
Text Indexing

Lecture 06: Burrows-Wheeler Transform

Florian Kurpicz

The slides are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License cba: www.creativecommons.org/licenses/by-sa/4.0 | commit 59da60d compiled at 2024-12-01-20:24

KIT – The Research University in the Helmholtz Association www.kit.edu

https://creativecommons.org/licenses/by-sa/4.0/
https://www.kit.edu

https://pingo.scc.kit.edu/886630

2/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

PINGO

https://pingo.scc.kit.edu/886630
https://pingo.scc.kit.edu/886630

Definition: LZ77 Factorization [ZL77]
Given a text T of length n over an alphabet Σ, the
LZ77 factorization is

a set of z factors f1, f2, . . . , fz ∈ Σ+, such that

T = f1f2 . . . fz and for all i ∈ [1, z] fi is

single character not occurring in f1 . . . fi−1 or

longest substring occurring ≥ 2 times in f1 . . . fi

T = abababbbbaba$
f1 = a

f2 = b

f3 = abab

f4 = bbb

f5 = aba

f6 = $

Definition: LZ78 Factorization [ZL78]
Given a text T of length n over an alphabet Σ, the
LZ78 factorization is

a set of z factors f1, f2, . . . , fz ∈ Σ+, such that

T = f1f2 . . . fz , f0 = ϵ and for all i ∈ [1, z]

if f1 . . . fi−1 = T [1..j − 1], then fi is the longest
prefix of T [j..n], such that

∃k ∈ [0, i), α ∈ Σ ∪ {$} : fk = fiα

T = abababbbbaba$
f1 = a

f2 = b

f3 = ab

f4 = abb

f5 = bb

f6 = aba

f7 = $

3/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Recap: Text-Compression

Definition: Burrows-Wheeler Transform
Given a text T of length n and its suffix array SA, for
i ∈ [1, n] the Burrows-Wheeler transform is

BWT [i] =

{
T [SA[i]− 1] SA[i] > 1

$ SA[i] = 1

character before the suffix in SA-order

choose characters cyclic ò $ for first suffix

can compute BWT in O(n) time

for binary alphabet O(n/
√
lg n) time and

O(n/ lg n) words space is possible [KK19]

1 2 3 4 5 6 7 8 9 10 11 12 13

T a b a b c a b c a b b a $

SA 13 12 1 9 6 3 11 2 10 7 4 8 5

LCP 0 0 1 2 2 5 0 2 1 1 4 0 3

BWT a b $ c c b b a a a a b b

definition is not very descriptive

easy way to compute BWT

what can we do with the BWT

PINGO can the BWT be reversed?

4/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Burrows-Wheeler Transform [BW94] (1/2)

https://kurpicz.org

Definition: Burrows-Wheeler Transform
Given a text T of length n and its suffix array SA, for
i ∈ [1, n] the Burrows-Wheeler transform is

BWT [i] =

{
T [SA[i]− 1] SA[i] > 1

$ SA[i] = 1

character before the suffix in SA-order

choose characters cyclic ò $ for first suffix

can compute BWT in O(n) time

for binary alphabet O(n/
√
lg n) time and

O(n/ lg n) words space is possible [KK19]

1 2 3 4 5 6 7 8 9 10 11 12 13

T a b a b c a b c a b b a $

SA 13 12 1 9 6 3 11 2 10 7 4 8 5

LCP 0 0 1 2 2 5 0 2 1 1 4 0 3

BWT a b $ c c b b a a a a b b

definition is not very descriptive

easy way to compute BWT

what can we do with the BWT

PINGO can the BWT be reversed?

4/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Burrows-Wheeler Transform [BW94] (1/2)

https://kurpicz.org

Definition: Burrows-Wheeler Transform
Given a text T of length n and its suffix array SA, for
i ∈ [1, n] the Burrows-Wheeler transform is

BWT [i] =

{
T [SA[i]− 1] SA[i] > 1

$ SA[i] = 1

character before the suffix in SA-order

choose characters cyclic ò $ for first suffix

can compute BWT in O(n) time

for binary alphabet O(n/
√
lg n) time and

O(n/ lg n) words space is possible [KK19]

1 2 3 4 5 6 7 8 9 10 11 12 13

T a b a b c a b c a b b a $

SA 13 12 1 9 6 3 11 2 10 7 4 8 5

LCP 0 0 1 2 2 5 0 2 1 1 4 0 3

BWT a b $ c c b b a a a a b b

definition is not very descriptive

easy way to compute BWT

what can we do with the BWT

PINGO can the BWT be reversed?

4/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Burrows-Wheeler Transform [BW94] (1/2)

https://kurpicz.org

Definition: Burrows-Wheeler Transform
Given a text T of length n and its suffix array SA, for
i ∈ [1, n] the Burrows-Wheeler transform is

BWT [i] =

{
T [SA[i]− 1] SA[i] > 1

$ SA[i] = 1

character before the suffix in SA-order

choose characters cyclic ò $ for first suffix

can compute BWT in O(n) time

for binary alphabet O(n/
√
lg n) time and

O(n/ lg n) words space is possible [KK19]

1 2 3 4 5 6 7 8 9 10 11 12 13

T a b a b c a b c a b b a $

SA 13 12 1 9 6 3 11 2 10 7 4 8 5

LCP 0 0 1 2 2 5 0 2 1 1 4 0 3

BWT a b $ c c b b a a a a b b

definition is not very descriptive

easy way to compute BWT

what can we do with the BWT

PINGO can the BWT be reversed?

4/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Burrows-Wheeler Transform [BW94] (1/2)

https://kurpicz.org

Definition: Burrows-Wheeler Transform
Given a text T of length n and its suffix array SA, for
i ∈ [1, n] the Burrows-Wheeler transform is

BWT [i] =

{
T [SA[i]− 1] SA[i] > 1

$ SA[i] = 1

character before the suffix in SA-order

choose characters cyclic ò $ for first suffix

can compute BWT in O(n) time

for binary alphabet O(n/
√
lg n) time and

O(n/ lg n) words space is possible [KK19]

1 2 3 4 5 6 7 8 9 10 11 12 13

T a b a b c a b c a b b a $

SA 13 12 1 9 6 3 11 2 10 7 4 8 5

LCP 0 0 1 2 2 5 0 2 1 1 4 0 3

BWT a b $ c c b b a a a a b b

definition is not very descriptive

easy way to compute BWT

what can we do with the BWT

PINGO can the BWT be reversed?

4/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Burrows-Wheeler Transform [BW94] (1/2)

https://kurpicz.org

Definition: Burrows-Wheeler Transform
Given a text T of length n and its suffix array SA, for
i ∈ [1, n] the Burrows-Wheeler transform is

BWT [i] =

{
T [SA[i]− 1] SA[i] > 1

$ SA[i] = 1

character before the suffix in SA-order

choose characters cyclic ò $ for first suffix

can compute BWT in O(n) time

for binary alphabet O(n/
√
lg n) time and

O(n/ lg n) words space is possible [KK19]

1 2 3 4 5 6 7 8 9 10 11 12 13

T a b a b c a b c a b b a $

SA 13 12 1 9 6 3 11 2 10 7 4 8 5

LCP 0 0 1 2 2 5 0 2 1 1 4 0 3

BWT a b $ c c b b a a a a b b

definition is not very descriptive

easy way to compute BWT

what can we do with the BWT

PINGO can the BWT be reversed?

4/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Burrows-Wheeler Transform [BW94] (1/2)

https://kurpicz.org

Definition: Cyclic Rotation
Given a text T of length n, the i-th cyclic rotation is

T (i) = T [i..n]T [1..i)

i-th cyclic rotation is concatenation of i-th suffix
and (i − 1)-th prefix

Definition: Burrows-Wheeler Transform (alt.)
Given a text T and a matrix containing all its cyclic
rotations in lexicographical order as columns, then
the Burrows-Wheeler transform of the text is the
last row of the matrix

T = ababcabcabba$

a b a b c a b c a b b a $

b a b c a b c a b b a $ a

a b c a b c a b b a $ a b

b c a b c a b b a $ a b a

c a b c a b b a $ a b a b

a b c a b b a $ a b a b c

b c a b b a $ a b a b c a

c a b b a $ a b a b c a b

a b b a $ a b a b c a b c

b b a $ a b a b c a b c a

b a $ a b a b c a b c a b

a $ a b a b c a b c a b b

$ a b a b c a b c a b b a

T (1) T (2) T (3) T (4) T (5) T (6) T (7) T (8) T (9)T (10)T (11)T (12)T (13)

T = ababcabcabba$

$ a a a a a b b b b b c c

a $ b b b b a a b c c a a

b a a b c c $ b a a a b b

a b b a a a a c $ b b b c

b a c $ b b b a a b c a a

c b a a b c a b b a a $ b

a c b b a a b c a $ b a b

b a c a $ b c a b a b b a

c b a b a b a b c b a a $

a c b c b a b b a a $ b a

b a b a a $ c a b b a c b

b b a b b a a $ c c b a a

a b $ c c b b a a a a b b

T (13)T (12)T (1) T (9) T (6) T (3)T (11)T (2)T (10)T (7) T (4) T (8) T (5)

5/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Burrows-Wheeler Transform (2/2)

Definition: Cyclic Rotation
Given a text T of length n, the i-th cyclic rotation is

T (i) = T [i..n]T [1..i)

i-th cyclic rotation is concatenation of i-th suffix
and (i − 1)-th prefix

Definition: Burrows-Wheeler Transform (alt.)
Given a text T and a matrix containing all its cyclic
rotations in lexicographical order as columns, then
the Burrows-Wheeler transform of the text is the
last row of the matrix

T = ababcabcabba$

a b a b c a b c a b b a $

b a b c a b c a b b a $ a

a b c a b c a b b a $ a b

b c a b c a b b a $ a b a

c a b c a b b a $ a b a b

a b c a b b a $ a b a b c

b c a b b a $ a b a b c a

c a b b a $ a b a b c a b

a b b a $ a b a b c a b c

b b a $ a b a b c a b c a

b a $ a b a b c a b c a b

a $ a b a b c a b c a b b

$ a b a b c a b c a b b a

T (1) T (2) T (3) T (4) T (5) T (6) T (7) T (8) T (9)T (10)T (11)T (12)T (13)

T = ababcabcabba$

$ a a a a a b b b b b c c

a $ b b b b a a b c c a a

b a a b c c $ b a a a b b

a b b a a a a c $ b b b c

b a c $ b b b a a b c a a

c b a a b c a b b a a $ b

a c b b a a b c a $ b a b

b a c a $ b c a b a b b a

c b a b a b a b c b a a $

a c b c b a b b a a $ b a

b a b a a $ c a b b a c b

b b a b b a a $ c c b a a

a b $ c c b b a a a a b b

T (13)T (12)T (1) T (9) T (6) T (3)T (11)T (2)T (10)T (7) T (4) T (8) T (5)

5/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Burrows-Wheeler Transform (2/2)

Definition: Cyclic Rotation
Given a text T of length n, the i-th cyclic rotation is

T (i) = T [i..n]T [1..i)

i-th cyclic rotation is concatenation of i-th suffix
and (i − 1)-th prefix

Definition: Burrows-Wheeler Transform (alt.)
Given a text T and a matrix containing all its cyclic
rotations in lexicographical order as columns, then
the Burrows-Wheeler transform of the text is the
last row of the matrix

T = ababcabcabba$

$ a a a a a b b b b b c c

a $ b b b b a a b c c a a

b a a b c c $ b a a a b b

a b b a a a a c $ b b b c

b a c $ b b b a a b c a a

c b a a b c a b b a a $ b

a c b b a a b c a $ b a b

b a c a $ b c a b a b b a

c b a b a b a b c b a a $

a c b c b a b b a a $ b a

b a b a a $ c a b b a c b

b b a b b a a $ c c b a a

a b $ c c b b a a a a b b

T (13)T (12)T (1) T (9) T (6) T (3)T (11)T (2)T (10)T (7) T (4) T (8) T (5)

5/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Burrows-Wheeler Transform (2/2)

Definition: Cyclic Rotation
Given a text T of length n, the i-th cyclic rotation is

T (i) = T [i..n]T [1..i)

i-th cyclic rotation is concatenation of i-th suffix
and (i − 1)-th prefix

Definition: Burrows-Wheeler Transform (alt.)
Given a text T and a matrix containing all its cyclic
rotations in lexicographical order as columns, then
the Burrows-Wheeler transform of the text is the
last row of the matrix

T = ababcabcabba$

$ a a a a a b b b b b c c

a $ b b b b a a b c c a a

b a a b c c $ b a a a b b

a b b a a a a c $ b b b c

b a c $ b b b a a b c a a

c b a a b c a b b a a $ b

a c b b a a b c a $ b a b

b a c a $ b c a b a b b a

c b a b a b a b c b a a $

a c b c b a b b a a $ b a

b a b a a $ c a b b a c b

b b a b b a a $ c c b a a

a b $ c c b b a a a a b b

T (13)T (12)T (1) T (9) T (6) T (3)T (11)T (2)T (10)T (7) T (4) T (8) T (5)

5/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Burrows-Wheeler Transform (2/2)

two important rows in the matrix

other rows are not needed at all

there is a special relation between the two rows
ò later this lecture

First Row F
contains all characters or the text in sorted order

Last Row L
is the BWT itself

T = ababcabcabba$

$ a a a a a b b b b b c c

a $ b b b b a a b c c a a

b a a b c c $ b a a a b b

a b b a a a a c $ b b b c

b a c $ b b b a a b c a a

c b a a b c a b b a a $ b

a c b b a a b c a $ b a b

b a c a $ b c a b a b b a

c b a b a b a b c b a a $

a c b c b a b b a a $ b a

b a b a a $ c a b b a c b

b b a b b a a $ c c b a a

a b $ c c b b a a a a b b

T (13)T (12)T (1) T (9) T (6) T (3)T (11)T (2)T (10)T (7) T (4) T (8) T (5)

F

L

6/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

First and Last Row

Definition: Rank
Given a text T over an alphabet Sigma, the rank of a
character at position i ∈ [1, n] is

rank(i) = |{j ∈ [1, i] : T [i] = T [j]}|

rank is number of same characters that occur
before in the text

mark ranks of characters w.r.t. text not BWT

order of ranks is the same in first and last row

a b a b c a b c a b b a $
1 1 2 2 1 3 3 2 4 4 5 5 1

T
rank

T = ababcabcabba$

$ a a a a a b b b b b c c

a $ b b b b a a b c c a a

b a a b c c $ b a a a b b

a b b a a a a c $ b b b c

b a c $ b b b a a b c a a

c b a a b c a b b a a $ b

a c b b a a b c a $ b a b

b a c a $ b c a b a b b a

c b a b a b a b c b a a $

a c b c b a b b a a $ b a

b a b a a $ c a b b a c b

b b a b b a a $ c c b a a

a b $ c c b b a a a a b b

1 5 1 4 3 2 5 1 4 3 2 1 2

5 5 1 1 2 1 4 1 4 3 2 3 2

T (13)T (12)T (1) T (9) T (6) T (3)T (11)T (2)T (10)T (7) T (4) T (8) T (5)

F

L

7/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Properties of the BWT: Rank of Characters

Definition: Rank
Given a text T over an alphabet Sigma, the rank of a
character at position i ∈ [1, n] is

rank(i) = |{j ∈ [1, i] : T [i] = T [j]}|

rank is number of same characters that occur
before in the text

mark ranks of characters w.r.t. text not BWT

order of ranks is the same in first and last row

a b a b c a b c a b b a $
1 1 2 2 1 3 3 2 4 4 5 5 1

T
rank

T = ababcabcabba$

$ a a a a a b b b b b c c

a $ b b b b a a b c c a a

b a a b c c $ b a a a b b

a b b a a a a c $ b b b c

b a c $ b b b a a b c a a

c b a a b c a b b a a $ b

a c b b a a b c a $ b a b

b a c a $ b c a b a b b a

c b a b a b a b c b a a $

a c b c b a b b a a $ b a

b a b a a $ c a b b a c b

b b a b b a a $ c c b a a

a b $ c c b b a a a a b b

1 5 1 4 3 2 5 1 4 3 2 1 2

5 5 1 1 2 1 4 1 4 3 2 3 2

T (13)T (12)T (1) T (9) T (6) T (3)T (11)T (2)T (10)T (7) T (4) T (8) T (5)

F

L

7/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Properties of the BWT: Rank of Characters

Definition: Rank
Given a text T over an alphabet Sigma, the rank of a
character at position i ∈ [1, n] is

rank(i) = |{j ∈ [1, i] : T [i] = T [j]}|

rank is number of same characters that occur
before in the text

mark ranks of characters w.r.t. text not BWT

order of ranks is the same in first and last row

a b a b c a b c a b b a $
1 1 2 2 1 3 3 2 4 4 5 5 1

T
rank

T = ababcabcabba$

$ a a a a a b b b b b c c

a $ b b b b a a b c c a a

b a a b c c $ b a a a b b

a b b a a a a c $ b b b c

b a c $ b b b a a b c a a

c b a a b c a b b a a $ b

a c b b a a b c a $ b a b

b a c a $ b c a b a b b a

c b a b a b a b c b a a $

a c b c b a b b a a $ b a

b a b a a $ c a b b a c b

b b a b b a a $ c c b a a

a b $ c c b b a a a a b b

1 5 1 4 3 2 5 1 4 3 2 1 2

5 5 1 1 2 1 4 1 4 3 2 3 2

T (13)T (12)T (1) T (9) T (6) T (3)T (11)T (2)T (10)T (7) T (4) T (8) T (5)

F

L

7/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Properties of the BWT: Rank of Characters

Definition: Rank
Given a text T over an alphabet Sigma, the rank of a
character at position i ∈ [1, n] is

rank(i) = |{j ∈ [1, i] : T [i] = T [j]}|

rank is number of same characters that occur
before in the text

mark ranks of characters w.r.t. text not BWT

order of ranks is the same in first and last row

a b a b c a b c a b b a $
1 1 2 2 1 3 3 2 4 4 5 5 1

T
rank

T = ababcabcabba$

$ a a a a a b b b b b c c

a $ b b b b a a b c c a a

b a a b c c $ b a a a b b

a b b a a a a c $ b b b c

b a c $ b b b a a b c a a

c b a a b c a b b a a $ b

a c b b a a b c a $ b a b

b a c a $ b c a b a b b a

c b a b a b a b c b a a $

a c b c b a b b a a $ b a

b a b a a $ c a b b a c b

b b a b b a a $ c c b a a

a b $ c c b b a a a a b b

1 5 1 4 3 2 5 1 4 3 2 1 2

5 5 1 1 2 1 4 1 4 3 2 3 2

T (13)T (12)T (1) T (9) T (6) T (3)T (11)T (2)T (10)T (7) T (4) T (8) T (5)

F

L

7/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Properties of the BWT: Rank of Characters

Definition: Rank
Given a text T over an alphabet Sigma, the rank of a
character at position i ∈ [1, n] is

rank(i) = |{j ∈ [1, i] : T [i] = T [j]}|

rank is number of same characters that occur
before in the text

mark ranks of characters w.r.t. text not BWT

order of ranks is the same in first and last row

a b a b c a b c a b b a $
1 1 2 2 1 3 3 2 4 4 5 5 1

T
rank

T = ababcabcabba$

$ a a a a a b b b b b c c

a $ b b b b a a b c c a a

b a a b c c $ b a a a b b

a b b a a a a c $ b b b c

b a c $ b b b a a b c a a

c b a a b c a b b a a $ b

a c b b a a b c a $ b a b

b a c a $ b c a b a b b a

c b a b a b a b c b a a $

a c b c b a b b a a $ b a

b a b a a $ c a b b a c b

b b a b b a a $ c c b a a

a b $ c c b b a a a a b b

1 5 1 4 3 2 5 1 4 3 2 1 2

5 5 1 1 2 1 4 1 4 3 2 3 2

T (13)T (12)T (1) T (9) T (6) T (3)T (11)T (2)T (10)T (7) T (4) T (8) T (5)

F

L

7/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Properties of the BWT: Rank of Characters

Definition: Rank
Given a text T over an alphabet Sigma, the rank of a
character at position i ∈ [1, n] is

rank(i) = |{j ∈ [1, i] : T [i] = T [j]}|

rank is number of same characters that occur
before in the text

mark ranks of characters w.r.t. text not BWT

order of ranks is the same in first and last row

a b a b c a b c a b b a $
1 1 2 2 1 3 3 2 4 4 5 5 1

T
rank

T = ababcabcabba$

$ a a a a a b b b b b c c

a $ b b b b a a b c c a a

b a a b c c $ b a a a b b

a b b a a a a c $ b b b c

b a c $ b b b a a b c a a

c b a a b c a b b a a $ b

a c b b a a b c a $ b a b

b a c a $ b c a b a b b a

c b a b a b a b c b a a $

a c b c b a b b a a $ b a

b a b a a $ c a b b a c b

b b a b b a a $ c c b a a

a b $ c c b b a a a a b b

1 5 1 4 3 2 5 1 4 3 2 1 2

5 5 1 1 2 1 4 1 4 3 2 3 2

T (13)T (12)T (1) T (9) T (6) T (3)T (11)T (2)T (10)T (7) T (4) T (8) T (5)

F

L

7/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Properties of the BWT: Rank of Characters

want to map characters from last to first row
why do we want this?

helps with pattern matching
transform BWT back to T

Definition: LF -mapping
Given a text T of length n and its suffix array SA,
then the LF -mapping is a permutation of [1, n], such
that

LF(i) = j ⇐⇒ SA[j] = SA[i]− 1

similar to definition of BWT

requires SA or explicitly saving LF -mapping

T = ababcabcabba$

$ a a a a a b b b b b c c

a $ b b b b a a b c c a a

b a a b c c $ b a a a b b

a b b a a a a c $ b b b c

b a c $ b b b a a b c a a

c b a a b c a b b a a $ b

a c b b a a b c a $ b a b

b a c a $ b c a b a b b a

c b a b a b a b c b a a $

a c b c b a b b a a $ b a

b a b a a $ c a b b a c b

b b a b b a a $ c c b a a

a b $ c c b b a a a a b b

T (13)T (12)T (1) T (9) T (6) T (3)T (11)T (2)T (10)T (7) T (4) T (8) T (5)

F

L

8/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

LF-Mapping (1/2)

want to map characters from last to first row
why do we want this?

helps with pattern matching
transform BWT back to T

Definition: LF -mapping
Given a text T of length n and its suffix array SA,
then the LF -mapping is a permutation of [1, n], such
that

LF(i) = j ⇐⇒ SA[j] = SA[i]− 1

similar to definition of BWT

requires SA or explicitly saving LF -mapping

T = ababcabcabba$

$ a a a a a b b b b b c c

a $ b b b b a a b c c a a

b a a b c c $ b a a a b b

a b b a a a a c $ b b b c

b a c $ b b b a a b c a a

c b a a b c a b b a a $ b

a c b b a a b c a $ b a b

b a c a $ b c a b a b b a

c b a b a b a b c b a a $

a c b c b a b b a a $ b a

b a b a a $ c a b b a c b

b b a b b a a $ c c b a a

a b $ c c b b a a a a b b

T (13)T (12)T (1) T (9) T (6) T (3)T (11)T (2)T (10)T (7) T (4) T (8) T (5)

F

L

8/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

LF-Mapping (1/2)

want to map characters from last to first row
why do we want this?

helps with pattern matching
transform BWT back to T

Definition: LF -mapping
Given a text T of length n and its suffix array SA,
then the LF -mapping is a permutation of [1, n], such
that

LF(i) = j ⇐⇒ SA[j] = SA[i]− 1

similar to definition of BWT

requires SA or explicitly saving LF -mapping

T = ababcabcabba$

$ a a a a a b b b b b c c

a $ b b b b a a b c c a a

b a a b c c $ b a a a b b

a b b a a a a c $ b b b c

b a c $ b b b a a b c a a

c b a a b c a b b a a $ b

a c b b a a b c a $ b a b

b a c a $ b c a b a b b a

c b a b a b a b c b a a $

a c b c b a b b a a $ b a

b a b a a $ c a b b a c b

b b a b b a a $ c c b a a

a b $ c c b b a a a a b b

T (13)T (12)T (1) T (9) T (6) T (3)T (11)T (2)T (10)T (7) T (4) T (8) T (5)

F

L

8/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

LF-Mapping (1/2)

want to map characters from last to first row
why do we want this?

helps with pattern matching
transform BWT back to T

Definition: LF -mapping
Given a text T of length n and its suffix array SA,
then the LF -mapping is a permutation of [1, n], such
that

LF(i) = j ⇐⇒ SA[j] = SA[i]− 1

similar to definition of BWT

requires SA or explicitly saving LF -mapping

T = ababcabcabba$

$ a a a a a b b b b b c c

a $ b b b b a a b c c a a

b a a b c c $ b a a a b b

a b b a a a a c $ b b b c

b a c $ b b b a a b c a a

c b a a b c a b b a a $ b

a c b b a a b c a $ b a b

b a c a $ b c a b a b b a

c b a b a b a b c b a a $

a c b c b a b b a a $ b a

b a b a a $ c a b b a c b

b b a b b a a $ c c b a a

a b $ c c b b a a a a b b

T (13)T (12)T (1) T (9) T (6) T (3)T (11)T (2)T (10)T (7) T (4) T (8) T (5)

F

L

8/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

LF-Mapping (1/2)

want to map characters from last to first row
why do we want this?

helps with pattern matching
transform BWT back to T

Definition: LF -mapping
Given a text T of length n and its suffix array SA,
then the LF -mapping is a permutation of [1, n], such
that

LF(i) = j ⇐⇒ SA[j] = SA[i]− 1

similar to definition of BWT

requires SA or explicitly saving LF -mapping

T = ababcabcabba$

$ a a a a a b b b b b c c

a $ b b b b a a b c c a a

b a a b c c $ b a a a b b

a b b a a a a c $ b b b c

b a c $ b b b a a b c a a

c b a a b c a b b a a $ b

a c b b a a b c a $ b a b

b a c a $ b c a b a b b a

c b a b a b a b c b a a $

a c b c b a b b a a $ b a

b a b a a $ c a b b a c b

b b a b b a a $ c c b a a

a b $ c c b b a a a a b b

T (13)T (12)T (1) T (9) T (6) T (3)T (11)T (2)T (10)T (7) T (4) T (8) T (5)

F

L

8/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

LF-Mapping (1/2)

want to map characters from last to first row
why do we want this?

helps with pattern matching
transform BWT back to T

Definition: LF -mapping
Given a text T of length n and its suffix array SA,
then the LF -mapping is a permutation of [1, n], such
that

LF(i) = j ⇐⇒ SA[j] = SA[i]− 1

similar to definition of BWT

requires SA or explicitly saving LF -mapping

T = ababcabcabba$

$ a a a a a b b b b b c c

a $ b b b b a a b c c a a

b a a b c c $ b a a a b b

a b b a a a a c $ b b b c

b a c $ b b b a a b c a a

c b a a b c a b b a a $ b

a c b b a a b c a $ b a b

b a c a $ b c a b a b b a

c b a b a b a b c b a a $

a c b c b a b b a a $ b a

b a b a a $ c a b b a c b

b b a b b a a $ c c b a a

a b $ c c b b a a a a b b

T (13)T (12)T (1) T (9) T (6) T (3)T (11)T (2)T (10)T (7) T (4) T (8) T (5)

F

L

8/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

LF-Mapping (1/2)

Definition: C-Array and Rank -Function
Given a text T of length n over an alphabet Σ,
α ∈ Σ, and i ∈ [1, n] then

C[α] = |i ∈ [1, n] : T [i] < α|

and
rankα(i) = |{j ∈ [1, i] : T [j] = α}|

C contains total number of smaller characters

rankα contains number of α’s in prefix T [1..i]

rankα can be computed in O(1) time [FM00]

a b a b c a b c a b b a $
1 1 2 2 1 3 3 2 4 4 5 5 1

T
rank

rank now on BWT

C is exclusive prefix sum over histogram �

Definition: LF -Mapping (alt.)
Given a BWT , its C-array, and its rank -Function,
then

LF(i) = C[BWT [i]] + rankBWT i

9/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

LF-Mapping (2/2)

Definition: C-Array and Rank -Function
Given a text T of length n over an alphabet Σ,
α ∈ Σ, and i ∈ [1, n] then

C[α] = |i ∈ [1, n] : T [i] < α|

and
rankα(i) = |{j ∈ [1, i] : T [j] = α}|

C contains total number of smaller characters

rankα contains number of α’s in prefix T [1..i]

rankα can be computed in O(1) time [FM00]

a b a b c a b c a b b a $
1 1 2 2 1 3 3 2 4 4 5 5 1

T
rank

rank now on BWT

C is exclusive prefix sum over histogram �

Definition: LF -Mapping (alt.)
Given a BWT , its C-array, and its rank -Function,
then

LF(i) = C[BWT [i]] + rankBWT i

9/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

LF-Mapping (2/2)

Definition: C-Array and Rank -Function
Given a text T of length n over an alphabet Σ,
α ∈ Σ, and i ∈ [1, n] then

C[α] = |i ∈ [1, n] : T [i] < α|

and
rankα(i) = |{j ∈ [1, i] : T [j] = α}|

C contains total number of smaller characters

rankα contains number of α’s in prefix T [1..i]

rankα can be computed in O(1) time [FM00]

a b a b c a b c a b b a $
1 1 2 2 1 3 3 2 4 4 5 5 1

T
rank

rank now on BWT

C is exclusive prefix sum over histogram �

Definition: LF -Mapping (alt.)
Given a BWT , its C-array, and its rank -Function,
then

LF(i) = C[BWT [i]] + rankBWT i

9/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

LF-Mapping (2/2)

characters (w.r.t. text) preserve order in L and F

LF -mapping returns previous character in text

α α

α α

i j

LF(i) LF(j)

L

F

T = ababcabcabba$
$ a a a a a b b b b b c c

a $ b b b b a a b c c a a

b a a b c c $ b a a a b b

a b b a a a a c $ b b b c

b a c $ b b b a a b c a a

c b a a b c a b b a a $ b

a c b b a a b c a $ b a b

b a c a $ b c a b a b b a

c b a b a b a b c b a a $

a c b c b a b b a a $ b a

b a b a a $ c a b b a c b

b b a b b a a $ c c b a a

a b $ c c b b a a a a b b

2 7 1 12 13 8 9 3 4 5 6 10 11

F

L
LF

10/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Reversing the BWT (1/2)

characters (w.r.t. text) preserve order in L and F

LF -mapping returns previous character in text

α α

α α

i j

LF(i) LF(j)

L

F

T = ababcabcabba$
$ a a a a a b b b b b c c

a $ b b b b a a b c c a a

b a a b c c $ b a a a b b

a b b a a a a c $ b b b c

b a c $ b b b a a b c a a

c b a a b c a b b a a $ b

a c b b a a b c a $ b a b

b a c a $ b c a b a b b a

c b a b a b a b c b a a $

a c b c b a b b a a $ b a

b a b a a $ c a b b a c b

b b a b b a a $ c c b a a

a b $ c c b b a a a a b b

2 7 1 12 13 8 9 3 4 5 6 10 11

F

L
LF

10/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Reversing the BWT (1/2)

characters (w.r.t. text) preserve order in L and F

LF -mapping returns previous character in text

α α

α α

i j

LF(i) LF(j)

L

F

T = ababcabcabba$
$ a a a a a b b b b b c c

a $ b b b b a a b c c a a

b a a b c c $ b a a a b b

a b b a a a a c $ b b b c

b a c $ b b b a a b c a a

c b a a b c a b b a a $ b

a c b b a a b c a $ b a b

b a c a $ b c a b a b b a

c b a b a b a b c b a a $

a c b c b a b b a a $ b a

b a b a a $ c a b b a c b

b b a b b a a $ c c b a a

a b $ c c b b a a a a b b

2 7 1 12 13 8 9 3 4 5 6 10 11

F

L
LF

10/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Reversing the BWT (1/2)

characters (w.r.t. text) preserve order in L and F

LF -mapping returns previous character in text

α α

α α

i j

LF(i) LF(j)

L

F

T = ababcabcabba$
$ a a a a a b b b b b c c

a $ b b b b a a b c c a a

b a a b c c $ b a a a b b

a b b a a a a c $ b b b c

b a c $ b b b a a b c a a

c b a a b c a b b a a $ b

a c b b a a b c a $ b a b

b a c a $ b c a b a b b a

c b a b a b a b c b a a $

a c b c b a b b a a $ b a

b a b a a $ c a b b a c b

b b a b b a a $ c c b a a

a b $ c c b b a a a a b b

2 7 1 12 13 8 9 3 4 5 6 10 11

F

L
LF

10/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Reversing the BWT (1/2)

characters (w.r.t. text) preserve order in L and F

LF -mapping returns previous character in text

α α

α α

i j

LF(i) LF(j)

L

F

T = ababcabcabba$
$ a a a a a b b b b b c c

a $ b b b b a a b c c a a

b a a b c c $ b a a a b b

a b b a a a a c $ b b b c

b a c $ b b b a a b c a a

c b a a b c a b b a a $ b

a c b b a a b c a $ b a b

b a c a $ b c a b a b b a

c b a b a b a b c b a a $

a c b c b a b b a a $ b a

b a b a a $ c a b b a c b

b b a b b a a $ c c b a a

a b $ c c b b a a a a b b

2 7 1 12 13 8 9 3 4 5 6 10 11

F

L
LF

10/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Reversing the BWT (1/2)

characters (w.r.t. text) preserve order in L and F

LF -mapping returns previous character in text

T [n] = $ and T (n) in first row

apply LF -mapping on result to obtain any
character

T [n − i] = L[LF(LF(. . . (︸ ︷︷ ︸
i−1 times

LF(1)) . . .))]

1 2 3 4 5 6 7 8 9 0 11 12 13

a b $ c c b b a a a a b b

2 7 1 12 13 8 9 3 4 5 6 10 11

L
LF

T [13] = $ and k = 1

T [12] = L[1] = a and k = LF(1) = 2

T [11] = L[2] = b and k = LF(2) = 7

T [10] = L[7] = b and k = LF(7) = 9

T [9] = L[9] = a and k = LF(9) = 4

T [9] = L[4] = c and k = LF(4) = 12

. . .

11/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Reversing the BWT (2/2)

characters (w.r.t. text) preserve order in L and F

LF -mapping returns previous character in text

T [n] = $ and T (n) in first row

apply LF -mapping on result to obtain any
character

T [n − i] = L[LF(LF(. . . (︸ ︷︷ ︸
i−1 times

LF(1)) . . .))]

1 2 3 4 5 6 7 8 9 0 11 12 13

a b $ c c b b a a a a b b

2 7 1 12 13 8 9 3 4 5 6 10 11

L
LF

T [13] = $ and k = 1

T [12] = L[1] = a and k = LF(1) = 2

T [11] = L[2] = b and k = LF(2) = 7

T [10] = L[7] = b and k = LF(7) = 9

T [9] = L[9] = a and k = LF(9) = 4

T [9] = L[4] = c and k = LF(4) = 12

. . .

11/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Reversing the BWT (2/2)

characters (w.r.t. text) preserve order in L and F

LF -mapping returns previous character in text

T [n] = $ and T (n) in first row

apply LF -mapping on result to obtain any
character

T [n − i] = L[LF(LF(. . . (︸ ︷︷ ︸
i−1 times

LF(1)) . . .))]

1 2 3 4 5 6 7 8 9 0 11 12 13

a b $ c c b b a a a a b b

2 7 1 12 13 8 9 3 4 5 6 10 11

L
LF

T [13] = $ and k = 1

T [12] = L[1] = a and k = LF(1) = 2

T [11] = L[2] = b and k = LF(2) = 7

T [10] = L[7] = b and k = LF(7) = 9

T [9] = L[9] = a and k = LF(9) = 4

T [9] = L[4] = c and k = LF(4) = 12

. . .

11/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Reversing the BWT (2/2)

characters (w.r.t. text) preserve order in L and F

LF -mapping returns previous character in text

T [n] = $ and T (n) in first row

apply LF -mapping on result to obtain any
character

T [n − i] = L[LF(LF(. . . (︸ ︷︷ ︸
i−1 times

LF(1)) . . .))]

1 2 3 4 5 6 7 8 9 0 11 12 13

a b $ c c b b a a a a b b

2 7 1 12 13 8 9 3 4 5 6 10 11

L
LF

T [13] = $ and k = 1

T [12] = L[1] = a and k = LF(1) = 2

T [11] = L[2] = b and k = LF(2) = 7

T [10] = L[7] = b and k = LF(7) = 9

T [9] = L[9] = a and k = LF(9) = 4

T [9] = L[4] = c and k = LF(4) = 12

. . .

11/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Reversing the BWT (2/2)

characters (w.r.t. text) preserve order in L and F

LF -mapping returns previous character in text

T [n] = $ and T (n) in first row

apply LF -mapping on result to obtain any
character

T [n − i] = L[LF(LF(. . . (︸ ︷︷ ︸
i−1 times

LF(1)) . . .))]

1 2 3 4 5 6 7 8 9 0 11 12 13

a b $ c c b b a a a a b b

2 7 1 12 13 8 9 3 4 5 6 10 11

L
LF

T [13] = $ and k = 1

T [12] = L[1] = a and k = LF(1) = 2

T [11] = L[2] = b and k = LF(2) = 7

T [10] = L[7] = b and k = LF(7) = 9

T [9] = L[9] = a and k = LF(9) = 4

T [9] = L[4] = c and k = LF(4) = 12

. . .

11/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Reversing the BWT (2/2)

characters (w.r.t. text) preserve order in L and F

LF -mapping returns previous character in text

T [n] = $ and T (n) in first row

apply LF -mapping on result to obtain any
character

T [n − i] = L[LF(LF(. . . (︸ ︷︷ ︸
i−1 times

LF(1)) . . .))]

1 2 3 4 5 6 7 8 9 0 11 12 13

a b $ c c b b a a a a b b

2 7 1 12 13 8 9 3 4 5 6 10 11

L
LF

T [13] = $ and k = 1

T [12] = L[1] = a and k = LF(1) = 2

T [11] = L[2] = b and k = LF(2) = 7

T [10] = L[7] = b and k = LF(7) = 9

T [9] = L[9] = a and k = LF(9) = 4

T [9] = L[4] = c and k = LF(4) = 12

. . .

11/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Reversing the BWT (2/2)

characters (w.r.t. text) preserve order in L and F

LF -mapping returns previous character in text

T [n] = $ and T (n) in first row

apply LF -mapping on result to obtain any
character

T [n − i] = L[LF(LF(. . . (︸ ︷︷ ︸
i−1 times

LF(1)) . . .))]

1 2 3 4 5 6 7 8 9 0 11 12 13

a b $ c c b b a a a a b b

2 7 1 12 13 8 9 3 4 5 6 10 11

L
LF

T [13] = $ and k = 1

T [12] = L[1] = a and k = LF(1) = 2

T [11] = L[2] = b and k = LF(2) = 7

T [10] = L[7] = b and k = LF(7) = 9

T [9] = L[9] = a and k = LF(9) = 4

T [9] = L[4] = c and k = LF(4) = 12

. . .

11/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Reversing the BWT (2/2)

characters (w.r.t. text) preserve order in L and F

LF -mapping returns previous character in text

T [n] = $ and T (n) in first row

apply LF -mapping on result to obtain any
character

T [n − i] = L[LF(LF(. . . (︸ ︷︷ ︸
i−1 times

LF(1)) . . .))]

1 2 3 4 5 6 7 8 9 0 11 12 13

a b $ c c b b a a a a b b

2 7 1 12 13 8 9 3 4 5 6 10 11

L
LF

T [13] = $ and k = 1

T [12] = L[1] = a and k = LF(1) = 2

T [11] = L[2] = b and k = LF(2) = 7

T [10] = L[7] = b and k = LF(7) = 9

T [9] = L[9] = a and k = LF(9) = 4

T [9] = L[4] = c and k = LF(4) = 12

. . .

11/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Reversing the BWT (2/2)

characters (w.r.t. text) preserve order in L and F

LF -mapping returns previous character in text

T [n] = $ and T (n) in first row

apply LF -mapping on result to obtain any
character

T [n − i] = L[LF(LF(. . . (︸ ︷︷ ︸
i−1 times

LF(1)) . . .))]

1 2 3 4 5 6 7 8 9 0 11 12 13

a b $ c c b b a a a a b b

2 7 1 12 13 8 9 3 4 5 6 10 11

L
LF

T [13] = $ and k = 1

T [12] = L[1] = a and k = LF(1) = 2

T [11] = L[2] = b and k = LF(2) = 7

T [10] = L[7] = b and k = LF(7) = 9

T [9] = L[9] = a and k = LF(9) = 4

T [9] = L[4] = c and k = LF(4) = 12

. . .

11/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Reversing the BWT (2/2)

BWT is reversible

can be used for lossless compression

Definition: Run (simplified)
Given a text T of length n, we call its substring T [i..j]
a run, if

T [k] = T [ℓ] for all k , ℓ ∈ [i, j] and

T [i − 1] ̸= T [i] and T [j + 1] ̸= T [j]

ò (To be more precise, this is a definition for a run of
a periodic substring with smallest period 1, but this is
not important for this lecture)

1 2 3 4 5 6 7 8 9 0 11 12 13

a b $ c c b b a a a a b bL

BWT contains lots of runs

same context is often grouped together �

12/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Properties of the BWT: Runs

BWT is reversible

can be used for lossless compression

Definition: Run (simplified)
Given a text T of length n, we call its substring T [i..j]
a run, if

T [k] = T [ℓ] for all k , ℓ ∈ [i, j] and

T [i − 1] ̸= T [i] and T [j + 1] ̸= T [j]

ò (To be more precise, this is a definition for a run of
a periodic substring with smallest period 1, but this is
not important for this lecture)

1 2 3 4 5 6 7 8 9 0 11 12 13

a b $ c c b b a a a a b bL

BWT contains lots of runs

same context is often grouped together �

12/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Properties of the BWT: Runs

Definition: Run-Length Encoding
Given a text T , represent each run T [i..i + ℓ) as
tuple

(T [i], ℓ)

T = ababcabcabba$

1 2 3 4 5 6 7 8 9 0 11 12 13

a b $ c c b b a a a a b bBWT

(a, 1)

(b, 1)

($, 1)

(c, 2)

(b, 2)

(a, 4)

(b, 2)

13/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Compressing the BWT: Run-Length Compression

Definition: Move-To-Front Encoding
Given a text T over an alphabet Σ = [1, σ], the MTF
encoding MTF(T) of the text is computed as follows

start with a list X = Σ[1],Σ[2], . . . ,Σ[σ]
scan text from left to right, for character T [i]

append position of T [i] in X to MTF(T) and
move T [i] to front of X

MTF encoding can easily be reverted �

consists of many small numbers

runs are preserved

use Huffman on encoding ò no theoretical
improvement but good in practice

T = ababcabcabba$

1 2 3 4 5 6 7 8 9 0 11 12 13

a b $ c c b b a a a a b bBWT

X = $, a, b, c

MTF = 2 and X = a, $, b, c

MTF = 2 3 and X = b, a, $, c

MTF = 2 3 3 and X = $, b, a, c

MTF = 2 3 3 4 and X = c, $, b, a

MTF = 2 3 3 4 1 and X = c, $, b, a

MTF = 2 3 3 4 1 1 and X = c, $, b, a

. . .

MTF = 2 3 3 4 1 1 3 1 4 1 1 1 2 1

14/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Compressing the BWT: Move-to-Front

Definition: Move-To-Front Encoding
Given a text T over an alphabet Σ = [1, σ], the MTF
encoding MTF(T) of the text is computed as follows

start with a list X = Σ[1],Σ[2], . . . ,Σ[σ]
scan text from left to right, for character T [i]

append position of T [i] in X to MTF(T) and
move T [i] to front of X

MTF encoding can easily be reverted �

consists of many small numbers

runs are preserved

use Huffman on encoding ò no theoretical
improvement but good in practice

T = ababcabcabba$

1 2 3 4 5 6 7 8 9 0 11 12 13

a b $ c c b b a a a a b bBWT

X = $, a, b, c

MTF = 2 and X = a, $, b, c

MTF = 2 3 and X = b, a, $, c

MTF = 2 3 3 and X = $, b, a, c

MTF = 2 3 3 4 and X = c, $, b, a

MTF = 2 3 3 4 1 and X = c, $, b, a

MTF = 2 3 3 4 1 1 and X = c, $, b, a

. . .

MTF = 2 3 3 4 1 1 3 1 4 1 1 1 2 1

14/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Compressing the BWT: Move-to-Front

Definition: Move-To-Front Encoding
Given a text T over an alphabet Σ = [1, σ], the MTF
encoding MTF(T) of the text is computed as follows

start with a list X = Σ[1],Σ[2], . . . ,Σ[σ]
scan text from left to right, for character T [i]

append position of T [i] in X to MTF(T) and
move T [i] to front of X

MTF encoding can easily be reverted �

consists of many small numbers

runs are preserved

use Huffman on encoding ò no theoretical
improvement but good in practice

T = ababcabcabba$

1 2 3 4 5 6 7 8 9 0 11 12 13

a b $ c c b b a a a a b bBWT

X = $, a, b, c

MTF = 2 and X = a, $, b, c

MTF = 2 3 and X = b, a, $, c

MTF = 2 3 3 and X = $, b, a, c

MTF = 2 3 3 4 and X = c, $, b, a

MTF = 2 3 3 4 1 and X = c, $, b, a

MTF = 2 3 3 4 1 1 and X = c, $, b, a

. . .

MTF = 2 3 3 4 1 1 3 1 4 1 1 1 2 1

14/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Compressing the BWT: Move-to-Front

Definition: Move-To-Front Encoding
Given a text T over an alphabet Σ = [1, σ], the MTF
encoding MTF(T) of the text is computed as follows

start with a list X = Σ[1],Σ[2], . . . ,Σ[σ]
scan text from left to right, for character T [i]

append position of T [i] in X to MTF(T) and
move T [i] to front of X

MTF encoding can easily be reverted �

consists of many small numbers

runs are preserved

use Huffman on encoding ò no theoretical
improvement but good in practice

T = ababcabcabba$

1 2 3 4 5 6 7 8 9 0 11 12 13

a b $ c c b b a a a a b bBWT

X = $, a, b, c

MTF = 2 and X = a, $, b, c

MTF = 2 3 and X = b, a, $, c

MTF = 2 3 3 and X = $, b, a, c

MTF = 2 3 3 4 and X = c, $, b, a

MTF = 2 3 3 4 1 and X = c, $, b, a

MTF = 2 3 3 4 1 1 and X = c, $, b, a

. . .

MTF = 2 3 3 4 1 1 3 1 4 1 1 1 2 1

14/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Compressing the BWT: Move-to-Front

Definition: Move-To-Front Encoding
Given a text T over an alphabet Σ = [1, σ], the MTF
encoding MTF(T) of the text is computed as follows

start with a list X = Σ[1],Σ[2], . . . ,Σ[σ]
scan text from left to right, for character T [i]

append position of T [i] in X to MTF(T) and
move T [i] to front of X

MTF encoding can easily be reverted �

consists of many small numbers

runs are preserved

use Huffman on encoding ò no theoretical
improvement but good in practice

T = ababcabcabba$

1 2 3 4 5 6 7 8 9 0 11 12 13

a b $ c c b b a a a a b bBWT

X = $, a, b, c

MTF = 2 and X = a, $, b, c

MTF = 2 3 and X = b, a, $, c

MTF = 2 3 3 and X = $, b, a, c

MTF = 2 3 3 4 and X = c, $, b, a

MTF = 2 3 3 4 1 and X = c, $, b, a

MTF = 2 3 3 4 1 1 and X = c, $, b, a

. . .

MTF = 2 3 3 4 1 1 3 1 4 1 1 1 2 1

14/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Compressing the BWT: Move-to-Front

Definition: Move-To-Front Encoding
Given a text T over an alphabet Σ = [1, σ], the MTF
encoding MTF(T) of the text is computed as follows

start with a list X = Σ[1],Σ[2], . . . ,Σ[σ]
scan text from left to right, for character T [i]

append position of T [i] in X to MTF(T) and
move T [i] to front of X

MTF encoding can easily be reverted �

consists of many small numbers

runs are preserved

use Huffman on encoding ò no theoretical
improvement but good in practice

T = ababcabcabba$

1 2 3 4 5 6 7 8 9 0 11 12 13

a b $ c c b b a a a a b bBWT

X = $, a, b, c

MTF = 2 and X = a, $, b, c

MTF = 2 3 and X = b, a, $, c

MTF = 2 3 3 and X = $, b, a, c

MTF = 2 3 3 4 and X = c, $, b, a

MTF = 2 3 3 4 1 and X = c, $, b, a

MTF = 2 3 3 4 1 1 and X = c, $, b, a

. . .

MTF = 2 3 3 4 1 1 3 1 4 1 1 1 2 1

14/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Compressing the BWT: Move-to-Front

Definition: Move-To-Front Encoding
Given a text T over an alphabet Σ = [1, σ], the MTF
encoding MTF(T) of the text is computed as follows

start with a list X = Σ[1],Σ[2], . . . ,Σ[σ]
scan text from left to right, for character T [i]

append position of T [i] in X to MTF(T) and
move T [i] to front of X

MTF encoding can easily be reverted �

consists of many small numbers

runs are preserved

use Huffman on encoding ò no theoretical
improvement but good in practice

T = ababcabcabba$

1 2 3 4 5 6 7 8 9 0 11 12 13

a b $ c c b b a a a a b bBWT

X = $, a, b, c

MTF = 2 and X = a, $, b, c

MTF = 2 3 and X = b, a, $, c

MTF = 2 3 3 and X = $, b, a, c

MTF = 2 3 3 4 and X = c, $, b, a

MTF = 2 3 3 4 1 and X = c, $, b, a

MTF = 2 3 3 4 1 1 and X = c, $, b, a

. . .

MTF = 2 3 3 4 1 1 3 1 4 1 1 1 2 1

14/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Compressing the BWT: Move-to-Front

Definition: Move-To-Front Encoding
Given a text T over an alphabet Σ = [1, σ], the MTF
encoding MTF(T) of the text is computed as follows

start with a list X = Σ[1],Σ[2], . . . ,Σ[σ]
scan text from left to right, for character T [i]

append position of T [i] in X to MTF(T) and
move T [i] to front of X

MTF encoding can easily be reverted �

consists of many small numbers

runs are preserved

use Huffman on encoding ò no theoretical
improvement but good in practice

T = ababcabcabba$

1 2 3 4 5 6 7 8 9 0 11 12 13

a b $ c c b b a a a a b bBWT

X = $, a, b, c

MTF = 2 and X = a, $, b, c

MTF = 2 3 and X = b, a, $, c

MTF = 2 3 3 and X = $, b, a, c

MTF = 2 3 3 4 and X = c, $, b, a

MTF = 2 3 3 4 1 and X = c, $, b, a

MTF = 2 3 3 4 1 1 and X = c, $, b, a

. . .

MTF = 2 3 3 4 1 1 3 1 4 1 1 1 2 1

14/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Compressing the BWT: Move-to-Front

Definition: Move-To-Front Encoding
Given a text T over an alphabet Σ = [1, σ], the MTF
encoding MTF(T) of the text is computed as follows

start with a list X = Σ[1],Σ[2], . . . ,Σ[σ]
scan text from left to right, for character T [i]

append position of T [i] in X to MTF(T) and
move T [i] to front of X

MTF encoding can easily be reverted �

consists of many small numbers

runs are preserved

use Huffman on encoding ò no theoretical
improvement but good in practice

T = ababcabcabba$

1 2 3 4 5 6 7 8 9 0 11 12 13

a b $ c c b b a a a a b bBWT

X = $, a, b, c

MTF = 2 and X = a, $, b, c

MTF = 2 3 and X = b, a, $, c

MTF = 2 3 3 and X = $, b, a, c

MTF = 2 3 3 4 and X = c, $, b, a

MTF = 2 3 3 4 1 and X = c, $, b, a

MTF = 2 3 3 4 1 1 and X = c, $, b, a

. . .

MTF = 2 3 3 4 1 1 3 1 4 1 1 1 2 1

14/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Compressing the BWT: Move-to-Front

Definition: Move-To-Front Encoding
Given a text T over an alphabet Σ = [1, σ], the MTF
encoding MTF(T) of the text is computed as follows

start with a list X = Σ[1],Σ[2], . . . ,Σ[σ]
scan text from left to right, for character T [i]

append position of T [i] in X to MTF(T) and
move T [i] to front of X

MTF encoding can easily be reverted �

consists of many small numbers

runs are preserved

use Huffman on encoding ò no theoretical
improvement but good in practice

T = ababcabcabba$

1 2 3 4 5 6 7 8 9 0 11 12 13

a b $ c c b b a a a a b bBWT

X = $, a, b, c

MTF = 2 and X = a, $, b, c

MTF = 2 3 and X = b, a, $, c

MTF = 2 3 3 and X = $, b, a, c

MTF = 2 3 3 4 and X = c, $, b, a

MTF = 2 3 3 4 1 and X = c, $, b, a

MTF = 2 3 3 4 1 1 and X = c, $, b, a

. . .

MTF = 2 3 3 4 1 1 3 1 4 1 1 1 2 1

14/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Compressing the BWT: Move-to-Front

Definition: Move-To-Front Encoding
Given a text T over an alphabet Σ = [1, σ], the MTF
encoding MTF(T) of the text is computed as follows

start with a list X = Σ[1],Σ[2], . . . ,Σ[σ]
scan text from left to right, for character T [i]

append position of T [i] in X to MTF(T) and
move T [i] to front of X

MTF encoding can easily be reverted �

consists of many small numbers

runs are preserved

use Huffman on encoding ò no theoretical
improvement but good in practice

T = ababcabcabba$

1 2 3 4 5 6 7 8 9 0 11 12 13

a b $ c c b b a a a a b bBWT

X = $, a, b, c

MTF = 2 and X = a, $, b, c

MTF = 2 3 and X = b, a, $, c

MTF = 2 3 3 and X = $, b, a, c

MTF = 2 3 3 4 and X = c, $, b, a

MTF = 2 3 3 4 1 and X = c, $, b, a

MTF = 2 3 3 4 1 1 and X = c, $, b, a

. . .

MTF = 2 3 3 4 1 1 3 1 4 1 1 1 2 1

14/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Compressing the BWT: Move-to-Front

Recap
Given a text T of length n over an alphabet Σ,
α ∈ Σ, and i ∈ [1, n] then

C[α] = |i ∈ [1, n] : T [i] < α|

and
rankα(i) = |{j ∈ [1, i] : T [j] = α}|

find interval of occurrences in SA using BWT

SA is divided into intervals based on first
character of suffix ò as seen during SAIS

text from BWT is backwards

search pattern backwards

interval for α is [C[α− 1],C[α+ 1]]

find sub-interval using rankα

example on the board �

15/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Pattern Matching using the BWT

Function BackwardsSearch(P[1..n],C, rank):
1 s = 1, e = n
2 for i = m, . . . , 1 do
3 s = C[P[i]] + rankP[i](s − 1) + 1
4 e = C[P[i]] + rankP[i](e)
5 if s > e then
6 return ∅
7 return [s, e]

no access to text or SA required

no binary search

existential queries are easy

counting queries are easy

reporting queries require additional information

example on the board �

16/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Backwards Search in the BWT

reporting queries require SA

storing whole SA requires too much space

better: sample every s-th SA position in SA′ �

how to find sampled position?

mark sampled positions in bit vector of size n

if match occurs check if position is sampled

otherwise find sample using LF

if SA[i] = j then SA[LF(i)] = j − 1

rank1(i) in bit vector is number of sample

SA′[rank1(i)] is sampled value

SA′[rank1(i)] + #steps till sample found
is correct SA value

finding a sample requires O(s · trank) time

17/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Sampling the Suffix Array

reporting queries require SA

storing whole SA requires too much space

better: sample every s-th SA position in SA′ �

how to find sampled position?

mark sampled positions in bit vector of size n

if match occurs check if position is sampled

otherwise find sample using LF

if SA[i] = j then SA[LF(i)] = j − 1

rank1(i) in bit vector is number of sample

SA′[rank1(i)] is sampled value

SA′[rank1(i)] + #steps till sample found
is correct SA value

finding a sample requires O(s · trank) time

17/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Sampling the Suffix Array

reporting queries require SA

storing whole SA requires too much space

better: sample every s-th SA position in SA′ �

how to find sampled position?

mark sampled positions in bit vector of size n

if match occurs check if position is sampled

otherwise find sample using LF

if SA[i] = j then SA[LF(i)] = j − 1

rank1(i) in bit vector is number of sample

SA′[rank1(i)] is sampled value

SA′[rank1(i)] + #steps till sample found
is correct SA value

finding a sample requires O(s · trank) time

17/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Sampling the Suffix Array

reporting queries require SA

storing whole SA requires too much space

better: sample every s-th SA position in SA′ �

how to find sampled position?

mark sampled positions in bit vector of size n

if match occurs check if position is sampled

otherwise find sample using LF

if SA[i] = j then SA[LF(i)] = j − 1

rank1(i) in bit vector is number of sample

SA′[rank1(i)] is sampled value

SA′[rank1(i)] + #steps till sample found
is correct SA value

finding a sample requires O(s · trank) time

17/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Sampling the Suffix Array

std::vector<char/int/. . . >
easy access

very big: 1, 4, . . . bytes per bit

std::vector<bool>

bit vector in C++ (1 bit per byte)

easy access

layout depending on implementation

std::vector<uint64_t>

requires 8 bytes per bit(?)

store 64 bits in 8 bytes

how to access bits

i/64 is position in 64-bit word

i%64 is position in word

0 1 2 3 4 5 6 7 8 9

64 bits 64 bits 64 bits 64 bits 64 bits 64 bits 64 bits 64 bits 64 bits 64 bits

63 0 1 2 3 4 5 . . . 62 63 0

0 1 1 1 0 1 0 . . . 1 0 0.

18/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Efficient Bit Vectors in Practice (1/3)

std::vector<char/int/. . . >
easy access

very big: 1, 4, . . . bytes per bit

std::vector<bool>

bit vector in C++ (1 bit per byte)

easy access

layout depending on implementation

std::vector<uint64_t>

requires 8 bytes per bit(?)

store 64 bits in 8 bytes

how to access bits

i/64 is position in 64-bit word

i%64 is position in word

0 1 2 3 4 5 6 7 8 9

64 bits 64 bits 64 bits 64 bits 64 bits 64 bits 64 bits 64 bits 64 bits 64 bits

63 0 1 2 3 4 5 . . . 62 63 0

0 1 1 1 0 1 0 . . . 1 0 0.

18/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Efficient Bit Vectors in Practice (1/3)

std::vector<char/int/. . . >
easy access

very big: 1, 4, . . . bytes per bit

std::vector<bool>

bit vector in C++ (1 bit per byte)

easy access

layout depending on implementation

std::vector<uint64_t>

requires 8 bytes per bit(?)

store 64 bits in 8 bytes

how to access bits

i/64 is position in 64-bit word

i%64 is position in word

0 1 2 3 4 5 6 7 8 9

64 bits 64 bits 64 bits 64 bits 64 bits 64 bits 64 bits 64 bits 64 bits 64 bits

63 0 1 2 3 4 5 . . . 62 63 0

0 1 1 1 0 1 0 . . . 1 0 0.

18/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Efficient Bit Vectors in Practice (1/3)

std::vector<char/int/. . . >
easy access

very big: 1, 4, . . . bytes per bit

std::vector<bool>

bit vector in C++ (1 bit per byte)

easy access

layout depending on implementation

std::vector<uint64_t>

requires 8 bytes per bit(?)

store 64 bits in 8 bytes

how to access bits

i/64 is position in 64-bit word

i%64 is position in word

0 1 2 3 4 5 6 7 8 9

64 bits 64 bits 64 bits 64 bits 64 bits 64 bits 64 bits 64 bits 64 bits 64 bits

63 0 1 2 3 4 5 . . . 62 63 0

0 1 1 1 0 1 0 . . . 1 0 0.

18/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Efficient Bit Vectors in Practice (1/3)

std::vector<char/int/. . . >
easy access

very big: 1, 4, . . . bytes per bit

std::vector<bool>

bit vector in C++ (1 bit per byte)

easy access

layout depending on implementation

std::vector<uint64_t>

requires 8 bytes per bit(?)

store 64 bits in 8 bytes

how to access bits

i/64 is position in 64-bit word

i%64 is position in word

0 1 2 3 4 5 6 7 8 9

64 bits 64 bits 64 bits 64 bits 64 bits 64 bits 64 bits 64 bits 64 bits 64 bits

63 0 1 2 3 4 5 . . . 62 63 0

0 1 1 1 0 1 0 . . . 1 0 0.

18/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Efficient Bit Vectors in Practice (1/3)

// There is a bit vector

std::vector<uint64_t> bit_vector;

// access i-th bit

uint64_t block = bit_vector[i/64];

bool bit = (block >> (63 - (i % 64))) & 1ULL;

shift bits right # bits logical and 1

0 1 2 3 4 5 . . . 62 63

1 1 1 0 1 0 . . . 1 0

0 1 2 3 4 5 . . . 62 63

0 0 0 0 0 0 . . . 1 0

and 1

>> 60

19/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Efficient Bit Vectors in Practice (2/3)

// There is a bit vector

std::vector<uint64_t> bit_vector;

// access i-th bit

uint64_t block = bit_vector[i/64];

bool bit = (block >> (63 - (i % 64))) & 1ULL;

shift bits right

bits logical and 1

0 1 2 3 4 5 . . . 62 63

1 1 1 0 1 0 . . . 1 0

0 1 2 3 4 5 . . . 62 63

0 0 0 0 0 0 . . . 1 0

and 1

>> 60

19/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Efficient Bit Vectors in Practice (2/3)

// There is a bit vector

std::vector<uint64_t> bit_vector;

// access i-th bit

uint64_t block = bit_vector[i/64];

bool bit = (block >> (63 - (i % 64))) & 1ULL;

shift bits right # bits

logical and 1

0 1 2 3 4 5 . . . 62 63

1 1 1 0 1 0 . . . 1 0

0 1 2 3 4 5 . . . 62 63

0 0 0 0 0 0 . . . 1 0

and 1

>> 60

19/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Efficient Bit Vectors in Practice (2/3)

// There is a bit vector

std::vector<uint64_t> bit_vector;

// access i-th bit

uint64_t block = bit_vector[i/64];

bool bit = (block >> (63 - (i % 64))) & 1ULL;

shift bits right # bits logical and 1

0 1 2 3 4 5 . . . 62 63

1 1 1 0 1 0 . . . 1 0

0 1 2 3 4 5 . . . 62 63

0 0 0 0 0 0 . . . 1 0

and 1

>> 60

19/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Efficient Bit Vectors in Practice (2/3)

(block >> (63-(i%64))) & 1ULL;

fill bit vector from left to right

0 1 2 3 4 5 . . . 62 63

1 1 1 0 1 0 . . . 1 0

0 0 0 0 0 0 . . . 1 0

assembler code: mov ecx, edi
not ecx
shr rsi, cl
mov eax, esi
and eax, 1

(block >> (i%64)) & 1ULL;

fill bit vector right to left

63 62 . . . 5 4 3 2 1 0

0 1 . . . 0 1 0 1 1 1

0 0 . . . 1 1 0 0 1 0

assembler code: mov ecx, edi
shr rsi, cl
mov eax, esi
and eax, 1

20/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Efficient Bit Vectors in Practice (3/3)

(block >> (63-(i%64))) & 1ULL;

fill bit vector from left to right

0 1 2 3 4 5 . . . 62 63

1 1 1 0 1 0 . . . 1 0

0 0 0 0 0 0 . . . 1 0

assembler code: mov ecx, edi
not ecx
shr rsi, cl
mov eax, esi
and eax, 1

(block >> (i%64)) & 1ULL;

fill bit vector right to left

63 62 . . . 5 4 3 2 1 0

0 1 . . . 0 1 0 1 1 1

0 0 . . . 1 1 0 0 1 0

assembler code: mov ecx, edi
shr rsi, cl
mov eax, esi
and eax, 1

20/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Efficient Bit Vectors in Practice (3/3)

(block >> (63-(i%64))) & 1ULL;

fill bit vector from left to right

0 1 2 3 4 5 . . . 62 63

1 1 1 0 1 0 . . . 1 0

0 0 0 0 0 0 . . . 1 0

assembler code: mov ecx, edi
not ecx
shr rsi, cl
mov eax, esi
and eax, 1

(block >> (i%64)) & 1ULL;

fill bit vector right to left

63 62 . . . 5 4 3 2 1 0

0 1 . . . 0 1 0 1 1 1

0 0 . . . 1 1 0 0 1 0

assembler code: mov ecx, edi
shr rsi, cl
mov eax, esi
and eax, 1

20/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Efficient Bit Vectors in Practice (3/3)

(block >> (63-(i%64))) & 1ULL;

fill bit vector from left to right

0 1 2 3 4 5 . . . 62 63

1 1 1 0 1 0 . . . 1 0

0 0 0 0 0 0 . . . 1 0

assembler code: mov ecx, edi
not ecx
shr rsi, cl
mov eax, esi
and eax, 1

(block >> (i%64)) & 1ULL;

fill bit vector right to left

63 62 . . . 5 4 3 2 1 0

0 1 . . . 0 1 0 1 1 1

0 0 . . . 1 1 0 0 1 0

assembler code: mov ecx, edi
shr rsi, cl
mov eax, esi
and eax, 1

20/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Efficient Bit Vectors in Practice (3/3)

0 1 2 3 4 5 6 7 8 9

0 1 1 0 1 1 0 1 0 0

rankα(i) # of αs before i

selectα(j) position of j-th α

block

of 0s w.r.t.
super-block

super-block # of 0s
w.r.t. BV

rank0(5)
select1(5)

2

21/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Rank Queries in Bit Vectors (1/2)

0 1 2 3 4 5 6 7 8 9

0 1 1 0 1 1 0 1 0 0

rankα(i) # of αs before i

selectα(j) position of j-th α

block

of 0s w.r.t.
super-block

super-block # of 0s
w.r.t. BV

rank0(5)

select1(5)

2

21/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Rank Queries in Bit Vectors (1/2)

0 1 2 3 4 5 6 7 8 9

0 1 1 0 1 1 0 1 0 0

rankα(i) # of αs before i

selectα(j) position of j-th α

block

of 0s w.r.t.
super-block

super-block # of 0s
w.r.t. BV

rank0(5)

select1(5)

2

21/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Rank Queries in Bit Vectors (1/2)

0 1 2 3 4 5 6 7 8 9

0 1 1 0 1 1 0 1 0 0

rankα(i) # of αs before i

selectα(j) position of j-th α

block

of 0s w.r.t.
super-block

super-block # of 0s
w.r.t. BV

rank0(5)

select1(5)

2

21/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Rank Queries in Bit Vectors (1/2)

0 1 2 3 4 5 6 7 8 9

0 1 1 0 1 1 0 1 0 0

rankα(i) # of αs before i

selectα(j) position of j-th α

block

of 0s w.r.t.
super-block

super-block # of 0s
w.r.t. BV

rank0(5)
select1(5)

2

21/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Rank Queries in Bit Vectors (1/2)

0 1 2 3 4 5 6 7 8 9

0 1 1 0 1 1 0 1 0 0

rankα(i) # of αs before i

selectα(j) position of j-th α

block

of 0s w.r.t.
super-block

super-block # of 0s
w.r.t. BV

rank0(5)
select1(5)

2

21/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Rank Queries in Bit Vectors (1/2)

0 1 2 3 4 5 6 7 8 9

0 1 1 0 1 1 0 1 0 0

rankα(i) # of αs before i

selectα(j) position of j-th α

block

of 0s w.r.t.
super-block

super-block # of 0s
w.r.t. BV

rank0(5)

select1(5)

2

21/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Rank Queries in Bit Vectors (1/2)

0 1 2 3 4 5 6 7 8 9

0 1 1 0 1 1 0 1 0 0

rankα(i) # of αs before i

selectα(j) position of j-th α

block

of 0s w.r.t.
super-block

super-block # of 0s
w.r.t. BV

rank0(5)

select1(5)

2

21/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Rank Queries in Bit Vectors (1/2)

0 1 2 3 4 5 6 7 8 9

0 1 1 0 1 1 0 1 0 0

rankα(i) # of αs before i

selectα(j) position of j-th α

block

of 0s w.r.t.
super-block

super-block # of 0s
w.r.t. BV

rank0(5)

select1(5)

2

21/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Rank Queries in Bit Vectors (1/2)

0 1 2 3 4 5 6 7 8 9

0 1 1 0 1 1 0 1 0 0

rankα(i) # of αs before i

selectα(j) position of j-th α

block

of 0s w.r.t.
super-block

super-block # of 0s
w.r.t. BV

rank0(5)

select1(5)

2

21/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Rank Queries in Bit Vectors (1/2)

for a bit vector of size n

blocks of size s = ⌊ lg n
2 ⌋

super blocks of size s′ = s2 = Θ(lg2 n)

for all ⌊ n
s′ ⌋ super blocks, store number of 0s

from beginning of bit vector to end of
super-block

n/s′ · lg n = O(n
lg n) = o(n) bits of space

PINGO how fast can rank queries be
answered?

for all ⌊ n
s ⌋ blocks, store number of 0s from

beginning of super block to end of block

n/s · lg s′ = O(n lg lg n
lg n) = o(n) bits of space

for all length-s bit vectors, for every position i
store number of 0s up to i

2
lg n

2 · s · lg s = O(
√

n lg n lg lg n) = o(n) bits of
space

query in O(1) time �

rank0(i) = i − rank1(i)

22/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Rank Queries in Bit Vectors (2/2)

https://kurpicz.org

for a bit vector of size n

blocks of size s = ⌊ lg n
2 ⌋

super blocks of size s′ = s2 = Θ(lg2 n)

for all ⌊ n
s′ ⌋ super blocks, store number of 0s

from beginning of bit vector to end of
super-block

n/s′ · lg n = O(n
lg n) = o(n) bits of space

PINGO how fast can rank queries be
answered?

for all ⌊ n
s ⌋ blocks, store number of 0s from

beginning of super block to end of block

n/s · lg s′ = O(n lg lg n
lg n) = o(n) bits of space

for all length-s bit vectors, for every position i
store number of 0s up to i

2
lg n

2 · s · lg s = O(
√

n lg n lg lg n) = o(n) bits of
space

query in O(1) time �

rank0(i) = i − rank1(i)

22/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Rank Queries in Bit Vectors (2/2)

https://kurpicz.org

for a bit vector of size n

blocks of size s = ⌊ lg n
2 ⌋

super blocks of size s′ = s2 = Θ(lg2 n)

for all ⌊ n
s′ ⌋ super blocks, store number of 0s

from beginning of bit vector to end of
super-block

n/s′ · lg n = O(n
lg n) = o(n) bits of space

PINGO how fast can rank queries be
answered?

for all ⌊ n
s ⌋ blocks, store number of 0s from

beginning of super block to end of block

n/s · lg s′ = O(n lg lg n
lg n) = o(n) bits of space

for all length-s bit vectors, for every position i
store number of 0s up to i

2
lg n

2 · s · lg s = O(
√

n lg n lg lg n) = o(n) bits of
space

query in O(1) time �

rank0(i) = i − rank1(i)

22/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Rank Queries in Bit Vectors (2/2)

https://kurpicz.org

for a bit vector of size n

blocks of size s = ⌊ lg n
2 ⌋

super blocks of size s′ = s2 = Θ(lg2 n)

for all ⌊ n
s′ ⌋ super blocks, store number of 0s

from beginning of bit vector to end of
super-block

n/s′ · lg n = O(n
lg n) = o(n) bits of space

PINGO how fast can rank queries be
answered?

for all ⌊ n
s ⌋ blocks, store number of 0s from

beginning of super block to end of block

n/s · lg s′ = O(n lg lg n
lg n) = o(n) bits of space

for all length-s bit vectors, for every position i
store number of 0s up to i

2
lg n

2 · s · lg s = O(
√

n lg n lg lg n) = o(n) bits of
space

query in O(1) time �

rank0(i) = i − rank1(i)

22/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Rank Queries in Bit Vectors (2/2)

https://kurpicz.org

for a bit vector of size n

blocks of size s = ⌊ lg n
2 ⌋

super blocks of size s′ = s2 = Θ(lg2 n)

for all ⌊ n
s′ ⌋ super blocks, store number of 0s

from beginning of bit vector to end of
super-block

n/s′ · lg n = O(n
lg n) = o(n) bits of space

PINGO how fast can rank queries be
answered?

for all ⌊ n
s ⌋ blocks, store number of 0s from

beginning of super block to end of block

n/s · lg s′ = O(n lg lg n
lg n) = o(n) bits of space

for all length-s bit vectors, for every position i
store number of 0s up to i

2
lg n

2 · s · lg s = O(
√

n lg n lg lg n) = o(n) bits of
space

query in O(1) time �

rank0(i) = i − rank1(i)

22/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Rank Queries in Bit Vectors (2/2)

https://kurpicz.org

for a bit vector of size n

blocks of size s = ⌊ lg n
2 ⌋

super blocks of size s′ = s2 = Θ(lg2 n)

for all ⌊ n
s′ ⌋ super blocks, store number of 0s

from beginning of bit vector to end of
super-block

n/s′ · lg n = O(n
lg n) = o(n) bits of space

PINGO how fast can rank queries be
answered?

for all ⌊ n
s ⌋ blocks, store number of 0s from

beginning of super block to end of block

n/s · lg s′ = O(n lg lg n
lg n) = o(n) bits of space

for all length-s bit vectors, for every position i
store number of 0s up to i

2
lg n

2 · s · lg s = O(
√

n lg n lg lg n) = o(n) bits of
space

query in O(1) time �

rank0(i) = i − rank1(i)

22/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Rank Queries in Bit Vectors (2/2)

https://kurpicz.org

Building Blocks of FM-Index
wavelet tree on BWT providing rank -function
ò wavelet trees are topic of next lecture!

C-array

sampled suffix array with sample rate s

bit vector marking sampled suffix array positions

Lemma: FM-Index Space Requirements
Given a text T of length n over an alphabet of size σ,
the FM-index requires O(n lg σ) bits of space

Space Requirements
wavelet tree: n⌈lg σ⌉(1 + o(1)) bits

C-array: σ⌈lg n⌉ bits ò n(1 + o(1)) bits if
σ ≥ n

lg n

sampled suffix array: n
s ⌈lg n⌉ bits

bit vector: n(1 + o(1)) bits

space and time bounds can be achieved with
s = lgσ n

23/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

The FM-Index (First Look) [FM00]

This Lecture
Burrows-Wheeler transform

introduction to FM-index

efficient bit vectors

rank queries on bit vectors

Next Lecture
wavelet trees

more on FM-index

Linear Time Construction

ST SA

LCP BWTLZ

24/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Conclusion and Outlook

This Lecture
Burrows-Wheeler transform

introduction to FM-index

efficient bit vectors

rank queries on bit vectors

Next Lecture
wavelet trees

more on FM-index

Linear Time Construction

ST SA

LCP BWTLZ

24/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Conclusion and Outlook

This Lecture
Burrows-Wheeler transform

introduction to FM-index

efficient bit vectors

rank queries on bit vectors

Next Lecture
wavelet trees

more on FM-index

Linear Time Construction

ST SA

LCP BWTLZ

24/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Conclusion and Outlook

[BW94] Michael Burrows and David J. Wheeler. A Block-Sorting Lossless Data Compression Algorithm.
Technical report. 1994.

[FM00] Paolo Ferragina and Giovanni Manzini. “Opportunistic Data Structures with Applications”. In: FOCS.
IEEE Computer Society, 2000, pages 390–398. DOI: 10.1109/SFCS.2000.892127.

[KK19] Dominik Kempa and Tomasz Kociumaka. “String Synchronizing Sets: Sublinear-Time BWT
Construction and Optimal LCE Data Structure”. In: STOC. ACM, 2019, pages 756–767.

[ZL77] Jacob Ziv and Abraham Lempel. “A Universal Algorithm for Sequential Data Compression”. In: IEEE
Trans. Inf. Theory 23.3 (1977), pages 337–343. DOI: 10.1109/TIT.1977.1055714.

[ZL78] Jacob Ziv and Abraham Lempel. “Compression of Individual Sequences via Variable-Rate Coding”.
In: IEEE Trans. Inf. Theory 24.5 (1978), pages 530–536. DOI: 10.1109/TIT.1978.1055934.

25/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Bibliography I

https://doi.org/10.1109/SFCS.2000.892127
https://doi.org/10.1109/TIT.1977.1055714
https://doi.org/10.1109/TIT.1978.1055934

	Appendix

