
Text Indexing

Lecture 08: FM-Index and r -Index

Florian Kurpicz

The slides are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License cba: www.creativecommons.org/licenses/by-sa/4.0 | commit 59da60d compiled at 2024-12-15-14:30

KIT – The Research University in the Helmholtz Association www.kit.edu

https://creativecommons.org/licenses/by-sa/4.0/
https://www.kit.edu

0 1 6 7 1 5 4 2 6 3
0 0 1 1 0 1 1 0 1 0

0 0 1 1 0 0 0 1 1 1

0 1 0 1 1 1 0 0 0 1

→
→
→

[0, 7]

0 1 6 7 1 5 4 2 6 3

0 0 1 1 0 1 1 0 1 0

[0, 3]

0 1 1 2 3

0 0 0 1 1

[4, 7]

6 7 5 4 6

1 1 0 0 1

[0, 1]

0 1 1

0 1 1

[2, 3]

2 3

0 1

[4, 5]

5 4

1 0

[6, 7]

6 7 6

0 1 0

rank6(9)

110

2/26 2024-12-15 Florian Kurpicz | Text Indexing | 08 FM-Index & r -Index Institute of Theoretical Informatics, Algorithm Engineering

Recap: Wavelet Trees

0 1 3 7 1 5 4 2 6 3

0 1 1 0 1 0 0 0 0 1
0 7 5 4 2 6 1 3 1 3

0 1 0 0 0 1 1 0 1 0
0 5 4 2 7 6

1 0 0 1 0 1
5 4 0 2

0 1 1 0

intervals are only missing to the right (white
space)

no holes allow for easy querying

build wavelet tree for compressed text

compress text using bit-wise negated canonical
Huffman-codes

can a wavelet tree be compressed further?

3/26 2024-12-15 Florian Kurpicz | Text Indexing | 08 FM-Index & r -Index Institute of Theoretical Informatics, Algorithm Engineering

Recap: Compressed Wavelet Trees

compress (sparse) bit vectors

bit vector contains k one bits

use O(k lg n
k) + o(n) bits

retrieve Θ(lg n) bits at the same time

similar to rank data structure

split bit vector into (super-)blocks

blocks of size s = lg n
2

super-blocks of size s′ = s2

Array C
number of ones in i-th block

Lookup-Tables Li

for i ∈ [0, s] store lookup-table containing all bit
vectors with i one bits

use variable-length codes to identify content of
block

concatenate all codes in bit vector V

Bit Vector V
let ki be number of ones in i-th block

use ⌈lg
(s

ki

)
⌉ bits to encode block ò position in

lookup-table

concatenate all codes

4/26 2024-12-15 Florian Kurpicz | Text Indexing | 08 FM-Index & r -Index Institute of Theoretical Informatics, Algorithm Engineering

Bit Vector Compression � (1/2)

Array SBlock
for every super-block i , SBlock [i] contains
position of encoding of first block in i-th
super-block in V

⌈lg n⌉ bits per entry

Array Block
for every block i , Block [i] contains position of
encoding of i-th block in V relative to its
super-block

O(lg lg n) bits per entry

Lemma: Compressed Bit Vectors
A bit vector of size n containing k ones can be
represented using O(k lg n

k) + o(n) bits allowing
O(1) time access to individual bits

Proof (Sketch space requirements)
|C| = O(n

s lg s) = o(n) bits

|SBlock | = O(n
s′ lg n) = o(n) bits

|Block | = O(n
s lg s) = o(n) bits∑s

k=0 |Lk | ≤ (s + 1)2ss = o(n) bits

|V | =
∑⌈n/s⌉

i=1 ⌈lg
(s

ki

)
⌉ ≤ lg

(n
k

)
+ n/s ≤

lg((n/k)k) + n/s = k lg n
k + O(n

lg n) bits

5/26 2024-12-15 Florian Kurpicz | Text Indexing | 08 FM-Index & r -Index Institute of Theoretical Informatics, Algorithm Engineering

Bit Vector Compression � (2/2)

Function BackwardsSearch(P[1..n],C, rank):
1 s = 1, e = n
2 for i = m, . . . , 1 do
3 s = C[P[i]] + rankP[i](s − 1) + 1
4 e = C[P[i]] + rankP[i](e)
5 if s > e then
6 return ∅
7 return [s, e]

no access to text or SA required

no binary search

existential queries are easy

counting queries are easy

reporting queries require additional information

example on the board �

6/26 2024-12-15 Florian Kurpicz | Text Indexing | 08 FM-Index & r -Index Institute of Theoretical Informatics, Algorithm Engineering

Recap: Backwards Search in the BWT

Building Blocks of FM-Index
wavelet tree on BWT providing rank -function

C-array

sampled suffix array with sample rate s

bit vector marking sampled suffix array positions

Lemma: FM-Index
Given a text T of length n over an alphabet of size σ,
the FM-index requires O(n lg σ) bits of space and
can answer counting queries in O(m lg σ) time and
reporting queries in O(occ + m lg σ) time

Space Requirements
wavelet tree: n⌈lg σ⌉(1 + o(1)) bits

C-array: σ⌈lg n⌉ bits ò n(1 + o(1)) bits if
σ ≥ n

lg n

sampled suffix array: n
s ⌈lg n⌉ bits

bit vector: n(1 + o(1)) bits

space and time bounds can be achieved with
s = lgσ n

7/26 2024-12-15 Florian Kurpicz | Text Indexing | 08 FM-Index & r -Index Institute of Theoretical Informatics, Algorithm Engineering

The FM-Index [FM00]

FM-index is easy to compress

wavelet tree on BWT can be compressed

bit vector can be compressed

very small in comparison with suffix tree or
suffix array

compression does not make use of structure of
BWT ò wavelet trees are compressed using
Huffman-codes

Definition: Run (simplified, recap)
Given a text T of length n, we call its substring T [i..j]
a run, if

T [k] = T [ℓ] for all k , ℓ ∈ [i, j] and

T [i − 1] ̸= T [i] and T [j + 1] ̸= T [j]

ò (To be more precise, this is a definition for a run of
a periodic substring with smallest period 1, but this is
not important for this lecture)

1 2 3 4 5 6 7 8 9 0 11 12 13

a b $ c c b b a a a a b bL

8/26 2024-12-15 Florian Kurpicz | Text Indexing | 08 FM-Index & r -Index Institute of Theoretical Informatics, Algorithm Engineering

Conclusion FM-Index

b #
ph

ra
sesinbidirectional macro schem

e
· z #

p
hrasesin

L
e

m
p

e l - Z i v p a r s
e
· g si

ze

ofsmallestcontext free gramm
ar

· r #
of

ru
nsinBurrow

s-W
heeler transfor

m
· e #

of

nodesand
e

d
g

es

in CDAW
G

·< < < <

order of magnitude
in practice

a r d $ r c a a a a b b

(1,a)(1,r)(1,d)(1,$)(1,r)(1,c)(4,a)(2,b)a b r a c a d a b r a

a b r a c a d a b r a

abr(1,1)c(1,1)d(1,4)

a b r a c a d a b r a

(6,2)r(11,1)cad(1,4)

NP-hard O(n) time NP-hard∗ O(n) time O(n) time

∗ there are good heuristics

9/26 2024-12-15 Florian Kurpicz | Text Indexing | 08 FM-Index & r -Index Institute of Theoretical Informatics, Algorithm Engineering

Measures of Repetitiveness (Excerpt)

Measure for Compressibility
k -th order empirical entropy Hk

number of LZ factors z

number of BWT runs r

z and r not blind to repetitions

how do they relate?

Lemma: BWT runs and LZ factors [KK20]
Given a text T of length n. Let z be the number of
LZ77 factors and r the number of runs in T ’s BWT ,
then

r ∈ O(z lg2 n)

more details in next lecture

10/26 2024-12-15 Florian Kurpicz | Text Indexing | 08 FM-Index & r -Index Institute of Theoretical Informatics, Algorithm Engineering

Motivation: r -Index

Function BackwardsSearch(P[1..n],C, rank):
1 s = 1, e = n
2 for i = m, . . . , 1 do
3 s = C[P[i]] + rankP[i](s − 1) + 1
4 e = C[P[i]] + rankP[i](e)
5 if s > e then
6 return ∅
7 return [s, e]

Goals
simulate BWT and rank on BWT in

O(r lg n) bits of space

11/26 2024-12-15 Florian Kurpicz | Text Indexing | 08 FM-Index & r -Index Institute of Theoretical Informatics, Algorithm Engineering

Main Part of Backwards-Search

Given a text T of length n over an alphabet Σ and its
BWT , the r -index of this text consists of the following
data structures �

Array I
I[i] stores position of i-th run in BWT

Array L′

L′[i] stores character of i-th run in BWT

build wavelet tree for L′

Array R
lengths of BWT runs stably sorted by runs’
characters

accumulate for each character by performing
exclusive prefix sum over run lengths’

Array C′

C′[α] stores the start of the run lengths in R for
each character α ∈ Σ starting at 0

Bit Vector B
compressed bit vector of length n containing
ones at positions where BWT runs start and
rank-support

12/26 2024-12-15 Florian Kurpicz | Text Indexing | 08 FM-Index & r -Index Institute of Theoretical Informatics, Algorithm Engineering

The r -Index [GNP20] (1/3)

rankα(BWT , i) with r -Index
compute number j of run (j = rank1(B, i))

compute position k in R (k = C′[α])

compute number ℓ of α runs before the j-th run
(ℓ = rankα(L′, j − 1))

compute number k of αs before the j-th run
(k = R[k + ℓ])

compute character β of run (β = L′[j])

if α ̸= β return k ò i is not in the run

else return k + i − I[j] + 1 ò i is in the run

13/26 2024-12-15 Florian Kurpicz | Text Indexing | 08 FM-Index & r -Index Institute of Theoretical Informatics, Algorithm Engineering

The r -Index (2/3)

Lemma: Space Requirements r -Index
Given a text T of length n over an alphabet of size σ
that has r BWT runs, then its r -index requires

O(r lg n) bits

and can answer rank -queries on the BWT in O(lg σ).
Given a pattern of length m, the r -index can answer
pattern matching queries in time

O(m lg σ)

what about reporting queries?

14/26 2024-12-15 Florian Kurpicz | Text Indexing | 08 FM-Index & r -Index Institute of Theoretical Informatics, Algorithm Engineering

The r -Index (3/3)

modify backwards-search that it maintains
SA[e]

after backwards-search output
SA[e],SA[e − 1], . . . ,SA[s]

in O(r lg n) bits and O(occ · lg lg r) time

Maintaining SA[e]
sample SA positions at ends of runs

if next character is BWT [e], then next SA[e′] is
SA[e]− 1

otherwise locate end of run and extract sample
�

Output Result
following LF not possible ò unbounded

deduce SA[i − 1] from SA[i]

character in L and F in same order

only beginning of runs complicated

for every character build predecessor data
structure over sampled SA-values at end of runs

associate with ⟨i,SA[i]⟩

15/26 2024-12-15 Florian Kurpicz | Text Indexing | 08 FM-Index & r -Index Institute of Theoretical Informatics, Algorithm Engineering

Locating Occurrences (Sketch)

Time (locate) Time (count) Space (words)

r-index [GNP20] O(|P| log logw(σ + n/r) + occ) O(|P| log logw(σ + n/r)) O(r)
O(|P|+ occ) O(|P|) O(r log log(σ + n/r))

OptBWTR [NT21] O(|P| log logw σ + occ) O(|P| log logw σ) O(r)

16/26 2024-12-15 Florian Kurpicz | Text Indexing | 08 FM-Index & r -Index Institute of Theoretical Informatics, Algorithm Engineering

Now: OptBWTR

partition BWT into r substrings

BWT = L1L2 . . . Lr

Li is maximal repetition of same character

ℓ1 = 1 and ℓi = ℓi−1 + |Li−1|
RLBWT = (L1[1], ℓ1)(L2[1], ℓ2) . . . (Lr [1], ℓr)

let δ be permutation of [1, r] such that

LF(ℓδ[1]) < LF(ℓδ[2]) < · · · < LF(ℓδ[r])

Lemma: LF and RLBWT
Let ℓx < i < ℓx+1 for some i ∈ [1, n], then

LF(i) = LF(ℓx) + (i − ℓx)

LF(ℓδ[1]) = 1 and
LF(ℓδ[i]) = LF(ℓδ[i−1]) + |Lδ[i−1]|

T = ababcabcabba$
a b $ c c b b a a a a b b

a b $ c2 b2 a4 b2

2 7 1 12 13 8 9 3 4 5 6 10 11

BWT

LF

17/26 2024-12-15 Florian Kurpicz | Text Indexing | 08 FM-Index & r -Index Institute of Theoretical Informatics, Algorithm Engineering

RLBWT

T = ababcabcabba$
a b $ c c b b a a a a b b

a b $ c2 b2 a4 b2

2 7 1 12 13 8 9 3 4 5 6 10 11

1 2 3 4 5 6 7 8 9 10 11 12 13

1 2 3 4 5 6 7 8 9 10 11 12 13

BWT

LF

in

out

there are r intervals

represent domain of LF by intervals

solve LF without predecessor queries ò we did
not use predecessor queries

predecessor queries are bottleneck

18/26 2024-12-15 Florian Kurpicz | Text Indexing | 08 FM-Index & r -Index Institute of Theoretical Informatics, Algorithm Engineering

Input and Output Intervals

Definition: Disjoint Interval Sequence
Let I = (p1, q1), (p2, q2), . . . , (pk , qk) be a sequence
of k pairs of integers. We introduce a permutation π
of [1, k] and sequence d1, d2, . . . , dk for I. π satisfies
qπ[1] ≤ qπ[2] ≤ · · · ≤ qπ[k], and di = pi+1 − pi for
i ∈ [1, k], where pk+1 = n + 1. We call the
sequence I a disjoint interval sequence if it satisfies
the following three conditions:

p1 = 1 < p2 < · · · < pk ≤ n

qπ[1] = 1,

qπ[i] = qπ[i−1] + dπ[i−1] for each i ∈ [2, k].

T = ababcabcabba$

1 2 3 4 5 6 7 8 9 10 11 12 13

1 2 3 4 5 6 7 8 9 10 11 12 13

in

out

Move Query

move(i, x) = (i ′, x ′)

i position in input interval

x input interval

i ′ position in output interval

x ′ input interval covering i ′

19/26 2024-12-15 Florian Kurpicz | Text Indexing | 08 FM-Index & r -Index Institute of Theoretical Informatics, Algorithm Engineering

Disjoint Interval Sequence & Move Query

Dpair = (pi , qi) for every interval

Dindex [i] index of input interval containing qi

example on the board �

Lemma: LF and RLBWT
Let ℓx < i < ℓx+1 for some i ∈ [1, n], then

LF(i) = LF(ℓx) + (i − ℓx)

LF(ℓδ[1]) = 1 and
LF(ℓδ[i]) = LF(ℓδ[i−1]) + |Lδ[i−1]|

Move(i, x) = (i ′, x ′)

i position in input sequence
x index of interval containing i

i ′ = qx + (i − px)

x ′ initially Dindex [x]

scan Dpair from x ′ until p′
x ≥ I′

x ′ index satisfying condition

20/26 2024-12-15 Florian Kurpicz | Text Indexing | 08 FM-Index & r -Index Institute of Theoretical Informatics, Algorithm Engineering

Answering Move Query

LF Query
input: interval containing an integer i

output: interval containing LF(i)

1. move to corresponding output interval

2. move to input interval containing position j

3. linear search on at most four intervals

worst-case intervals �

balance intervals

T = ababcabcabba$
a b $ c c b b a a a a b b

a b $ c2 b2 a4 b2

2 7 1 12 13 8 9 3 4 5 6 10 11

1 2 3 4 5 6 7 8 9 10 11 12 13

1 2 3 4 5 6 7 8 9 10 11 12 13

BWT

LF

in

out

1.
2.

3.

21/26 2024-12-15 Florian Kurpicz | Text Indexing | 08 FM-Index & r -Index Institute of Theoretical Informatics, Algorithm Engineering

Moving for LF

Definition: Permutation Graph
each interval in the input and output sequence
is a node

each input interval [pi , pi + di − 1] has a single
outgoing edge pointing to output interval that
contains pi

resulting graph G(I) has k edges

G(I) is out-balanced if each output interval has
at most three incoming edges

T = ababcabcabba$
a b $ c c b b a a a a b b

a b $ c2 b2 a4 b2

2 7 1 12 13 8 9 3 4 5 6 10 11

1 2 3 4 5 6 7 8 9 10 11 12 13

1 2 3 4 5 6 7 8 9 10 11 12 13

BWT

LF

in

out

22/26 2024-12-15 Florian Kurpicz | Text Indexing | 08 FM-Index & r -Index Institute of Theoretical Informatics, Algorithm Engineering

Balance the Move Data Structure (1/2)

identify intervals with ≥ 5 incoming edges

split it “equally”

each new interval covers at least two input
intervals

number r ′ of balanced input intervals is k + r

k is number of split operations

r is number of runs in BWT

Lemma: Size of Out-Balanced Sequence
k ≤ r and r ′ ≤ 2r

Proof
output contains at least k big intervals,
therefore r ′ ≥ 2k

r ′ = r + k , therefore 2k ≤ r + k

this gives us k ≤ r

23/26 2024-12-15 Florian Kurpicz | Text Indexing | 08 FM-Index & r -Index Institute of Theoretical Informatics, Algorithm Engineering

Balance Move Data Structure (2/2)

r ′ balanced input & output intervals for LF
queries
rank & select data structure build on the BWT

rank in O(log logw σ) time
select in O(1) time

O(r ′) = O(r) space

O(|P| log logw σ) running time

F(ILF): move data structure for LF

Lfirst : character of each run

R(Lfirst): rank and select support on Lfirst

current interval is [b, e] for P[i + 1..m]

look if P[i] occurs in [b, e]
rank(Lfirst , c, j)− rank(Lfirst) ≥ 1

find b̂, ê marking first/last occurrence of P[i] in
[b, e]

b̂ = select(Lfirst , c, rank(Lfirst , c, i − 1) + 1)
ê = select(Lfirst , c, rank(Lfirst , c, j))

use move data structure to find new b, e for
P[i..m]

24/26 2024-12-15 Florian Kurpicz | Text Indexing | 08 FM-Index & r -Index Institute of Theoretical Informatics, Algorithm Engineering

Data Structures for Backwards Search

use Φ−1 to compute occs of SA[b..b + occ − 1]

Φ−1(SA[i]) = SA[i + 1]

SA[b..b + occ − 1] =
SA[b],Φ−1(SA[b]),Φ−1(Φ−1(SA[b])),
Φ−1(Φ−1(Φ−1(SA[b]))), ...

Φ−1 can be represented by r input & output
intervals [GNP20]

use move data structure on balanced intervals

keep track of SA[b]

T = ababcabcabba$
a b $ c c b b a a a a b b

a b $ c2 b2 a4 b2

2 7 1 12 13 8 9 3 4 5 6 10 11

13 12 1 9 6 3 11 2 10 7 4 8 5

9 10 11 8 13 3 4 5 6 7 2 1 12

1 2 3 4 5 6 7 8 9 10 11 12 13

1 2 3 4 5 6 7 8 9 10 11 12 13

BWT

LF
SA
Φ−1

in

out

25/26 2024-12-15 Florian Kurpicz | Text Indexing | 08 FM-Index & r -Index Institute of Theoretical Informatics, Algorithm Engineering

Φ and Its Inverse

This Lecture
move data structure

optimal O(r) space full-text index

Next Lecture
r vs. z

Linear Time Construction

ST SA WT

LCP BWT

FM-Index
r -Index

LZ

26/26 2024-12-15 Florian Kurpicz | Text Indexing | 08 FM-Index & r -Index Institute of Theoretical Informatics, Algorithm Engineering

Conclusion and Outlook

[FM00] Paolo Ferragina and Giovanni Manzini. “Opportunistic Data Structures with Applications”. In: FOCS.
IEEE Computer Society, 2000, pages 390–398. DOI: 10.1109/SFCS.2000.892127.

[GNP20] Travis Gagie, Gonzalo Navarro, and Nicola Prezza. “Fully Functional Suffix Trees and Optimal Text
Searching in BWT-Runs Bounded Space”. In: J. ACM 67.1 (2020), 2:1–2:54. DOI: 10.1145/3375890.

[KK20] Dominik Kempa and Tomasz Kociumaka. “Resolution of the Burrows-Wheeler Transform
Conjecture”. In: FOCS. IEEE, 2020, pages 1002–1013. DOI: 10.1109/FOCS46700.2020.00097.

[NT21] Takaaki Nishimoto and Yasuo Tabei. “Optimal-Time Queries on BWT-Runs Compressed Indexes”. In:
ICALP. Volume 198. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021, 101:1–101:15.
DOI: 10.4230/LIPIcs.ICALP.2021.101.

27/26 2024-12-15 Florian Kurpicz | Text Indexing | 08 FM-Index & r -Index Institute of Theoretical Informatics, Algorithm Engineering

Bibliography I

https://doi.org/10.1109/SFCS.2000.892127
https://doi.org/10.1145/3375890
https://doi.org/10.1109/FOCS46700.2020.00097
https://doi.org/10.4230/LIPIcs.ICALP.2021.101

	Appendix

