KIT

Karlsruhe Institute of Technology

Text Indexing

Lecture 09: LZ Compressed Indeces
Florian Kurpicz

The slides are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License @®®: www.creativecommons.org >s/by-sa/4.0 | commit 59da60d compiled at 2024-11-24-21:53

KIT — The Research University in the Helmholtz Association WWW. kit.edu


https://creativecommons.org/licenses/by-sa/4.0/
https://www.kit.edu

PINGO ST

Karlsruhe Institute of Technology

https://pingo.scc.kit.edu/309703

2/20 2024-11-24 Florian Kurpicz | Text Indexing | 09 LZ-Compressed Indices Institute of Theoretical Informatics, Algorithm Engineering


https://pingo.scc.kit.edu/309703
https://pingo.scc.kit.edu/309703

SKIT

Different Types of Compression
Statistical Coding LZ-Compression BWT-Compression
® based on frequencies of & references to previous ® ysed in powerful index
characters et ® theoretical insight in next
® results in size | T| - Hi(T) ® each LZ factor can be few lecture
@ k-th order empirical encoded in O(1) space
entropy ® good for repetitions
® good if frequencies are ® index in this lecture
skewed

® blind to repetitions
| T...T| - H(T...T) =
~—— ~——

¢ )
CIT| - He(T)

3/20 2024-11-24 Florian Kurpicz | Text Indexing | 09 LZ-Compressed Indices Institute of Theoretical Informatics, Algorithm Engineering



Ui

LZ-Compressed Index
Now
Given a text T of length n over an alphabet ¥, the ® | Z-compressed replacement for wavelet trees
LZ77 tactorization is ® rank and access queries © select also
® asetof zfactors fy, f,...,f, € ¥t such that supported
® T=fifb...fandforalli € [1,z] fis ® | Z-compression better than Hi-compression

® single character not occurringin f; ... fi_1 or
® |ongest substring occurring > 2 times in f; .. . f;

T = abababbbbaba$

.f1:a .f4:bbb
af=h @ f; = aba
® f; = abab Q=5

4/20 2024-11-24 Florian Kurpicz | Text Indexing | 09 LZ-Compressed Indices Institute of Theoretical Informatics, Algorithm Engineering



Block Trees [Bel+21] (1/4)

Definition: Block Tree (1/4)

Given a text T of length n over an alphabet of size o
@ 7,5 € N greater 1

® assumethat n=s- 7" forsome h € N
@ append $s until n has this form

A block tree is a
@ perfectly balanced tree with height A
& that may have leaves at higher levels
such that
@ the root has s children,
@ each other inner node has 7 children

5/20 2024-11-24 Florian Kurpicz | Text Indexing | 09 LZ-Compressed Indices

Ui

Karlsruhe Institute of Technology

| NNBOBOTWNNBOBIOOTBSHTFNEBOBOTWNEBOBOTWNEBDBIOOTBSHTFNSBOBOTN|

SHTI

Institute of Theoretical Informatics, Algorithm Engineering



KIT

Block Trees (2/4)

| NNBOBOTWNNBOBIOOTBSHTFNEBOBOTWNEBOBOTWNEBOBIOOTBSHTFNSBOBOTW |

In a block tree, leaves at
® the last level store characters or substrings of T [wo] [wzo]
® at higher levels store special leftward pointer

] o] e e o] o] o] o] ] o]

Each node u
® represents a block BY Aﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ DME
® which is a substring of T identified by a position

The root represents T and its children consecutive
blocks of T of size n/s

[m]so] so][ ][0 sx oo e[ su] v ue]eo[ so] ] ue] soHao|mHuE|BoHax\ \anrFHusHaoHaon

6/20 2024-11-24 Florian Kurpicz | Text Indexing | 09 LZ-Compressed Indices Institute of Theoretical Informatics, Algorithm Engineering



Ui

Block Trees (3/4)

Definition: BIOCk Tree (3/4) | NNBOBOTWNNBOBIOOTBSHTFNEBOBOTWNEBUBOTWNEBDBIODTBSHTFNSBOBOTN|

Let ¢, be the level (depth) of node u
& the level of the root is 0

Let By, By, . . . be the blocks represented at level £,
from left to right

a for any /, B; and By are consecutive in T

a if B;B;1¢ are the leftmost occurrence in T, the
nodes representing the blocks are marked

7/20 2024-11-24 Florian Kurpicz | Text Indexing | 09 LZ-Compressed Indices Institute of Theoretical Informatics, Algorithm Engineering



8/20 2024-11-24

Block Trees (4/4)

If node u is marked, then
® it is an internal node
& with 7 children

otherwise, if node u is not marked, then
® yis a leaf storing

@ pointers to nodes v;, v;;1 at the same level

® that represent blocks B; and Bi+
® covering the leftmost occurrence of B

a offset to the occurrence of BY in B;Bj 1
leaves on last level store text explicitly

Florian Kurpicz | Text Indexing | 09 LZ-Compressed Indices

KIT

Karlsruhe Institute of Technology

| NNBOBOTWNNBOBIOOTBSHTFNEBOBOTWNEBOBOTWNEBOBIOOTBSHTFNSBOBOTW |

weo] o] avao

] o] e e o] o] o] o] ] o]

[]sof[so][[sw[eo] sx]oo][ ] ] ve e[ so[so] rw] e o[ so] r]nefsoer]| s ]ns[sofof

" |8 = n/(sr"")
a if | B,| is small enough, store text explicitly

Institute of Theoretical Informatics, Algorithm Engineering


https://kurpicz.org

KIT

Block Trees are LZ Compressed (1/2)
The number of blocks in any level > 0 in the block Let ¢ > 0 be a level in the block tree and
tree is at most 37z ® C = B,_B;B..1 a concatenation of three
consecutive blocks at level £ — 1
® O(72) blocks per level ® not containing the end of an LZ factor
® unmarked block requires O(lg n) bits of space ® thus a leftwards occurrence in T
® marked block requires O(7 Ig n) bits of space B;_; and Bi,+ can only be marked if 5; is marked

® B;is marked if it contains end of LZ factor

last level has O(7z) blocks with plain text

a O(lg, n) symbols of [lg n] bits
® requiring O(lg o) bits per block Each marked block results in 7 children

@ there are only z LZ factors

nlgo
slgn

® rounding up length adds < O(7) blocks per

level
9/20 2024-11-24 Florian Kurpicz | Text Indexing | 09 LZ-Compressed Indices Institute of Theoretical Informatics, Algorithm Engineering

" h=lg, and O(s) pointers to top level




KIT

Block Trees are LZ Compressed (2/2)

Given a text T of length n over an alphabet of size o and integers s, 7 > 1, a block tree of T has height
h=lg. 29 The block tree requires

T slgn

I
O((s+ z7 lg, %) lg n) bits of space,

where z is the number of LZ77 factors of T

|
zign)

® s = zresults in a tree of height O(lg,,

® space requirements O(z7 lg, &2 |g n) bits

zlgn

& however z not known

10/20 2024-11-24 Florian Kurpicz | Text Indexing | 09 LZ-Compressed Indices Institute of Theoretical Informatics, Algorithm Engineering



Access Queries in Block Trees

® queries are easy to realize

& if not supported directly, additional information
can be stored for blocks

Given position i return T[i]
® follow nodes that represent block containing T[]
& of not marked follow pointer and consider offset
@ at leaf, if last level, return character
@ else, follow pointer and continue

u time O(lg, slgn)

11/20 2024-11-24 Florian Kurpicz | Text Indexing | 09 LZ-Compressed Indices

KIT

Karlsruhe Institute of Technology

® example on the board £/

ElbtE

. PINGO can we answer rank queries the

same way?

Institute of Theoretical Informatics, Algorithm Engineering


https://kurpicz.org

Rank Queries in Block Trees

u for each block add histogram Histg, for prefix of
T up to block (not containing)

® O(o(s + zrlg, MEL)Ig n) bits of space

slgo

Rank Query

Given position i and character « return rank, (T, i)
u follow nodes that represent block containing Ti]
remember Histg, [/

.
@ of not marked follow pointer and consider offset
[

at leaf, if last level, compute local rank @ binary
rank for each character

else, follow pointer and continue

12/20 2024-11-24 Florian Kurpicz | Text Indexing | 09 LZ-Compressed Indices

KIT

Karlsruhe Institute of Technology

= time O(lg, 2E%)

= example on the board £/

%‘E PINGO what can be problematic with block
tree construction?

Institute of Theoretical Informatics, Algorithm Engineering


https://kurpicz.org

SKIT

Construction of Block Trees 7N
O(s + r) Working Space
& build Aho-Corasick automaton for containing all a replace Aho-Corasick automaton with
pairs of consecutive unmarked blocks Karp-Rabin fingerprints
& identify unmarked blocks on next level a validate if matching fingerprints due to matching
® O(n(1 + g, i)) time and O(n) space strings ® Monte Carlo algorithm

® O(n(1+ g, %)) expected time and O(n) space
® size of block tree can be reduced further

® some blocks not necessary ® queries very fast in practice

= those blocks can easily be identified ® construction very slow in practice
@ space-efficient construction of block trees

13/20 2024-11-24 Florian Kurpicz | Text Indexing | 09 LZ-Compressed Indices Institute of Theoretical Informatics, Algorithm Engineering



State-of-Block-Tree-Construction A“(IT

Method Reference  Working Space Time Implementation
Aho-Corasic  [Bel+21] o(n) O(n(1 + log,.(z7/s))) no
Fingerprints  [Bel+21] O(s+ z7 log, ( ’s"l‘gi‘; ))  O(n(1+log,(z7/s))) expected yes (slow)

LPF Array [KKM23] O(n) O(n(1 + log..(z7/5s))) yes (fast)

14/20 2024-11-24 Florian Kurpicz | Text Indexing | 09 LZ-Compressed Indices Institute of Theoretical Informatics, Algorithm Engineering



KIT

Our Algorithm (Marking of Nodes) pEe

6 J4 )
PrevOcc 1 5 15 ]
(? BIC pfs D) G AJ[AIB]KB DEED

16/20 2024-11-24 Florian Kurpicz | Text Indexing | 09 LZ-Compressed Indices Institute of Theoretical Informatics, Algorithm Engineering



KIT

Experimental Evaluation

& highly tuned implementation original FP BT [Bel+21]
our reimplementation of the original FP BT

our LPF BT construction with s =1and s = z

® free consists only of bit and compact vectors
® tuning parameter

® degree root s = {1, z} (only we have s = 2)
® degree other nodes 7 = {2,4,8,16}
® number characters in leaves b = {2, 4, 8,16}

dynamic programming variants
parallelization

no comparison with wavelet trees (faster)

& repetitive instances from P&C corpus
® non-repetitive instances from P&C corpus

17/20 2024-11-24 Florian Kurpicz | Text Indexing | 09 LZ-Compressed Indices Institute of Theoretical Informatics, Algorithm Engineering



Highly Repetitive Inputs (Access Only)

throughput (MiB/s)

18/20

KIT

Karlsruhe Institute of Technology

cere einstein.en kernel
6 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
N +
e+ aa ¢ * HAEE R +
4 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
x % *
2 777777777777777777 £ 77777 7?1%7*7*7* 777777 t ’777;77‘**7*7‘*‘ 77777
******* *¥¥ ¥ * $ * ¥
* * % Ak x¥ ¥ ¥
0 # | | | | | | | | | |
0.2 0.4 0.6 0.02 0.04 0.06 0.08 0.2 0.3 0.4 0.5
space (bit/n) space (bit/n) space (bit/n)
|* reimplementation FP BTs—¢ LPF BTs—, +LPFBTs=1 =xoriginal FP BTs=1 [Bel+21]
2024-11-24

Florian Kurpicz | Text Indexing | 09 LZ-Compressed Indices

Institute of Theoretical Informatics, Algorithm Engineering



Highly Repetitive Inputs (with Rank and Select Support)

throughput (MiB/s)

19/20

KIT

Karlsruhe Institute of Technology

einstein.en kernel
6 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
+ g A& ¥
,,,,,,,,,,, A |+ A A ___ L ___
4 -¥ ++ 4+ + + F
+
+
+
B T . o o *- ,* ,,,,,,,,, g m A - -
¥ * * * +
* tk * * % e * % * * * * * * *
O**\*\ T L **\**\ L L E’H&J\&** |
0.8 1 1.2 1.4 0.6 0.8 1 1.2 5 10
space (bit/n) space (bit/n) space (bit/n)
* reimplementation FP BT¢—¢ LPF BTs—, +LPFBTs=1 =xoriginal FP BTs=1 [Bel+21]
2024-11-24

Florian Kurpicz | Text Indexing | 09 LZ-Compressed Indices

Institute of Theoretical Informatics, Algorithm Engineering



Ui

Conclusion and Outlook

This Lecture Linear Time Construction

® block trees

ST SA
a efficient block tree construction T
® linear time block tree construction
LZ LCP

Next Lecture

® Burrows-Wheeler transform

20/20 2024-11-24 Florian Kurpicz | Text Indexing | 09 LZ-Compressed Indices Institute of Theoretical Informatics, Algorithm Engineering



KIT

Bibliography |

[Bel+21] Djamal Belazzougui, Manuel Caceres, Travis Gagie, Pawel Gawrychowski, Juha Karkkainen,
Gonzalo Navarro, Alberto Ordéfez Pereira, Simon J. Puglisi, and Yasuo Tabei. “Block Trees”. In: J.
Comput. Syst. Sci. 117 (2021), pages 1-22. DOI: 10.1016/j.jcss.2020.11.002.

[KKM23] Dominik Képpl, Florian Kurpicz, and Daniel Meyer. “Faster Block Tree Construction”. In: ESA.
Volume 274. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fur Informatik, 2023, 74:1-74:20. DOI:
10.4230/LIPICS.ESA.2023.74.

[ZL77] Jacob Ziv and Abraham Lempel. “A Universal Algorithm for Sequential Data Compression”. In: [EEE
Trans. Inf. Theory 23.3 (1977), pages 337-343. DOI: 10.1109/TIT.1977.1055714.

21/20 2024-11-24 Florian Kurpicz | Text Indexing | 09 LZ-Compressed Indices Institute of Theoretical Informatics, Algorithm Engineering


https://doi.org/10.1016/j.jcss.2020.11.002
https://doi.org/10.4230/LIPICS.ESA.2023.74
https://doi.org/10.1109/TIT.1977.1055714

	Appendix

