
Text Indexing

Lecture 09: LZ Compressed Indeces

Florian Kurpicz

The slides are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License cba: www.creativecommons.org/licenses/by-sa/4.0 | commit 59da60d compiled at 2024-11-24-21:53

KIT – The Research University in the Helmholtz Association www.kit.edu

https://creativecommons.org/licenses/by-sa/4.0/
https://www.kit.edu

https://pingo.scc.kit.edu/309703

2/20 2024-11-24 Florian Kurpicz | Text Indexing | 09 LZ-Compressed Indices Institute of Theoretical Informatics, Algorithm Engineering

PINGO

https://pingo.scc.kit.edu/309703
https://pingo.scc.kit.edu/309703

Statistical Coding
based on frequencies of
characters

results in size |T | · Hk(T)
ò k -th order empirical
entropy

good if frequencies are
skewed

blind to repetitions
|T . . .T︸ ︷︷ ︸

ℓ

| · Hk(T . . .T︸ ︷︷ ︸
ℓ

) ≈

ℓ|T | · Hk(T)

LZ-Compression
references to previous
occurrences

each LZ factor can be
encoded in O(1) space

good for repetitions

index in this lecture

BWT -Compression
used in powerful index

theoretical insight in next
few lecture

3/20 2024-11-24 Florian Kurpicz | Text Indexing | 09 LZ-Compressed Indices Institute of Theoretical Informatics, Algorithm Engineering

Different Types of Compression

Definition: LZ77 Factorization [ZL77]
Given a text T of length n over an alphabet Σ, the
LZ77 factorization is

a set of z factors f1, f2, . . . , fz ∈ Σ+, such that

T = f1f2 . . . fz and for all i ∈ [1, z] fi is

single character not occurring in f1 . . . fi−1 or

longest substring occurring ≥ 2 times in f1 . . . fi

T = abababbbbaba$

f1 = a

f2 = b

f3 = abab

f4 = bbb

f5 = aba

f6 = $

Now
LZ-compressed replacement for wavelet trees

rank and access queries ò select also
supported

LZ-compression better than Hk -compression

4/20 2024-11-24 Florian Kurpicz | Text Indexing | 09 LZ-Compressed Indices Institute of Theoretical Informatics, Algorithm Engineering

LZ-Compressed Index

Definition: Block Tree (1/4)
Given a text T of length n over an alphabet of size σ

τ, s ∈ N greater 1

assume that n = s · τ h for some h ∈ N
ò append $s until n has this form

A block tree is a

perfectly balanced tree with height h

that may have leaves at higher levels

such that

the root has s children,

each other inner node has τ children

N N B O B O T W N N B O B I O O T B S H T F N E B O B O T W N E B O B O T W N E B O B I O O T B S H T F N S B O B O T W

NNBO BOTW NNBO BIOO TBSH TFNE BOBO TWNE BOBO TWNE BOBI OOTB SHTF NSBO BOTW

N N B O B O T W N N B O B I O O T B S H T F N E B O B O T W N E B O B O T W N E B O B I O O T B S H T F N S B O B O T W

NN BO BO TW NN BO BI OO TB SH TF NE BO BO TW NE BO BO TW NE BO BI SH TF NS BO BO TW

NN BO BO TW NN BO BI OO TB SH TF NE BO TW NE TF NS BO

5/20 2024-11-24 Florian Kurpicz | Text Indexing | 09 LZ-Compressed Indices Institute of Theoretical Informatics, Algorithm Engineering

Block Trees [Bel+21] (1/4)

Definition: Block Tree (2/4)
In a block tree, leaves at

the last level store characters or substrings of T

at higher levels store special leftward pointer

Each node u

represents a block Bu

which is a substring of T identified by a position

The root represents T and its children consecutive
blocks of T of size n/s

N N B O B O T W N N B O B I O O T B S H T F N E B O B O T W N E B O B O T W N E B O B I O O T B S H T F N S B O B O T W

NNBO BOTW NNBO BIOO TBSH TFNE BOBO TWNE BOBO TWNE BOBI OOTB SHTF NSBO BOTW

N N B O B O T W N N B O B I O O T B S H T F N E B O B O T W N E B O B O T W N E B O B I O O T B S H T F N S B O B O T W

NN BO BO TW NN BO BI OO TB SH TF NE BO BO TW NE BO BO TW NE BO BI SH TF NS BO BO TW

NN BO BO TW NN BO BI OO TB SH TF NE BO TW NE TF NS BO

6/20 2024-11-24 Florian Kurpicz | Text Indexing | 09 LZ-Compressed Indices Institute of Theoretical Informatics, Algorithm Engineering

Block Trees (2/4)

Definition: Block Tree (3/4)
Let ℓu be the level (depth) of node u

the level of the root is 0

Let B1,B2, . . . be the blocks represented at level ℓu

from left to right

for any i , Bi and Bi+1 are consecutive in T

if BiBi+1 are the leftmost occurrence in T , the
nodes representing the blocks are marked

N N B O B O T W N N B O B I O O T B S H T F N E B O B O T W N E B O B O T W N E B O B I O O T B S H T F N S B O B O T W

NNBO BOTW NNBO BIOO TBSH TFNE BOBO TWNE BOBO TWNE BOBI OOTB SHTF NSBO BOTW

N N B O B O T W N N B O B I O O T B S H T F N E B O B O T W N E B O B O T W N E B O B I O O T B S H T F N S B O B O T W

NN BO BO TW NN BO BI OO TB SH TF NE BO BO TW NE BO BO TW NE BO BI SH TF NS BO BO TW

NN BO BO TW NN BO BI OO TB SH TF NE BO TW NE TF NS BO

7/20 2024-11-24 Florian Kurpicz | Text Indexing | 09 LZ-Compressed Indices Institute of Theoretical Informatics, Algorithm Engineering

Block Trees (3/4)

Definition: Block Tree (4/4)
If node u is marked, then

it is an internal node

with τ children

otherwise, if node u is not marked, then

u is a leaf storing
pointers to nodes vi , vi+1 at the same level

that represent blocks Bi and Bi+1

covering the leftmost occurrence of Bu

offset to the occurrence of Bu in BiBi+1

leaves on last level store text explicitly

N N B O B O T W N N B O B I O O T B S H T F N E B O B O T W N E B O B O T W N E B O B I O O T B S H T F N S B O B O T W

NNBO BOTW NNBO BIOO TBSH TFNE BOBO TWNE BOBO TWNE BOBI OOTB SHTF NSBO BOTW

N N B O B O T W N N B O B I O O T B S H T F N E B O B O T W N E B O B O T W N E B O B I O O T B S H T F N S B O B O T W

NN BO BO TW NN BO BI OO TB SH TF NE BO BO TW NE BO BO TW NE BO BI SH TF NS BO BO TW

NN BO BO TW NN BO BI OO TB SH TF NE BO TW NE TF NS BO

|Bu| = n/(sτ ℓu−1)

if |Bu| is small enough, store text explicitly
ò |Bu ∈ Θ(lgσ n)|

PINGO how many blocks are there per
level?

8/20 2024-11-24 Florian Kurpicz | Text Indexing | 09 LZ-Compressed Indices Institute of Theoretical Informatics, Algorithm Engineering

Block Trees (4/4)

https://kurpicz.org

Lemma: Number of Blocks per Level
The number of blocks in any level > 0 in the block
tree is at most 3τz

O(τz) blocks per level

unmarked block requires O(lg n) bits of space

marked block requires O(τ lg n) bits of space
ò charged to child
last level has O(τz) blocks with plain text

O(lgσ n) symbols of ⌈lg n⌉ bits
requiring O(lg σ) bits per block

h = lgτ
n lg σ
s lg n and O(s) pointers to top level

rounding up length adds ≤ O(τ) blocks per
level

Proof (Sketch)
Let ℓ > 0 be a level in the block tree and

C = Bi−1BiBi+1 a concatenation of three
consecutive blocks at level ℓ− 1

not containing the end of an LZ factor

thus a leftwards occurrence in T

Bi−1 and Bi+1 can only be marked if Bi is marked

Bi is marked if it contains end of LZ factor

there are only z LZ factors

Each marked block results in τ children

9/20 2024-11-24 Florian Kurpicz | Text Indexing | 09 LZ-Compressed Indices Institute of Theoretical Informatics, Algorithm Engineering

Block Trees are LZ Compressed (1/2)

Lemma: Space Requirements of Block Trees
Given a text T of length n over an alphabet of size σ and integers s, τ > 1, a block tree of T has height
h = lgτ

n lg σ
s lg n . The block tree requires

O((s + zτ lgτ
n lg σ

s lg n
) lg n) bits of space,

where z is the number of LZ77 factors of T

s = z results in a tree of height O(lgτ
n lg σ
z lg n)

space requirements O(zτ lgτ
n lg σ
z lg n lg n) bits

however z not known

10/20 2024-11-24 Florian Kurpicz | Text Indexing | 09 LZ-Compressed Indices Institute of Theoretical Informatics, Algorithm Engineering

Block Trees are LZ Compressed (2/2)

queries are easy to realize

if not supported directly, additional information
can be stored for blocks

Access Query
Given position i return T [i]

follow nodes that represent block containing T [i]

of not marked follow pointer and consider offset

at leaf, if last level, return character

else, follow pointer and continue

time O(lgτ
n lg σ
s lg n)

example on the board �

PINGO can we answer rank queries the
same way?

11/20 2024-11-24 Florian Kurpicz | Text Indexing | 09 LZ-Compressed Indices Institute of Theoretical Informatics, Algorithm Engineering

Access Queries in Block Trees

https://kurpicz.org

for each block add histogram HistBu for prefix of
T up to block (not containing)

O(σ(s + zτ lgτ
n lg n
s lg σ) lg n) bits of space

Rank Query
Given position i and character α return rankα(T , i)

follow nodes that represent block containing T [i]

remember HistBu [α]

of not marked follow pointer and consider offset

at leaf, if last level, compute local rank ò binary
rank for each character

else, follow pointer and continue

time O(lgτ
n lg σ
s lg n)

example on the board �

PINGO what can be problematic with block
tree construction?

12/20 2024-11-24 Florian Kurpicz | Text Indexing | 09 LZ-Compressed Indices Institute of Theoretical Informatics, Algorithm Engineering

Rank Queries in Block Trees

https://kurpicz.org

O(n) Working Space
build Aho-Corasick automaton for containing all
pairs of consecutive unmarked blocks

identify unmarked blocks on next level

O(n(1 + lgτ
z
s)) time and O(n) space

Pruning
size of block tree can be reduced further

some blocks not necessary

those blocks can easily be identified

O(s + zτ) Working Space
replace Aho-Corasick automaton with
Karp-Rabin fingerprints

validate if matching fingerprints due to matching
strings ò Monte Carlo algorithm

O(n(1 + lgτ
z
s)) expected time and O(n) space

only expected construction time!

queries very fast in practice

construction very slow in practice

space-efficient construction of block trees

13/20 2024-11-24 Florian Kurpicz | Text Indexing | 09 LZ-Compressed Indices Institute of Theoretical Informatics, Algorithm Engineering

Construction of Block Trees

Method Reference Working Space Time Implementation

Aho-Corasic [Bel+21] O(n) O(n(1 + logτ (zτ/s))) no
Fingerprints [Bel+21] O(s + zτ logτ (

n log σ
s log n)) O(n(1 + logτ (zτ/s))) expected yes (slow)

LPF Array [KKM23] O(n) O(n(1 + logτ (zτ/s))) yes (fast)

14/20 2024-11-24 Florian Kurpicz | Text Indexing | 09 LZ-Compressed Indices Institute of Theoretical Informatics, Algorithm Engineering

State-of-Block-Tree-Construction

A A A A B B A A A B B A B B A A

0 3 2 1 0 1 6 5 4 3 2 5 4 3 2 1LPF

-1 1 2 3 -1 5 2 3 4 5 6 4 5 6 7 8PrevOcc

A A A A B B A A A B B A B B A A

16/20 2024-11-24 Florian Kurpicz | Text Indexing | 09 LZ-Compressed Indices Institute of Theoretical Informatics, Algorithm Engineering

Our Algorithm (Marking of Nodes)

highly tuned implementation

tree consists only of bit and compact vectors
tuning parameter

degree root s = {1, z} (only we have s = z)
degree other nodes τ = {2, 4, 8, 16}
number characters in leaves b = {2, 4, 8, 16}

original FP BT [Bel+21]

our reimplementation of the original FP BT

our LPF BT construction with s = 1 and s = z

dynamic programming variants

parallelization

no comparison with wavelet trees (faster)

repetitive instances from P&C corpus

non-repetitive instances from P&C corpus

17/20 2024-11-24 Florian Kurpicz | Text Indexing | 09 LZ-Compressed Indices Institute of Theoretical Informatics, Algorithm Engineering

Experimental Evaluation

0.2 0.4 0.6
0

2

4

6

space (bit/n)

th
ro

ug
hp

ut
(M

iB
/s

)

cere

0.02 0.04 0.06 0.08

space (bit/n)

einstein.en

0.2 0.3 0.4 0.5

space (bit/n)

kernel

reimplementation FP BTs=1 LPF BTs=z LPF BTs=1 original FP BTs=1 [Bel+21]

18/20 2024-11-24 Florian Kurpicz | Text Indexing | 09 LZ-Compressed Indices Institute of Theoretical Informatics, Algorithm Engineering

Highly Repetitive Inputs (Access Only)

0.8 1 1.2 1.4
0

2

4

6

space (bit/n)

th
ro

ug
hp

ut
(M

iB
/s

)

cere

0.6 0.8 1 1.2

space (bit/n)

einstein.en

5 10

space (bit/n)

kernel

reimplementation FP BTs=1 LPF BTs=z LPF BTs=1 original FP BTs=1 [Bel+21]

19/20 2024-11-24 Florian Kurpicz | Text Indexing | 09 LZ-Compressed Indices Institute of Theoretical Informatics, Algorithm Engineering

Highly Repetitive Inputs (with Rank and Select Support)

This Lecture
block trees

efficient block tree construction

linear time block tree construction

Next Lecture
Burrows-Wheeler transform

Linear Time Construction

ST SA

LCPLZ

20/20 2024-11-24 Florian Kurpicz | Text Indexing | 09 LZ-Compressed Indices Institute of Theoretical Informatics, Algorithm Engineering

Conclusion and Outlook

[Bel+21] Djamal Belazzougui, Manuel Cáceres, Travis Gagie, Pawel Gawrychowski, Juha Kärkkäinen,
Gonzalo Navarro, Alberto Ordóñez Pereira, Simon J. Puglisi, and Yasuo Tabei. “Block Trees”. In: J.
Comput. Syst. Sci. 117 (2021), pages 1–22. DOI: 10.1016/j.jcss.2020.11.002.

[KKM23] Dominik Köppl, Florian Kurpicz, and Daniel Meyer. “Faster Block Tree Construction”. In: ESA.
Volume 274. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023, 74:1–74:20. DOI:
10.4230/LIPICS.ESA.2023.74.

[ZL77] Jacob Ziv and Abraham Lempel. “A Universal Algorithm for Sequential Data Compression”. In: IEEE
Trans. Inf. Theory 23.3 (1977), pages 337–343. DOI: 10.1109/TIT.1977.1055714.

21/20 2024-11-24 Florian Kurpicz | Text Indexing | 09 LZ-Compressed Indices Institute of Theoretical Informatics, Algorithm Engineering

Bibliography I

https://doi.org/10.1016/j.jcss.2020.11.002
https://doi.org/10.4230/LIPICS.ESA.2023.74
https://doi.org/10.1109/TIT.1977.1055714

	Appendix

