

Text Indexing

Lecture 05: Text-Compression

Florian Kurpicz

PINGO

https://pingo.scc.kit.edu/651997

Definition: Suffix Array [GBS92; MM93]

Given a text T of length n, the suffix array (SA) is a permutation of [1..n], such that for $i \le j \in [1..n]$

$$T[SA[i]..n] \leq T[SA[j]..n]$$

Definition: Longest Common Prefix Array

Given a text T of length n and its SA, the LCP-array is defined as

$$LCP[i] = \begin{cases} 0 & i = 1\\ \max\{\ell \colon T[SA[i]..SA[i] + \ell) = \\ T[SA[i - 1]..SA[i - 1] + \ell)\} & i \neq 1 \end{cases}$$

	1	2	3	4	5	6	7	8	9	10	11	12	13
Т	а	b	а	b	С	а	b	С	а	b	b	а	\$
SA	13	12	1	9	6	3	11	2	10	7	4	8	5
LCP	0	0	1	2	2	5	0	2	1	1	4	0	3
	\$	a \$	a b a b c a b c a b b a \$	a b b a \$	a b c a b b a \$	abcabcabba\$	b a \$	babcabcabba\$	b b a \$	b c a b b a \$	bcabcabba\$	cabba\$	cabcabba\$

Why Compression

Types of Compression

- lossy compression
 - audio, video, pictures, ...
- lossless compression
 - audio, text. . . .
- only interested in lossless compression
- faster data transfer
- cheaper storage costs
- "compress once, decompress often"

Florian Kurpicz | Text Indexing | 05 Text-Compression

Types of Text-Compression

- entropy coding (1) compress characters
- dictionary compression (1) compress substings

This Lecture

- measure compressibility
- different compression algorithms
 - both types
- space/time requirements of compression algorithms
- make use of known concepts

Definition: Histogram

Given a text T of length n over an alphabet of size σ , a histogram $Hist[1..\sigma]$ is defined as

$$Hist[i] = |\{j \in [1, n] \colon T[j] = i\}|$$

Definition: 0-th Order Empirical Entropy

Given a text T of length n over an alphabet $\Sigma = [1, \sigma]$ and its histogram Hist, then

$$H_0(T) = (1/n) \sum_{i=1}^{\sigma} Hist[i] \lg(n/Hist[i])$$

- *T* = abbaaacaaba\$
- *n* = 12
- *Hist*[a] = 7
- *Hist*[b] = 3
- *Hist*[c] = 1
- Hist[\$] = 1
- $H_0(T) = (1/12)(7 \lg(12/7) + 3 \lg(12/3) + 1 \lg(12/1) + 1 \lg(12/1)) \approx 1.55$

k-th Order Empirical Entropy (2/2)

Given a text T over an alphabet Σ and a string $S \in \Sigma^k$, T_S the concatenation of all characters that occur in T after S in text order

- T = abcdabceabcd
- S = abc
- lacksquare $T_{\mathcal{S}} = \mathsf{ded}$

Definition: k-th Order Empirical Entropy

Given a text T of length n over an alphabet $\Sigma = [1, \sigma]$ and its histogram Hist , then

$$H_k = (1/n) \sum_{S \in \Sigma^k} |T_S| \cdot H_0(T_S)$$

PINGO can we describe a property of H_k

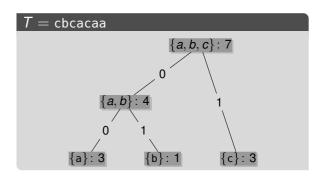
Example for *k*-th Order Empirical Entropy [Kur20]

Name	σ	n	H_0	H_1	H_2	H_3
Commoncrawl	243	196,885,192,752	6.19	4.49	2.52	2.08
DNA	4	218,281,833,486	1.99	1.97	1.96	1.95
Proteins	26	50,143,206,617	4.21	4.20	4.19	4.17
Wikipedia	213	246,327,201,088	5.38	4.15	3.05	2.33
SuffixArrayCC	n	137,438,953,472	$37 (= \lg n)$	0	0	0
RussianWordBased	29 263	9,232,978,762	10.93	_	_	_

- does not measure repetitions well
- there are other measures

Huffman Coding [Huf52]

- idea is to create a binary tree
- $\begin{tabular}{ll} \bullet & \mbox{each character } \alpha \mbox{ is a leaf and has weight} \\ & \mbox{\it Hist}[\alpha] \end{tabular}$
- create node for two nodes without parent with smallest weight
- give new node total weight of children
- repeat until only one node without parent remains
- label edges:
 - left edge: 0right edge: 1
- path to children gives code for character



- codes are variable length and prefix-free
- tree/dictionary needed for decoding

Canonical Huffman Coding

- start with Huffman codes, code word 0, and length 1
- to get canonical code for current length, then add 1 to code word
- to update length add 1 and append required amount of zeros to code word
- all codes of same length are increasing
- required for Huffman-shaped wavelet trees
 - will be discussed in a later lecture
- PINGO what are some advantages of canonical Huffman codes?

Continue From Last Slide

- length 1: c
- length 2: a,b
- start with 0 → code for c
- add 1 and append 0
- \blacksquare 10 \rightarrow code for a
- add 1
- \blacksquare 11 \rightarrow code for b
- still variable length and prefix-free
- instead of tree only require lengths' of codes and corresponding characters

Shannon-Fano Coding [Fan49; Sha48]

- given a text T of length n over an alphabet Σ and its histogram hist
- each character $\alpha \in \Sigma$ receives a code of length $\ell_{\alpha} = \lceil \lg \frac{n}{Hist[\alpha]} \rceil$
- show that there always exists such a code
- assume a complete binary tree of depth $\ell_{\mathsf{max}} = \mathsf{max}_{\alpha \in \Sigma} \, \ell_{\alpha}$ with all free nodes
- left edges labeled 0, right edges labeled 1
- characters ordered by frequency $(\ell_1 > \ell_2 > \cdots > \ell_{\sigma})$
- assign characters the leftmost free node
- mark all nodes above and below as non-free <a>I

- a code ℓ_{α} marks $2^{\ell_{\text{max}}-\ell_{\alpha}}$ nodes
- total number of marked leafs is

$$\begin{split} \sum_{\alpha \in \Sigma} 2^{\ell_{\mathsf{max}} - \ell_{\alpha}} &= 2^{\ell_{\mathsf{max}}} \sum_{\alpha \in \Sigma} 2^{-\ell_{\alpha}} \\ &= 2^{\ell_{\mathsf{max}}} \sum_{\alpha \in \Sigma} 2^{-\lceil \lg \frac{n}{\mathsf{Hist}[\alpha]} \rceil} \\ &\leq 2^{\ell_{\mathsf{max}}} \sum_{\alpha \in \Sigma} 2^{-\lg \frac{n}{\mathsf{Hist}[\alpha]}} \\ &= 2^{\ell_{\mathsf{max}}} \sum_{\alpha \in \Sigma} \frac{\mathsf{Hist}[\alpha]}{n} \\ &= 2^{\ell_{\mathsf{max}}} \end{split}$$

Optimality of Both

- H₀ gives average number of bits needed to encode character
- nH_o(T) is lower bound for compression without context
- one can show that no fixed-letter code can be better than Huffman ont in this lecture
- Shannon-Fano codes can be slightly longer than Huffman
- even Shannon-Fano achieves H₀-compression

Proof (Sketch)

- let T be a text of length n over an alphabet Σ with histogram Hist
- let T_{SF} be the Shannon-Fano encoded text
- average length of encoded character is

$$(1/n)|T_{SF}| = (1/n) \sum_{\alpha \in \Sigma} Hist[\alpha] \lceil \lg \frac{n}{Hist[\alpha]} \rceil$$

$$\leq \sum_{\alpha \in \Sigma} \frac{Hist[\alpha]}{n} (\lg \frac{n}{Hist[\alpha]} + 1)$$

$$= \sum_{\alpha \in \Sigma} \frac{Hist[\alpha]}{n} \lg \frac{n}{Hist[\alpha]} + \sum_{\alpha \in \Sigma} \frac{Hist[\alpha]}{n}$$

$$= H_0(T) + 1$$

Problem with the Previous Approaches

- does not work well with repetitions
- better encode 605 × a

Lempel-Ziv 77 [ZL77]

Definition: LZ77 Factorization

Given a text T of length n over an alphabet Σ , the LZ77 factorization is

- a set of z factors $f_1, f_2, \ldots, f_z \in \Sigma^+$, such that
- $T = f_1 f_2 \dots f_z$ and for all $i \in [1, z]$ f_i is
- single character not occurring in $f_1 \dots f_{i-1}$ or
- longest substring occurring \geq 2 times in $f_1 \dots f_i$

Т	=	aba	bal	bbb	ba	ba\$
•		abu	200		, D G	υ u Ψ

• $f_2 = b$

 \bullet $f_5 = aba$

 $f_6 =$

$$T = \underbrace{\mathsf{aaa} \dots \mathsf{aa}}_{n-1 \text{ times}} \$$$

- $f_1 = a$
- $f_2 = \underbrace{\text{aaa} \dots \text{aa}}_{n-2 \text{ times}}$
- $f_3 = \$$

Representation of Factors

factors can be represented as tuple

$$(\ell_i, p_i)$$

- $\ell_i = 0$
 - factor is a single character
 - encode character in p_i
- $\ell_i > 0$
 - factor is a length- ℓ_i substring
 - $\bullet f_i = T[p_i..p_i + \ell_i)$

T = abababbbbaba\$

- $f_1 = a = (0, a)$
- $f_2 = b = (0, b)$
- $f_3 = abab = (4, 1)$
- $f_4 = bbb = (3,6)$
- $f_5 = aba = (3,1) = (3,3)$
- $f_6 = \$ = (0,\$)$
- finding the right-most reference is hard

Previous and Next Smaller Values (1/2)

Definition: Previous and Next Smaller Value Arrays

Let A[1..n] be an integer array, then

- $PSV[i] = \max\{j \in [1, i) : A[j] < A[i]\}$
- $NSV[i] = \min\{j \in (i, n] : A[j] < A[i]\}$

In the Context of SA

- close to the suffix in SA
- longest possible common prefix
- before the suffix in text order

	1	2	3	4	5	6	7	8	9	10	11	12	13
T	а	b	а	b	С	а	b	С	а	b	b	а	\$
SA	13	12	1	9	6	3	11	2	10	7	4	8	5
PSV	0	0	0	3	3	3	6	3	8	8	8	11	11
NSV	2	3	∞	5	6	8	8	∞	10	11	∞	13	∞
LCP	0	0	1	2	2	5	0	2	1	1	4	0	3

PINGO how fast can we compute NSV/PSV?

- both arrays can be computed in linear time
- consider the PSV array
 - NSV works analogously
- \blacksquare prepend $-\infty$ at index 0

```
Function Compute PSV(SA with -\infty):
    for i = 1, \ldots, n do
1
     i=i-1
        while j \ge 1 and SA[i] < SA[j] do
         i = PSV[i]
        PSV[i] = i
     return PSV
```

- follow already computed values
- nothing in between can be PSV
- compare each element at most twice
- compute PSV and NSV in O(n) time
- example on the board <a>=

NSV, PSV, and RMQ

Recap: Range Minimum Queries

- for a range $[\ell..r]$, return position of smallest entry in an array in that range
- query time: O(1) using O(n) space
- can be used to compute the *lcp*-value of any two suffixes using the *LCP*-array
- use all arrays to find lexicographically closest suffixes
- that occur before current suffix in text order <a>=

	1	2	3	4	5	6	7	8	9	10	11	12	13
T	а	b	а	b	С	а	b	С	а	b	b	а	\$
SA	13	12	1	9	6	3	11	2	10	7	4	8	5
PSV	0	0	0	3	3	3	6	3	8	8	8	11	11
NSV	2	3	∞	5	6	8	8	∞	10	11	∞	13	∞
LCP	0	0	1	2	2	5	0	2	1	1	4	0	3

LZ77 Factorization using SA, ISA, LCP, NSV, PSV, and RMQs

```
Function LZ77(SA, ISA, LCP, RMQ, PSV, NSV):
     pos = 1
     while pos < n do
         psv = SA[PSV[ISA[pos]]]
3
         nsv = SA[NSV[ISA[pos]]]
         if lcp(psv + 1, pos) > lcp(pos + 1, nsv) then
            \ell = lcp(psv + 1, pos) and p = psv
         else
            \ell = lcp(pos + 1, nsv) and p = nsv
         if \ell = 0 then p = pos
         new factor (\ell, p)
10
         pos = pos + max{\ell, 1}
```

bring your own example <a>

Lemma: LZ77 Running Time

The LZ77 factorization of a text of length *n* can be computed in O(n) time

Florian Kurpicz | Text Indexing | 05 Text-Compression

- SA, LCP, PSV, NSV, RMQ_{LCP} can be computed in O(n) time
- for each text position only O(1) time

Lempel-Ziv 78 [ZL78]

Definition: LZ78 Factorization

Given a text T of length n over an alphabet Σ , the **LZ78 factorization** is

- a set of z factors $f_1, f_2, \ldots, f_z \in \Sigma^+$, such that
- $T = f_1 f_2 \dots f_z, f_0 = \epsilon$ and for all $i \in [1, z]$
- if $f_1 ldots f_{i-1} = T[1..j-1]$, then f_i is the longest prefix of T[j..n], such that

$$\exists k \in [0, i), \alpha \in \Sigma \cup \{\$\} : f_i = f_k \alpha$$

T=abababbbbaba\$• $f_1=a$ • $f_5=bb$ • $f_2=b$ • $f_6=aba$ • $f_4=abb$

T = abababbbbaba

- use dynamic trie to hold computed factors
- our fastest easy to use dynamic trie is?
- using arrays of fixed size 却

T = abababbbbaba\$	
■ <i>f</i> ₁ = a	• $f_5 = bb$
$ f_2 = b $ $ f_3 = ab $	• $f_6 = aba$
• $f_4 = abb$	■ f ₇ = \$

Lemma:

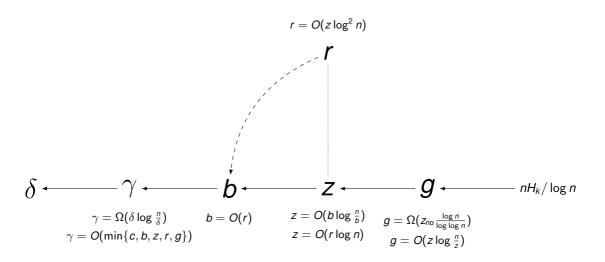
The LZ78 factorization of a text of length n can be computed in O(n) time

Proof (Sketch)

- search each character of the text at most once (in the trie)
- insert each character of the text at most once (in the trie)

- memory usage of the LZ78 factorization very high 1 using arrays of fixed size does not help
- consider only a sliding window of the text
- only factors in the window are found
- space/compression rate trade-off
- used in practice

Other Measures

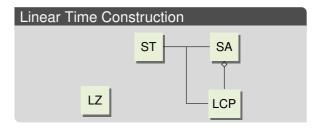


Conclusion and Outlook

This Lecture

- different compression methods for texts
- entropy coding
- dictionary compression
- LZ77 and LZ78 have been generalize, improved, and combined:
 a lot!
- LZ77
 - LZSS, LZB, LZR, LZH, . . .
- I 778
 - LZC, LZY, LZW, LZFG, LZMW, LZJ, . . .

Florian Kurpicz | Text Indexing | 05 Text-Compression



Next Lecture

easy to compress index

Bibliography I

- [Fan49] Robert M. Fano. *The Transmission of Information*. Massachusetts Institute of Technology, Research Laboratory of Electronics, 1949.
- [GBS92] Gaston H. Gonnet, Ricardo A. Baeza-Yates, and Tim Snider. "New Indices for Text: Pat Trees and Pat Arrays". In: *Information Retrieval: Data Structures & Algorithms*. Prentice-Hall, 1992, pages 66–82.
- [Huf52] David A. Huffman. "A Method for the Construction of Minimum-Redundancy Codes". In: *Proceedings of the IRE* 40.9 (1952), pages 1098–1101. DOI: 10.1109/JRPR0C.1952.273898.
- [KM99] S. Rao Kosaraju and Giovanni Manzini. "Compression of Low Entropy Strings with Lempel-Ziv Algorithms". In: *SIAM J. Comput.* 29.3 (1999), pages 893–911. DOI: 10.1137/S0097539797331105.
- [Kur20] Florian Kurpicz. "Parallel Text Index Construction". PhD thesis. Technical University of Dortmund, Germany, 2020. DOI: 10.17877/DE290R-21114.

Bibliography II

- [MM93] Udi Manber and Eugene W. Myers. "Suffix Arrays: A New Method for On-Line String Searches". In: SIAM J. Comput. 22.5 (1993), pages 935-948. DOI: 10.1137/0222058.
- [Sha48] Claude E. Shannon. "A mathematical theory of communication". In: Bell Syst. Tech. J. 27.3 (1948), pages 379-423. DOI: 10.1002/j.1538-7305.1948.tb01338.x.
- [ZL77] Jacob Ziv and Abraham Lempel. "A Universal Algorithm for Sequential Data Compression". In: IEEE Trans. Inf. Theory 23.3 (1977), pages 337–343. DOI: 10.1109/TIT.1977.1055714.
- Jacob Ziv and Abraham Lempel. "Compression of Individual Sequences via Variable-Rate Coding". [ZL78] In: IEEE Trans. Inf. Theory 24.5 (1978), pages 530-536. DOI: 10.1109/TIT.1978.1055934.