

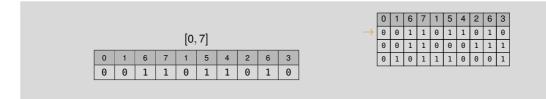
Text Indexing

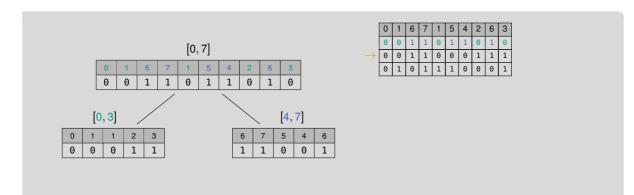
Lecture 08: FM-Index and r-Index

Florian Kurpicz

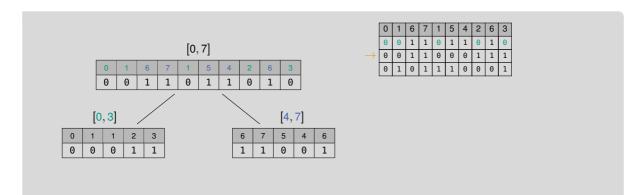
The slides are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License @ ① ③: www.creativecommons.org/licenses/by-sa/4.0 | commit 59da60d compiled at 2024-12-15-14:28

www.kit.edu

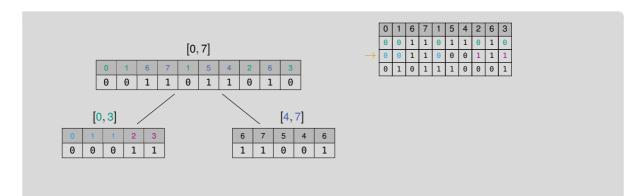


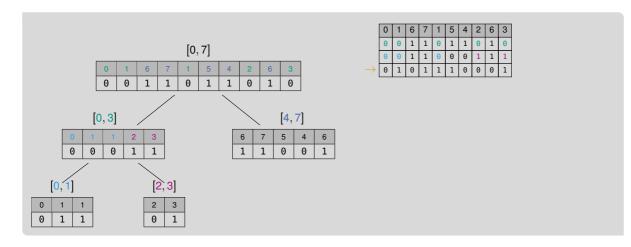


Institute of Theoretical Informatics, Algorithm Engineering

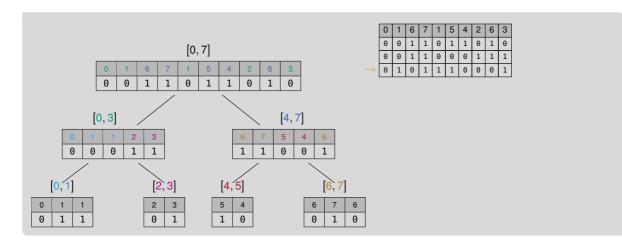


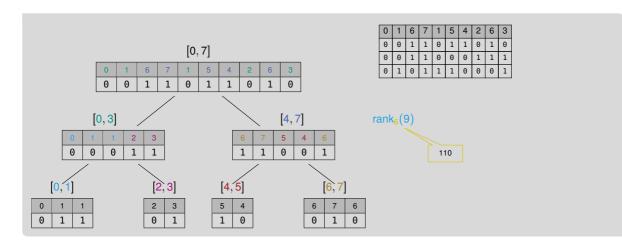
Institute of Theoretical Informatics, Algorithm Engineering

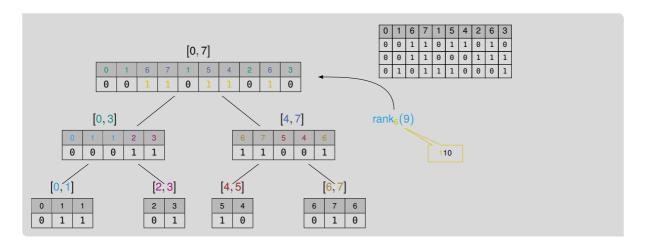


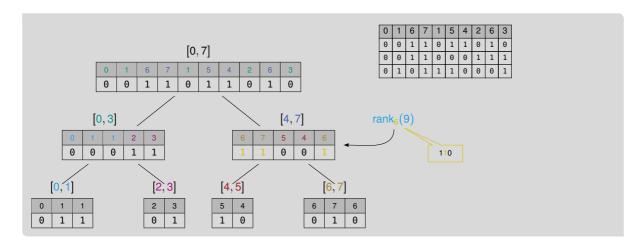


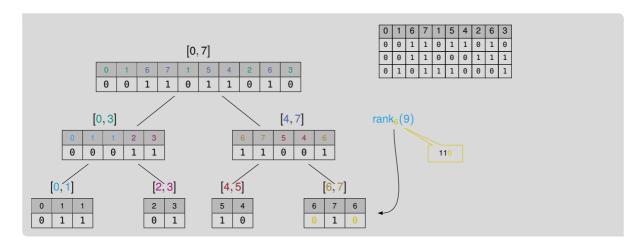
Karlsruhe Institute of Technology



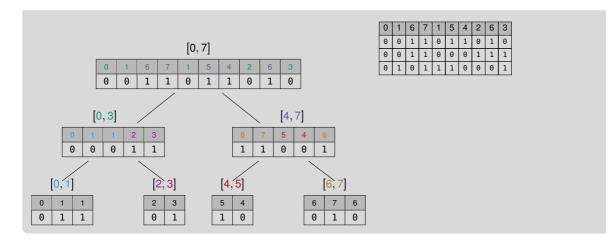




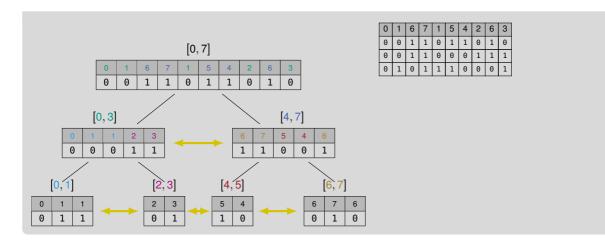




Karlsruhe Institute of Technology



Karlsruhe Institute of Technology



Recap: Compressed Wavelet Trees

- intervals are only missing to the right (white space)
- no holes allow for easy querying

- build wavelet tree for compressed text
- compress text using bit-wise negated canonical Huffman-codes

Recap: Compressed Wavelet Trees

- intervals are only missing to the right (white space)
- no holes allow for easy querying

- build wavelet tree for compressed text
- compress text using bit-wise negated canonical Huffman-codes
- can a wavelet tree be compressed further?

- compress (sparse) bit vectors
- bit vector contains k one bits
- use $O(k \lg \frac{n}{k}) + o(n)$ bits
- retrieve $\Theta(\lg n)$ bits at the same time
- similar to rank data structure

- compress (sparse) bit vectors
- bit vector contains k one bits
- use $O(k \lg \frac{n}{k}) + o(n)$ bits
- retrieve $\Theta(\lg n)$ bits at the same time
- similar to *rank* data structure
- split bit vector into (super-)blocks
- blocks of size $s = \frac{\lg n}{2}$
- super-blocks of size $s' = s^2$

- compress (sparse) bit vectors
- bit vector contains k one bits
- use $O(k \lg \frac{n}{k}) + o(n)$ bits
- retrieve $\Theta(\lg n)$ bits at the same time
- similar to *rank* data structure
- split bit vector into (super-)blocks
- blocks of size $s = \frac{\lg n}{2}$
- super-blocks of size $s' = s^2$

Array C

number of ones in *i*-th block

- compress (sparse) bit vectors
- bit vector contains k one bits
- use $O(k \lg \frac{n}{k}) + o(n)$ bits
- retrieve $\Theta(\lg n)$ bits at the same time
- similar to *rank* data structure
- split bit vector into (super-)blocks
- blocks of size $s = \frac{\lg n}{2}$
- super-blocks of size $s' = s^2$

Array C

number of ones in *i*-th block

Lookup-Tables L_i

■ for *i* ∈ [0, *s*] store lookup-table containing all bit vectors with *i* one bits

- compress (sparse) bit vectors
- bit vector contains k one bits
- use $O(k \lg \frac{n}{k}) + o(n)$ bits
- retrieve $\Theta(\lg n)$ bits at the same time
- similar to *rank* data structure
- split bit vector into (super-)blocks
- blocks of size $s = \frac{\lg n}{2}$
- super-blocks of size $s' = s^2$

Array C

number of ones in *i*-th block

Lookup-Tables L_i

- for *i* ∈ [0, *s*] store lookup-table containing all bit vectors with *i* one bits
- use variable-length codes to identify content of block
- concatenate all codes in bit vector V

- compress (sparse) bit vectors
- bit vector contains k one bits
- use $O(k \lg \frac{n}{k}) + o(n)$ bits
- retrieve $\Theta(\lg n)$ bits at the same time
- similar to *rank* data structure
- split bit vector into (super-)blocks
- blocks of size $s = \frac{\lg n}{2}$
- super-blocks of size $s' = s^2$

Array C

number of ones in *i*-th block

Lookup-Tables L_i

- for *i* ∈ [0, *s*] store lookup-table containing all bit vectors with *i* one bits
- use variable-length codes to identify content of block
- concatenate all codes in bit vector V

Bit Vector V

- let k_i be number of ones in *i*-th block
- use [lg (^s)_{ki}] bits to encode block () position in lookup-table
- concatenate all codes

Array SBlock

- for every super-block i, SBlock[i] contains position of encoding of first block in i-th super-block in V
- [lg *n*] bits per entry

Array SBlock

- for every super-block i, SBlock[i] contains position of encoding of first block in i-th super-block in V
- Ig n bits per entry

Array Block

- for every block i, Block[i] contains position of encoding of i-th block in V relative to its super-block
- O(lg lg n) bits per entry

Array SBlock

- for every super-block i, SBlock[i] contains position of encoding of first block in i-th super-block in V
- Ig n bits per entry

Array Block

- for every block i, Block[i] contains position of encoding of i-th block in V relative to its super-block
- O(lg lg n) bits per entry

Lemma: Compressed Bit Vectors

A bit vector of size *n* containing *k* ones can be represented using $O(k \lg \frac{n}{k}) + o(n)$ bits allowing O(1) time access to individual bits

Array SBlock

- for every super-block i, SBlock[i] contains position of encoding of first block in i-th super-block in V
- Ig n bits per entry

Array Block

- for every block i, Block[i] contains position of encoding of i-th block in V relative to its super-block
- O(lg lg n) bits per entry

Lemma: Compressed Bit Vectors

A bit vector of size *n* containing *k* ones can be represented using $O(k \lg \frac{n}{k}) + o(n)$ bits allowing O(1) time access to individual bits

Proof (Sketch space requirements)

- $|C| = O(\frac{n}{s} \lg s) = o(n)$ bits
- $|SBlock| = O(\frac{n}{s'} \lg n) = o(n)$ bits
- $|Block| = O(\frac{n}{s} \lg s) = o(n)$ bits
- $\sum_{k=0}^{s} |L_k| \le (s+1)2^s s = o(n)$ bits
- $|V| = \sum_{i=1}^{\lceil n/s \rceil} \lceil \lg \binom{s}{k_i} \rceil \le \lg \binom{n}{k} + n/s \le \lg ((n/k)^k) + n/s = k \lg \frac{n}{k} + O(\frac{n}{\lg n})$ bits

Recap: Backwards Search in the BWT

Function BackwardsSearch(P[1..n], C, rank): s = 1, e = nfor $i = m, \dots, 1$ do

- no access to text or SA required
- no binary search
- existential queries are easy
- counting queries are easy
- reporting queries require additional information
- example on the board

The FM-Index [FM00]

Building Blocks of FM-Index

- wavelet tree on BWT providing rank-function
- C-array
- sampled suffix array with sample rate s
- bit vector marking sampled suffix array positions

Lemma: FM-Index

Given a text *T* of length *n* over an alphabet of size σ , the FM-index requires $O(n \lg \sigma)$ bits of space and can answer counting queries in $O(m \lg \sigma)$ time and reporting queries in $O(occ + m \lg \sigma)$ time

The FM-Index [FM00]

Building Blocks of FM-Index

- wavelet tree on BWT providing rank-function
- C-array
- sampled suffix array with sample rate s
- bit vector marking sampled suffix array positions

Lemma: FM-Index

Given a text *T* of length *n* over an alphabet of size σ , the FM-index requires $O(n \lg \sigma)$ bits of space and can answer counting queries in $O(m \lg \sigma)$ time and reporting queries in $O(occ + m \lg \sigma)$ time

Space Requirements

- wavelet tree: $n \lceil \lg \sigma \rceil (1 + o(1))$ bits
- *C*-array: $\sigma \lceil \lg n \rceil$ bits n(1 + o(1)) bits if $\sigma \ge \frac{n}{\lg n}$
- sampled suffix array: $\frac{n}{s} \lceil \lg n \rceil$ bits
- bit vector: n(1 + o(1)) bits
- space and time bounds can be achieved with $s = \lg_{\sigma} n$

Conclusion FM-Index

- FM-index is easy to compress
- wavelet tree on BWT can be compressed
- bit vector can be compressed
- very small in comparison with suffix tree or suffix array
- compression does not make use of structure of BWT () wavelet trees are compressed using Huffman-codes

Conclusion FM-Index

- FM-index is easy to compress
- wavelet tree on BWT can be compressed
- bit vector can be compressed
- very small in comparison with suffix tree or suffix array
- compression does not make use of structure of BWT () wavelet trees are compressed using Huffman-codes

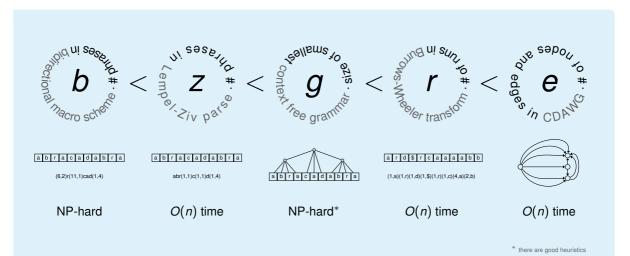
Definition: Run (simplified, recap)

Given a text T of length n, we call its substring T[i..j] a run, if

- $T[k] = T[\ell]$ for all $k, \ell \in [i, j]$ and
- $T[i-1] \neq T[i]$ and $T[j+1] \neq T[j]$

• (To be more precise, this is a definition for a run of a periodic substring with smallest period 1, but this is not important for this lecture)

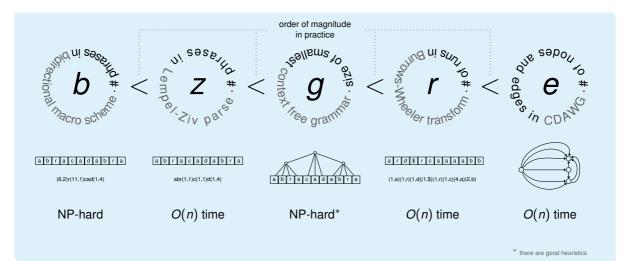
Measures of Repetitiveness (Excerpt)



9/25 2024-12-15 Florian Kurpicz | Text Indexing | 08 FM-Index & r-Index

Institute of Theoretical Informatics, Algorithm Engineering

Measures of Repetitiveness (Excerpt)



Institute of Theoretical Informatics, Algorithm Engineering

Karlsruhe Institute of Technology

Motivation: *r*-Index

Measure for Compressibility

- *k*-th order empirical entropy H_k
- number of LZ factors z
- number of BWT runs r

Karlsruhe Institute of Technology

Motivation: *r*-Index

Measure for Compressibility

- *k*-th order empirical entropy H_k
- number of LZ factors z
- number of BWT runs r
- z and r not blind to repetitions
- how do they relate?

Motivation: r-Index

Measure for Compressibility

- *k*-th order empirical entropy H_k
- number of LZ factors z
- number of BWT runs r
- z and r not blind to repetitions
- how do they relate?

Lemma: BWT runs and LZ factors [KK20]

Given a text T of length n. Let z be the number of LZ77 factors and r the number of runs in T's BWT, then

$$r \in O(z \lg^2 n)$$

Motivation: r-Index

Measure for Compressibility

- *k*-th order empirical entropy H_k
- number of LZ factors z
- number of BWT runs r
- z and r not blind to repetitions
- how do they relate?

Lemma: BWT runs and LZ factors [KK20]

Given a text T of length n. Let z be the number of LZ77 factors and r the number of runs in T's BWT, then

$$r \in O(z \lg^2 n)$$

more details in next lecture

Main Part of Backwards-Search

Goals

- simulate BWT and rank on BWT in
- O(r lg n) bits of space

Given a text *T* of length *n* over an alphabet Σ and its *BWT*, the *r*-index of this text consists of the following data structures

Given a text *T* of length *n* over an alphabet Σ and its *BWT*, the *r*-index of this text consists of the following data structures \blacksquare

Array I

I[i] stores position of i-th run in BWT

Given a text *T* of length *n* over an alphabet Σ and its *BWT*, the *r*-index of this text consists of the following data structures

Array I

I[i] stores position of i-th run in BWT

Array L'

- L'[i] stores character of i-th run in BWT
- build wavelet tree for L'

Given a text *T* of length *n* over an alphabet Σ and its *BWT*, the *r*-index of this text consists of the following data structures

Array I

I[i] stores position of i-th run in BWT

Array L'

- L'[i] stores character of i-th run in BWT
- build wavelet tree for L'

Array R

- lengths of BWT runs stably sorted by runs' characters
- accumulate for each character by performing exclusive prefix sum over run lengths'

Given a text *T* of length *n* over an alphabet Σ and its *BWT*, the *r*-index of this text consists of the following data structures

Array I

I[i] stores position of i-th run in BWT

Array L'

- L'[i] stores character of i-th run in BWT
- build wavelet tree for L'

Array R

- lengths of BWT runs stably sorted by runs' characters
- accumulate for each character by performing exclusive prefix sum over run lengths'

Array C

 C'[α] stores the start of the run lengths in R for each character α ∈ Σ starting at 0

The *r*-Index [GNP20] (1/3)

Given a text *T* of length *n* over an alphabet Σ and its *BWT*, the *r*-index of this text consists of the following data structures

Array I

I[i] stores position of i-th run in BWT

Array L'

- L'[i] stores character of i-th run in BWT
- build wavelet tree for L'

Array R

- lengths of BWT runs stably sorted by runs' characters
- accumulate for each character by performing exclusive prefix sum over run lengths'

Array C

 C'[α] stores the start of the run lengths in R for each character α ∈ Σ starting at 0

Bit Vector *B*

 compressed bit vector of length n containing ones at positions where BWT runs start and rank-support

The r-Index (2/3)

$rank_{\alpha}(BWT, i)$ with r-Index

- compute number *j* of run ($j = rank_1(B, i)$)
- compute position k in R ($k = C'[\alpha]$)
- compute number ℓ of α runs before the *j*-th run $(\ell = rank_{\alpha}(L', j-1))$
- compute number k of αs before the j-th run
 (k = R[k + ℓ])
- compute character β of run ($\beta = L'[j]$)
- if $\alpha \neq \beta$ return *k* () *i* is not in the run
- else return k + i I[j] + 1 is in the run

The r-Index (3/3)

Lemma: Space Requirements *r*-Index

Given a text *T* of length *n* over an alphabet of size σ that has *r BWT* runs, then its *r*-index requires

$O(r \lg n)$ bits

and can answer *rank*-queries on the *BWT* in $O(\lg \sigma)$. Given a pattern of length *m*, the *r*-index can answer pattern matching queries in time

 $\textit{O}(m \lg \sigma)$

Karlsruhe Institute of T

The r-Index (3/3)

Lemma: Space Requirements *r*-Index

Given a text *T* of length *n* over an alphabet of size σ that has *r BWT* runs, then its *r*-index requires

$O(r \lg n)$ bits

and can answer *rank*-queries on the *BWT* in $O(\lg \sigma)$. Given a pattern of length *m*, the *r*-index can answer pattern matching queries in time

 $O(m \lg \sigma)$

what about reporting queries?

Locating Occurrences (Sketch)

- modify backwards-search that it maintains SA[e]
- after backwards-search output SA[e], SA[e-1], ..., SA[s]
- in $O(r \lg n)$ bits and $O(occ \cdot \lg \lg r)$ time

Maintaining SA[e]

- sample SA positions at ends of runs
- if next character is BWT[e], then next SA[e'] is SA[e] - 1
- otherwise locate end of run and extract sample

Output Result

- following LF not possible () unbounded
- deduce *SA*[*i* − 1] from *SA*[*i*]
- character in L and F in same order
- only beginning of runs complicated
- for every character build predecessor data structure over sampled SA-values at end of runs
- associate with (*i*, SA[*i*])

Now: OptBWTR

	Time (locate)	Time (count)	Space (words)
r-index [GNP20]	$O(P \log \log_w(\sigma + n/r) + occ)$ O(P + occ)	$O(P \log \log_w(\sigma + n/r)) O(P)$	O(r) $O(r \log \log(\sigma + n/r))$
OptBWTR [NT21]	$O(P \log \log_w \sigma + occ)$	$O(P \log \log_w \sigma)$	<i>O</i> (<i>r</i>)

RLBWT

- partition BWT into r substrings
- $BWT = L_1 L_2 \dots L_r$
- L_i is maximal repetition of same character
- $\ell_1 = 1$ and $\ell_i = \ell_{i-1} + |L_{i-1}|$
- $RLBWT = (L_1[1], \ell_1)(L_2[1], \ell_2) \dots (L_r[1], \ell_r)$

RLBWT

- partition BWT into r substrings
- $BWT = L_1 L_2 \dots L_r$
- L_i is maximal repetition of same character
- $\ell_1 = 1$ and $\ell_i = \ell_{i-1} + |L_{i-1}|$
- $RLBWT = (L_1[1], \ell_1)(L_2[1], \ell_2) \dots (L_r[1], \ell_r)$
- let δ be permutation of [1, r] such that

 $LF(\ell_{\delta[1]}) < LF(\ell_{\delta[2]}) < \cdots < LF(\ell_{\delta[r]})$

RLBWT

- partition BWT into r substrings
- $BWT = L_1 L_2 \dots L_r$
- L_i is maximal repetition of same character
- $\ell_1 = 1$ and $\ell_i = \ell_{i-1} + |L_{i-1}|$
- $RLBWT = (L_1[1], \ell_1)(L_2[1], \ell_2) \dots (L_r[1], \ell_r)$
- let δ be permutation of [1, r] such that

 $LF(\ell_{\delta[1]}) < LF(\ell_{\delta[2]}) < \cdots < LF(\ell_{\delta[r]})$

Lemma: LF and RLBWT

• Let $\ell_x < i < \ell_{x+1}$ for some $i \in [1, n]$, then

 $LF(i) = LF(\ell_x) + (i - \ell_x)$

•
$$LF(\ell_{\delta[1]}) = 1$$
 and
 $LF(\ell_{\delta[i]}) = LF(\ell_{\delta[i-1]}) + |L_{\delta[i-1]}|$

T = aba	ıbc	ab	ca	bb	a\$									
BWT	а	b	\$	с	С	b	b	а	а	а	а	b	b	
	а	b	\$	c ²		b ²		a^4				b ²		
LF	2	7	1	12	13	8	9	3	4	5	6	10	11	

Input and Output Intervals

$\mathcal{T}=$ ababcabcabba\$

out	1 2	3 4	5 6	78	9	10 11	12 13
-----	-----	-----	-----	----	---	-------	-------

- there are *r* intervals
- represent domain of LF by intervals
- solve LF without predecessor queries () we did not use predecessor queries
- predecessor queries are bottleneck

Disjoint Interval Sequence & Move Query

Definition: Disjoint Interval Sequence

Let $I = (p_1, q_1), (p_2, q_2), \ldots, (p_k, q_k)$ be a sequence of *k* pairs of integers. We introduce a permutation π of [1, k] and sequence d_1, d_2, \ldots, d_k for *I*. π satisfies $q_{\pi[1]} \leq q_{\pi[2]} \leq \cdots \leq q_{\pi[k]}$, and $d_i = p_{i+1} - p_i$ for $i \in [1, k]$, where $p_{k+1} = n + 1$. We call the sequence *I* a disjoint interval sequence if it satisfies the following three conditions:

•
$$p_1 = 1 < p_2 < \cdots < p_k \le n$$

•
$$q_{\pi[1]} = 1$$
,

•
$$q_{\pi[i]} = q_{\pi[i-1]} + d_{\pi[i-1]}$$
 for each $i \in [2, k]$.

Disjoint Interval Sequence & Move Query

Definition: Disjoint Interval Sequence

Let $I = (p_1, q_1), (p_2, q_2), \ldots, (p_k, q_k)$ be a sequence of *k* pairs of integers. We introduce a permutation π of [1, k] and sequence d_1, d_2, \ldots, d_k for *I*. π satisfies $q_{\pi[1]} \leq q_{\pi[2]} \leq \cdots \leq q_{\pi[k]}$, and $d_i = p_{i+1} - p_i$ for $i \in [1, k]$, where $p_{k+1} = n + 1$. We call the sequence *I* a disjoint interval sequence if it satisfies the following three conditions:

•
$$p_1 = 1 < p_2 < \cdots < p_k \le n$$

•
$$q_{\pi[1]} = 1$$

•
$$q_{\pi[i]} = q_{\pi[i-1]} + d_{\pi[i-1]}$$
 for each $i \in [2, k]$.

T = aba	ıbcabcabba\$
in	1 2 3 4 5 6 7 8 9 10 11 12 13
out	1 2 3 4 5 6 7 8 9 10 11 12 13

Move Query

$$move(i, x) = (i', x')$$

- *i* position in input interval
- x input interval
- i' position in output interval
- x' input interval covering i'

Answering Move Query

- $D_{pair} = (p_i, q_i)$ for every interval
- D_{index}[i] index of input interval containing q_i

example on the board 💷

Answering Move Query

- $D_{pair} = (p_i, q_i)$ for every interval
- D_{index}[i] index of input interval containing q_i

example on the board 🔄

- *Move*(i, x) = (i', x')
 - *i* position in input sequence
 - x index of interval containing i

$$\bullet i' = q_x + (i - p_x)$$

- x' initially D_{index}[x]
- scan D_{pair} from x' until $p'_x \ge l'$
- x' index satisfying condition

Answering Move Query

- $D_{pair} = (p_i, q_i)$ for every interval
- D_{index}[i] index of input interval containing q_i

example on the board 되

Lemma: LF and RLBWT

• Let $\ell_x < i < \ell_{x+1}$ for some $i \in [1, n]$, then

 $LF(i) = LF(\ell_x) + (i - \ell_x)$

• $LF(\ell_{\delta[1]}) = 1$ and $LF(\ell_{\delta[i]}) = LF(\ell_{\delta[i-1]}) + |L_{\delta[i-1]}|$ • *Move*(i, x) = (i', x')

- *i* position in input sequence
- x index of interval containing i

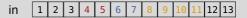
$$\bullet i' = q_x + (i - p_x)$$

- x' initially D_{index}[x]
- scan D_{pair} from x' until $p'_x \ge l'$
- x' index satisfying condition

LF Query

- input: interval containing an integer i
- output: interval containing LF(i)

BWT	а	b	\$	С	С	b	b	а	а	а	а	b	b
	а	b	\$	c^2		b^2		a^4				b^2	
LF	2	7	1	12	13	8	9	3	4	5	6	10	11

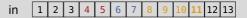


out 1	2	3	4	5	6	7	8	9	10	11	12	13	
-------	---	---	---	---	---	---	---	---	----	----	----	----	--

LF Query

- input: interval containing an integer i
- output: interval containing LF(i)
- 1. move to corresponding output interval

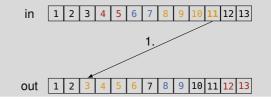
BWT	а	b	\$	с	с	b	b	а	а	а	а	b	b
	а	b	\$	c^2		b ²		a^4				b ²	
LF	2	7	1	12	13	8	9	3	4	5	6	10	11



out	1	2	3	4	5	6	7	8	9	10	11	12	13	
-----	---	---	---	---	---	---	---	---	---	----	----	----	----	--

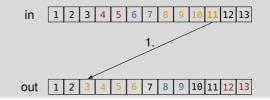
LF Query

- input: interval containing an integer i
- output: interval containing LF(i)
- 1. move to corresponding output interval



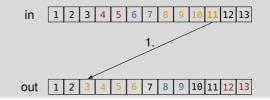
LF Query

- input: interval containing an integer i
- output: interval containing LF(i)
- 1. move to corresponding output interval
- 2. move to input interval containing position j



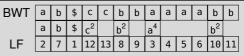
LF Query

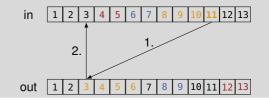
- input: interval containing an integer i
- output: interval containing LF(i)
- 1. move to corresponding output interval
- 2. move to input interval containing position j



LF Query

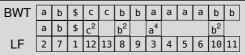
- input: interval containing an integer i
- output: interval containing LF(i)
- 1. move to corresponding output interval
- 2. move to input interval containing position j
- 3. linear search on at most four intervals

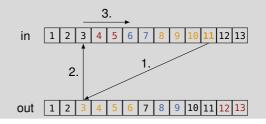




LF Query

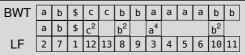
- input: interval containing an integer i
- output: interval containing LF(i)
- 1. move to corresponding output interval
- 2. move to input interval containing position j
- 3. linear search on at most four intervals

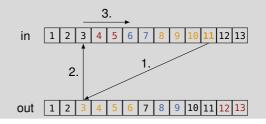




LF Query

- input: interval containing an integer i
- output: interval containing LF(i)
- 1. move to corresponding output interval
- 2. move to input interval containing position j
- 3. linear search on at most four intervals

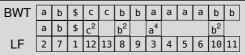


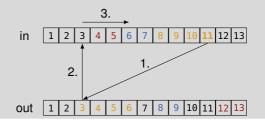


LF Query

- input: interval containing an integer i
- output: interval containing LF(i)
- 1. move to corresponding output interval
- 2. move to input interval containing position j
- 3. linear search on at most four intervals

worst-case intervals

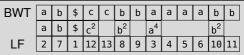


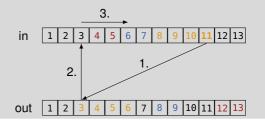


LF Query

- input: interval containing an integer i
- output: interval containing LF(i)
- 1. move to corresponding output interval
- 2. move to input interval containing position j
- 3. linear search on at most four intervals
- worst-case intervals

balance intervals





Balance the Move Data Structure (1/2)

Definition: Permutation Graph

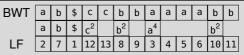
- each interval in the input and output sequence is a node
- each input interval [p_i, p_i + d_i 1] has a single outgoing edge pointing to output interval that contains p_i
- resulting graph G(I) has k edges
- G(1) is out-balanced if each output interval has at most three incoming edges

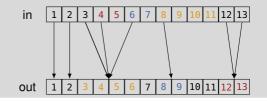
T aha	ho	٥h	~~	hh	٥¢								
T = aba	DC	ap	ca	aa	a\$								
BWT	а	b	\$	с	С	b	b	а	а	а	а	b	b
	а	b	\$	c ²		b ²		a^4				b ²	
LF	2	7	1	12	13	8	9	3	4	5	6	10	11
in	1	2	3	4	5	6	7	8	9	10	11	12	13
		_	_		_	_					_	_	_
out	1	2	3	4	5	6	7	8	9	10	11	12	13

Balance the Move Data Structure (1/2)

Definition: Permutation Graph

- each interval in the input and output sequence is a node
- each input interval [p_i, p_i + d_i 1] has a single outgoing edge pointing to output interval that contains p_i
- resulting graph G(I) has k edges
- G(1) is out-balanced if each output interval has at most three incoming edges





Balance Move Data Structure (2/2)

- identify intervals with \geq 5 incoming edges
- split it "equally"
- each new interval covers at least two input intervals

Balance Move Data Structure (2/2)

- identify intervals with \geq 5 incoming edges
- split it "equally"
- each new interval covers at least two input intervals
- number r' of balanced input intervals is k + r
- k is number of split operations
- r is number of runs in BWT

Balance Move Data Structure (2/2)

- identify intervals with \geq 5 incoming edges
- split it "equally"
- each new interval covers at least two input intervals
- number r' of balanced input intervals is k + r
- k is number of split operations
- r is number of runs in BWT

Lemma: Size of Out-Balanced Sequence

 $k \leq r$ and $r' \leq 2r$

Balance Move Data Structure (2/2)

- identify intervals with \geq 5 incoming edges
- split it "equally"
- each new interval covers at least two input intervals
- number r' of balanced input intervals is k + r
- k is number of split operations
- r is number of runs in BWT

Lemma: Size of Out-Balanced Sequence

 $k \leq r$ and $r' \leq 2r$

Proof

- output contains at least k big intervals, therefore $r' \ge 2k$
- r' = r + k, therefore $2k \le r + k$
- this gives us $k \leq r$

- r' balanced input & output intervals for LF queries
- rank & select data structure build on the BWT
 - rank in $O(\log \log_w \sigma)$ time
 - select in O(1) time

- r' balanced input & output intervals for LF queries
- rank & select data structure build on the BWT
 - rank in $O(\log \log_w \sigma)$ time
 - select in O(1) time
- O(r') = O(r) space
- $O(|P| \log \log_w \sigma)$ running time

- r' balanced input & output intervals for LF queries
- rank & select data structure build on the BWT
 - rank in $O(\log \log_w \sigma)$ time
 - select in O(1) time
- O(r') = O(r) space
- $O(|P| \log \log_w \sigma)$ running time
- $F(I_{LF})$: move data structure for *LF*
- L_{first}: character of each run
- R(L_{first}): rank and select support on L_{first}

- r' balanced input & output intervals for LF queries
- rank & select data structure build on the BWT
 - rank in $O(\log \log_w \sigma)$ time
 - select in O(1) time
- O(r') = O(r) space
- $O(|P| \log \log_w \sigma)$ running time
- F(I_{LF}): move data structure for LF
- L_{first}: character of each run
- R(L_{first}): rank and select support on L_{first}

- current interval is [b, e] for P[i + 1..m]
- look if P[i] occurs in [b, e]
 - $rank(L_{first}, c, j) rank(L_{first}) \ge 1$
- find b̂, ê marking first/last occurrence of P[i] in
 [b, e]
 - $\hat{b} = select(L_{first}, c, rank(L_{first}, c, i 1) + 1)$
 - $\hat{e} = select(L_{first}, c, rank(L_{first}, c, j))$
- use move data structure to find new b, e for P[i..m]

$\boldsymbol{\Phi}$ and Its Inverse

• use Φ^{-1} to compute *occs* of *SA*[*b*..*b*+*occ*-1]

•
$$\Phi^{-1}(SA[i]) = SA[i+1]$$

•
$$SA[b..b + occ - 1] =$$

 $SA[b], \Phi^{-1}(SA[b]), \Phi^{-1}(\Phi^{-1}(SA[b])), \Phi^{-1}(\Phi^{-1}(\Phi^{-1}(SA[b]))), ...$

T = ababcabcabba\$BWT а b \$ С С b а al а b la bl b c^2 b² ia⁴ b² \$ а b LF 2 5 6 13 8 9 3 4 101 SA 13 12 9 6 3 2 10 8 7 4 Φ^{-1} 9 10 11 8 13 3 5 6 2 4 in 1 2 3 4 5 6 7 12 13 out 1 7 8 9 10 11 12

$\boldsymbol{\Phi}$ and Its Inverse

- use Φ^{-1} to compute *occs* of *SA*[*b*..*b* + *occ* 1]
- $\Phi^{-1}(SA[i]) = SA[i+1]$
- SA[b..b + occ 1] = $SA[b], \Phi^{-1}(SA[b]), \Phi^{-1}(\Phi^{-1}(SA[b])), \Phi^{-1}(\Phi^{-1}(\Phi^{-1}(SA[b]))), ...$
- Φ⁻¹ can be represented by *r* input & output intervals [GNP20]
- use move data structure on balanced intervals
- keep track of SA[b]

r = aba	bc	ab	ca	bb	a\$									
BWT	a	b	\$	с	С	b	b	а	а	а	а	b	b	
	а	b	\$	c ²		b ²		a^4				b ²		
LF	2	7	1	12	13	8	9	3	4	5	6	10	11	
SA	13	12	1	9	6	3	11	2	10	7	4	8	5	
Φ^{-1}	9	10	11	8	13	3	4	5	6	7	2	1	12	
in	1	2	3	4	5	6	7	8	9	10	11	12	13	

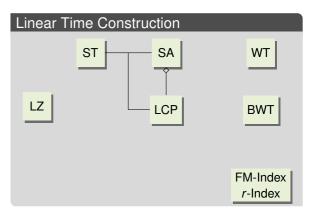
7

out	1	2	3	4	5	6	7	8	9	10	11	12	13

Conclusion and Outlook

This Lecture

- move data structure
- optimal O(r) space full-text index



Conclusion and Outlook

r-Index

This Lecture • move data structure • optimal O(r) space full-text index Next Lecture • r vs. z Example 1 LZ Example 2 FM-Index

26/25 2024-12-15 Florian Kurpicz | Text Indexing | 08 FM-Index & r-Index

Institute of Theoretical Informatics, Algorithm Engineering

Bibliography I

- [FM00] Paolo Ferragina and Giovanni Manzini. "Opportunistic Data Structures with Applications". In: FOCS. IEEE Computer Society, 2000, pages 390–398. DOI: 10.1109/SFCS.2000.892127.
- [GNP20] Travis Gagie, Gonzalo Navarro, and Nicola Prezza. "Fully Functional Suffix Trees and Optimal Text Searching in BWT-Runs Bounded Space". In: *J. ACM* 67.1 (2020), 2:1–2:54. DOI: 10.1145/3375890.
- [KK20] Dominik Kempa and Tomasz Kociumaka. "Resolution of the Burrows-Wheeler Transform Conjecture". In: *FOCS*. IEEE, 2020, pages 1002–1013. DOI: 10.1109/F0CS46700.2020.00097.
- [NT21] Takaaki Nishimoto and Yasuo Tabei. "Optimal-Time Queries on BWT-Runs Compressed Indexes". In: ICALP. Volume 198. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021, 101:1–101:15. DOI: 10.4230/LIPIcs.ICALP.2021.101.