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1 Parallel Distribution Sweeping Framework

1.1 General Framework

Let d = min
{√

N
P ,

M
B , P

}
1. Partition space into d vertical slabs and P horizontal slabs with equal

number of objects in each slabs.

2. Preprocess objects (specific for a problem) in each vertical slab using all
processors.

3. Sweep each horizontal slab using one processor,
process all horizontal objects that span at least one vertical slab,
distribute objects into appropriate slab lists

4. Recursively solve problem on each vertical slab.

Base case: One processor per slab, run sequential I/O-efficient solution.
Figure 1 shows an example of the general framework. At the beginning one
processor divides the space through d = 4 vertical slabs. In the next recursive
call each of these four partitions is again divided into d parts. The recursion
ends, when the base case, as defined above, is reached.

1.2 Orthogonal Line Intersection - First Attempt

As an example, we can compute intersections of orthognonal line segments using
this framework:

Let d = min
{√

N
P ,

M
B , P

}
1. Partition so that the number of endpoints is equal in each slab

2. Count for each portion of horizontal segments hi, that spans σi, how many
vertical segments hi intersects in σi.

1



⏟
P slabs in total (base case: 1 processor per slab)
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Figure 1: Recursion Tree of the algorithm
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Figure 2: Orthogonal line intersection
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Figure 3: Division of the work using prefix sums.

3. Read just horizontal slab boundaries such that each slab contains θ
(
N
P

)
copies of horizontal segments. (using prefix sums)
During sweep of horizontal slabs, each processor creates a copy of each
horizontal segment hi, that spans σi and intersects at least one vertical
segment in σi or has endpoint in σi, in σi’s slab list and creates copies of
vertical segments in σi in σi’s slab list

4. Recurse on slab lists.

Base case: Run sequential I/O-efficient line segment intersection solution.

1.3 Analysis

Per recursive call the I/O-complexity for steps two and three is:

2. Q(N,P )

3. scan
(
N
P

)
+ scan (Kk) ≤ O

(
N
PB + K

PB

)
, if P < N

P logN

Where Kk is the number of copies we create in the recursive call.
Base case:

O
(
N ′

B
· logM

B

N ′

B
+
K ′

B

)
= O

(
N +K

PB
log M

B

N +K

PB
+

K

PB

)
withN ′ = Θ

(
N +K

P

)
To ensure, that each processor has the same amount of work to do, we divide
it using prefix sums, also accounting for the number of copies we have to create
of each horizontal line. (see Figure 3)
In total the number of I/Os sums up to:

logd P∑
k=1

O
(
Q(N,P ) +

N +K

PB

)
+O

(
N +K

PB
log M

B

N +K

PB
+

K

PB

)
(1)

The number of intersections in step 2 can be caluclated using the following
algorithm: (see Figure 4)
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Figure 4: Prefix sums for counting the number of intersections

a) Set weights in each slab σi as follows:
+1 on bottom endpoint
-1 on top endpoint
0 on horizontal segment spanning σi

b) Run prefix sums

The I/O-complexity of this algorithm is:

Q(N,P ) = O
(
N ′

PB
+ logP

) P< N
P log N︷︸︸︷
= O

(
N ′′

PB

)
≤ O

(
N +K

PB

)
(2)

In this analysis we observe that N ′′ can be as large as N . However we did not
create any copies in the current recursive step yet. There may only be up to K
copies from previous recursive calls, so that in total N ′′ ≤ N +K.
Inserting Equation 2 into Equation 1 leads to the following total I/O-complexity:

Total = · · · =
logd P∑
k=1

O
(
N +K

PB

)
+O

(
N +K

PB
log M

B

N +K

PB

)
= O

(
N +K

PB
logd P

)
+O

(
N +K

PB
log M

B

N +K

PB

)
= O

(
N +K

PB
log M

B

N +K

PB

)
= O(sortP (N +K))

The sequential algorithm took O
(

N
B log M

B

N
B + K

B

)
= sort(N) + scan(K) I/Os.

Ideally, in the PEM model, we would like to have an algorithm using sortp(N)+
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Figure 5: Prefix sums for counting the number of intersections

scanp(K) = O
(

N
PB log M

B

N
B + K

PB

)
I/Os. Hence, our first approach is not as

efficient as it could be.

1.4 Orthogonal line intersection - Second Attempt

The following algorithm has an I/O-complexity of sortP (N) logd P +scanP (K):

Let d = min
{√

N
P ,

M
B , P

}
1. Partition input data so that the number of endpoints is equal in each slab.

2. Count the number of horizontal segments for each partition.
Also count the number of intersections wi of vertical segments with span-
ning horizontal segments.

3. Report intersections with spanning horizontal segments and create copies
of segments for σi stablist if σi contains endpoints.

4. Recurse on slablist.

To ensure, that each processor reports the same number of intersections we can
use prefix sums again. Figure 5 depicts an example. We compute the number of
intersections by calculating the difference between the prefix sum at the endpoint
and the prefix sum at the beginning point. I.e. in σ3 the first vertical segment
begins at a value of zero for the prefix sum, that is, no horizontal line was
passed yet, and ends after passing two horizontal lines. Hence the vertical line
intersects two horizontal lines. To prevent from big jumps in the array for
computing the differences, which would be I/O costly, we sort the endpoints by
their x-coordinates. Afterwards the differences can be caluclated by accessing
consecutive elements in the array.

5



1.5 Analysis

The I/O-complexity of the algorithm is:

2. Q(N,P ) = O(sortP (N))

3. scan
(
N
P

)
+ scan

(
Kk

P

)
= O

(
N+Kk

PB

)
Base case:

O
(
N ′

B
log M

B

N

B
+
K ′

B

)
= O

(
N

PB
log M

B

N

PB
+

K ′

PB

)
The number of I/Os the algorithm performs in total is:

logd P∑
k=1

O
(
sortP (N) +

Kk

PB

)
+O

(
N

PB
log M

B

N

PB
+

K ′

PB

)

= O

sortp(N) · logdP +

logd P∑
k=1

KK

PB
+

K ′

PB


= O

(
sortP (N) · logd P +

K

PB

)
In the second step we use the fact, that

∑logd P
k=1

KK

PB + K′

PB = K.
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