KIT

Karlsruhe Institute of Technology

Text Indexing

Lecture 06: Burrows-Wheeler Transform
Florian Kurpicz

The slides are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License @®®: www.creativecommons.org >s/by-sa/4.0 | commit 59da60d compiled at 2024-12-01-20:16

KIT — The Research University in the Helmholtz Association WWW. kit.edu

https://creativecommons.org/licenses/by-sa/4.0/
https://www.kit.edu

PINGO it

Karlsruhe Institute of Technology

https://pingo.scc.kit.edu/886630

2/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

https://pingo.scc.kit.edu/886630
https://pingo.scc.kit.edu/886630

3/24 2024-12-01

Recap: Text-Compression

CIT

Karlsruhe Institute of Technology

Definition: LZ77 Factorization |] Definition: LZ78 Factorization |]

Given a text T of length n over an alphabet ¥, the
LZ77 factorization is

® 3 setof zfactors f;, f,...,f, € ¥, such that
@ T=ff...fbandforalli€[1,z]fis

® single character not occurringin f; ... fi_1 or

® |ongest substring occurring > 2 times in f; .. . f;

T = abababbbbaba$

.f1:a .f4=bbb
@ fHh=>0H ® f; = aba
lfg:abab .f6:$

Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform

Given a text T of length n over an alphabet ¥, the
LZ78 factorization is

® 3 setof zfactors fy, f,...,f, € T, such that
@ T=ff.. f,fh=ecandforallic[1,z]

wiffy...fi_y = T[1..j — 1], then f; is the longest
prefix of T[j..n], such that

Jk e[0,i),a € XU{$}: fk = fix

T = abababbbbaba$

-)‘1:3 .f4:abb .f7:$
.f2:b .f5:bb
® f3; =ab @ f; = aba

Institute of Theoretical Informatics, Algorithm Engineering

Burrows-Wheeler Transform [BW94] (1/2)

Given a text T of length n and its suffix array SA, for
i€[1,n]the is

T[SA[i] — 1] SA[i 1
sy — | TISAN =11 SAlD >

$ SA[i] =1
® character before the suffix in SA-order
® choose characters cyclic

® can compute BWT in O(n) time

® for binary alphabet O(n/+/Ig n) time and
O(n/ Ig n) words space is possible [KK19%&

4/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform

KIT

Karlsruhe Institute of Technology

1 2 83 4 5 6 8 9 10 11 12 13
T a b ab c a c a b b a$
SA 1312 1 9 6 3 11 2 10 7 4 8 5
LCk 0 0 1 2 2 5 0 2 1 1 4 0 3
BWT a b $ c c b b a a a a b b

& definition is not very descriptive
® easy way to compute BWT
® what can we do with the BWT

Bk

a = PINGO can the BWT be reversed?

Institute of Theoretical Informatics, Algorithm Engineering

https://kurpicz.org

KIT

Burrows-Wheeler Transform (2/2)

Definition: Cyclic Rotation

Given a text T of length n, the i-th cyclic rotation is 0 1@ 7 74 10 76 10 76 7O 100209

albjalbjclajbfclalb|bja|$

7O = T[i.n] T[1..i) blalblcfalblclalblblal$|a
albjclalbjclalb|bfal$|a|b

) . . blcla|blcla|b|bla|$|a|b|a
® j-th cyclic rotation is concatenation of i-th suffix clalol<lalololalslzlolal0o
and (i — 1)-th prefix alolclalololalslalolalnle
bfc|la|b|bja]$|lalbla|bfc]|a

Definition: Burrows-Wheeler Transform (alt.) clalp|blals|afbfafb]c|a]b
Given a text T and a matrix containing all its cyclic ajblblaj¥lalblafblclalb|c
rotations in lexicographical order as columns, then biblaj$lalblalblclalblc]a
the Burrows-Wheeler transform of the text is the blajsjalblalblclalblclalb
last row of the matrix s @] Bllele bl (=] o]
$lalblalblclalblclalb|b]|a

5/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform —\g
T = ababcabcabbas

Ui

First and Last Row

® two important rows in the matrix T = ababcabcabba$

(13)12) 7)) 1(9) 7(6) 7(3) 7(11) 7(2)7(10)7(7) 7(4) 7(8) 7(6)
® other rows are not needed at all ! T T T T T T T T

F $lalalalalal|b|blb]b|blc]|c

@ there is a special relation between the two rows alslblblblblalalblclclala
@ later this lecture blalalblclc|s|blalalalbl|b
alblblalalala|c|$ib]|b|b]|cC

blalc[s]b[b[b]alalb]c]a]e
® contains all characters or the text in sorted order c|bjajalbjclalbjbfaja$]|b
alc|blblalalblclal$Iblalb

® is the BWT itself clojajblalblalblcfbjalals
alc|blc|blalb|blala|$|b]a

blalblala|$|c|a|lb]blalc|b

blbla|lb|blala[$|c|]cib|ala

L alb|$lclc|bfblalJalalalbl|b

6/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

KIT

Properties of the BWT: Rank of Characters

Definition: Rank

Given a text T over an alphabet Sigma, the rank of a 0 580 O SO G5) 58 50 56

;. . . F $a”aaacaﬂb|b|b b”b“c cl

character at position i € [1, n] is :a\l)%5fblfb€)ﬁ)§€73%]%$a&3€‘é}ég)
rank(i) = |{j € [1,1]: Tlil = TU} bl[p [2% [[\ [blfaal/alb]b
a/bbaaaac$)z{)a/bc

A bxac$bbb/a/abc\aa

® rank is number of same characters that occur ARV ARAE
before in the text altlololala AYACIBLIRIE
® mark ranks of characters w.r.t. text not BWT N EIBEIBCNAIIBRIEE
® order of ranks is the same in first and last row c[o]a Vb [a[o\fa\fb\ c\ b[alal s
allclo] oA o Neals]o]a

T ababcabcabbats b}a\/\éaagpe\[%t\&t\xa\c\b
HPADAZIEIRRR Yl

rank 1 12213324455 1 L |albls$lclclblblalalalalplp
Y YVLVLIVIYVLIYIDIY

7124 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

LF-Mapping (1/2) ﬂ(IT

Karlsruhe Institute of Technology

® want to map characters from last to first row T = ababcabcabba$

a Why dO we want thlso 7(13)7(12) (1) 7(9) 7(6) 1(3) 7(11) 7(2) £(10) 7(7) 7(4) 1(8) 7(5)

® helps with pattern matching Folslajefelajalblblblblolc]c

® transform BWT back to T ? ;t :N\z\?\?(\; ﬁ Ia :‘ ?’ Z/ Z

0 aIbbaaaac$//bc

Definition: LF-mapping N NN A

Given a text T of length n and its suffix array SA, <ivlz13)g\ }\ é(A \a \$ b

then the LF-mapping is a permutation of [1, n], such alt|b[ofa\a\pWAVA s h]&]p

that J EVEFIBN 4 ABEILIE

LF(i)=j < SA[j] = SA[] —1 c[[o\ a }/b[a] b\fa\JON N b [a a\ s

a’ [¢ clb / al$lbla

® similar to definition of BWT ;l : { 7 Z/al i\l\ \E \; \:
Cc NC N\Db

® requires SA or explicitly saving LF-mapping L alolslclclololalalalalbls

8/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Ui

LF-Mapping (2/2)

Definition: C-Array and Rank-Function T ababcabcabbat$

Given a text T of length n over an alphabet ¥, rank 1 122 133244551

a € X,and i€ [1,n] then
® rank now on BWT

Cle] =i e[t,n]: T[i] <o ® Cis exclusive prefix sum over histogram £ -J

and

Definition: LF-Mapping (alt.)

Given a BWT, its C-array, and its rank-Function,
then

rank. (i) = [{j € [1,i]: T[j] = a}|
® C contains total number of smaller characters

® rank, contains number of a’s in prefix T[1..i] LF(i) = C[BWTIi]] + rankgyry; (i)
® rank, can be computed in O(1) time [FMO0O]

9/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Reversing the BWT (1/2) ﬂIT

® characters (w.r.t. text) preserve order in L and F T = ababcabcabba$

® [F-mapping returns previous character in text F |$|ajajalaja]b|blb]b]bfc]c
A NN N oNa [B[h] 4] Mafa
o\[p [% [¥ (W1 [b[fa[a}/aA [b
albbaaaac$){){bc
Lacﬁsbbbaabcaa
Yo lalalATAIL[NA YAk [k o
akbbaa%%\/w%b

3 EVEFEN) % ABEIEIE
clflb\lalb|a]|b\fa\yb\ c\ b | a\l a\|l $
a’c cb/ al$lbla
b’a aaS;/ é\r}\k\acb
IDADIZIEINEa AL

L |(alb|$|lc]c|(b|blajalalalb|b
LF 2 7 112138 9 3 4 5 6 1011

10/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

KIT

Reversing the BWT (2/2)
® characters (w.r.t. text) preserve order in L and F T T A T
® [F-mapping returns previous character in text L lalb]s$]clc|b]|blalalalalb]|b
LF |2]|7]1|12f13|8|9|3|4]|5]6]|10f11
® T[n] = $and T in first row » T[13] = $and k = 1
® apply LF-mapping on result to obtain any T[12] = L[1] = aand k = LF(1) = 2
character
T[11]=L[2] =band k = LF(2) =7
Tln—i] = L[LF(LF(...(LF(1))...))] T[10] = L[7] =band k = LF(7) =9
N ——’

T[9] = L[9) =aand k = LF(9) = 4
T[9] = L[4] = cand k = LF(4) = 12

i—1 times

11/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

SKIT

Properties of the BWT: Runs Karlsruhe Institute of Technology
- BT Bl 1234567829 0111213
® can be used for lossless compression L [a]b]s]c]c]o]o]a]alala]b]b]

Definition: Run (simplified)
Given a text T of length n, we call its substring T7[i..j]
arun, if

® T[k] = T[/] forall k, £ € [i,j] and

® T[i—1] # T[] and T[j + 1] # T[j]
@ (To be more precise, this is a definition for a run of
a periodic substring with smallest period 1, but this is

not important for this Iectureé@)

® BWT contains lots of runs
® same context is often grouped together £

12/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

SKIT

Compressing the BWT: Run-Length Compression

Definition: Run-Length Encoding

Given a text T, represent each run T[i..i + ¢) as 123 456 7 8 9 0 111213
tuple BWT [a]b[s[c]c]b][b[a]alala]b]b]
(T[1,0)

®(a1)
= (b,1)
= (s,1)
® (c,2)
® (b,2)
® (a,4)
® (b,2)

13/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

KIT

Compressing the BWT: Move-to-Front

T = ababcabcabba$

Given a text T over an alphabet & = [1, o], the 1234567809 01l1213
MTF(T) of the text is computed as follows BWT [a[b]s[c]c[b[b]afafa]afb]b]
® start with a list X = X[1], X[2],..., X[0] ® X =%,a,b,c

® scan text from left to right, for character T[i]
® append position of T[i] in X to MTF(T) and
® move T|[i] to front of X

MTF =2and X = a, $,b,c

MTF =23 and X =b,a, $,c

MTF =233 and X = $,b,a,c
MTF =2334and X =c, $,b,a
MTF =23341and X =c,$,b,a
MTF =233411and X =c, $,b,a

MTF encoding can easily be reverted
consists of many small numbers
runs are preserved

use Huffman on encoding

MTF =23341131411121

14/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

KIT

Pattern Matching using the BWT
® interval for a s [Cla — 1], Ca + 1]]
Given a text T of length n over an alphabet ¥, a find sub-interval using rank,

a € X,and i€ [1,n] then
Cla] = i€ [1,n]: T[] < q ® example on the board £ -

and
rank, (i) = |{j € [1,1]: T[j] = a}|

a find interval of occurrences in SA using BWT

® SAis divided into intervals based on first
character of suffix @ as seen during SAIS

@ text from BWT is backwards
® search pattern backwards

15/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Backwards Search in the BWT ﬂ(IT

Karlsruhe Institute of Technology

Function BackwardsSearch(P[1..n], C, rank): ® no access fotext or SArequired
1 s=1,e=n ® no binary search
2 fori=m,...,1do ® existential queries are easy
3 = C[P["]] + rankeg)(s — 1) +1 ® counting queries are easy
4 e = C[P[i]] + rankpj;(e)
5 If s> ethen @ reporting queries require additional information
6 | return () ® example on the board
7

return [s, €]

16/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Sampling the Suffix Array

reporting queries require SA

& storing whole SA requires too much space

17/24

better: sample every s-th SA position in SA’

how to find sampled position?

mark sampled positions in bit vector of size n
if match occurs check if position is sampled
otherwise find sample using LF

if SA[i] = j then SA[LF(i)] =/ —1

2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform

KIT

Karlsruhe Institute of Technology

® ranki (i) in bit vector is number of sample
® SA'[rank; (i)] is sampled value

® SA'[rank (i)] + #steps till sample found
is correct SA value

a finding a sample requires O(S - tank) time

Institute of Theoretical Informatics, Algorithm Engineering

SKIT

Efficient Bit Vectors in Practice (1/3) @
® easy access @ requires 8 bytes per bit(?)
® very big: 1,4, ... bytes per bit @ store 64 bits in 8 bytes
® how to access bits
® bit vector in C++ (1 bit per byte) ® j/64 is position in 64-bit word
® easy access ® /%64 is position in word

® |ayout depending on implementation

0 1 2 3 4 5 6 7 8 9
| 64 bits | 64 bits | 64 bits | 64 bits | 64 bits | 64 bits | 64 bits | 64 bits | 64 bits | 64 bits |

y?|2|l|f|3|i|3\fﬁﬁyaf|f 0|

18/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

KIT

Efficient Bit Vectors in Practice (2/3) @

// There is a bit vector
std::vector<uint64_t> bit_vector;

// access i-th bit
uint64_t block = bit_vector[i/64];
bool bit = (block >> (63 - (i % 64))) & 1ULL;

shift bits right # bits logical and 1
0 1 2 38 4 5 ... 62 63 0 1 2 3 4 5 ... 62 63
afafifoefrfelf1fe] o [ofefefofofel..1]0

ang 1

19/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Efficient Bit Vectors in Practice (3/3) @

(block >> ((i%64))) & 1ULL;
& fill bit vector from left to right
0 1 2 3 4 5 ... 62 63
(rfafafoefafef..[2]e]
ofefofofofolf..[1]e]

® assembler code: mov ecx, edi
not ecx

shr rsi, cl
mov eax, esi

and eax, 1

20/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform

SKIT

e of Technology

(block >> (i%64)) & 1ULL;

a fill bit vector right to left
63 62 ... 5 4 3 2 1 0
(ofuf.feofafofr]afa]

(ofof.[2fs]efefz]e]

® assembler code: mov ecx, edi
shr rsi, cl
mov eax, esi

and eax, 1

Institute of Theoretical Informatics, Algorithm Engineering

Rank Queries in Bit Vectors (1/2) ﬂ(IT

Karlsruhe Institute of Technology

rank,, (/) # of as before i
position of j-th

ranko(5)
| 2 | ﬁ_
‘ ‘ #of Os w.rt.
0 1 2 3 4 5 6 8 9 superblook
©/1|{1/06|1|1(06|1|0|0
block I t f f
. X) # of Os
super-block - @
21/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform

Institute of Theoretical Informatics, Algorithm Engineering

Rank Queries in Bit Vectors (2/2)

22/24

® blocks of size s = | '&”

for a bit vector of size n

2
super blocks of size s' = s> = O(lg” n)

for all | 7] super blocks, store number of 0s
from beginning of bit vector to end of
super-block

n/s"-lgn= O(g%) = o(n) bits of space

Eﬁff: PINGO how fast can rank queries be

answered?

2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform

KIT

Karlsruhe Institute of Technology

for all | 7 | blocks, store number of Os from
beginning of super block to end of block

n/s-lgs = O(%) = o(n) bits of space

for all length-s bit vectors, for every position i
store number of 0s up to /

2% .s.lgs= O(v/nlgnlglg n) = o(n) bits of
space

® query in O(1) time

ranko(i) = i — rank (i)

Institute of Theoretical Informatics, Algorithm Engineering

https://kurpicz.org

The FM-Index (First Look) [FM0O] IT

Building Blocks of FM-Index Space Requirements

® wavelet tree on BWT providing rank-function ® wavelet tree: nflgo|(1 + o(1)) bits
© wavelet trees are topic of next lecture! w C-array: o[lg] bits @ n(1 + o(1)) bits if

a C-array o> lgin

@ sampled suffix array with sample rate s = sampled suffix array: 2[lg n] bits

® bit vector marking sampled suffix array positions ® bit vector: n(1 + o(1)) bits
Lemma: FM-Index Space Requirements ® space and time bounds can be achieved with
Given a text T of length n over an alphabet of size o, s=lg,n

the FM-index requires O(nlg o) bits of space

23/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

Ui

Conclusion and Outlook

This Lecture Linear Time Construction

@ Burrows-Wheeler transform
. . . ST SA
® introduction to FM-index
a efficient bit vectors
. . Lz | LCP BWT
® rank queries on bit vectors

Next Lecture

® wavelet trees
® more on FM-index

24/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

KIT

Bibliography |

[BW94] Michael Burrows and David J. Wheeler. A Block-Sorting Lossless Data Compression Algorithm.
Technical report. 1994.

[FM00] Paolo Ferragina and Giovanni Manzini. “Opportunistic Data Structures with Applications”. In: FOCS.
IEEE Computer Society, 2000, pages 390-398. DOI: 10.1109/SFCS.2000.892127.

[KK19] Dominik Kempa and Tomasz Kociumaka. “String Synchronizing Sets: Sublinear-Time BWT
Construction and Optimal LCE Data Structure”. In: STOC. ACM, 2019, pages 756—767.

[ZL77] Jacob Ziv and Abraham Lempel. “A Universal Algorithm for Sequential Data Compression”. In: |[EEE
Trans. Inf. Theory 23.3 (1977), pages 337-343. DOI: 10.1109/TIT.1977.1055714.

[ZL78] Jacob Ziv and Abraham Lempel. “Compression of Individual Sequences via Variable-Rate Coding”.
In: IEEE Trans. Inf. Theory 24.5 (1978), pages 530—-536. DOI: 10.1109/TIT.1978.1055934.

25/24 2024-12-01 Florian Kurpicz | Text Indexing | 06 Burrows-Wheeler Transform Institute of Theoretical Informatics, Algorithm Engineering

https://doi.org/10.1109/SFCS.2000.892127
https://doi.org/10.1109/TIT.1977.1055714
https://doi.org/10.1109/TIT.1978.1055934

	Appendix

