

only interested in lossless compression

faster data transfer

cheaper storage costs

“compress once, decompress often”

Types of Text-Compression
entropy coding ò compress characters

dictionary compression ò compress substings

. . .

This Lecture
measure compressibility

different compression algorithms
ò both types

space/time requirements of compression
algorithms

make use of known concepts
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Definition: Histogram
Given a text T of length n over an alphabet of size σ,
a histogram Hist[1..σ] is defined as

Hist[i] = |{j ∈ [1, n] : T [j] = i}|

Definition: 0-th Order Empirical Entropy
Given a text T of length n over an alphabet
Σ = [1, σ] and its histogram Hist , then

H0(T ) = (1/n)
σ∑

i=1

Hist[i] lg(n/Hist[i])

T = abbaaacaaba$

n = 12

Hist[a] = 7

Hist[b] = 3

Hist[c] = 1

Hist[$] = 1

H0(T ) = (1/12)(7 lg(12/7) + 3 lg(12/3) +
1 lg(12/1) + 1 lg(12/1)) ≈ 1.55
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Given a text T over an alphabet Σ and a string
S ∈ Σk , TS the concatenation of all characters that
occur in T after S in text order

T = abcdabceabcd

S = abc

TS = ded

Definition: k -th Order Empirical Entropy
Given a text T of length n over an alphabet
Σ = [1, σ] and its histogram Hist , then

Hk = (1/n)
∑

S∈Σk

|TS| · H0(TS)

PINGO can we describe a property of Hk

6/25 2024-11-18 Florian Kurpicz | Text Indexing | 05 Text-Compression Institute of Theoretical Informatics, Algorithm Engineering

k -th Order Empirical Entropy (2/2)

https://kurpicz.org


Given a text T over an alphabet Σ and a string
S ∈ Σk , TS the concatenation of all characters that
occur in T after S in text order

T = abcdabceabcd

S = abc

TS = ded

Definition: k -th Order Empirical Entropy
Given a text T of length n over an alphabet
Σ = [1, σ] and its histogram Hist , then

Hk = (1/n)
∑

S∈Σk

|TS| · H0(TS)

PINGO can we describe a property of Hk

6/25 2024-11-18 Florian Kurpicz | Text Indexing | 05 Text-Compression Institute of Theoretical Informatics, Algorithm Engineering

k -th Order Empirical Entropy (2/2)

https://kurpicz.org


Name σ n H0 H1 H2 H3

Commoncrawl 243 196,885,192,752 6.19 4.49 2.52 2.08
DNA 4 218,281,833,486 1.99 1.97 1.96 1.95
Proteins 26 50,143,206,617 4.21 4.20 4.19 4.17
Wikipedia 213 246,327,201,088 5.38 4.15 3.05 2.33
SuffixArrayCC n 137,438,953,472 37 (= lg n) 0 0 0
RussianWordBased 29 263 9,232,978,762 10.93 — — —

does not measure repetitions well

there are other measures
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idea is to create a binary tree

each character α is a leaf and has weight
Hist[α]

create node for two nodes without parent with
smallest weight

give new node total weight of children

repeat until only one node without parent
remains

label edges:
left edge: 0
right edge: 1

path to children gives code for character

T = cbcacaa

{a} : 3 {b} : 1 {c} : 3

{a, b} : 4

{a, b, c} : 7

0 1

0

1

codes are variable length and prefix-free

tree/dictionary needed for decoding
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start with Huffman codes, code word 0, and
length 1

to get canonical code for current length, then
add 1 to code word

to update length add 1 and append required
amount of zeros to code word

all codes of same length are increasing

required for Huffman-shaped wavelet trees
ò will be discussed in a later lecture

PINGO what are some advantages of
canonical Huffman codes?

Continue From Last Slide
length 1: c

length 2: a,b

start with 0 → code for c

add 1 and append 0

10 → code for a

add 1

11 → code for b

still variable length and prefix-free

instead of tree only require lengths’ of codes
and corresponding characters �
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given a text T of length n over an alphabet Σ
and its histogram hist

each character α ∈ Σ receives a code of length
ℓα = ⌈lg n

Hist[α]⌉

show that there always exists such a code

assume a complete binary tree of depth
ℓmax = maxα∈Σ ℓα with all free nodes

left edges labeled 0, right edges labeled 1

characters ordered by frequency
(ℓ1 ≥ ℓ2 ≥ · · · ≥ ℓσ)

assign characters the leftmost free node

mark all nodes above and below as non-free �

Proof there are enough free nodes (Sketch)

a code ℓα marks 2ℓmax−ℓα nodes

total number of marked leafs is∑
α∈Σ

2ℓmax−ℓα = 2ℓmax
∑
α∈Σ

2−ℓα

= 2ℓmax
∑
α∈Σ

2−⌈lg n
Hist[α]

⌉

≤ 2ℓmax
∑
α∈Σ

2− lg n
Hist[α]

= 2ℓmax
∑
α∈Σ

Hist[α]
n

= 2ℓmax

10/25 2024-11-18 Florian Kurpicz | Text Indexing | 05 Text-Compression Institute of Theoretical Informatics, Algorithm Engineering

Shannon-Fano Coding [Fan49; Sha48]



given a text T of length n over an alphabet Σ
and its histogram hist

each character α ∈ Σ receives a code of length
ℓα = ⌈lg n

Hist[α]⌉

show that there always exists such a code

assume a complete binary tree of depth
ℓmax = maxα∈Σ ℓα with all free nodes

left edges labeled 0, right edges labeled 1

characters ordered by frequency
(ℓ1 ≥ ℓ2 ≥ · · · ≥ ℓσ)

assign characters the leftmost free node

mark all nodes above and below as non-free �

Proof there are enough free nodes (Sketch)

a code ℓα marks 2ℓmax−ℓα nodes

total number of marked leafs is∑
α∈Σ

2ℓmax−ℓα = 2ℓmax
∑
α∈Σ

2−ℓα

= 2ℓmax
∑
α∈Σ

2−⌈lg n
Hist[α]

⌉

≤ 2ℓmax
∑
α∈Σ

2− lg n
Hist[α]

= 2ℓmax
∑
α∈Σ

Hist[α]
n

= 2ℓmax

10/25 2024-11-18 Florian Kurpicz | Text Indexing | 05 Text-Compression Institute of Theoretical Informatics, Algorithm Engineering

Shannon-Fano Coding [Fan49; Sha48]



given a text T of length n over an alphabet Σ
and its histogram hist

each character α ∈ Σ receives a code of length
ℓα = ⌈lg n

Hist[α]⌉

show that there always exists such a code

assume a complete binary tree of depth
ℓmax = maxα∈Σ ℓα with all free nodes

left edges labeled 0, right edges labeled 1

characters ordered by frequency
(ℓ1 ≥ ℓ2 ≥ · · · ≥ ℓσ)

assign characters the leftmost free node

mark all nodes above and below as non-free �

Proof there are enough free nodes (Sketch)

a code ℓα marks 2ℓmax−ℓα nodes

total number of marked leafs is∑
α∈Σ

2ℓmax−ℓα = 2ℓmax
∑
α∈Σ

2−ℓα

= 2ℓmax
∑
α∈Σ

2−⌈lg n
Hist[α]

⌉

≤ 2ℓmax
∑
α∈Σ

2− lg n
Hist[α]

= 2ℓmax
∑
α∈Σ

Hist[α]
n

= 2ℓmax

10/25 2024-11-18 Florian Kurpicz | Text Indexing | 05 Text-Compression Institute of Theoretical Informatics, Algorithm Engineering

Shannon-Fano Coding [Fan49; Sha48]



H0 gives average number of bits needed to
encode character

nHo(T ) is lower bound for compression without
context

one can show that no fixed-letter code can be
better than Huffman ò not in this lecture

Shannon-Fano codes can be slightly longer
than Huffman

even Shannon-Fano achieves H0-compression

Proof (Sketch)
let T be a text of length n over an alphabet Σ
with histogram Hist

let TSF be the Shannon-Fano encoded text
average length of encoded character is

(1/n)|TSF| = (1/n)
∑
α∈Σ

Hist[α]⌈lg n
Hist[α]

⌉

≤
∑
α∈Σ

Hist[α]
n

(lg
n

Hist[α]
+ 1)

=
∑
α∈Σ

Hist[α]
n

lg
n

Hist[α]
+

∑
α∈Σ

Hist[α]
n

= H0(T ) + 1
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with histogram Hist

let TSF be the Shannon-Fano encoded text
average length of encoded character is

(1/n)|TSF| = (1/n)
∑
α∈Σ

Hist[α]⌈lg n
Hist[α]

⌉

≤
∑
α∈Σ

Hist[α]
n

(lg
n

Hist[α]
+ 1)

=
∑
α∈Σ

Hist[α]
n

lg
n

Hist[α]
+

∑
α∈Σ

Hist[α]
n

= H0(T ) + 1
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does not work well with repetitions

better encode 605 × a
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Definition: LZ77 Factorization
Given a text T of length n over an alphabet Σ, the
LZ77 factorization is

a set of z factors f1, f2, . . . , fz ∈ Σ+, such that

T = f1f2 . . . fz and for all i ∈ [1, z] fi is

single character not occurring in f1 . . . fi−1 or

longest substring occurring ≥ 2 times in f1 . . . fi

T = abababbbbaba$

f1 = a

f2 = b

f3 = abab

f4 = bbb

f5 = aba

f6 = $

T = aaa . . . aa︸ ︷︷ ︸
n−1 times

$

f1 = a

f2 = aaa . . . aa︸ ︷︷ ︸
n−2 times

f3 = $
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factors can be represented as tuple

(ℓi , pi)

ℓi = 0
factor is a single character
encode character in pi

ℓi > 0
factor is a length-ℓi substring
fi = T [pi ..pi + ℓi)

T = abababbbbaba$

f1 = a

= (0, a)

f2 = b

= (0, b)

f3 = abab

= (4, 1)

f4 = bbb

= (3, 6)

f5 = aba

= (3, 1) = (3, 3)

f6 = $

= (0, $)

finding the right-most reference is hard
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Definition: Previous and Next Smaller Value
Arrays
Let A[1..n] be an integer array, then

PSV [i] = max{j ∈ [1, i) : A[j] < A[i]}
NSV [i] = min{j ∈ (i, n] : A[j] < A[i]}

In the Context of SA
close to the suffix in SA

longest possible common prefix

before the suffix in text order

1 2 3 4 5 6 7 8 9 10 11 12 13

T a b a b c a b c a b b a $

SA 13 12 1 9 6 3 11 2 10 7 4 8 5

PSV 0 0 0 3 3 3 6 3 8 8 8 11 11

NSV 2 3 ∞ 5 6 8 8 ∞ 10 11 ∞ 13 ∞

LCP 0 0 1 2 2 5 0 2 1 1 4 0 3

PINGO how fast can we compute
NSV/PSV?
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both arrays can be computed in linear time

consider the PSV array
ò NSV works analogously

prepend −∞ at index 0

Function ComputePSV(SA with −∞):
1 for i = 1, . . . , n do
2 j = i − 1
3 while j ≥ 1 and SA[i] < SA[j] do
4 j = PSV [j]
5 PSV [i] = j
6 return PSV

follow already computed values

nothing in between can be PSV

compare each element at most twice

compute PSV and NSV in O(n) time

example on the board �

16/25 2024-11-18 Florian Kurpicz | Text Indexing | 05 Text-Compression Institute of Theoretical Informatics, Algorithm Engineering

Previous and Next Smaller Values (2/2)



both arrays can be computed in linear time

consider the PSV array
ò NSV works analogously

prepend −∞ at index 0

Function ComputePSV(SA with −∞):
1 for i = 1, . . . , n do
2 j = i − 1
3 while j ≥ 1 and SA[i] < SA[j] do
4 j = PSV [j]
5 PSV [i] = j
6 return PSV

follow already computed values

nothing in between can be PSV

compare each element at most twice

compute PSV and NSV in O(n) time

example on the board �

16/25 2024-11-18 Florian Kurpicz | Text Indexing | 05 Text-Compression Institute of Theoretical Informatics, Algorithm Engineering

Previous and Next Smaller Values (2/2)



Recap: Range Minimum Queries
for a range [ℓ..r ], return position of smallest
entry in an array in that range

query time: O(1) using O(n) space

can be used to compute the lcp-value of any
two suffixes using the LCP-array

use all arrays to find lexicographically closest
suffixes

that occur before current suffix in text order �

1 2 3 4 5 6 7 8 9 10 11 12 13

T a b a b c a b c a b b a $

SA 13 12 1 9 6 3 11 2 10 7 4 8 5

PSV 0 0 0 3 3 3 6 3 8 8 8 11 11

NSV 2 3 ∞ 5 6 8 8 ∞ 10 11 ∞ 13 ∞

LCP 0 0 1 2 2 5 0 2 1 1 4 0 3
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Function LZ77(SA, ISA, LCP,RMQ,PSV ,NSV ):
1 pos = 1
2 while pos ≤ n do
3 psv = SA[PSV [ISA[pos]]]
4 nsv = SA[NSV [ISA[pos]]]
5 if lcp(psv + 1, pos) > lcp(pos + 1, nsv) then
6 ℓ = lcp(psv + 1, pos) and p = psv
7 else
8 ℓ = lcp(pos + 1, nsv) and p = nsv
9 if ℓ = 0 then p = pos

10 new factor (ℓ, p)
11 pos = pos +max{ℓ, 1}

bring your own example �
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Lemma: LZ77 Running Time
The LZ77 factorization of a text of length n can be
computed in O(n) time

Proof (Sketch)
SA, LCP, PSV , NSV , RMQLCP can be
computed in O(n) time

for each text position only O(1) time
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Definition: LZ78 Factorization
Given a text T of length n over an alphabet Σ, the
LZ78 factorization is

a set of z factors f1, f2, . . . , fz ∈ Σ+, such that

T = f1f2 . . . fz , f0 = ϵ and for all i ∈ [1, z]

if f1 . . . fi−1 = T [1..j − 1], then fi is the longest
prefix of T [j..n], such that

∃k ∈ [0, i), α ∈ Σ ∪ {$} : fi = fkα

T = abababbbbaba$

f1 = a

f2 = b

f3 = ab

f4 = abb

f5 = bb

f6 = aba

f7 = $

T = abababbbbaba$
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a set of z factors f1, f2, . . . , fz ∈ Σ+, such that

T = f1f2 . . . fz , f0 = ϵ and for all i ∈ [1, z]

if f1 . . . fi−1 = T [1..j − 1], then fi is the longest
prefix of T [j..n], such that

∃k ∈ [0, i), α ∈ Σ ∪ {$} : fi = fkα

T = abababbbbaba$

f1 = a

f2 = b

f3 = ab

f4 = abb

f5 = bb

f6 = aba

f7 = $

T = abababbbbaba$
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use dynamic trie to hold computed factors

our fastest easy to use dynamic trie is?

using arrays of fixed size �

T = abababbbbaba$

f1 = a

f2 = b

f3 = ab

f4 = abb

f5 = bb

f6 = aba

f7 = $
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Lemma:
The LZ78 factorization of a text of length n can be
computed in O(n) time

Proof (Sketch)
search each character of the text at most once
(in the trie)

insert each character of the text at most once
(in the trie)
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memory usage of the LZ78 factorization very
high ò using arrays of fixed size does not help

consider only a sliding window of the text

only factors in the window are found

space/compression rate trade-off

used in practice
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Sliding Window



nHk/ log ngz

r

bγδ
g = Ω(zno

log n
log log n )

g = O(z log n
z )

z = O(b log n
b )

z = O(r log n)

r = O(z log2 n)

b = O(r)γ = Ω(δ log n
δ
)

γ = O(min{c, b, z, r , g})
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This Lecture
different compression methods for texts

entropy coding

dictionary compression

LZ77 and LZ78 have been generalize,
improved, and combined: ò a lot!
LZ77

LZSS, LZB, LZR, LZH, . . .

LZ78
LZC, LZY, LZW, LZFG, LZMW, LZJ, . . .

Linear Time Construction

ST SA

LCPLZ

Next Lecture
easy to compress index

25/25 2024-11-18 Florian Kurpicz | Text Indexing | 05 Text-Compression Institute of Theoretical Informatics, Algorithm Engineering

Conclusion and Outlook



This Lecture
different compression methods for texts

entropy coding

dictionary compression

LZ77 and LZ78 have been generalize,
improved, and combined: ò a lot!
LZ77

LZSS, LZB, LZR, LZH, . . .

LZ78
LZC, LZY, LZW, LZFG, LZMW, LZJ, . . .

Linear Time Construction

ST SA

LCPLZ

Next Lecture
easy to compress index

25/25 2024-11-18 Florian Kurpicz | Text Indexing | 05 Text-Compression Institute of Theoretical Informatics, Algorithm Engineering

Conclusion and Outlook



This Lecture
different compression methods for texts

entropy coding

dictionary compression

LZ77 and LZ78 have been generalize,
improved, and combined: ò a lot!
LZ77

LZSS, LZB, LZR, LZH, . . .

LZ78
LZC, LZY, LZW, LZFG, LZMW, LZJ, . . .

Linear Time Construction

ST SA

LCPLZ

Next Lecture
easy to compress index

25/25 2024-11-18 Florian Kurpicz | Text Indexing | 05 Text-Compression Institute of Theoretical Informatics, Algorithm Engineering

Conclusion and Outlook



[Fan49] Robert M. Fano. The Transmission of Information. Massachusetts Institute of Technology, Research
Laboratory of Electronics, 1949.

[GBS92] Gaston H. Gonnet, Ricardo A. Baeza-Yates, and Tim Snider. “New Indices for Text: Pat Trees and
Pat Arrays”. In: Information Retrieval: Data Structures & Algorithms. Prentice-Hall, 1992,
pages 66–82.

[Huf52] David A. Huffman. “A Method for the Construction of Minimum-Redundancy Codes”. In: Proceedings
of the IRE 40.9 (1952), pages 1098–1101. DOI: 10.1109/JRPROC.1952.273898.

[KM99] S. Rao Kosaraju and Giovanni Manzini. “Compression of Low Entropy Strings with Lempel-Ziv
Algorithms”. In: SIAM J. Comput. 29.3 (1999), pages 893–911. DOI: 10.1137/S0097539797331105.

[Kur20] Florian Kurpicz. “Parallel Text Index Construction”. PhD thesis. Technical University of Dortmund,
Germany, 2020. DOI: 10.17877/DE290R-21114.

26/25 2024-11-18 Florian Kurpicz | Text Indexing | 05 Text-Compression Institute of Theoretical Informatics, Algorithm Engineering

Bibliography I

https://doi.org/10.1109/JRPROC.1952.273898
https://doi.org/10.1137/S0097539797331105
https://doi.org/10.17877/DE290R-21114


[MM93] Udi Manber and Eugene W. Myers. “Suffix Arrays: A New Method for On-Line String Searches”. In:
SIAM J. Comput. 22.5 (1993), pages 935–948. DOI: 10.1137/0222058.

[Sha48] Claude E. Shannon. “A mathematical theory of communication”. In: Bell Syst. Tech. J. 27.3 (1948),
pages 379–423. DOI: 10.1002/j.1538-7305.1948.tb01338.x.

[ZL77] Jacob Ziv and Abraham Lempel. “A Universal Algorithm for Sequential Data Compression”. In: IEEE
Trans. Inf. Theory 23.3 (1977), pages 337–343. DOI: 10.1109/TIT.1977.1055714.

[ZL78] Jacob Ziv and Abraham Lempel. “Compression of Individual Sequences via Variable-Rate Coding”.
In: IEEE Trans. Inf. Theory 24.5 (1978), pages 530–536. DOI: 10.1109/TIT.1978.1055934.

27/25 2024-11-18 Florian Kurpicz | Text Indexing | 05 Text-Compression Institute of Theoretical Informatics, Algorithm Engineering

Bibliography II

https://doi.org/10.1137/0222058
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1109/TIT.1977.1055714
https://doi.org/10.1109/TIT.1978.1055934

	Appendix

