

Text Indexing

Lecture 09: LZ Compressed Indeces

Florian Kurpicz

The slides are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License @) www.creativecommons.org/licenses/by-sa/4.0 | commit 59da60d compiled at 2024-11-24-21:53

www.kit.edu

PINGO

https://pingo.scc.kit.edu/309703

Different Types of Compression

Statistical Coding

- based on frequencies of characters
- results in size |T| · H_k(T)
 k-th order empirical entropy
- good if frequencies are skewed
- blind to repetitions $|\underline{T} \dots \underline{T}| \cdot H_k(\underline{T} \dots \underline{T}) \approx$

 $\ell |T| \cdot H_k(T)$

LZ-Compression

- references to previous occurrences
- each LZ factor can be encoded in O(1) space
- good for repetitions
- index in this lecture

BWT-Compression

- used in powerful index
- theoretical insight in next few lecture

LZ-Compressed Index

Definition: LZ77 Factorization [ZL77]

Given a text T of length n over an alphabet Σ , the **LZ77 factorization** is

- a set of z factors $f_1, f_2, \ldots, f_z \in \Sigma^+$, such that
- $T = f_1 f_2 \dots f_z$ and for all $i \in [1, z] f_i$ is
- single character not occurring in $f_1 \dots f_{i-1}$ or

• longest substring occurring ≥ 2 times in $f_1 \dots f_i$

T = abababbbbaba\$	
■ <i>f</i> ₁ = a	• $f_4 = bbb$
■ <i>f</i> ₂ = b	<i>f</i> ₅ = aba
<i>f</i> ₃ = abab	• $f_6 = $$

Now

- LZ-compressed replacement for wavelet trees
- rank and access queries ③ select also supported
- LZ-compression better than *H_k*-compression

Block Trees [Bel+21] (1/4)

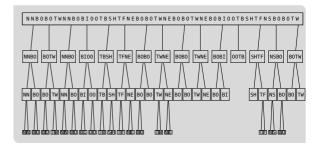
Definition: Block Tree (1/4)

Given a text T of length n over an alphabet of size σ

- $\tau, s \in \mathbb{N}$ greater 1
- assume that n = s · τ^h for some h ∈ N
 append \$s until n has this form

A block tree is a

- perfectly balanced tree with height h
- that may have leaves at higher levels such that
 - the root has s children,
 - each other inner node has τ children



Block Trees (2/4)

Definition: Block Tree (2/4)

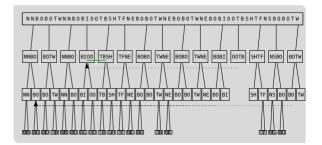
In a block tree, leaves at

- the last level store characters or substrings of T
- at higher levels store special leftward pointer

Each node u

- represents a block B^u
- \blacksquare which is a substring of ${\mathcal T}$ identified by a position

The root represents T and its children consecutive blocks of T of size n/s



Block Trees (3/4)

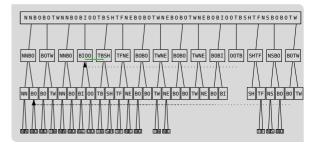
Definition: Block Tree (3/4)

Let ℓ_u be the level (depth) of node u

the level of the root is 0

Let B_1, B_2, \ldots be the blocks represented at level ℓ_u from left to right

- for any *i*, B_i and B_{i+1} are consecutive in *T*
- if B_iB_{i+1} are the leftmost occurrence in T, the nodes representing the blocks are marked



Block Trees (4/4)

Definition: Block Tree (4/4)

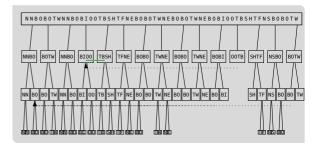
If node *u* is marked, then

- it is an internal node
- with τ children

otherwise, if node u is not marked, then

- u is a leaf storing
- pointers to nodes v_i, v_{i+1} at the same level
 - that represent blocks B_i and B_{i+1}
 - covering the leftmost occurrence of B^u
- offset to the occurrence of B^u in $B_i B_{i+1}$

leaves on last level store text explicitly



- $\bullet |B^u| = n/(s\tau^{\ell_u-1})$
- if |B_u| is small enough, store text explicitly
 |B^u ∈ ⊖(lg_σ n)|
- PINGO how many blocks are there per level?

Block Trees are LZ Compressed (1/2)

Lemma: Number of Blocks per Level

The number of blocks in any level > 0 in the block tree is at most $3\tau z$

- $O(\tau z)$ blocks per level
- unmarked block requires O(lg n) bits of space
- marked block requires O(\(\tau\) lg n\) bits of space
 charged to child
- last level has $O(\tau z)$ blocks with plain text
 - $O(\lg_{\sigma} n)$ symbols of $\lceil \lg n \rceil$ bits
 - requiring O(lg σ) bits per block
- $h = \lg_{\tau} \frac{n \lg \sigma}{s \lg n}$ and O(s) pointers to top level
- rounding up length adds $\leq O(\tau)$ blocks per level

Proof (Sketch)

- Let $\ell > 0$ be a level in the block tree and
 - C = B_{i-1}B_iB_{i+1} a concatenation of three consecutive blocks at level ℓ − 1
 - not containing the end of an LZ factor
 - thus a leftwards occurrence in T
- B_{i-1} and B_{i+1} can only be marked if B_i is marked
 - B_i is marked if it contains end of LZ factor
 - there are only z LZ factors

Each marked block results in τ children

Block Trees are LZ Compressed (2/2)

Lemma: Space Requirements of Block Trees

Given a text *T* of length *n* over an alphabet of size σ and integers $s, \tau > 1$, a block tree of *T* has height $h = \lg_{\tau} \frac{n \lg \sigma}{s \lg n}$. The block tree requires

$$O((s + z\tau \lg_{\tau} \frac{n \lg \sigma}{s \lg n}) \lg n)$$
 bits of space,

where z is the number of LZ77 factors of T

- s = z results in a tree of height $O(\lg_{\tau} \frac{n \lg \sigma}{z \lg n})$
- space requirements $O(z\tau \lg_{\tau} \frac{n \lg \sigma}{z \lg n} \lg n)$ bits
- however z not known

Access Queries in Block Trees

- queries are easy to realize
- if not supported directly, additional information can be stored for blocks

Access Query

Given position *i* return T[i]

- follow nodes that represent block containing T[i]
- of not marked follow pointer and consider offset
- at leaf, if last level, return character
- else, follow pointer and continue

example on the board

• **PINGO** can we answer rank queries the same way?

• time $O(\lg_{\tau} \frac{n \lg \sigma}{s \lg n})$

Rank Queries in Block Trees

- for each block add histogram *Hist_{B_u}* for prefix of *T* up to block (not containing)
- $O(\sigma(s + z\tau \lg_{\tau} \frac{n \lg n}{s \lg \sigma}) \lg n)$ bits of space

Rank Query

Given position *i* and character α return $rank_{\alpha}(T, i)$

- follow nodes that represent block containing T[i]
- remember $Hist_{B_u}[\alpha]$
- of not marked follow pointer and consider offset
- at leaf, if last level, compute local rank () binary rank for each character
- else, follow pointer and continue

- time $O(\lg_{\tau} \frac{n \lg \sigma}{s \lg n})$
- example on the board
- PINGO what can be problematic with block tree construction?

Construction of Block Trees

O(n) Working Space

- build Aho-Corasick automaton for containing all pairs of consecutive unmarked blocks
- identify unmarked blocks on next level
- $O(n(1 + \lg_{\tau} \frac{z}{s}))$ time and O(n) space

Pruning

- size of block tree can be reduced further
- some blocks not necessary
- those blocks can easily be identified

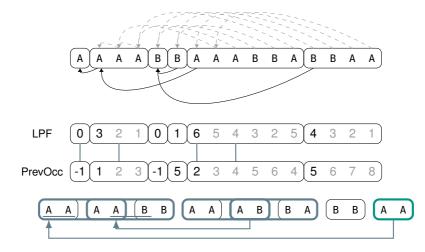
$O(s+z\tau)$ Working Space

- replace Aho-Corasick automaton with Karp-Rabin fingerprints
- validate if matching fingerprints due to matching strings
 Monte Carlo algorithm
- $O(n(1 + \lg_{\tau} \frac{z}{s}))$ expected time and O(n) space
- only expected construction time!
- queries very fast in practice
- construction very slow in practice
- space-efficient construction of block trees

State-of-Block-Tree-Construction

Method	Reference	Working Space	Time	Implementation
Aho-Corasic Fingerprints LPF Array	[Bel+21] [Bel+21] [KKM23]	$O(n) O(s + z\tau \log_{\tau}(\frac{n \log \sigma}{s \log n})) O(n)$	$O(n(1 + \log_{ au}(z au/s))) \ O(n(1 + \log_{ au}(z au/s))) ext{ expected } O(n(1 + \log_{ au}(z au/s)))$	no yes (slow) yes (fast)

Our Algorithm (Marking of Nodes)

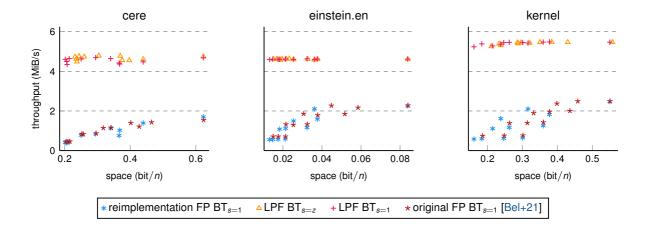


Experimental Evaluation

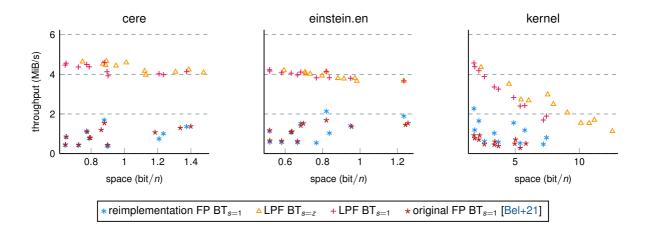
- highly tuned implementation
- tree consists only of bit and compact vectors
- tuning parameter
 - degree root $s = \{1, z\}$ (only we have s = z)
 - degree other nodes $\tau = \{2, 4, 8, 16\}$
 - number characters in leaves b = {2, 4, 8, 16}

- original FP BT [Bel+21]
- our reimplementation of the original FP BT
- our LPF BT construction with s = 1 and s = z
- dynamic programming variants
- parallelization
- no comparison with wavelet trees (faster)
- repetitive instances from P&C corpus
- non-repetitive instances from P&C corpus

Highly Repetitive Inputs (Access Only)



Highly Repetitive Inputs (with Rank and Select Support)



Conclusion and Outlook

Bibliography I

- [Bel+21] Djamal Belazzougui, Manuel Cáceres, Travis Gagie, Pawel Gawrychowski, Juha Kärkkäinen, Gonzalo Navarro, Alberto Ordóñez Pereira, Simon J. Puglisi, and Yasuo Tabei. "Block Trees". In: J. Comput. Syst. Sci. 117 (2021), pages 1–22. DOI: 10.1016/j.jcss.2020.11.002.
- [KKM23] Dominik Köppl, Florian Kurpicz, and Daniel Meyer. "Faster Block Tree Construction". In: ESA. Volume 274. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum f
 ür Informatik, 2023, 74:1–74:20. DOI: 10.4230/LIPICS.ESA.2023.74.
- [ZL77] Jacob Ziv and Abraham Lempel. "A Universal Algorithm for Sequential Data Compression". In: *IEEE Trans. Inf. Theory* 23.3 (1977), pages 337–343. DOI: 10.1109/TIT.1977.1055714.