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Statistical Coding
based on frequencies of
characters

results in size |T | · Hk(T )
ò k -th order empirical
entropy

good if frequencies are
skewed

blind to repetitions
|T . . .T︸ ︷︷ ︸

ℓ

| · Hk(T . . .T︸ ︷︷ ︸
ℓ

) ≈

ℓ|T | · Hk(T )

LZ-Compression
references to previous
occurrences

each LZ factor can be
encoded in O(1) space

good for repetitions

index in this lecture

BWT -Compression
used in powerful index

theoretical insight in next
few lecture
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Different Types of Compression



Definition: LZ77 Factorization [ZL77]
Given a text T of length n over an alphabet Σ, the
LZ77 factorization is

a set of z factors f1, f2, . . . , fz ∈ Σ+, such that

T = f1f2 . . . fz and for all i ∈ [1, z] fi is

single character not occurring in f1 . . . fi−1 or

longest substring occurring ≥ 2 times in f1 . . . fi

T = abababbbbaba$

f1 = a

f2 = b

f3 = abab

f4 = bbb

f5 = aba

f6 = $

Now
LZ-compressed replacement for wavelet trees

rank and access queries ò select also
supported

LZ-compression better than Hk -compression
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LZ-Compressed Index



Definition: Block Tree (1/4)
Given a text T of length n over an alphabet of size σ

τ, s ∈ N greater 1

assume that n = s · τ h for some h ∈ N
ò append $s until n has this form

A block tree is a

perfectly balanced tree with height h

that may have leaves at higher levels

such that

the root has s children,

each other inner node has τ children

N N B O B O T W N N B O B I O O T B S H T F N E B O B O T W N E B O B O T W N E B O B I O O T B S H T F N S B O B O T W

NNBO BOTW NNBO BIOO TBSH TFNE BOBO TWNE BOBO TWNE BOBI OOTB SHTF NSBO BOTW

N N B O B O T W N N B O B I O O T B S H T F N E B O B O T W N E B O B O T W N E B O B I O O T B S H T F N S B O B O T W

NN BO BO TW NN BO BI OO TB SH TF NE BO BO TW NE BO BO TW NE BO BI SH TF NS BO BO TW

NN BO BO TW NN BO BI OO TB SH TF NE BO TW NE TF NS BO
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Block Trees [Bel+21] (1/4)



Definition: Block Tree (2/4)
In a block tree, leaves at

the last level store characters or substrings of T

at higher levels store special leftward pointer

Each node u

represents a block Bu

which is a substring of T identified by a position

The root represents T and its children consecutive
blocks of T of size n/s

N N B O B O T W N N B O B I O O T B S H T F N E B O B O T W N E B O B O T W N E B O B I O O T B S H T F N S B O B O T W

NNBO BOTW NNBO BIOO TBSH TFNE BOBO TWNE BOBO TWNE BOBI OOTB SHTF NSBO BOTW

N N B O B O T W N N B O B I O O T B S H T F N E B O B O T W N E B O B O T W N E B O B I O O T B S H T F N S B O B O T W

NN BO BO TW NN BO BI OO TB SH TF NE BO BO TW NE BO BO TW NE BO BI SH TF NS BO BO TW

NN BO BO TW NN BO BI OO TB SH TF NE BO TW NE TF NS BO
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Block Trees (2/4)



Definition: Block Tree (3/4)
Let ℓu be the level (depth) of node u

the level of the root is 0

Let B1,B2, . . . be the blocks represented at level ℓu

from left to right

for any i , Bi and Bi+1 are consecutive in T

if BiBi+1 are the leftmost occurrence in T , the
nodes representing the blocks are marked

N N B O B O T W N N B O B I O O T B S H T F N E B O B O T W N E B O B O T W N E B O B I O O T B S H T F N S B O B O T W

NNBO BOTW NNBO BIOO TBSH TFNE BOBO TWNE BOBO TWNE BOBI OOTB SHTF NSBO BOTW

N N B O B O T W N N B O B I O O T B S H T F N E B O B O T W N E B O B O T W N E B O B I O O T B S H T F N S B O B O T W

NN BO BO TW NN BO BI OO TB SH TF NE BO BO TW NE BO BO TW NE BO BI SH TF NS BO BO TW

NN BO BO TW NN BO BI OO TB SH TF NE BO TW NE TF NS BO
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Block Trees (3/4)



Definition: Block Tree (4/4)
If node u is marked, then

it is an internal node

with τ children

otherwise, if node u is not marked, then

u is a leaf storing
pointers to nodes vi , vi+1 at the same level

that represent blocks Bi and Bi+1

covering the leftmost occurrence of Bu

offset to the occurrence of Bu in BiBi+1

leaves on last level store text explicitly

N N B O B O T W N N B O B I O O T B S H T F N E B O B O T W N E B O B O T W N E B O B I O O T B S H T F N S B O B O T W

NNBO BOTW NNBO BIOO TBSH TFNE BOBO TWNE BOBO TWNE BOBI OOTB SHTF NSBO BOTW

N N B O B O T W N N B O B I O O T B S H T F N E B O B O T W N E B O B O T W N E B O B I O O T B S H T F N S B O B O T W

NN BO BO TW NN BO BI OO TB SH TF NE BO BO TW NE BO BO TW NE BO BI SH TF NS BO BO TW

NN BO BO TW NN BO BI OO TB SH TF NE BO TW NE TF NS BO

|Bu| = n/(sτ ℓu−1)

if |Bu| is small enough, store text explicitly
ò |Bu ∈ Θ(lgσ n)|

PINGO how many blocks are there per
level?
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Block Trees (4/4)
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Lemma: Number of Blocks per Level
The number of blocks in any level > 0 in the block
tree is at most 3τz

O(τz) blocks per level

unmarked block requires O(lg n) bits of space

marked block requires O(τ lg n) bits of space
ò charged to child
last level has O(τz) blocks with plain text

O(lgσ n) symbols of ⌈lg n⌉ bits
requiring O(lg σ) bits per block

h = lgτ
n lg σ
s lg n and O(s) pointers to top level

rounding up length adds ≤ O(τ) blocks per
level

Proof (Sketch)
Let ℓ > 0 be a level in the block tree and

C = Bi−1BiBi+1 a concatenation of three
consecutive blocks at level ℓ− 1

not containing the end of an LZ factor

thus a leftwards occurrence in T

Bi−1 and Bi+1 can only be marked if Bi is marked

Bi is marked if it contains end of LZ factor

there are only z LZ factors

Each marked block results in τ children
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Block Trees are LZ Compressed (1/2)



Lemma: Space Requirements of Block Trees
Given a text T of length n over an alphabet of size σ and integers s, τ > 1, a block tree of T has height
h = lgτ

n lg σ
s lg n . The block tree requires

O((s + zτ lgτ
n lg σ

s lg n
) lg n) bits of space,

where z is the number of LZ77 factors of T

s = z results in a tree of height O(lgτ
n lg σ
z lg n )

space requirements O(zτ lgτ
n lg σ
z lg n lg n) bits

however z not known
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Block Trees are LZ Compressed (2/2)



queries are easy to realize

if not supported directly, additional information
can be stored for blocks

Access Query
Given position i return T [i]

follow nodes that represent block containing T [i]

of not marked follow pointer and consider offset

at leaf, if last level, return character

else, follow pointer and continue

time O(lgτ
n lg σ
s lg n )

example on the board �

PINGO can we answer rank queries the
same way?
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Access Queries in Block Trees
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for each block add histogram HistBu for prefix of
T up to block (not containing)

O(σ(s + zτ lgτ
n lg n
s lg σ ) lg n) bits of space

Rank Query
Given position i and character α return rankα(T , i)

follow nodes that represent block containing T [i]

remember HistBu [α]

of not marked follow pointer and consider offset

at leaf, if last level, compute local rank ò binary
rank for each character

else, follow pointer and continue

time O(lgτ
n lg σ
s lg n )

example on the board �

PINGO what can be problematic with block
tree construction?
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Rank Queries in Block Trees
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O(n) Working Space
build Aho-Corasick automaton for containing all
pairs of consecutive unmarked blocks

identify unmarked blocks on next level

O(n(1 + lgτ
z
s )) time and O(n) space

Pruning
size of block tree can be reduced further

some blocks not necessary

those blocks can easily be identified

O(s + zτ) Working Space
replace Aho-Corasick automaton with
Karp-Rabin fingerprints

validate if matching fingerprints due to matching
strings ò Monte Carlo algorithm

O(n(1 + lgτ
z
s )) expected time and O(n) space

only expected construction time!

queries very fast in practice

construction very slow in practice

space-efficient construction of block trees
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Construction of Block Trees



Method Reference Working Space Time Implementation

Aho-Corasic [Bel+21] O(n) O(n(1 + logτ (zτ/s))) no
Fingerprints [Bel+21] O(s + zτ logτ (

n log σ
s log n )) O(n(1 + logτ (zτ/s))) expected yes (slow)

LPF Array [KKM23] O(n) O(n(1 + logτ (zτ/s))) yes (fast)
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State-of-Block-Tree-Construction



A A A A B B A A A B B A B B A A

0 3 2 1 0 1 6 5 4 3 2 5 4 3 2 1LPF

-1 1 2 3 -1 5 2 3 4 5 6 4 5 6 7 8PrevOcc

A A A A B B A A A B B A B B A A
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Our Algorithm (Marking of Nodes)



highly tuned implementation

tree consists only of bit and compact vectors
tuning parameter

degree root s = {1, z} (only we have s = z)
degree other nodes τ = {2, 4, 8, 16}
number characters in leaves b = {2, 4, 8, 16}

original FP BT [Bel+21]

our reimplementation of the original FP BT

our LPF BT construction with s = 1 and s = z

dynamic programming variants

parallelization

no comparison with wavelet trees (faster)

repetitive instances from P&C corpus

non-repetitive instances from P&C corpus
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Experimental Evaluation
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Highly Repetitive Inputs (Access Only)
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Highly Repetitive Inputs (with Rank and Select Support)



This Lecture
block trees

efficient block tree construction

linear time block tree construction

Next Lecture
Burrows-Wheeler transform

Linear Time Construction

ST SA

LCPLZ
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Conclusion and Outlook
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