
Text Indexing

Lecture 11: Longest Common Extensions

Florian Kurpicz

The slides are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License cba: www.creativecommons.org/licenses/by-sa/4.0 | commit 59da60d compiled at 2025-01-20-09:14

KIT – The Research University in the Helmholtz Association www.kit.edu

https://creativecommons.org/licenses/by-sa/4.0/
https://www.kit.edu

remember how many characters of the pattern
and suffix match

identify how long the prefix of the old and next
suffix is

do so using the LCP-array and

range minimum queries ò detailed introduction
in Advanced Data Structures

Definition: Range Minimum Queries
Given an array A[1..m), a range minimum query for
a range ℓ ≤ r ∈ [1, n) returns

RMQA(ℓ, r) = argmin{A[k] : k ∈ [ℓ, r]}

lcp(i, j) = max{k : T [i..i + k)

lcp(i, j) = T [j..j+k)} = LCP[RMQLCP(i+1, j)]

RMQs can be answered in O(1) time and

require O(n) space

2/30 2025-01-20 Florian Kurpicz | Text Indexing | 11 Longest Common Extensions Institute of Theoretical Informatics, Algorithm Engineering

Recap: Pattern Matching with the LCP-Array (1/3)

during binary search matched

λ characters with left border ℓ and

ρ characters with right border r

w.l.o.g. let λ ≥ ρ

middle position i

decide if continue in [ℓ, i] or [i, r]

let ξ = lcp(SA[ℓ],SA[i]) ò O(1) time with
RMQs

SA
ℓ i r

λ
ρ

P[1]
P[2]
P[3]

...
P[λ]

P[1]
...

P[ρ]

3/30 2025-01-20 Florian Kurpicz | Text Indexing | 11 Longest Common Extensions Institute of Theoretical Informatics, Algorithm Engineering

Recap: Pattern Matching with the LCP-Array (2/3)

let ξ = lcp(SA[ℓ],SA[i])

ξ > λ

P[λ+ 1] > T [SA[ℓ] + λ] = T [SA[i] + λ]

ℓ = i without character comparison

ξ = λ

compare as before

ξ < λ

ξ ≥ ρ and P[ξ + 1] < T [SA[i] + ξ]

r = i and ρ = ξ without character comparison

SA
ℓ i r

λ
ρ

P[1]
P[2]
P[3]

...
P[λ]

P[1]
...

P[ρ]

ξ

T [.] = T [.]

ξ

ξ

P[3] ̸= T [.]

4/30 2025-01-20 Florian Kurpicz | Text Indexing | 11 Longest Common Extensions Institute of Theoretical Informatics, Algorithm Engineering

Recap: Pattern Matching with the LCP-Array (3/3)

Definition: Longest Common Extensions
Given a text T of size n over an alphabet of size σ,
construct data structure that answers for i, j ∈ [1, n]

lceT (i, j) = max{ℓ ≥ 0 : T [i, i + ℓ) = T [j, j + ℓ)}

also denoted as lcp(i, j) ò in this lecture

Applications
(sparse) suffix sorting

approximate pattern matching

. . .

1 2
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0

A B C D A B C C D B C C B A B C D A D AT

lceT (1, 14) = 0 1 2 3 4 5

5/30 2025-01-20 Florian Kurpicz | Text Indexing | 11 Longest Common Extensions Institute of Theoretical Informatics, Algorithm Engineering

Old Problem, New Name

Definition: Longest Common Extensions
Given a text T of size n over an alphabet of size σ,
construct data structure that answers for i, j ∈ [1, n]

lceT (i, j) = max{ℓ ≥ 0 : T [i, i + ℓ) = T [j, j + ℓ)}

also denoted as lcp(i, j) ò in this lecture

Applications
(sparse) suffix sorting

approximate pattern matching

. . .

1 2
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0

A B C D A B C C D B C C B A B C D A D AT

lceT (1, 14) = 0 1 2 3 4 5

5/30 2025-01-20 Florian Kurpicz | Text Indexing | 11 Longest Common Extensions Institute of Theoretical Informatics, Algorithm Engineering

Old Problem, New Name

Definition: Longest Common Extensions
Given a text T of size n over an alphabet of size σ,
construct data structure that answers for i, j ∈ [1, n]

lceT (i, j) = max{ℓ ≥ 0 : T [i, i + ℓ) = T [j, j + ℓ)}

also denoted as lcp(i, j) ò in this lecture

Applications
(sparse) suffix sorting

approximate pattern matching

. . .

1 2
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0

A B C D A B C C D B C C B A B C D A D AT

lceT (1, 14) = 0 1 2 3 4 5

5/30 2025-01-20 Florian Kurpicz | Text Indexing | 11 Longest Common Extensions Institute of Theoretical Informatics, Algorithm Engineering

Old Problem, New Name

Sophisticated Black Box (BB)
based on ISA, LCP, and RMQ

Black Box

O(1) query time, ≈ 9n bytes additional space

Ultra Naive Scan (UNS)
compare character by character

O(n) query time, no additional space

S
pa

ce

Query Time

UNS

BB

better trade-off

6/30 2025-01-20 Florian Kurpicz | Text Indexing | 11 Longest Common Extensions Institute of Theoretical Informatics, Algorithm Engineering

Practical Algorithms for Longest Common Extensions [IT09]

Sophisticated Black Box (BB)
based on ISA, LCP, and RMQ

Black Box

O(1) query time, ≈ 9n bytes additional space

Ultra Naive Scan (UNS)
compare character by character

O(n) query time, no additional space

S
pa

ce

Query Time

UNS

BB

better trade-off

6/30 2025-01-20 Florian Kurpicz | Text Indexing | 11 Longest Common Extensions Institute of Theoretical Informatics, Algorithm Engineering

Practical Algorithms for Longest Common Extensions [IT09]

Sophisticated Black Box (BB)
based on ISA, LCP, and RMQ

Black Box

O(1) query time, ≈ 9n bytes additional space

Ultra Naive Scan (UNS)
compare character by character

O(n) query time, no additional space
S

pa
ce

Query Time

UNS

BB

better trade-off

6/30 2025-01-20 Florian Kurpicz | Text Indexing | 11 Longest Common Extensions Institute of Theoretical Informatics, Algorithm Engineering

Practical Algorithms for Longest Common Extensions [IT09]

setting: randomized algorithms

Monte Carlo Algorithm
returns wrong result with small probability

deterministic running time

Las Vegas Algorithm
returns correct result

only expected running time

some Monte Carlo algorithms can be turned
into Las Vegas algorithms

depends on correctness check

all Monte Carlo algorithms presented today can
be turned into Las Vegas algorithms

7/30 2025-01-20 Florian Kurpicz | Text Indexing | 11 Longest Common Extensions Institute of Theoretical Informatics, Algorithm Engineering

Monte Carlo and Las Vegas Algorithms

setting: randomized algorithms

Monte Carlo Algorithm
returns wrong result with small probability

deterministic running time

Las Vegas Algorithm
returns correct result

only expected running time

some Monte Carlo algorithms can be turned
into Las Vegas algorithms

depends on correctness check

all Monte Carlo algorithms presented today can
be turned into Las Vegas algorithms

7/30 2025-01-20 Florian Kurpicz | Text Indexing | 11 Longest Common Extensions Institute of Theoretical Informatics, Algorithm Engineering

Monte Carlo and Las Vegas Algorithms

setting: randomized algorithms

Monte Carlo Algorithm
returns wrong result with small probability

deterministic running time

Las Vegas Algorithm
returns correct result

only expected running time

some Monte Carlo algorithms can be turned
into Las Vegas algorithms

depends on correctness check

all Monte Carlo algorithms presented today can
be turned into Las Vegas algorithms

7/30 2025-01-20 Florian Kurpicz | Text Indexing | 11 Longest Common Extensions Institute of Theoretical Informatics, Algorithm Engineering

Monte Carlo and Las Vegas Algorithms

compute s of strings

application not limited to LCEs

Definition: Karp-Rabin Fingerprint [KR87]
Given a text T of length n over an alphabet of size σ
and a random prime number q ∈ Θ(nc), the
Karp-Rabin fingerprint of T [i..j] is

(i, j) = (

j∑
k=i

T [k] · σj−k) mod q

ò (x + y) mod z = x mod z + y mod z (mod z)

if T [i..i + ℓ] = T [j..j + ℓ], then

(i, i + ℓ) = (j, j + ℓ)

if T [i..i + ℓ] ̸= T [j..j + ℓ], then

Prob((i, i + ℓ) = (j, j + ℓ)) ∈ O(
ℓ lg σ

nc)

prime has to be chosen uniformly at random

how to turn it into Las Vegas algorithm?

example on the board �

8/30 2025-01-20 Florian Kurpicz | Text Indexing | 11 Longest Common Extensions Institute of Theoretical Informatics, Algorithm Engineering

Randomized String Matching

compute s of strings

application not limited to LCEs

Definition: Karp-Rabin Fingerprint [KR87]
Given a text T of length n over an alphabet of size σ
and a random prime number q ∈ Θ(nc), the
Karp-Rabin fingerprint of T [i..j] is

(i, j) = (

j∑
k=i

T [k] · σj−k) mod q

ò (x + y) mod z = x mod z + y mod z (mod z)

if T [i..i + ℓ] = T [j..j + ℓ], then

(i, i + ℓ) = (j, j + ℓ)

if T [i..i + ℓ] ̸= T [j..j + ℓ], then

Prob((i, i + ℓ) = (j, j + ℓ)) ∈ O(
ℓ lg σ

nc)

prime has to be chosen uniformly at random

how to turn it into Las Vegas algorithm?

example on the board �

8/30 2025-01-20 Florian Kurpicz | Text Indexing | 11 Longest Common Extensions Institute of Theoretical Informatics, Algorithm Engineering

Randomized String Matching

compute s of strings

application not limited to LCEs

Definition: Karp-Rabin Fingerprint [KR87]
Given a text T of length n over an alphabet of size σ
and a random prime number q ∈ Θ(nc), the
Karp-Rabin fingerprint of T [i..j] is

(i, j) = (

j∑
k=i

T [k] · σj−k) mod q

ò (x + y) mod z = x mod z + y mod z (mod z)

if T [i..i + ℓ] = T [j..j + ℓ], then

(i, i + ℓ) = (j, j + ℓ)

if T [i..i + ℓ] ̸= T [j..j + ℓ], then

Prob((i, i + ℓ) = (j, j + ℓ)) ∈ O(
ℓ lg σ

nc)

prime has to be chosen uniformly at random

how to turn it into Las Vegas algorithm?

example on the board �

8/30 2025-01-20 Florian Kurpicz | Text Indexing | 11 Longest Common Extensions Institute of Theoretical Informatics, Algorithm Engineering

Randomized String Matching

compute s of strings

application not limited to LCEs

Definition: Karp-Rabin Fingerprint [KR87]
Given a text T of length n over an alphabet of size σ
and a random prime number q ∈ Θ(nc), the
Karp-Rabin fingerprint of T [i..j] is

(i, j) = (

j∑
k=i

T [k] · σj−k) mod q

ò (x + y) mod z = x mod z + y mod z (mod z)

if T [i..i + ℓ] = T [j..j + ℓ], then

(i, i + ℓ) = (j, j + ℓ)

if T [i..i + ℓ] ̸= T [j..j + ℓ], then

Prob((i, i + ℓ) = (j, j + ℓ)) ∈ O(
ℓ lg σ

nc)

prime has to be chosen uniformly at random

how to turn it into Las Vegas algorithm?

example on the board �

8/30 2025-01-20 Florian Kurpicz | Text Indexing | 11 Longest Common Extensions Institute of Theoretical Informatics, Algorithm Engineering

Randomized String Matching

given a text T over an alphabet of size σ

let w be size of a computer word ò e.g., 64 bit

choose τ ∈ Θ(w/ lg σ) ò 8 for byte alphabet

choose random prime q ∈ [1
2σ

τ , στ)

group the text into size-τ blocks: B[1..n/τ] with

B[i] = T [(i − 1)τ + 1..iτ]

compute P′[i] = (i, τ i) for i ∈ [1, n/τ]

P′[i] can fits in B[i]

A B C D A B B A B C D A

= -

overwrite text with fingerprints (in-place)

block block block

all parts of text are restorable

how?

9/30 2025-01-20 Florian Kurpicz | Text Indexing | 11 Longest Common Extensions Institute of Theoretical Informatics, Algorithm Engineering

Overwriting the Text with Fingerprints (1/2) [Pre18]

given a text T over an alphabet of size σ

let w be size of a computer word ò e.g., 64 bit

choose τ ∈ Θ(w/ lg σ) ò 8 for byte alphabet

choose random prime q ∈ [1
2σ

τ , στ)

group the text into size-τ blocks: B[1..n/τ] with

B[i] = T [(i − 1)τ + 1..iτ]

compute P′[i] = (i, τ i) for i ∈ [1, n/τ]

P′[i] can fits in B[i]

A B C D A B B A B C D A

= -

overwrite text with fingerprints (in-place)

block block block

all parts of text are restorable

how?

9/30 2025-01-20 Florian Kurpicz | Text Indexing | 11 Longest Common Extensions Institute of Theoretical Informatics, Algorithm Engineering

Overwriting the Text with Fingerprints (1/2) [Pre18]

given a text T over an alphabet of size σ

let w be size of a computer word ò e.g., 64 bit

choose τ ∈ Θ(w/ lg σ) ò 8 for byte alphabet

choose random prime q ∈ [1
2σ

τ , στ)

group the text into size-τ blocks: B[1..n/τ] with

B[i] = T [(i − 1)τ + 1..iτ]

compute P′[i] = (i, τ i) for i ∈ [1, n/τ]

P′[i] can fits in B[i]

A B C D A B B A B C D A

= -

overwrite text with fingerprints (in-place)

block block block

all parts of text are restorable

how?

9/30 2025-01-20 Florian Kurpicz | Text Indexing | 11 Longest Common Extensions Institute of Theoretical Informatics, Algorithm Engineering

Overwriting the Text with Fingerprints (1/2) [Pre18]

given a text T over an alphabet of size σ

let w be size of a computer word ò e.g., 64 bit

choose τ ∈ Θ(w/ lg σ) ò 8 for byte alphabet

choose random prime q ∈ [1
2σ

τ , στ)

group the text into size-τ blocks: B[1..n/τ] with

B[i] = T [(i − 1)τ + 1..iτ]

compute P′[i] = (i, τ i) for i ∈ [1, n/τ]

P′[i] can fits in B[i]

A B C D A B B A B C D A

= -

overwrite text with fingerprints (in-place)

block block block

all parts of text are restorable

how?

9/30 2025-01-20 Florian Kurpicz | Text Indexing | 11 Longest Common Extensions Institute of Theoretical Informatics, Algorithm Engineering

Overwriting the Text with Fingerprints (1/2) [Pre18]

given a text T over an alphabet of size σ

let w be size of a computer word ò e.g., 64 bit

choose τ ∈ Θ(w/ lg σ) ò 8 for byte alphabet

choose random prime q ∈ [1
2σ

τ , στ)

group the text into size-τ blocks: B[1..n/τ] with

B[i] = T [(i − 1)τ + 1..iτ]

compute P′[i] = (i, τ i) for i ∈ [1, n/τ]

P′[i] can fits in B[i]

A B C D A B B A B C D A

= -

overwrite text with fingerprints (in-place)

block block block

all parts of text are restorable

how?

9/30 2025-01-20 Florian Kurpicz | Text Indexing | 11 Longest Common Extensions Institute of Theoretical Informatics, Algorithm Engineering

Overwriting the Text with Fingerprints (1/2) [Pre18]

given a text T over an alphabet of size σ

let w be size of a computer word ò e.g., 64 bit

choose τ ∈ Θ(w/ lg σ) ò 8 for byte alphabet

choose random prime q ∈ [1
2σ

τ , στ)

group the text into size-τ blocks: B[1..n/τ] with

B[i] = T [(i − 1)τ + 1..iτ]

compute P′[i] = (i, τ i) for i ∈ [1, n/τ]

P′[i] can fits in B[i]

A B C D A B B A B C D A

= -

overwrite text with fingerprints (in-place)

block block block

all parts of text are restorable

how?

9/30 2025-01-20 Florian Kurpicz | Text Indexing | 11 Longest Common Extensions Institute of Theoretical Informatics, Algorithm Engineering

Overwriting the Text with Fingerprints (1/2) [Pre18]

given a text T over an alphabet of size σ

let w be size of a computer word ò e.g., 64 bit

choose τ ∈ Θ(w/ lg σ) ò 8 for byte alphabet

choose random prime q ∈ [1
2σ

τ , στ)

group the text into size-τ blocks: B[1..n/τ] with

B[i] = T [(i − 1)τ + 1..iτ]

compute P′[i] = (i, τ i) for i ∈ [1, n/τ]

P′[i] can fits in B[i]

A B C D A B B A B C D A

= -

overwrite text with fingerprints (in-place)

block block block

all parts of text are restorable

how?

9/30 2025-01-20 Florian Kurpicz | Text Indexing | 11 Longest Common Extensions Institute of Theoretical Informatics, Algorithm Engineering

Overwriting the Text with Fingerprints (1/2) [Pre18]

given a text T over an alphabet of size σ

let w be size of a computer word ò e.g., 64 bit

choose τ ∈ Θ(w/ lg σ) ò 8 for byte alphabet

choose random prime q ∈ [1
2σ

τ , στ)

group the text into size-τ blocks: B[1..n/τ] with

B[i] = T [(i − 1)τ + 1..iτ]

compute P′[i] = (i, τ i) for i ∈ [1, n/τ]

P′[i] can fits in B[i]

A B C D A B B A B C D A

= -

overwrite text with fingerprints (in-place)

block block block

all parts of text are restorable

how?

9/30 2025-01-20 Florian Kurpicz | Text Indexing | 11 Longest Common Extensions Institute of Theoretical Informatics, Algorithm Engineering

Overwriting the Text with Fingerprints (1/2) [Pre18]

choose random prime q ∈ [1
2σ

τ , στ)

B[i] = T [(i − 1)τ + 1..iτ]

⌊B[i]/q⌋ ∈ {0, 1}
D[i] = ⌊B[i]/q⌋ ò bit vector of size n/τ

P′[i] = (i, τ i) and together with D:

B[i] = (P′[i]− στ · P′[i − 1] mod q) + D[i] · q

this gives us access to the text(!)

q can be chosen such that MSB of P′[i] is zero
w.h.p., then

D can be stored in the MSBs

A B C D A B B A B C D A

= -

overwrite text with fingerprints (in-place)

block block block

enough to answer LCE queries

how?

10/30 2025-01-20 Florian Kurpicz | Text Indexing | 11 Longest Common Extensions Institute of Theoretical Informatics, Algorithm Engineering

Overwriting the Text with Fingerprints (2/2)

choose random prime q ∈ [1
2σ

τ , στ)

B[i] = T [(i − 1)τ + 1..iτ]

⌊B[i]/q⌋ ∈ {0, 1}

D[i] = ⌊B[i]/q⌋ ò bit vector of size n/τ

P′[i] = (i, τ i) and together with D:

B[i] = (P′[i]− στ · P′[i − 1] mod q) + D[i] · q

this gives us access to the text(!)

q can be chosen such that MSB of P′[i] is zero
w.h.p., then

D can be stored in the MSBs

A B C D A B B A B C D A

= -

overwrite text with fingerprints (in-place)

block block block

enough to answer LCE queries

how?

10/30 2025-01-20 Florian Kurpicz | Text Indexing | 11 Longest Common Extensions Institute of Theoretical Informatics, Algorithm Engineering

Overwriting the Text with Fingerprints (2/2)

choose random prime q ∈ [1
2σ

τ , στ)

B[i] = T [(i − 1)τ + 1..iτ]

⌊B[i]/q⌋ ∈ {0, 1}
D[i] = ⌊B[i]/q⌋ ò bit vector of size n/τ

P′[i] = (i, τ i) and together with D:

B[i] = (P′[i]− στ · P′[i − 1] mod q) + D[i] · q

this gives us access to the text(!)

q can be chosen such that MSB of P′[i] is zero
w.h.p., then

D can be stored in the MSBs

A B C D A B B A B C D A

= -

overwrite text with fingerprints (in-place)

block block block

enough to answer LCE queries

how?

10/30 2025-01-20 Florian Kurpicz | Text Indexing | 11 Longest Common Extensions Institute of Theoretical Informatics, Algorithm Engineering

Overwriting the Text with Fingerprints (2/2)

choose random prime q ∈ [1
2σ

τ , στ)

B[i] = T [(i − 1)τ + 1..iτ]

⌊B[i]/q⌋ ∈ {0, 1}
D[i] = ⌊B[i]/q⌋ ò bit vector of size n/τ

P′[i] = (i, τ i) and together with D:

B[i] = (P′[i]− στ · P′[i − 1] mod q) + D[i] · q

this gives us access to the text(!)

q can be chosen such that MSB of P′[i] is zero
w.h.p., then

D can be stored in the MSBs

A B C D A B B A B C D A

= -

overwrite text with fingerprints (in-place)

block block block

enough to answer LCE queries

how?

10/30 2025-01-20 Florian Kurpicz | Text Indexing | 11 Longest Common Extensions Institute of Theoretical Informatics, Algorithm Engineering

Overwriting the Text with Fingerprints (2/2)

choose random prime q ∈ [1
2σ

τ , στ)

B[i] = T [(i − 1)τ + 1..iτ]

⌊B[i]/q⌋ ∈ {0, 1}
D[i] = ⌊B[i]/q⌋ ò bit vector of size n/τ

P′[i] = (i, τ i) and together with D:

B[i] = (P′[i]− στ · P′[i − 1] mod q) + D[i] · q

this gives us access to the text(!)

q can be chosen such that MSB of P′[i] is zero
w.h.p., then

D can be stored in the MSBs

A B C D A B B A B C D A

= -

overwrite text with fingerprints (in-place)

block block block

enough to answer LCE queries

how?

10/30 2025-01-20 Florian Kurpicz | Text Indexing | 11 Longest Common Extensions Institute of Theoretical Informatics, Algorithm Engineering

Overwriting the Text with Fingerprints (2/2)

choose random prime q ∈ [1
2σ

τ , στ)

B[i] = T [(i − 1)τ + 1..iτ]

⌊B[i]/q⌋ ∈ {0, 1}
D[i] = ⌊B[i]/q⌋ ò bit vector of size n/τ

P′[i] = (i, τ i) and together with D:

B[i] = (P′[i]− στ · P′[i − 1] mod q) + D[i] · q

this gives us access to the text(!)

q can be chosen such that MSB of P′[i] is zero
w.h.p., then

D can be stored in the MSBs

A B C D A B B A B C D A

= -

overwrite text with fingerprints (in-place)

block block block

enough to answer LCE queries

how?

10/30 2025-01-20 Florian Kurpicz | Text Indexing | 11 Longest Common Extensions Institute of Theoretical Informatics, Algorithm Engineering

Overwriting the Text with Fingerprints (2/2)

choose random prime q ∈ [1
2σ

τ , στ)

B[i] = T [(i − 1)τ + 1..iτ]

⌊B[i]/q⌋ ∈ {0, 1}
D[i] = ⌊B[i]/q⌋ ò bit vector of size n/τ

P′[i] = (i, τ i) and together with D:

B[i] = (P′[i]− στ · P′[i − 1] mod q) + D[i] · q

this gives us access to the text(!)

q can be chosen such that MSB of P′[i] is zero
w.h.p., then

D can be stored in the MSBs

A B C D A B B A B C D A

= -

overwrite text with fingerprints (in-place)

block block block

enough to answer LCE queries

how?

10/30 2025-01-20 Florian Kurpicz | Text Indexing | 11 Longest Common Extensions Institute of Theoretical Informatics, Algorithm Engineering

Overwriting the Text with Fingerprints (2/2)

choose random prime q ∈ [1
2σ

τ , στ)

B[i] = T [(i − 1)τ + 1..iτ]

⌊B[i]/q⌋ ∈ {0, 1}
D[i] = ⌊B[i]/q⌋ ò bit vector of size n/τ

P′[i] = (i, τ i) and together with D:

B[i] = (P′[i]− στ · P′[i − 1] mod q) + D[i] · q

this gives us access to the text(!)

q can be chosen such that MSB of P′[i] is zero
w.h.p., then

D can be stored in the MSBs

A B C D A B B A B C D A

= -

overwrite text with fingerprints (in-place)

block block block

enough to answer LCE queries

how?

10/30 2025-01-20 Florian Kurpicz | Text Indexing | 11 Longest Common Extensions Institute of Theoretical Informatics, Algorithm Engineering

Overwriting the Text with Fingerprints (2/2)

LCEs with Fingerprints
compute LCE of i and j

exponential search until
(i, i + 2k) ̸= (j, j + 2k)

binary search to find correct block m

recompute B[m] and find mismatching
character

requires O(lg ℓ) time for LCEs of size ℓ

A B C D A B B A B C D A

= -

overwrite text with fingerprints (in-place)

block block block

11/30 2025-01-20 Florian Kurpicz | Text Indexing | 11 Longest Common Extensions Institute of Theoretical Informatics, Algorithm Engineering

Answering LCE Queries with Fingerprints

LCEs with Fingerprints
compute LCE of i and j

exponential search until
(i, i + 2k) ̸= (j, j + 2k)

binary search to find correct block m

recompute B[m] and find mismatching
character

requires O(lg ℓ) time for LCEs of size ℓ

A B C D A B B A B C D A

= -

overwrite text with fingerprints (in-place)

block block block

11/30 2025-01-20 Florian Kurpicz | Text Indexing | 11 Longest Common Extensions Institute of Theoretical Informatics, Algorithm Engineering

Answering LCE Queries with Fingerprints

Definition: Simplified τ -Synchronizing Sets [KK19]
Given a text T of length n and 0 < τ ≤ n/2, a simplified τ -synchronizing set S of T is

S = {i ∈ [1, n − 2τ + 1] : min{ (j, j + τ − 1) : j ∈ [i, i + τ]} ∈ { (i, i + τ − 1), (i + τ, i + 2τ − 1)}}

T

τ + 1

τ + 1

τ + 1

τ + 1

τ + 1

. . .

min? min?

✓

12/30 2025-01-20 Florian Kurpicz | Text Indexing | 11 Longest Common Extensions Institute of Theoretical Informatics, Algorithm Engineering

String Synchronizing Sets (Simplified, 1/2)

Definition: Simplified τ -Synchronizing Sets [KK19]
Given a text T of length n and 0 < τ ≤ n/2, a simplified τ -synchronizing set S of T is

S = {i ∈ [1, n − 2τ + 1] : min{ (j, j + τ − 1) : j ∈ [i, i + τ]} ∈ { (i, i + τ − 1), (i + τ, i + 2τ − 1)}}

T

τ + 1

τ + 1

τ + 1

τ + 1

τ + 1

. . .

min? min?

✓

12/30 2025-01-20 Florian Kurpicz | Text Indexing | 11 Longest Common Extensions Institute of Theoretical Informatics, Algorithm Engineering

String Synchronizing Sets (Simplified, 1/2)

Definition: Simplified τ -Synchronizing Sets [KK19]
Given a text T of length n and 0 < τ ≤ n/2, a simplified τ -synchronizing set S of T is

S = {i ∈ [1, n − 2τ + 1] : min{ (j, j + τ − 1) : j ∈ [i, i + τ]} ∈ { (i, i + τ − 1), (i + τ, i + 2τ − 1)}}

T

τ + 1

τ + 1

τ + 1

τ + 1

τ + 1

. . .

min? min?

✓

12/30 2025-01-20 Florian Kurpicz | Text Indexing | 11 Longest Common Extensions Institute of Theoretical Informatics, Algorithm Engineering

String Synchronizing Sets (Simplified, 1/2)

Definition: Simplified τ -Synchronizing Sets [KK19]
Given a text T of length n and 0 < τ ≤ n/2, a simplified τ -synchronizing set S of T is

S = {i ∈ [1, n − 2τ + 1] : min{ (j, j + τ − 1) : j ∈ [i, i + τ]} ∈ { (i, i + τ − 1), (i + τ, i + 2τ − 1)}}

T

τ + 1

τ + 1

τ + 1

τ + 1

τ + 1

. . .

min? min?

✓

12/30 2025-01-20 Florian Kurpicz | Text Indexing | 11 Longest Common Extensions Institute of Theoretical Informatics, Algorithm Engineering

String Synchronizing Sets (Simplified, 1/2)

Definition: Simplified τ -Synchronizing Sets [KK19]
Given a text T of length n and 0 < τ ≤ n/2, a simplified τ -synchronizing set S of T is

S = {i ∈ [1, n − 2τ + 1] : min{ (j, j + τ − 1) : j ∈ [i, i + τ]} ∈ { (i, i + τ − 1), (i + τ, i + 2τ − 1)}}

T

τ + 1

τ + 1

τ + 1

τ + 1

τ + 1

. . .

min? min?

✓

12/30 2025-01-20 Florian Kurpicz | Text Indexing | 11 Longest Common Extensions Institute of Theoretical Informatics, Algorithm Engineering

String Synchronizing Sets (Simplified, 1/2)

Definition: Simplified τ -Synchronizing Sets [KK19]
Given a text T of length n and 0 < τ ≤ n/2, a simplified τ -synchronizing set S of T is

S = {i ∈ [1, n − 2τ + 1] : min{ (j, j + τ − 1) : j ∈ [i, i + τ]} ∈ { (i, i + τ − 1), (i + τ, i + 2τ − 1)}}

T

τ + 1

τ + 1

τ + 1

τ + 1

τ + 1

. . .

min? min?

✓

12/30 2025-01-20 Florian Kurpicz | Text Indexing | 11 Longest Common Extensions Institute of Theoretical Informatics, Algorithm Engineering

String Synchronizing Sets (Simplified, 1/2)

Definition: Simplified τ -Synchronizing Sets [KK19]
Given a text T of length n and 0 < τ ≤ n/2, a simplified τ -synchronizing set S of T is

S = {i ∈ [1, n − 2τ + 1] : min{ (j, j + τ − 1) : j ∈ [i, i + τ]} ∈ { (i, i + τ − 1), (i + τ, i + 2τ − 1)}}

T

τ + 1

τ + 1

τ + 1

τ + 1

τ + 1

. . .

min? min?

✓

12/30 2025-01-20 Florian Kurpicz | Text Indexing | 11 Longest Common Extensions Institute of Theoretical Informatics, Algorithm Engineering

String Synchronizing Sets (Simplified, 1/2)

Definition: Simplified τ -Synchronizing Sets [KK19]
Given a text T of length n and 0 < τ ≤ n/2, a simplified τ -synchronizing set S of T is

S = {i ∈ [1, n − 2τ + 1] : min{ (j, j + τ − 1) : j ∈ [i, i + τ]} ∈ { (i, i + τ − 1), (i + τ, i + 2τ − 1)}}

T

τ + 1

τ + 1

τ + 1

τ + 1

τ + 1

. . .

min? min?

✓

12/30 2025-01-20 Florian Kurpicz | Text Indexing | 11 Longest Common Extensions Institute of Theoretical Informatics, Algorithm Engineering

String Synchronizing Sets (Simplified, 1/2)

Definition: Simplified τ -Synchronizing Sets [KK19]
Given a text T of length n and 0 < τ ≤ n/2, a simplified τ -synchronizing set S of T is

S = {i ∈ [1, n − 2τ + 1] : min{ (j, j + τ − 1) : j ∈ [i, i + τ]} ∈ { (i, i + τ − 1), (i + τ, i + 2τ − 1)}}

T

τ + 1

τ + 1

τ + 1

τ + 1

τ + 1

. . .

min? min?

✓

12/30 2025-01-20 Florian Kurpicz | Text Indexing | 11 Longest Common Extensions Institute of Theoretical Informatics, Algorithm Engineering

String Synchronizing Sets (Simplified, 1/2)

|S| = Θ(n/τ) in practice (on most data sets)

more complex definition required to obtain this
size

Consistency & (Simplified) Density Property
for all i, j ∈ [1, n − 2τ + 1] we have

T [i, i+2τ−1] = T [j, j+2τ−1] ⇒ i ∈ S ⇔ j ∈ S

for any τ consecutive positions there is at least
one position in S

13/30 2025-01-20 Florian Kurpicz | Text Indexing | 11 Longest Common Extensions Institute of Theoretical Informatics, Algorithm Engineering

String Synchronizing Sets (Simplified, 2/2)

Text T ′ for Positions in S

s1 s2 s3 s|S|−3 s|S|−2 s|S|−1

T ✓ ✓ ✓ . . . ✓ ✓ ✓

T′ [1]
3τ

T′ [2]
3τ

T′ [3]
3τ

. . .
T′ [|S| − 3]

3τ

T′ [|S| − 2]
3τ

T′ [|S| − 1]
3τ

14/30 2025-01-20 Florian Kurpicz | Text Indexing | 11 Longest Common Extensions Institute of Theoretical Informatics, Algorithm Engineering

Answering LCE Queries with String Synchronizing Sets (1/2)

Text T ′ for Positions in S

s1 s2 s3 s|S|−3 s|S|−2 s|S|−1

T ✓ ✓ ✓ . . . ✓ ✓ ✓

T′ [1]
3τ

T′ [2]
3τ

T′ [3]
3τ

. . .
T′ [|S| − 3]

3τ

T′ [|S| − 2]
3τ

T′ [|S| − 1]
3τ

14/30 2025-01-20 Florian Kurpicz | Text Indexing | 11 Longest Common Extensions Institute of Theoretical Informatics, Algorithm Engineering

Answering LCE Queries with String Synchronizing Sets (1/2)

in practice, we sort the substrings

characters of T ′ are the ranks of substrings

build BB LCE for T ′ w.r.t. length in T

Answering Queries
compare naively for 3τ characters

if equal find successors of i and j in S

compute LCE of successors in T ′

s1 s2 s3 s|S|−3 s|S|−2 s|S|−1

T ✓ ✓ ✓ . . . ✓ ✓ ✓

lceT (i, j)

3τ 3τ

✓ ✓

in this example: lceT (i, j) = s1 − i + lceT ′(1, |S| − 2)

in practice: we have a very fast static successor data structure

15/30 2025-01-20 Florian Kurpicz | Text Indexing | 11 Longest Common Extensions Institute of Theoretical Informatics, Algorithm Engineering

Answering LCE Queries with String Synchronizing Sets (2/2)

in practice, we sort the substrings

characters of T ′ are the ranks of substrings

build BB LCE for T ′ w.r.t. length in T

Answering Queries
compare naively for 3τ characters

if equal find successors of i and j in S

compute LCE of successors in T ′

s1 s2 s3 s|S|−3 s|S|−2 s|S|−1

T ✓ ✓ ✓ . . . ✓ ✓ ✓

lceT (i, j)

3τ 3τ

✓ ✓

in this example: lceT (i, j) = s1 − i + lceT ′(1, |S| − 2)

in practice: we have a very fast static successor data structure

15/30 2025-01-20 Florian Kurpicz | Text Indexing | 11 Longest Common Extensions Institute of Theoretical Informatics, Algorithm Engineering

Answering LCE Queries with String Synchronizing Sets (2/2)

in practice, we sort the substrings

characters of T ′ are the ranks of substrings

build BB LCE for T ′ w.r.t. length in T

Answering Queries
compare naively for 3τ characters

if equal find successors of i and j in S

compute LCE of successors in T ′

s1 s2 s3 s|S|−3 s|S|−2 s|S|−1

T ✓ ✓ ✓ . . . ✓ ✓ ✓

lceT (i, j)

3τ 3τ

✓ ✓

in this example: lceT (i, j) = s1 − i + lceT ′(1, |S| − 2)

in practice: we have a very fast static successor data structure

15/30 2025-01-20 Florian Kurpicz | Text Indexing | 11 Longest Common Extensions Institute of Theoretical Informatics, Algorithm Engineering

Answering LCE Queries with String Synchronizing Sets (2/2)

in practice, we sort the substrings

characters of T ′ are the ranks of substrings

build BB LCE for T ′ w.r.t. length in T

Answering Queries
compare naively for 3τ characters

if equal find successors of i and j in S

compute LCE of successors in T ′

s1 s2 s3 s|S|−3 s|S|−2 s|S|−1

T ✓ ✓ ✓ . . . ✓ ✓ ✓

lceT (i, j)

3τ 3τ

✓ ✓

in this example: lceT (i, j) = s1 − i + lceT ′(1, |S| − 2)

in practice: we have a very fast static successor data structure

15/30 2025-01-20 Florian Kurpicz | Text Indexing | 11 Longest Common Extensions Institute of Theoretical Informatics, Algorithm Engineering

Answering LCE Queries with String Synchronizing Sets (2/2)

in practice, we sort the substrings

characters of T ′ are the ranks of substrings

build BB LCE for T ′ w.r.t. length in T

Answering Queries
compare naively for 3τ characters

if equal find successors of i and j in S

compute LCE of successors in T ′

s1 s2 s3 s|S|−3 s|S|−2 s|S|−1

T ✓ ✓ ✓ . . . ✓ ✓ ✓

lceT (i, j)

3τ 3τ

✓ ✓

in this example: lceT (i, j) = s1 − i + lceT ′(1, |S| − 2)

in practice: we have a very fast static successor data structure

15/30 2025-01-20 Florian Kurpicz | Text Indexing | 11 Longest Common Extensions Institute of Theoretical Informatics, Algorithm Engineering

Answering LCE Queries with String Synchronizing Sets (2/2)

in practice, we sort the substrings

characters of T ′ are the ranks of substrings

build BB LCE for T ′ w.r.t. length in T

Answering Queries
compare naively for 3τ characters

if equal find successors of i and j in S

compute LCE of successors in T ′

s1 s2 s3 s|S|−3 s|S|−2 s|S|−1

T ✓ ✓ ✓ . . . ✓ ✓ ✓

lceT (i, j)

3τ 3τ

✓ ✓

in this example: lceT (i, j) = s1 − i + lceT ′(1, |S| − 2)

in practice: we have a very fast static successor data structure

15/30 2025-01-20 Florian Kurpicz | Text Indexing | 11 Longest Common Extensions Institute of Theoretical Informatics, Algorithm Engineering

Answering LCE Queries with String Synchronizing Sets (2/2)

0 5 10 15 20

104

105

106

107

108

LCEs in [2k , 2k+1)

th
ro

ug
hp

ut
[q

ue
rie

s/
s]

dna

0 5 10 15 20

104

105

106

107

108

LCEs in [2k , 2k+1)

english.1024MB

0 5 10 15

104

105

106

107

108

LCEs in [2k , 2k+1)

cere

our-rk sss512 ssspl
512

naive
prezza-rk ultra_naive sada sct3

16/30 2025-01-20 Florian Kurpicz | Text Indexing | 11 Longest Common Extensions Institute of Theoretical Informatics, Algorithm Engineering

Practical Evaluation [Din+20]

0 5 10 15 20

104

105

106

107

108

LCEs in [2k , 2k+1)

th
ro

ug
hp

ut
[q

ue
rie

s/
s]

dna

0 5 10 15 20

104

105

106

107

108

LCEs in [2k , 2k+1)

english.1024MB

0 5 10 15

104

105

106

107

108

LCEs in [2k , 2k+1)

cere

our-rk sss512 ssspl
512

naive
prezza-rk ultra_naive sada sct3

16/30 2025-01-20 Florian Kurpicz | Text Indexing | 11 Longest Common Extensions Institute of Theoretical Informatics, Algorithm Engineering

Practical Evaluation [Din+20]

0 5 10 15 20

104

105

106

107

108

LCEs in [2k , 2k+1)

th
ro

ug
hp

ut
[q

ue
rie

s/
s]

dna

0 5 10 15 20

104

105

106

107

108

LCEs in [2k , 2k+1)

english.1024MB

0 5 10 15

104

105

106

107

108

LCEs in [2k , 2k+1)

cere

our-rk sss512 ssspl
512

naive
prezza-rk ultra_naive sada sct3

16/30 2025-01-20 Florian Kurpicz | Text Indexing | 11 Longest Common Extensions Institute of Theoretical Informatics, Algorithm Engineering

Practical Evaluation [Din+20]

0 5 10 15 20

104

105

106

107

108

LCEs in [2k , 2k+1)

th
ro

ug
hp

ut
[q

ue
rie

s/
s]

dna

0 5 10 15 20

104

105

106

107

108

LCEs in [2k , 2k+1)

english.1024MB

0 5 10 15

104

105

106

107

108

LCEs in [2k , 2k+1)

cere

our-rk sss512 ssspl
512

naive
prezza-rk ultra_naive sada sct3

16/30 2025-01-20 Florian Kurpicz | Text Indexing | 11 Longest Common Extensions Institute of Theoretical Informatics, Algorithm Engineering

Practical Evaluation [Din+20]

https://onlineumfrage.kit.edu/evasys/online.php?p=HHRXC

17/30 2025-01-20 Florian Kurpicz | Text Indexing | 11 Longest Common Extensions Institute of Theoretical Informatics, Algorithm Engineering

Evaluation

https://onlineumfrage.kit.edu/evasys/online.php?p=HHRXC
https://onlineumfrage.kit.edu/evasys/online.php?p=HHRXC

This is just a very succinct overview.
Please refer to the lecture slides for more details.

18/30 2025-01-20 Florian Kurpicz | Text Indexing | 11 Longest Common Extensions Institute of Theoretical Informatics, Algorithm Engineering

Warning

Trie Representations
different trie representations

space-time trade-off

b

e

a

r

c

a

e b r

Suffix Tree (Compact Trie)

$
a b

$ a
b
b
a
$

bba

$

abba$

a ba

$

abba$

$

abba$

19/30 2025-01-20 Florian Kurpicz | Text Indexing | 11 Longest Common Extensions Institute of Theoretical Informatics, Algorithm Engineering

Tries & Suffix Trees

Suffix Array
Given a text T of length n, the suffix array (SA) is a
permutation of [1..n], such that for i ≤ j ∈ [1..n]

T [SA[i]..n] ≤ T [SA[j]..n]

SAIS
linear time suffix array construction
induced copying and recursion

classification
sorting special suffixes
inducing other suffixes

1 2 3 4 5 6 7 8 9 10 11 12 13

T a b a b c a b c a b b a $

SA 13 12 1 9 6 3 11 2 10 7 4 8 5

LCP 0 0 1 2 2 5 0 2 1 1 4 0 3

SA Construction in EM
Prefix Doubling

DC3

20/30 2025-01-20 Florian Kurpicz | Text Indexing | 11 Longest Common Extensions Institute of Theoretical Informatics, Algorithm Engineering

Suffix Array

$ a a a a a b b b b b c c
$ b b b b a a b c c a a

a b c c $ b a a a b b
b a a a c $ b b b c
c $ b b a b c a a
a b c b a a $ b
b a a c $ b b
c $ b a b a
a b b a $
b a b $
b $ a
a $
$

1 2 3 4 5 6 7 8 9 10 11 12 13

T a b a b c a b c a b b a $

SA 13 12 1 9 6 3 11 2 10 7 4 8 5

LCP 0 0 1 2 2 5 0 2 1 1 4 0 3

speed up pattern matching in suffix array

suffix tree construction

compression

Longest Common Extensions
lcp-value between any suffix

scan or RMQ

Rabin-Karp fingerprints

string synchronizing sets

21/30 2025-01-20 Florian Kurpicz | Text Indexing | 11 Longest Common Extensions Institute of Theoretical Informatics, Algorithm Engineering

LCP-Array & LCE-Queries

Entropy
Given a text T of length n over an alphabet
Σ = [1, σ] and its histogram Hist , then

Hk = (1/n)
∑

S∈Σk

|TS| · H0(TS)

Huffman Codes
variable length codes

more frequent characters get shorter codes

canonical Huffman-codes

Shannon-Fano codes can be worse, but

are still optimal

LZ77
T = abababbbbaba$

f1 = a

f2 = b

f3 = abab

f4 = bbb

f5 = aba

f6 = $

LZ78
T = abababbbbaba$

f1 = a

f2 = b

f3 = ab

f4 = abb

f5 = bb

f6 = aba

f7 = $

22/30 2025-01-20 Florian Kurpicz | Text Indexing | 11 Longest Common Extensions Institute of Theoretical Informatics, Algorithm Engineering

Compression

Burrows-Wheeler Transform
Given a text T of length n and its suffix array SA, for
i ∈ [1, n] the Burrows-Wheeler transform is

BWT [i] =

{
T [SA[i]− 1] SA[i] > 1

$ SA[i] = 1

1 2 3 4 5 6 7 8 9 10 11 12 13

T a b a b c a b c a b b a $

SA 13 12 1 9 6 3 11 2 10 7 4 8 5

BWT a b $ c c b b a a a a b b

LF-Mapping
Given a BWT , its C-array, and its rank -Function,
then

LF(i) = C[BWT [i]] + rankBWT i

transform back to text

used in backwards search

Compression using BWT
move-to-front

run-length compression

23/30 2025-01-20 Florian Kurpicz | Text Indexing | 11 Longest Common Extensions Institute of Theoretical Informatics, Algorithm Engineering

Burrows-Wheeler Transform

Wavelet Tree

(ϵ)2

(0)2 (1)2

(00)2 (012) (10)2 (11)2

Wavelet Matrix

(ϵ)2

(0)2 (1)2

(00)2 (10)2 (012) (11)2

generalize rank and select to alphabets of size
> 2

Compression
build over text compressed with canonical
Huffman codes

Bit Vectors
rank and select queries on bit vectors in O(1)
time and o(n) space

24/30 2025-01-20 Florian Kurpicz | Text Indexing | 11 Longest Common Extensions Institute of Theoretical Informatics, Algorithm Engineering

Wavelet Tree

Function BackwardsSearch(P[1..n],C, rank):
1 s = 1, e = n
2 for i = m, . . . , 1 do
3 s = C[P[i]] + rankP[i](s − 1) + 1
4 e = C[P[i]] + rankP[i](e)
5 if s > e then
6 return ∅
7 return [s, e]

FM-Index
use (compressed wavelet tree for rank)

compress bit vectors further

r -Index
store lots of arrays

containing information for each run

size proportional to number of runs

queries become harder

Move Data Structure
make use of “same” intervals in BWT and first
row

constant time mapping on balanced
input/output intervals

balancing with blowup ≤ 2 achievable

25/30 2025-01-20 Florian Kurpicz | Text Indexing | 11 Longest Common Extensions Institute of Theoretical Informatics, Algorithm Engineering

FM-Index & r-Index

Block Tree
answer rank and select queries

size proportional to number of LZ-factors

N N B O B O T W N N B O B I O O T B S H T F N E B O B O T W N E B O B O T W N E B O B I O O T B S H T F N S B O B O T W

NNBO BOTW NNBO BIOO TBSH TFNE BOBO TWNE BOBO TWNE BOBI OOTB SHTF NSBO BOTW

N N B O B O T W N N B O B I O O T B S H T F N E B O B O T W N E B O B O T W N E B O B I O O T B S H T F N S B O B O T W

NN BO BO TW NN BO BI OO TB SH TF NE BO BO TW NE BO BO TW NE BO BI SH TF NS BO BO TW

NN BO BO TW NN BO BI OO TB SH TF NE BO TW NE TF NS BO

Number of Runs and LZ-Factors
T be a text of length n, then

r(T) ∈ O(z(T) lg2 n)

ò Next Lecture!

26/30 2025-01-20 Florian Kurpicz | Text Indexing | 11 Longest Common Extensions Institute of Theoretical Informatics, Algorithm Engineering

Compressed Indices

Document Listing
optimal with document array and chain array

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
T A T A # T A A A # T A T A # $
SA 15 14 4 9 13 3 8 7 6 11 1 12 2 5 10

DA 0 3 1 2 3 1 2 2 2 3 1 3 1 2 3

CA 0 0 0 0 2 3 4 7 8 5 6 10 11 9 12

P = TA

v1

15

v2

14 v3

4 9

v7

v5

13

v8

7 6

v10

11 1

v6

3 8

v13

10

5v12

12 2

$
$ A TA

$ TA

AA. . .TA. . .

A TA#

$

TA

AA. . .TA. . .

A#. . .AA. . . $ TA. . .

#
AA. . .

TA. . .

$ TA. . .

3

1 2 3

1 2

2 2 3 1

3 1

2

3

{1,2,3}

{1,2,3}

{2}

{3}

27/30 2025-01-20 Florian Kurpicz | Text Indexing | 11 Longest Common Extensions Institute of Theoretical Informatics, Algorithm Engineering

Document Retrieval

1 The old night keeper keeps the keep in the town

2 In the big old house in the big old gown

3 The house in the town had the big old keep

4 Where the old night keeper never did sleep

5 The night keeper keeps the keep in the night

6 And keeps in the dark and sleeps in the light

term t ft L(t)
and 1 [6]

big 2 [2, 3]

dark 1 [6]

· · · · · · · · ·
had 1 [3]

house 2 [2, 3]

in 5 [1, 2, 3, 5, 6]

· · · · · · · · ·

Encodings
unary/ternary encoding

Fibonacci encoding

Elias-δ/γ encoding

Golomb encoding

List Interseciong
binary/exponential search

two levels

28/30 2025-01-20 Florian Kurpicz | Text Indexing | 11 Longest Common Extensions Institute of Theoretical Informatics, Algorithm Engineering

Inverted Index

Sophisticated Black Box (BB)
based on ISA, LCP, and RMQ

O(1) query time, ≈ 9n bytes additional space

Ultra Naive Scan (UNS)
compare character by character

O(n) query time, no additional space

A B C D A B B A B C D A

= -

block block block

Definition: Simplified τ -Synchronizing Sets
Given a text T of length n and 0 < τ ≤ n/2, a simplified τ -synchronizing set S of T is

S = {i ∈ [1, n − 2τ + 1] : min{ (j, j + τ − 1) : j ∈ [i, i + τ]} ∈ { (i, i + τ − 1), (i + τ, i + 2τ − 1)}}

29/30 2025-01-20 Florian Kurpicz | Text Indexing | 11 Longest Common Extensions Institute of Theoretical Informatics, Algorithm Engineering

Longest Common Extensions

This Lecture
longest common extension queries

Karp-Rabin fingerprints

string synchronizing sets

big recap and Q&A

Next Week
project presentation

Thats all! We are (mostly)
done.

30/30 2025-01-20 Florian Kurpicz | Text Indexing | 11 Longest Common Extensions Institute of Theoretical Informatics, Algorithm Engineering

Conclusion and Outlook

This Lecture
longest common extension queries

Karp-Rabin fingerprints

string synchronizing sets

big recap and Q&A

Next Week
project presentation

Thats all! We are (mostly)
done.

30/30 2025-01-20 Florian Kurpicz | Text Indexing | 11 Longest Common Extensions Institute of Theoretical Informatics, Algorithm Engineering

Conclusion and Outlook

