
Parallel Algorithms for
Density-Based and

Structural Clustering

Yiqiu Wang, Yan Gu, and Julian Shun, Theoretically-Efficient and
Practical Parallel DBSCAN, SIGMOD 2020.

Tom Tseng, Laxman Dhulipala, and Julian Shun, Parallel Index-
Based Structural Clustering and Its Approximation, SIGMOD 2021.

Julian Shun (MIT CSAIL)

Clustering
● Group “similar” objects together, and

separate “dissimilar” objects
● Can be applied to spatial data and graph

data
● Applications

○ Community detection, bioinformatics,
parallel/distributed processing, visualization,
image segmentation, anomaly detection,
document analysis, machine learning, etc.

Clustering

● Very well-studied topic
○ Hundreds of textbooks on this topic

● No universally accepted definition for
cluster quality, many metrics have been
proposed

● At least thousands of different clustering
algorithms

DBSCAN for Spatial Clustering

• DBSCAN (Density-Based Spatial
Clustering of Applications with Noise)
• Ester et al. [KDD’96]

• Areas of high density form clusters
• Does not require number of clusters

beforehand
• Detects arbitrarily shaped clusters
• Robust to noise

4

SCAN for Graph Clustering

• SCAN (Structural Clustering Algorithm
for Networks)
• Xu et al. [KDD’07]

• DBSCAN, but on graphs
• Similarity of vertices based on their

number of shared neighbors
• “Dense” areas contain many vertices

who have many similar neighbors
• Can identify clusters and outliers

5

Processing Large Datasets
● Publicly-available graphs have up to

hundreds of billions of edges
● Spatial datasets can be even larger

● We design state-of-the-art parallel
multicore algorithms for DBSCAN and SCAN
○ Strong theoretical guarantees
○ Can process the largest datasets used in the

literature for these problems on a multicore,
more quickly than existing solutions

Need high-performance solutions to process
large datasets in a timely fashion

Work-Span Model of Parallel Computation
• Work: number of operations used
• Span: length of the longest sequential

dependence
• Parallelism = Work / Span
• Running time ≤ Work/P + Span

(when run on P processors)
• A work-efficient parallel algorithm has work

that asymptotically matches that of the best
sequential algorithm for the problem

7

Goal: work-efficient and low-span
parallel algorithms

Computation graph

DBSCAN for Spatial Clustering

Problem Definition - DBSCAN

9

• Parameters
• ϵ
• minPts

Problem Definition - DBSCAN

ϵ

core

10

• Parameters
• ϵ
• minPts=3

• Core point
• At least minPts points in ϵ-circle

Problem Definition - DBSCAN

ϵ

core

11

• Parameters
• ϵ
• minPts=3

• Core point
• At least minPts points in ϵ-circle
• Connected if in ϵ-circle

Problem Definition - DBSCAN

ϵ

core

12

• Parameters
• ϵ
• minPts=3

• Core point
• At least minPts points in ϵ-circle
• Connected if in ϵ-circle

Problem Definition - DBSCAN

ϵ

core

ϵ

13

• Parameters
• ϵ
• minPts=3

• Core point
• At least minPts points in ϵ-circle
• Connected if in ϵ-circle

• Border point
• Fewer than minpts points in ϵ-circle
• Contains a core point in ϵ-circle

Problem Definition - DBSCAN

ϵ

core border

ϵ

14

• Parameters
• ϵ
• minPts=3

• Core point
• At least minPts points in ϵ-circle
• Connected if in ϵ-circle

• Border point
• Fewer than minpts points in ϵ-circle
• Contains a core point in ϵ-circle

Problem Definition - DBSCAN

ϵ

core border

ϵ

ϵ

noise
15

• Parameters
• ϵ
• minPts=3

• Core point
• At least minPts points in ϵ-circle
• Connected if in ϵ-circle

• Border point
• Fewer than minPts points in ϵ-circle
• Contains a core point in ϵ-circle

• Noise point

Related Work

• Sequential
• de Berg et al., ISAAC’17 (Exact algorithms)
• Gan and Tao, SIGMOD’15 Best Paper Award (Approximate algorithm,

hardness result)
• Parallel

• Xu et al., HPDM’99 (PDBSCAN, distributed R-Tree)
• Patwary et al., SC’12 (PDSDBSCAN, parallel lock-based union-find)
• Gotz et al., MLHPC’15 (HPDBSCAN, data splitting and merging)
• Song et al., SIGMOD’18 (RP-DBSCAN, random partitioning, Map-Reduce)
• Many more

• Challenges
• Lack of theoretical guarantees in parallel implementations
• High scalability but low work-efficiency

16

Our Contributions
• Parallel algorithms with work matching best sequential bounds

(work-efficient)
• Highly-optimized multicore implementations
• Comprehensive experimental study showing that our algorithms

outperform state-of-the-art

17

All of Our Algorithms are Theoretically Efficient

2D Algorithms Delaunay Triangulation Unit-spherical Emptiness

Checking

O(n log n) expected work;

O(log n) span with high

probability

O(n log n) expected work;

O(log2 n) span with high

probability

3D Algorithm O((n log n)4/3) expected work;

Polylogarithmic span with high probability

Any Constant

Dimension

Algorithm

O(n2-(2/(⌈d/2⌉+1))+δ) expected work;

Polylogarithmic span with high probability

Approximate

Algorithm

O(n) expected work;

O(log n) span with high probability

18

● Our work bounds match the best sequential bounds by de Berg et al. and

Gan and Tao (work-efficient)

Naive Parallel Algorithm
• Points issue range queries in

parallel
• Parallel connected components
• Quadratic work in the worst

case
• Worst-case linear work per point

for range query

19

ϵ

core border

ϵ

Our Parallel DBSCAN Algorithm
1. Construct grid cells
2. Mark core points
3. Cell graph
4. Cluster border points

20

Our Parallel DBSCAN Algorithm

1. Construct grid cells
2. Mark core points
3. Cell graph
4. Cluster border points

• First used by de Berg et al. sequentially
• Sort based on cell ID
• Insert points into parallel hash table

21

ϵ/√2

ϵ/√2

1. Construct grid cells
2. Mark core points
3. Cell graph
4. Cluster border points

• Loop through points in parallel
• Check 21-cell neighborhood
• Cell with ≥ minPts points, all points are

core

ϵ

Our Parallel DBSCAN Algorithm

22

ϵ/√2

ϵ/√2

1. Construct grid cells
2. Mark core points
3. Cell graph
4. Cluster border points

• “Core cells” and “non-core cells”

Our Parallel DBSCAN Algorithm

23

ϵ/√2

ϵ/√2

Cell with core points

Cell without core points

Core points

Non-core points

1. Construct grid cells
2. Mark core points
3. Cell graph
4. Cluster border points

Our Parallel DBSCAN Algorithm

24

ϵ/√2

ϵ/√2

BCP connectivity

≤ϵ

Cell with core points

Cell without core points

Core points

Non-core points

• Bichromatic closest pair (BCP)
connectivity
• Finds closest pair of points

between two cells
• Connect cells if distance ≤ ϵ
• Used by Gan-Tao sequentially

• Run connected components on
core cells to form clusters for
core points

1. Construct grid cells
2. Mark core points
3. Cell graph
4. Cluster border points

Our Parallel DBSCAN Algorithm

25

ϵ/√2

ϵ/√2

Cell with core points

Cell without core points

Core points
Non-core points

1. Construct grid cells
2. Mark core points
3. Cell graph
4. Cluster border points

Our Parallel DBSCAN Algorithm

26

ϵ/√2

ϵ/√2

Cell with core points

Cell without core points

Core points
Non-core points

1. Construct grid cells
○ O(n) work and O(log n) span for semisorting and hash table construction

2. Mark core points
○ Each cell will be checked by 21 * O(minPts) many points
○ O(log n) span for summing counts
○ Thus, range queries take O(n * minPts) work and O(log n) span

3. Cell graph
○ Can build Delaunay triangulation and keep the triangulation edges of

distance ≤ ϵ (other approaches described in paper)
■ O(n log n) work and O(log n) span

○ Use connectivity algorithm to find clusters in O(n) work and O(log n) span
4. Cluster border points

○ Similar analysis as marking core points
5. Total: O(n log n) work and O(log n) span (for constant minPts)

Our Parallel DBSCAN Algorithm – Analysis (w.h.p.)

27

1. Construct grid cells
2. Mark core points
3. Cell graph
4. Cluster border points

• Differences for higher-dimensional
exact and approximate algorithms

• Grid size is ϵ/√d instead of
ϵ/√2

• How BCP queries are
computed

Our Parallel DBSCAN Algorithm

28

ϵ/√2

ϵ/√2

Cell with core points

Cell without core points

Core points

Non-core points

1. Construct grid cells
2. Mark core points
3. Cell graph
4. Cluster border points

Our Parallel DBSCAN Algorithm

29

ϵ/√2

ϵ/√2

Cell with core points

Cell without core points

Core points

Non-core points

• Our work bound matches the
sequential bounds of de Berg
et al. and Gan and Tao
• O(n log n) for 2D, subquadratic

for d > 2, O(n) for approximate
• BCP queries dominate work

• Can implement all operations
in polylogarithmic span
• Parallel primitives: hashing, prefix

sums, semisorting, merging,
pointer jumping, Delaunay

Optimization - Spatial Tree

30

Maintain cells in
a kd-tree

Higher dimensions

Optimization - Parallel Pruning of BCP Queries

31

1

2

No Pruning - 10 queries

Connectivity query

Optimization - Parallel Pruning of BCP Queries
• Parallel union-find keeps

connectivity on-the-fly
• First used by Gan and

Tao sequentially
• Prunes query if already

connected
• Prunes query if repeated

• Order in which cells are
processed affects
pruning quality
• Bucket cells based on

#points and process
each bucket in parallel

32

1

2

No Pruning - 10 queries

Connectivity query

Connectivity query
(pruned)

Pruning - 6 queries

Experimental Setup
• AWS c5.18x Large

• 2 × Intel Xeon Platinum 8124M (3.00GHz) CPUs
• 36 cores, 2-way hyperthreading
• 144 GiB RAM

• AWS r5.24x Large (only used for larger datasets)
• 2 × Intel Xeon Platinum 8175M (2.50 GHz) CPUs
• 48 cores, 2-way hyperthreading
• 768 GiB RAM

33

Good Work-Efficiency and Scalability

34

● 16-6102x faster than HPDBSCAN and PDSDBSCAN
across all datasets and parameter settings

Good Speedup over State-of-art Parallel Implementation

#Data

Points

Dimension

GeoLife 24.9 M 3

Cosmo50 321 M 3

OpenStreetMap 2770 M 2

TeraClickLog 4373 M 13

35

From their paper

(same core count)

● 18-577x faster than RP-DBSCAN

Varying Parameters

36

SCAN for Graph Clustering

● A pair of adjacent vertices is similar if they share many neighbors

● Original SCAN algorithm uses cosine similarity

○ for vertices u and v with neighborhoods N(·),

a

b c

d e f

hgj i

k

SCAN Definition

● A pair of adjacent vertices is similar if they share many neighbors

● Original SCAN algorithm uses cosine similarity

○ for vertices u and v with neighborhoods N(·),

a

b c

d e f

hgj i

k

SCAN Definition

● A pair of adjacent vertices is similar if they share many neighbors

● Original SCAN algorithm uses cosine similarity

○ for vertices u and v with neighborhoods N(·),

a

b c

d e f

hgj i

k

SCAN Definition

● A pair of adjacent vertices is similar if they share many neighbors

● Original SCAN algorithm uses cosine similarity

○ for vertices u and v with neighborhoods N(·),

a

b c

d e f

hgj i

k

SCAN Definition

● A pair of adjacent vertices is similar if they share many neighbors

● Original SCAN algorithm uses cosine similarity

○ for vertices u and v with neighborhoods N(·),

a

b c

d e f

hgj i

k

similarity = .75

SCAN Definition

● A pair of adjacent vertices is similar if they share many neighbors

● Original SCAN algorithm uses cosine similarity

○ for vertices u and v with neighborhoods N(·),

● Other similarity functions we consider:

○ Jaccard similarity

○ Weighted cosine similarity

SCAN Definition

● User-selected parameters: μ, !
● Vertex is a core vertex if it has at least μ neighbors that are !-similar

a

b c

d e f

hgj i

kμ = 3
! = .6

SCAN Definition

● User-selected parameters: μ, !
● Vertex is a core vertex if it has at least μ neighbors that are !-similar

a

b c

d e f

hgj i

kμ = 3
! = .6

: similarity ≥ !
: similarity < !

SCAN Definition

● User-selected parameters: μ, !
● Vertex is a core vertex if it has at least μ neighbors that are !-similar

a

b c

d e f

hgj i

kμ = 3
! = .6

: similarity ≥ !
: similarity < !
: core

SCAN Definition

● Clusters: connected component of core vertices along with any other
!-similar neighbors (border vertices)

● Outliers are vertices not belonging to any cluster

a

b c

d e f

hgj i

kμ = 3
! = .6

: similarity ≥ !
: similarity < !
: core

SCAN Definition

SCAN Complexity
● Work of SCAN: O(m!) ≤ O(m1.5)

○ Arboricity (!): a measure of graph sparsity
○ Computing similarities is the expensive part: O(m!)
○ Finding clusters from similarities: O(m)

● SCAN is especially costly for dense graphs

● Furthermore, users often have to try many different parameters to
obtain good clusters

GS-Index: precompute index to test parameters quickly

● SCAN variant GS-Index constructs an index from which querying for
clusters under arbitrary μ and ! is fast (Wen et al., VLDB 2017)

● Maintain neighbor ordering to quickly find !-similar neighbors
○ Vertices’ neighbor lists are sorted in decreasing order by similarity

● Maintain core ordering to quickly find core vertices
○ For each μ, store list of vertices sorted in decreasing order by the maximum

value of ! such that the vertex is a core vertex

GS-Index: precompute index to test parameters quickly

● Neighbor ordering: vertices’ neighbor lists sorted by similarity
● Core ordering: For each μ, vertices sorted by max ! at which vertex is a core

a

b c

d e f

hgj i

k

a

a

b

d

b

b

d

a

c

c

b

d

d

d

b

a

c

e

e

e

f

d

f

f

g

h

e

h

g

f

h

k

h

h

f

h

i

i

i

j

h

j

j

i

k

k

h

c

Neighbor Ordering

b

b

d

a

b

a

c

c

d

d

d

i

f

j

g

g

f

h

f

g

i

h

h

e

k e2

3

4

5

Core
Ordering

μ = 3, ! = .6

Get clusters by BFS on core
vertices and !-similar edges

extracted from index

GS-Index gives fast queries but is still sequential

● Work to compute index: O((! + log n)m)

○ Cost for computing similarities and sorting

● Work to query for clusters: linear in the total sizes of clusters

○ No work done for non-"-similar edges and unclustered vertices

● Queries are fast, but computing the index sequentially is slow

Our contributions
● Parallel index-based SCAN algorithm

○ Provably work-efficient with logarithmic span

● Approximate similarity computation via locality-sensitive hashing for
even greater speedups

● Practical, optimized multicore implementations that empirically
outperform state-of-the-art SCAN algorithms

● Finding shared neighbors is counting triangles
○ This can be done in O(!m) work and O(log n) span with high probability

using parallel hash tables
● Important to optimize similarity computation since it’s so costly

Computing similarities

a

b c

d e f

hgj i

k

● Count each triangle once instead of three times by directing the graph
and counting directed triangles (Latapy 2008)
○ Direct each edge from lower-degree to higher-degree endpoint

● For better cache locality, instead of using parallel hash tables, intersect
sorted neighbor lists with parallel merge (Shun and Tangwongsan 2015)

Computing similarities

a

b c

d e f

hgj i

k

Computing neighbor and core orderings
● Use parallel comparison sort
● Additional observation: can integer sort on unweighted graphs to get

better work bounds
○ Transform similarities monotonically into integers

■ →

○ Reduces the log n term in the O((! + log n)m) work bound
■ O(!m) work with O(nβ) span, or
■ O((! + log log n)m) work and O(log n) span

Querying: doubling search on index
● Doubling search to find core vertices and !-similar edges from index

a

a

b

d

b

b

d

a

c

c

b

d

d

d

b

a

c

e

e

e

f

d

f

f

h

h

e

h

g

f

h

k

h

h

f

h

i

i

i

j

h

j

j

i

k

k

h

Neighbor Ordering

b

b

d

a

b

a

c

c

d

d

d

i

f

j

g

g

f

h

f

g

i

h

h

e

k2

3

4

5

Core
Ordering

a

b c

d e f

hgj i

k

μ = 3, ! = .6

● Parallel connectivity on core vertices and !-similar edges
● In theory, we use a linear work and O(log n) span connected

components algorithm
● In practice, we use a parallel union-find data structure

Querying: finding clusters

a

b c

d e f

hgj i

kμ = 3
! = .6

: similarity ≥ !
: similarity < !
: core

Our Work: Approximating similarities
● Similarity computation in index construction is still the computational

bottleneck, especially on dense graphs
● Locality-sensitive hashing (LSH) approximates similarity between

vertices
○ SimHash for cosine similarity
○ MinHash for Jaccard similarity

● LSH sample size k trades accuracy vs. running time

LSH increases speed on dense graphs
● For sample size k, further reduce the O((! + log n)m) work bound to

○ O(km) work with O(nβ) span, or
○ O((k + log log n)m) work and O(log n) span

LSH still maintains guarantees on resulting clusters

● We prove that if the number of samples k is sufficiently large, we
correctly “classify” all edges as above or below ! in similarity, except
inside a small interval around !

LSH heuristic: only LSH on high-degree vertices
● If neighborhoods are small, better to just compute exact similarities
● Solution: use LSH on pairs of high-degree vertices, and use triangle

counting elsewhere

Experimental Setup
● AWS machine

○ 48 cores, two-way hyperthreading (max 96 hyper-threads)
○ 192 GiB of RAM

Comparison against state-of-the-art
● ppSCAN: fastest parallel SCAN algorithm (Che et al., ICPP 2018)
● GS-Index: original (sequential) index-based SCAN algorithm

(Wen et al., VLDB 2017)

Exact index construction: 50–151× speedup vs. GS-Index

● Even sequentially, 1.4–2.2× speedup over GS-Index

● 23–70× self-relative parallel speedup

Friendster graph: large social network
(65M vertices, 1.8B edges)

Cochlea graph: dense, weighted
biological graph (26K vertices, 282M
edges)

Query time: always faster than ppSCAN

● 1.26–12,070×
speedup
vs. ppSCAN

● 5–32× speedup
vs. GS-Index

Fix μ=5 and vary !

LSH gives faster index construction with similar cluster quality

● Modularity: popular and standard clustering metric based on how
many edges are within clusters

Conclusion

• Theoretically-efficient and practical parallel algorithms for density-
based spatial clustering (DBSCAN) and structural graph clustering
(SCAN)

• Code publicly available
• DBSCAN: https://sites.google.com/view/yiqiuwang/dbscan

• SCAN: https://github.com/ParAlg/gbbs/tree/master/benchmarks/SCAN/IndexBased

67

Questions?

https://sites.google.com/view/yiqiuwang/dbscan
https://github.com/ParAlg/gbbs/tree/master/benchmarks/SCAN/IndexBased

Future work
● Index-based DBSCAN

● Hierarchical versions of DBSCAN and SCAN

● Dynamic updates

● Framework for evaluating speed vs. accuracy of parallel clustering
algorithms

