

Text Indexing

Lecture 08: Wavelet Trees

Florian Kurpicz

The slides are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License @ () () www.creativecommons.org/licenses/by-sa/4.0 | commit 59da60d compiled at 2024-12-08-21:27

www.kit.edu

PINGO

https://pingo.scc.kit.edu/345678

- for a bit vector of size n
- blocks of size $s = \lfloor \frac{\lg n}{2} \rfloor$
- super blocks of size $s' = s^2 = \Theta(\lg^2 n)$
- information for 0s or 1s enough
 *rank*₁(*i*) = *i rank*₀(*i*)

- for a bit vector of size n
- blocks of size $s = \lfloor \frac{\lg n}{2} \rfloor$
- super blocks of size $s' = s^2 = \Theta(\lg^2 n)$
- information for 0s or 1s enough
 *rank*₁(*i*) = *i rank*₀(*i*)
- for all \[\langle n' \] super blocks, store number of 0s from beginning of bit vector to end of super-block
- $n/s' \cdot \lg n = O(\frac{n}{\lg n}) = o(n)$ bits of space

- for a bit vector of size n
- blocks of size $s = \lfloor \frac{\lg n}{2} \rfloor$
- super blocks of size $s' = s^2 = \Theta(\lg^2 n)$
- information for 0s or 1s enough
 *rank*₁(*i*) = *i rank*₀(*i*)
- for all \[\langle n' \] super blocks, store number of 0s from beginning of bit vector to end of super-block

• $n/s' \cdot \lg n = O(\frac{n}{\lg n}) = o(n)$ bits of space

 for all \[\frac{n}{s} \] blocks, store number of 0s from beginning of super block to end of block

• $n/s \cdot \lg s' = O(\frac{n \lg \lg n}{\lg n}) = o(n)$ bits of space

- for a bit vector of size n
- blocks of size $s = \lfloor \frac{\lg n}{2} \rfloor$
- super blocks of size $s' = s^2 = \Theta(\lg^2 n)$
- information for 0s or 1s enough
 *rank*₁(*i*) = *i rank*₀(*i*)
- for all \[\langle \frac{n}{s'} \] super blocks, store number of 0s from beginning of bit vector to end of super-block
- $n/s' \cdot \lg n = O(\frac{n}{\lg n}) = o(n)$ bits of space

- for all \[\frac{n}{s} \] blocks, store number of 0s from beginning of super block to end of block
- $n/s \cdot \lg s' = O(\frac{n \lg \lg n}{\lg n}) = o(n)$ bits of space
- for all length-s bit vectors, for every position i store number of 0s up to i
- $2^{\frac{\lg n}{2}} \cdot s \cdot \lg s = O(\sqrt{n} \lg n \lg \lg n) = o(n)$ bits of space

- for a bit vector of size n
- blocks of size $s = \lfloor \frac{\lg n}{2} \rfloor$
- super blocks of size $s' = s^2 = \Theta(\lg^2 n)$
- information for 0s or 1s enough
 *rank*₁(*i*) = *i rank*₀(*i*)
- for all \[\langle n' \] super blocks, store number of 0s from beginning of bit vector to end of super-block
- $n/s' \cdot \lg n = O(\frac{n}{\lg n}) = o(n)$ bits of space

- for all [n]
 s]
 blocks, store number of 0s from beginning of super block to end of block
- $n/s \cdot \lg s' = O(\frac{n \lg \lg n}{\lg n}) = o(n)$ bits of space
- for all length-s bit vectors, for every position i store number of 0s up to i
- $2^{\frac{\lg n}{2}} \cdot s \cdot \lg s = O(\sqrt{n} \lg n \lg \lg n) = o(n)$ bits of space
- query in O(1) time using three subqueries
 - one in super-block
 - one in block
 - one for remaining bitvector smaller than s

- select₀ in a bit vector of size n that contains k zeros
- naive solutions
 - scan bit vector: O(n) time and no space overhead
 - store k solutions in S[1..k] and select₀(i) = S[i] I if k ∈ O(n/lgn) this suffice

- select₀ in a bit vector of size n that contains k zeros
- naive solutions
 - scan bit vector: O(n) time and no space overhead
 - store k solutions in S[1..k] and select₀(i) = S[i] I if k ∈ O(n/lgn) this suffice
- better: k/b variable-sized super-blocks B_i , such that super-block contains $b = \lg^2 n$ zeros

• select₀(*i*) =
$$\sum_{j=0}^{\lfloor i/b \rfloor - 1} |B_j| + select_0(B_{\lfloor i/b \rfloor}, j - (\lfloor i/b \rfloor b))$$

- select₀ in a bit vector of size n that contains k zeros
- naive solutions
 - scan bit vector: O(n) time and no space overhead
 - store k solutions in S[1..k] and select₀(i) = S[i] if k ∈ O(n/lgn) this suffice
- better: k/b variable-sized super-blocks B_i , such that super-block contains $b = \lg^2 n$ zeros

• select₀(*i*) =
$$\sum_{j=0}^{\lfloor i/b \rfloor - 1} |B_j| + select_0(B_{\lfloor i/b \rfloor}, j - (\lfloor i/b \rfloor b))$$

storing all possible results for the (prefix) sum

•
$$O((k \lg n)/b) = o(n)$$
 bits of space

- select₀ in a bit vector of size n that contains k zeros
- naive solutions
 - scan bit vector: O(n) time and no space overhead
 - store k solutions in S[1..k] and select₀(i) = S[i] I if k ∈ O(n/lgn) this suffice
- better: k/b variable-sized super-blocks B_i , such that super-block contains $b = \lg^2 n$ zeros

• select₀(*i*) = $\sum_{j=0}^{\lfloor i/b \rfloor - 1} |B_j| + select_0(B_{\lfloor i/b \rfloor}, j - (\lfloor i/b \rfloor b))$

- storing all possible results for the (prefix) sum
- $O((k \lg n)/b) = o(n)$ bits of space
- select on block depends on size of block

- select₀ in a bit vector of size n that contains k zeros
- naive solutions
 - scan bit vector: O(n) time and no space overhead
 - store k solutions in S[1..k] and select₀(i) = S[i] I if k ∈ O(n/lgn) this suffice
- better: k/b variable-sized super-blocks B_i , such that super-block contains $b = \lg^2 n$ zeros

• select₀(*i*) = $\sum_{j=0}^{\lfloor i/b \rfloor - 1} |B_j| + select_0(B_{\lfloor i/b \rfloor}, j - (\lfloor i/b \rfloor b))$

- storing all possible results for the (prefix) sum
- $O((k \lg n)/b) = o(n)$ bits of space
- select on block depends on size of block
- $|B_{\lfloor i/b \rfloor}| \ge \lg^4 n$: store answers naively
 - requires $O(b \lg n) = O(\lg^3 n)$ bits of space
 - there are at most $O(n/\lg^4 n)$ such blocks
 - total $O(n/\lg n) = o(n)$ bits of space

- select₀ in a bit vector of size n that contains k zeros
- naive solutions
 - scan bit vector: O(n) time and no space overhead
 - store k solutions in S[1..k] and select₀(i) = S[i] I if k ∈ O(n/lgn) this suffice
- better: k/b variable-sized super-blocks B_i , such that super-block contains $b = \lg^2 n$ zeros

• select₀(i) = $\sum_{j=0}^{\lfloor i/b \rfloor - 1} |B_j| + select_0(B_{\lfloor i/b \rfloor}, j - (\lfloor i/b \rfloor b))$

- storing all possible results for the (prefix) sum
- $O((k \lg n)/b) = o(n)$ bits of space
- select on block depends on size of block
- $|B_{\lfloor i/b \rfloor}| \ge \lg^4 n$: store answers naively
 - requires $O(b \lg n) = O(\lg^3 n)$ bits of space
 - there are at most $O(n/\lg^4 n)$ such blocks
 - total $O(n/\lg n) = o(n)$ bits of space
- $|B_{\lfloor i/b \rfloor}| < \lg^4 n$: divide super-block into blocks
 - same idea: variable-sized blocks containing $b' = \sqrt{\lg n}$ zeros
 - (prefix) sum $O((k \lg \lg n)/b') = o(n)$ bits
 - if size $\geq \lg n$ store all answers
 - if size < lg *n* store lookup table

Lemma: Binary Rank- and Select-Queries

Given a bit vector of size *n*, there exists data structures that can be computed in time O(n) of size o(n) bits that can answer rank and select queries on the bit vector in O(1) time

Preliminaries

Definition: Bit Representation

Given a text T over an alphabet of size σ , each character can be represented using $\lceil \lg \sigma \rceil$ bits.

- the leftmost bit is the most significant bit and
- the rightmost bit is the least significant bit

0	1	2	3	4	5	6	7	
(0	(0	0)	(0	(1	(1	(1	(1	MSB
0	0	-	-	0	0	-	-	
0)2	1)2	0)2	1)2	0)2	1)2	0)2	1)2	LSB

Preliminaries

Definition: Bit Representation

Given a text T over an alphabet of size σ , each character can be represented using $\lceil \lg \sigma \rceil$ bits.

- the leftmost bit is the most significant bit and
- the rightmost bit is the least significant bit

0	1	2	3	4	5	6	7	
(0	0)	(0	0)	(1	(1	(1	1	MSB
0	0	-	-	0	0	-	-	
$0)_{2}$	$(1)_{2}$	0)2	$(1)_{2}$	0)2	$(1)_{2}$	0)2	1)2	LSB

- for simplicity characters are integers
- bit representation is integer in binary

Preliminaries

Definition: Bit Representation

Given a text T over an alphabet of size σ , each character can be represented using $\lceil \lg \sigma \rceil$ bits.

- the leftmost bit is the most significant bit and
- the rightmost bit is the least significant bit

0	1	2	3	4	5	6	7	
0)	0)	0)	0)	(1	(1	(1	1	MSB
0	0	-	-	0	0	-	-	
0)2	1)2	0)2	1)2	0)2	1)2	0)2	1)2	LSB

- for simplicity characters are integers
- bit representation is integer in binary

Definition: Bit Prefix

A bit prefix of length k are the k MSBs of a characters bit representation

Wavelet Trees [GGV03] (1/2)

Definition: Wavelet Tree

Given a text *T* of length *n* over an alphabet $\Sigma = [1, \sigma]$, a wavelet tree is a binary tree, where

- each node represents characters in $[\ell, r] \subseteq [1, \sigma],$
- if a node represents characters in [ℓ, r], then its left and right child
- represent characters in $[\ell, (\ell + r)/2)$ and $[(\ell + r)/2, r]$
- a node is a leaf if $\ell + 2 \ge r$
- characters are represented using a bit vector
- an entry is 1 if the character is represented in the right child and 0 otherwise

Wavelet Trees [GGV03] (1/2)

Definition: Wavelet Tree

Given a text *T* of length *n* over an alphabet $\Sigma = [1, \sigma]$, a wavelet tree is a binary tree, where

- each node represents characters in $[\ell, r] \subseteq [1, \sigma],$
- if a node represents characters in [ℓ, r], then its left and right child
- represent characters in $[\ell, (\ell + r)/2)$ and $[(\ell + r)/2, r]$
- a node is a leaf if $\ell + 2 \ge r$
- characters are represented using a bit vector
- an entry is 1 if the character is represented in the right child and 0 otherwise

Definition: Level-wise Wavelet Tree

A wavelet tree, where all bit vectors on the same depth in the tree are concatenated is called level-wise wavelet tree

Wavelet Trees [GGV03] (1/2)

Definition: Wavelet Tree

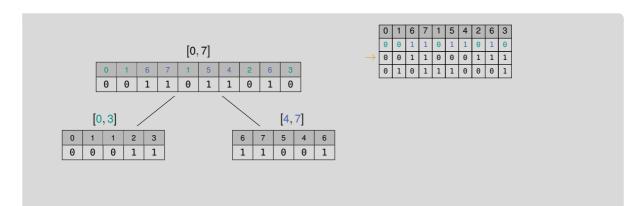
Given a text *T* of length *n* over an alphabet $\Sigma = [1, \sigma]$, a wavelet tree is a binary tree, where

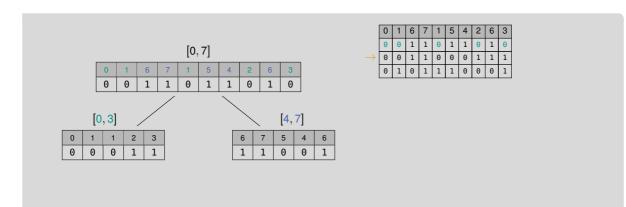
- each node represents characters in $[\ell, r] \subseteq [1, \sigma],$
- if a node represents characters in [ℓ, r], then its left and right child
- represent characters in $[\ell, (\ell + r)/2)$ and $[(\ell + r)/2, r]$
- a node is a leaf if $\ell + 2 \ge r$
- characters are represented using a bit vector
- an entry is 1 if the character is represented in the right child and 0 otherwise

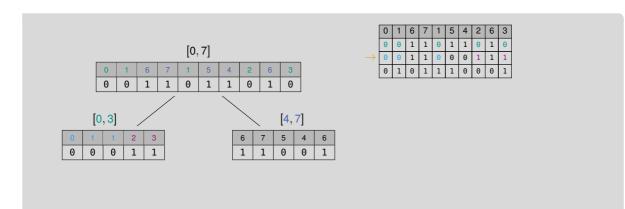
Definition: Level-wise Wavelet Tree

A wavelet tree, where all bit vectors on the same depth in the tree are concatenated is called level-wise wavelet tree

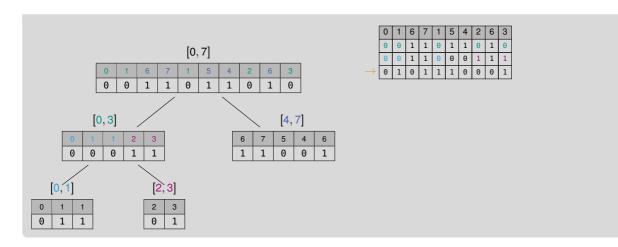
- in practice, level-wise wavelet trees have less overhead
- navigation still easy



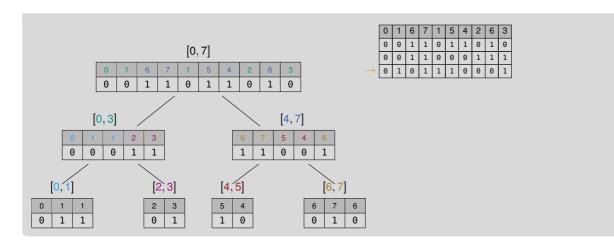


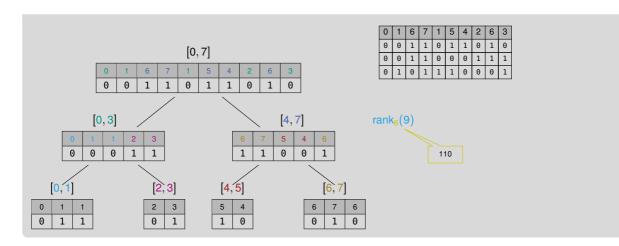


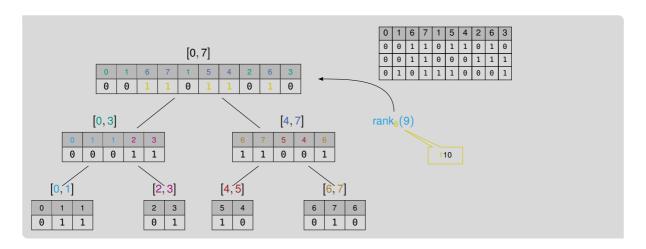
Karlsruhe Institute of Technology

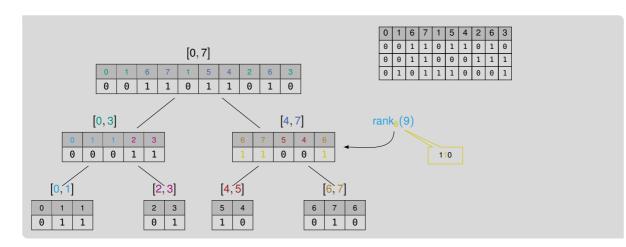


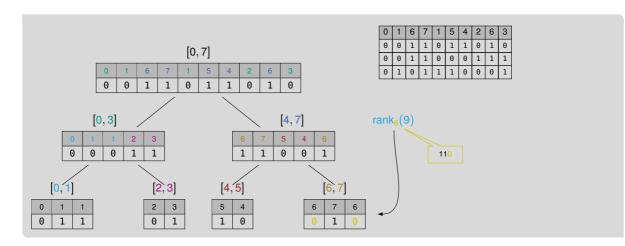
Karlsruhe Institute of Technology

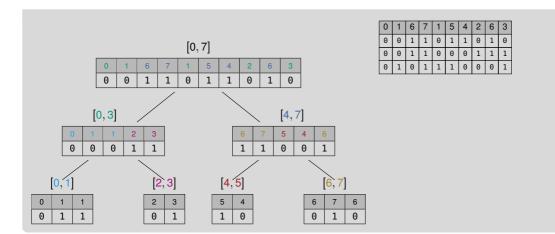


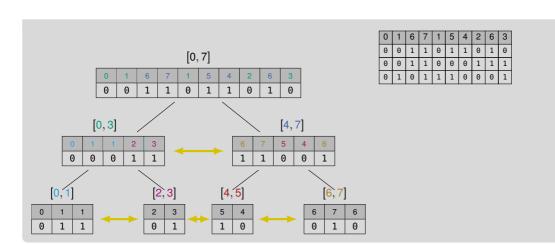










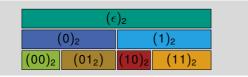


The Intervals of a Wavelet Tree

- in each node, all represented characters share a bit prefix
- on depth ℓ the longest common bit prefix has length $\ell-1$
- the bit prefixes form intervals

The Intervals of a Wavelet Tree

- in each node, all represented characters share a bit prefix
- on depth ℓ the longest common bit prefix has length $\ell-1$
- the bit prefixes form intervals



The Intervals of a Wavelet Tree

- in each node, all represented characters share a bit prefix
- on depth ℓ the longest common bit prefix has length $\ell-1$
- the bit prefixes form intervals

- finding characters in the wavelet tree requires finding the correct interval
- finding the position of a character requires finding the position in the last interval

Rank-Queries

- use rank queries on bit vectors
- at depth ℓ as for ℓ -th MSB
- follow through tree according to bit
- as seen on a previous slide

Rank-Queries

- use rank queries on bit vectors
- at depth ℓ as for ℓ -th MSB
- follow through tree according to bit
- as seen on a previous slide

Select-Queries

- identify leaf containing character
- select corresponding occurrence in leaf
- backtrack position up the tree to the root
- requires up and down traversal of the wavelet tree
- see example on the board

Rank-Queries

- use rank queries on bit vectors
- at depth ℓ as for ℓ -th MSB
- follow through tree according to bit
- as seen on a previous slide

Select-Queries

- identify leaf containing character
- select corresponding occurrence in leaf
- backtrack position up the tree to the root
- requires up and down traversal of the wavelet tree
- see example on the board

Access-Queries

- follow bits through the wavelet tree
- return read bits
- same as rank but returning bit pattern instead of final rank
- see example on the board

Rank-Queries

- use rank queries on bit vectors
- at depth ℓ as for ℓ -th MSB
- follow through tree according to bit
- as seen on a previous slide

Select-Queries

- identify leaf containing character
- select corresponding occurrence in leaf
- backtrack position up the tree to the root
- requires up and down traversal of the wavelet tree
- see example on the board

Access-Queries

- follow bits through the wavelet tree
- return read bits
- same as rank but returning bit pattern instead of final rank
- see example on the board

Lemma: Query Times Wavelet Tree

Given a text *T* over an alphabet of size σ , the wavelet tree of the text can answer *rank*, *select*, and *access* queries in $O(\lg \sigma)$ time

Proof (Sketch)

All queries require

- just a constant number of rank and select queries on the bit vectors and
- at most one traversals from the root of the tree to a leaf and
- one traversal from a leaf to the root of the tree

Karlsruhe Institute of Technology

Bit Reversal Permutation

- $\hfill a given a bit representation of a character <math display="inline">\alpha$
- reverse(α) reverses the bits
- the MSB becomes the least significant bit

Definition: Bit-Reversal Permutation

The **bit-reversal permutation** ρ_k is a permutation of the numbers $[0, 2^k)$ with

$$\rho_k(i) = reverse(i)$$

for $i \in [0, 2^k)$

Bit Reversal Permutation

- $\hfill a given a bit representation of a character <math display="inline">\alpha$
- reverse(α) reverses the bits
- the MSB becomes the least significant bit

Definition: Bit-Reversal Permutation

The **bit-reversal permutation** ρ_k is a permutation of the numbers $[0, 2^k)$ with

$$\rho_k(i) = reverse(i)$$

for $i \in [0, 2^k)$

•
$$\rho_2 = (0, 2, 1, 3) = ((00)_2, (10)_2, (01)_2, (11)_2)$$

• $\rho_{k+1} = (2\rho_k(0), \dots, 2\rho_k(2^k - 1), 2\rho_k(0) + 1, \dots, 2\rho_k(2^k - 1) + 1)$

Bit Reversal Permutation

- $\hfill a$ given a bit representation of a character α
- reverse(α) reverses the bits
- the MSB becomes the least significant bit

Definition: Bit-Reversal Permutation

The **bit-reversal permutation** ρ_k is a permutation of the numbers $[0, 2^k)$ with

$$\rho_k(i) = reverse(i)$$

for $i \in [0, 2^k)$

•
$$\rho_2 = (0, 2, 1, 3) = ((00)_2, (10)_2, (01)_2, (11)_2)$$

• $\rho_{k+1} = (2\rho_k(0), \dots, 2\rho_k(2^k - 1), 2\rho_k(0) + 1, \dots, 2\rho_k(2^k - 1) + 1)$

- same intervals as a wavelet tree
- used in the wavelet matrix

Alternative Representation

- alternative representation of wavelet trees
- removing tree structure
- only two areas per level 1 the intervals discussed before still exist

Alternative Representation

- alternative representation of wavelet trees
- removing tree structure
- only two areas per level 1 the intervals discussed before still exist

Definition: Wavelet Matrix [CNP15]

Given a text T of length n over an alphabet of size σ a wavelet matrix consists of

- bit vectors BV_{ℓ} for $\ell \in [1, \lceil \lg \sigma \rceil]$ of size *n* and
- an array $Z[1..[\lg \sigma]]$

Such that

- $Z[\ell]$ contains the number of zero bits in BV_{ℓ}
- BV₁ contains all MSBs in text order
- BV_ℓ contains the ℓ-th MSB the character at position *i* in BV_{ℓ-1} at position
 - $rank_0(i)$ if $BV_{\ell-1} = 0$ and
 - $Z[\ell 1] + rank_1(i)$ if $BV_{\ell-1} = 1$

Alternative Representation

- alternative representation of wavelet trees
- removing tree structure
- only two areas per level 1 the intervals discussed before still exist
- better suited for large alphabets
- seemingly less structure
- retaining all important properties

Definition: Wavelet Matrix [CNP15]

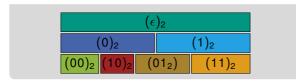
Given a text T of length n over an alphabet of size σ a wavelet matrix consists of

- bit vectors BV_{ℓ} for $\ell \in [1, \lceil \lg \sigma \rceil]$ of size *n* and
- an array $Z[1..[\lg \sigma]]$

Such that

- $Z[\ell]$ contains the number of zero bits in BV_{ℓ}
- BV₁ contains all MSBs in text order
- BVℓ contains the ℓ-th MSB the character at position *i* in BVℓ-1 at position
 - $rank_0(i)$ if $BV_{\ell-1} = 0$ and
 - $Z[\ell 1] + rank_1(i)$ if $BV_{\ell-1} = 1$

Intervals of a Wavelet Matrix

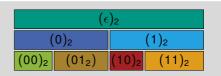


- a wavelet matrix has the same intervals a wavelet tree has
- intervals not bounded by parent () no tree structure

Intervals of a Wavelet Matrix

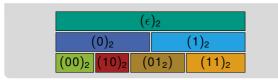


- a wavelet matrix has the same intervals a wavelet tree has
- intervals not bounded by parent
 no tree structure

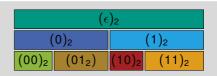


intervals of a wavelet tree (for comparison)

Intervals of a Wavelet Matrix



- a wavelet matrix has the same intervals a wavelet tree has
- intervals not bounded by parent () no tree structure



- intervals of a wavelet tree (for comparison)
- **PINGO** is answering queries with a wavelet matrix as simple as with a wavelet tree?

Institute of Theoretical Informatics, Algorithm Engineering

Example Wavelet Tree and Wavelet Matrix

- queries on the wavelet matrix work similar
- example on the board

	0	1	3	7	1	5	4	2	6	3
BV_0	0	0	0	1	0	1	1	0	1	0
	0	1	3	1	2	3	7	5	4	6
BV_1	0	0	1	0	1	1	1	0	0	1
	0	1	1	5	4	3	2	3	7	6
BV_2	0	1	1	1	0	1	0	1	1	0
-	$Z[0] = 6 \qquad Z[1] = 5 \qquad Z[2] = 4$									

Naive Wavelet Tree and Wavelet Matrix Construction (1/2)

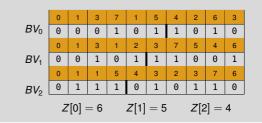
Wavelet Tree

- first level are MSBs of characters of text
- for each level ℓ > 1
 - stably sort text using Radix sort by bit prefixes of length $\ell 1$
 - take *ℓ*-th MSB of sorted sequence
 - sorted sequence is new text

Naive Wavelet Tree and Wavelet Matrix Construction (1/2)

Wavelet Tree

- first level are MSBs of characters of text
- for each level ℓ > 1
 - stably sort text using Radix sort by bit prefixes of length $\ell 1$
 - take ℓ-th MSB of sorted sequence
 - sorted sequence is new text



Wavelet Matrix

- first level are MSBs of characters of text
- for each level ℓ > 1
 - stably sort text by $\ell 1$ MSB
 - take ℓ-th MSB of sorted sequence
 - sorted sequence is new text

Wavelet Tree and Wavelet Matrix Construction (2/2)

 to make both fully functional bit vectors are augmented with binary rank and select support

Lemma: Running Time and Memory Requirements Wavelet Tree and Wavelet Matrix

Given a text *T* over an alphabet of size σ , the wavelet tree and wavelet matrix require $(1 + o(1))n\lceil \lg \sigma \rceil$ bits of space and can be constructed in $O(n \lg \sigma)$ time

Wavelet Tree and Wavelet Matrix Construction (2/2)

 to make both fully functional bit vectors are augmented with binary rank and select support

Lemma: Running Time and Memory Requirements Wavelet Tree and Wavelet Matrix

Given a text *T* over an alphabet of size σ , the wavelet tree and wavelet matrix require $(1 + o(1))n\lceil \lg \sigma \rceil$ bits of space and can be constructed in $O(n \lg \sigma)$ time

PINGO is there a asymptotically faster construction method?

Better Wavelet Tree Construction [Bab+15; MNV16]

- using requires broadword programming
- every τ -th level is a big level
- big levels contain enough information to compute small levels below
- small levels computed by splitting big levels
- $O(b/\lg n)$ characters at a time with $b = o(\lg n)$
- sketch on board 🛃

Better Wavelet Tree Construction [Bab+15; MNV16]

- using requires broadword programming
- every τ -th level is a big level
- big levels contain enough information to compute small levels below
- small levels computed by splitting big levels
- $O(b/\lg n)$ characters at a time with $b = o(\lg n)$
- sketch on board 🛃

Lemma: Better Wavelet Tree Construction

Given a text *T* over an alphabet of size σ , the wavelet tree and wavelet matrix require $(1 + o(1))n\lceil \lg \sigma \rceil$ bits of space and can be constructed in $O(n \lg \sigma / \sqrt{\lg n})$ time

Better Wavelet Tree Construction [Bab+15; MNV16]

- using requires broadword programming
- every τ -th level is a big level
- big levels contain enough information to compute small levels below
- small levels computed by splitting big levels
- $O(b/\lg n)$ characters at a time with $b = o(\lg n)$
- sketch on board 🗾

Lemma: Better Wavelet Tree Construction

Given a text *T* over an alphabet of size σ , the wavelet tree and wavelet matrix require $(1 + o(1))n\lceil \lg \sigma \rceil$ bits of space and can be constructed in $O(n \lg \sigma / \sqrt{\lg n})$ time

 can be implemented using AVX/SSE instructions [Din+23; Kan18]

- wavelet trees can be compressed
- more precise: the text can be compressed
- use Huffman codes
- wavelet trees cannot handle holes
- use canonical Huffman codes

- wavelet trees can be compressed
- more precise: the text can be compressed
- use Huffman codes
- wavelet trees cannot handle holes
- use canonical Huffman codes

Huffman Codes (Recap)

- idea is to create a binary tree
- each character α is a leaf and has weight $\textit{Hist}[\alpha]$
- create node for two nodes without parent with smallest weight
- give new node total weight of children
- repeat until only one node without parent remains
- label edges:
 - left edge: 0
 - right edge: 1
- path to children gives code for character

- wavelet trees can be compressed
- more precise: the text can be compressed
- use Huffman codes
- wavelet trees cannot handle holes
- use canonical Huffman codes

Canonical Huffman Codes (Recap)

- start with Huffman codes, code word 0, and length 1
- to get canonical code for current length, then add 1 to code word
- to update length add 1 and append required amount of zeros to code word

Huffman Codes (Recap)

- idea is to create a binary tree
- each character α is a leaf and has weight $\textit{Hist}[\alpha]$
- create node for two nodes without parent with smallest weight
- give new node total weight of children
- repeat until only one node without parent remains
- label edges:
 - left edge: 0
 - right edge: 1
- path to children gives code for character

_		
α	hc(lpha)	chc(lpha)
1	(11)2	(11)2
3	(01)2	(10)2
6	(100)2	(011) ₂
7	$(101)_{2}$	(010) ₂
0	$(0000)_2$	(0011)2
2	$(0001)_2$	(0010)2
4	(0010)2	(0001)2
5	(0011) ₂	(0000)2

- Huffman codes (hc)
- canonical Huffman codes (chc) that are bit-wise negated

α	$hc(\alpha)$	$chc(\alpha)$
<u> </u>	πο(α)	che(a)
1	(11)2	(11)2
3	(01)2	(10)2
6	(100)2	(011)2
7	(101)2	(010)2
0	(0000)2	$(0011)_{2}$
2	(0001)2	$(0010)_2$
4	(0010) ₂	$(0001)_2$
5	(0011) ₂	$(0000)_2$

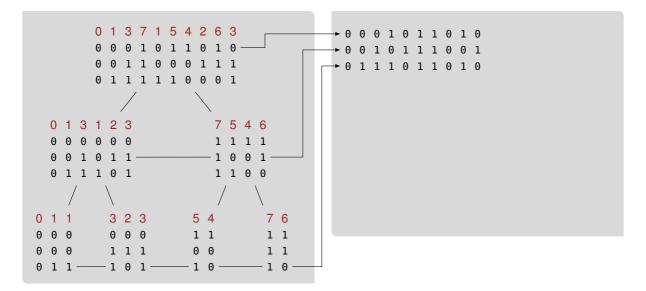
- Huffman codes (hc)
- canonical Huffman codes (chc) that are bit-wise negated

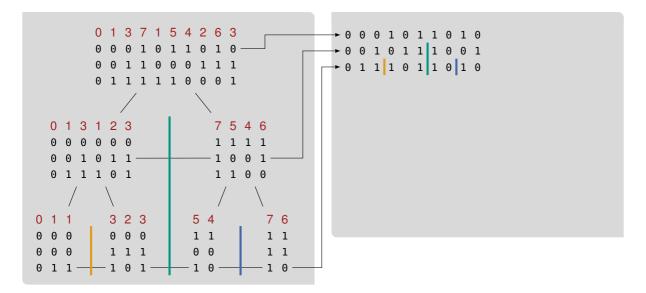
- intervals are only missing to the right (white space)
- no holes allow for easy querying

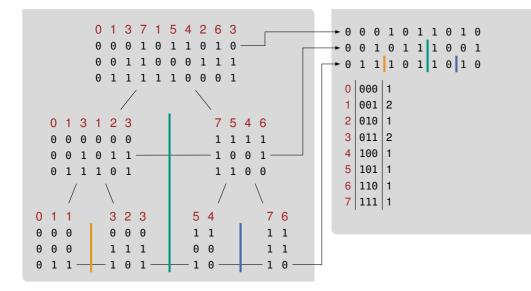
Practical Sequential Wavelet Tree Construction

Bottom-Up Construction [FKL18]

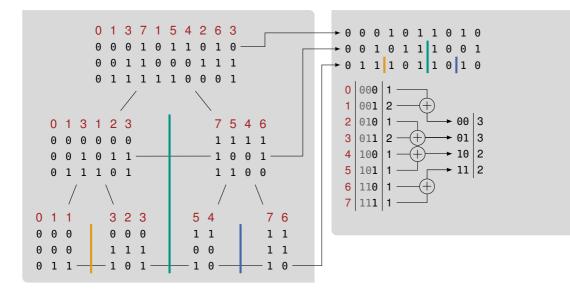
- scan the text and create histogram
- while scanning compute first level
- use histogram to compute borders of intervals
- scan text again and fill bit vectors
- example on the next slide

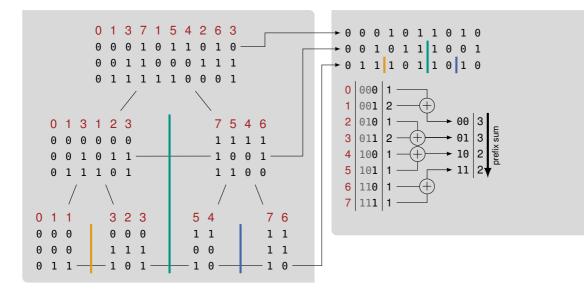


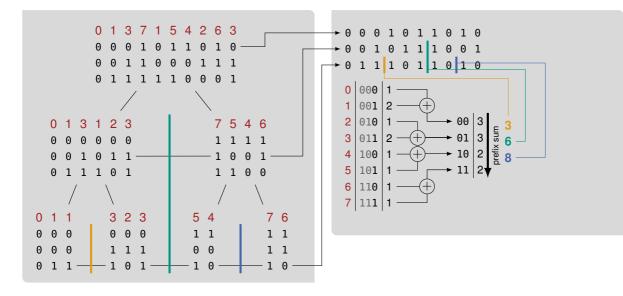




Institute of Theoretical Informatics, Algorithm Engineering







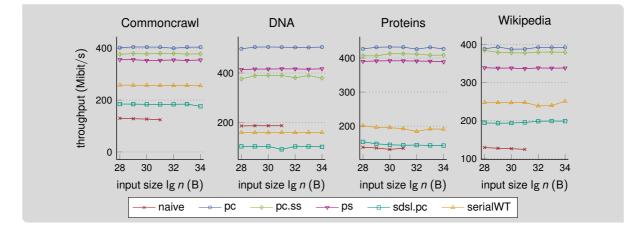
Institute of Theoretical Informatics, Algorithm Engineering

Experimental Setup

64 GB RAM

- two Intel Xeon E5-2640v4 CPUs (10 cores at 2.4 GHz base frequency, 3.4 GHz maximum turbo frequency, and cache sizes: 32 KB L1D and L1I, 256 KB L2, 25.6 MB L3)
- same texts as in chapter 04
- results are average of 5 runs

Experiments: Sequential Wavelet Tree Construction



Experiments: Vectorized Wavelet Tree Construction [Din+23]

File	lut	ext	shuf64	shuf128	shuf256	shuf512	рс	pc-ss
dblp.xml	433.44	722.21	614.24	834.92	1 197.80	1 477.77	608.43	752.48
dna	529.32	883.00	563.11	668.93	862.49	1011.45	594.02	745.68
english	456.91	770.55	677.96	906.42	1 304.80	1 642.69	623.08	704.90
pitches	448.02	749.24	686.88	886.62	1 276.36	1 584.19	578.70	328.47
proteins	375.73	575.99	565.63	707.23	985.35	1 178.02	633.58	761.41
sources	451.24	757.75	650.22	882.45	1 296.80	1 632.85	594.22	754.72
cc.16gib	453.97	729.58	653.25	875.61	1 265.27	1 604.84	628.46	752.97
dna.16gib	436.89	644.08	483.45	451.33	537.36	593.96	669.70	650.33
wiki.16gib	447.95	714.42	634.91	871.14	1 267.69	1 604.39	591.01	753.05
ru.8gib	317.20	642.51	506.04	660.23	938.68	1 121.03	346.96	170.44

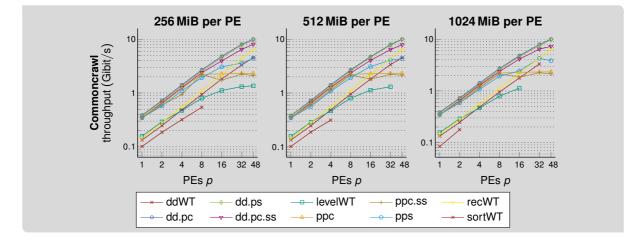
Parallel Wavelet Tree Construction in Practice

Domain Decomposition [Fue+17]

- create wavelet tree in parallel using p PEs
- each PE gets a consecutive slice of text
- each PE builds partial wavelet tree for its text
- merge partial wavelet trees in parallel
- can utilize any sequential algorithm
- very fast in practice
- $O(n \lg \sigma / \sqrt{\lg n})$ work and $O(\sigma + \lg n)$ time [Shu20]



Experiments: Parallel Wavelet Tree Construction



Conclusion and Outlook

This Lecture

- wavelet tree and wavelet matrix
- Huffman-shaped wavelet trees

Linear Time Construction ST SA WT LZ LCP BWT

Conclusion and Outlook

This Lecture

- wavelet tree and wavelet matrix
- Huffman-shaped wavelet trees
- select on bit vectors
- practical algorithms for wavelet tree construction

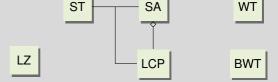
Linear Time Construction

Conclusion and Outlook

This Lecture

- wavelet tree and wavelet matrix
- Huffman-shaped wavelet trees
- select on bit vectors
- practical algorithms for wavelet tree construction

Linear Time Construction



Next Lecture

- FM-index
- r-Index

Institute of Theoretical Informatics, Algorithm Engineering

Bibliography I

- [Bab+15] Maxim A. Babenko, Pawel Gawrychowski, Tomasz Kociumaka, and Tatiana Starikovskaya. "Wavelet Trees Meet Suffix Trees". In: SODA. SIAM, 2015, pages 572–591. DOI: 10.1137/1.9781611973730.39.
- [CNP15] Francisco Claude, Gonzalo Navarro, and Alberto Ordóñez Pereira. "The Wavelet Matrix: An Efficient Wavelet Tree for Large Alphabets". In: Inf. Syst. 47 (2015), pages 15–32. DOI: 10.1016/j.is.2014.06.002.
- [Din+23] Patrick Dinklage, Johannes Fischer, Florian Kurpicz, and Jan-Philipp Tarnowski. "Bit-Parallel (Compressed) Wavelet Tree Construction". In: DCC. IEEE, 2023, pages 81–90. DOI: 10.1109/DCC55655.2023.00016.
- [FKL18] Johannes Fischer, Florian Kurpicz, and Marvin Löbel. "Simple, Fast and Lightweight Parallel Wavelet Tree Construction". In: ALENEX. SIAM, 2018, pages 9–20. DOI: 10.1137/1.9781611975055.2.

Bibliography II

- [Fue+17] José Fuentes-Sepúlveda, Erick Elejalde, Leo Ferres, and Diego Seco. "Parallel Construction of Wavelet Trees on Multicore Architectures". In: *Knowl. Inf. Syst.* 51.3 (2017), pages 1043–1066. DOI: 10.1007/s10115-016-1000-6.
- [GGV03] Roberto Grossi, Ankur Gupta, and Jeffrey Scott Vitter. "High-Order Entropy-Compressed Text Indexes". In: SODA. ACM/SIAM, 2003, pages 841–850.
- [Kan18] Yusaku Kaneta. "Fast Wavelet Tree Construction in Practice". In: SPIRE. Volume 11147. Lecture Notes in Computer Science. Springer, 2018, pages 218–232. DOI: 10.1007/978-3-030-00479-8_18.
- [MNV16] J. Ian Munro, Yakov Nekrich, and Jeffrey Scott Vitter. "Fast construction of wavelet trees". In: *Theor. Comput. Sci.* 638 (2016), pages 91–97. DOI: 10.1016/j.tcs.2015.11.011.
- [Shu20] Julian Shun. "Improved parallel construction of wavelet trees and rank/select structures". In: *Inf. Comput.* 273 (2020), page 104516. DOI: 10.1016/j.ic.2020.104516.