Parallel Algorithms for Density-Based and Structural Clustering

 \bigcirc

 \cap

Julian Shun (MIT CSAIL)

Yiqiu Wang, Yan Gu, and Julian Shun, *Theoretically-Efficient and Practical Parallel DBSCAN*, SIGMOD 2020.

Tom Tseng, Laxman Dhulipala, and Julian Shun, *Parallel Index-Based Structural Clustering and Its Approximation*, SIGMOD 2021.

Clustering

- Group "similar" objects together, and separate "dissimilar" objects
- Can be applied to spatial data and graph data
- Applications
 - Community detection, bioinformatics, parallel/distributed processing, visualization, image segmentation, anomaly detection, document analysis, machine learning, etc.

Clustering

- Very well-studied topic
 - Hundreds of textbooks on this topic
- No universally accepted definition for cluster quality, many metrics have been proposed
- At least thousands of different clustering algorithms

DBSCAN for Spatial Clustering

- DBSCAN (Density-Based Spatial Clustering of Applications with Noise)
 - Ester et al. [KDD'96]
- Areas of high density form clusters
- Does not require number of clusters beforehand
- Detects arbitrarily shaped clusters
- Robust to noise

SCAN for Graph Clustering

- SCAN (Structural Clustering Algorithm for Networks)
 - Xu et al. [KDD'07]
- DBSCAN, but on graphs
- Similarity of vertices based on their number of shared neighbors
- "Dense" areas contain many vertices who have many similar neighbors
- Can identify clusters and outliers

Processing Large Datasets

- Publicly-available graphs have up to hundreds of billions of edges
- Spatial datasets can be even larger

Need high-performance solutions to process large datasets in a timely fashion

- We design state-of-the-art parallel multicore algorithms for DBSCAN and SCAN
 - Strong theoretical guarantees
 - Can process the largest datasets used in the literature for these problems on a multicore, more quickly than existing solutions

Work-Span Model of Parallel Computation

- Work: number of operations used
- Span: length of the longest sequential dependence
- Parallelism = Work / Span
- Running time ≤ Work/P + Span (when run on P processors)
- A work-efficient parallel algorithm has work that asymptotically matches that of the best sequential algorithm for the problem

Goal: work-efficient and low-span parallel algorithms

Computation graph

DBSCAN for Spatial Clustering

- Parameters
 - €
 - minPts

- Parameters
 - €
 - minPts=3
- Core point
 - At least minPts points in ϵ -circle

- Parameters
 - €
 - minPts=3
- Core point
 - At least minPts points in ϵ -circle
 - Connected if in ϵ -circle

 \bigcirc

 \bigcirc

- Parameters
 - €
 - minPts=3
- Core point
 - At least minPts points in ϵ -circle
 - Connected if in ϵ -circle

 \bigcirc

 \bigcirc

- Parameters
 - €
 - minPts=3
- Core point
 - At least minPts points in ϵ -circle
 - Connected if in ϵ -circle
- Border point
 - Fewer than minpts points in ϵ -circle
 - Contains a core point in ϵ -circle

- Parameters
 - €
 - minPts=3
- Core point
 - At least minPts points in ϵ -circle
 - Connected if in ϵ -circle
- Border point
 - Fewer than minpts points in ϵ -circle
 - Contains a core point in ϵ -circle

- Parameters
 - €
 - minPts=3
- Core point
 - At least minPts points in ϵ -circle
 - Connected if in ϵ -circle
- Border point
 - Fewer than minPts points in ϵ -circle
 - Contains a core point in ϵ -circle
- Noise point

Related Work

- Sequential
 - de Berg et al., ISAAC'17 (Exact algorithms)
 - Gan and Tao, SIGMOD'15 Best Paper Award (Approximate algorithm, hardness result)
- Parallel
 - Xu et al., HPDM'99 (PDBSCAN, distributed R-Tree)
 - Patwary et al., SC'12 (PDSDBSCAN, parallel lock-based union-find)
 - Gotz et al., MLHPC'15 (HPDBSCAN, data splitting and merging)
 - Song et al., SIGMOD'18 (RP-DBSCAN, random partitioning, Map-Reduce)
 - Many more
- Challenges
 - Lack of theoretical guarantees in parallel implementations
 - High scalability but low work-efficiency

Our Contributions

- Parallel algorithms with work matching best sequential bounds (work-efficient)
- Highly-optimized multicore implementations
- Comprehensive experimental study showing that our algorithms outperform state-of-the-art

All of Our Algorithms are Theoretically Efficient

2D Algorithms	Delaunay Triangulation	Unit-spherical Emptiness Checking
	O(n log n) expected work; O(log n) span with high probability	O(n log n) expected work; O(log ² n) span with high probability
3D Algorithm	O((n log n) ^{4/3}) expected work; Polylogarithmic span with high probability	
Any Constant Dimension Algorithm	O(n ^{2-(2/([d/2]+1))+δ}) expected work; Polylogarithmic span with high probability	
Approximate Algorithm	O(n) expected work; O(log n) span with high probability	

 Our work bounds match the best sequential bounds by de Berg et al. and Gan and Tao (work-efficient)

Naive Parallel Algorithm

- Points issue range queries in parallel
- Parallel connected components
- Quadratic work in the worst case
 - Worst-case linear work per point (
 for range query

- 1. Construct grid cells
- 2. Mark core points
- 3. Cell graph
- 4. Cluster border points

- 1. Construct grid cells
- 2. Mark core points
- 3. Cell graph
- 4. Cluster border points
- First used by de Berg et al. sequentially
- Sort based on cell ID
- Insert points into parallel hash table

- 1. Construct grid cells
- 2. Mark core points
- 3. Cell graph
- 4. Cluster border points
- Loop through points in parallel
- Check 21-cell neighborhood
- Cell with ≥ minPts points, all points are core

- 1. Construct grid cells
- 2. Mark core points
- 3. Cell graph
- 4. Cluster border points
- "Core cells" and "non-core cells"

) Core points

Non-core points

Cell with core points

Cell without core points

- Construct grid cells 1.
- Mark core points 2.
- Cell graph 3.
- **Cluster border points** 4.
- Bichromatic closest pair (BCP) ٠ connectivity
 - Finds closest pair of points between two cells
 - Connect cells if distance $\leq \epsilon$
 - Used by Gan-Tao sequentially
- Run connected components on • core cells to form clusters for core points

Core points

Non-core points

Cell with core points

Cell without core points

Core points

Non-core points

Construct grid cells

Mark core points

4. Cluster border points

Cell graph

1.

2.

3.

- 1. Construct grid cells
- 2. Mark core points
- 3. Cell graph
- 4. Cluster border points

Our Parallel DBSCAN Algorithm – Analysis (w.h.p.)

- 1. Construct grid cells
 - O(n) work and O(log n) span for semisorting and hash table construction
- 2. Mark core points
 - Each cell will be checked by 21 * O(minPts) many points
 - O(log n) span for summing counts
 - Thus, range queries take O(n * minPts) work and O(log n) span
- 3. Cell graph
 - Can build Delaunay triangulation and keep the triangulation edges of distance ≤ ε (other approaches described in paper)
 - O(n log n) work and O(log n) span
 - Use connectivity algorithm to find clusters in O(n) work and O(log n) span
- 4. Cluster border points
 - Similar analysis as marking core points
- 5. Total: O(n log n) work and O(log n) span (for constant minPts)

- 1. Construct grid cells
- 2. Mark core points
- 3. Cell graph
- 4. Cluster border points
- Differences for higher-dimensional exact and approximate algorithms
 - Grid size is ϵ/\sqrt{d} instead of $\epsilon/\sqrt{2}$
 - How BCP queries are computed

Core points

Cell with core points

Non-core points

Core points
 Non-core points
 Cell with core points

Cell without core points

- 1. Construct grid cells
- 2. Mark core points
- 3. Cell graph
- 4. Cluster border points
- Our work bound matches the sequential bounds of de Berg et al. and Gan and Tao
 - O(n log n) for 2D, subquadratic for d > 2, O(n) for approximate
 - BCP queries dominate work
- Can implement all operations in polylogarithmic span
 - Parallel primitives: hashing, prefix sums, semisorting, merging, pointer jumping, Delaunay

Optimization - Spatial Tree

Optimization - Parallel Pruning of BCP Queries

Optimization - Parallel Pruning of BCP Queries

- Parallel union-find keeps connectivity on-the-fly
 - First used by Gan and Tao sequentially
- Prunes query if already connected
- Prunes query if repeated
- Order in which cells are processed affects pruning quality
 - Bucket cells based on #points and process each bucket in parallel

Experimental Setup

- AWS c5.18x Large
 - 2 × Intel Xeon Platinum 8124M (3.00GHz) CPUs
 - 36 cores, 2-way hyperthreading
 - 144 GiB RAM
- AWS r5.24x Large (only used for larger datasets)
 - 2 × Intel Xeon Platinum 8175M (2.50 GHz) CPUs
 - 48 cores, 2-way hyperthreading
 - 768 GiB RAM

Good Work-Efficiency and Scalability

 16-6102x faster than HPDBSCAN and PDSDBSCAN across all datasets and parameter settings

Good Speedup over State-of-art Parallel Implementation

	#Data Points	Dimension
GeoLife	24.9 M	3
Cosmo50	321 M	3
OpenStreetMap	2770 M	2
TeraClickLog	4373 M	13

• 18-577x faster than RP-DBSCAN

Varying Parameters

SCAN for Graph Clustering

- A pair of adjacent vertices is **similar** if they share many neighbors
- Original SCAN algorithm uses cosine similarity
 - for vertices u and v with neighborhoods $N(\cdot)$,

$$rac{|N(u)\cap N(v)|}{\sqrt{|N(u)||N(v)|}}$$

- A pair of adjacent vertices is similar if they share many neighbors
- Original SCAN algorithm uses cosine similarity

• for vertices u and v with neighborhoods N(·), $\frac{|N(u) \cap N(v)|}{\sqrt{|N(u)||N(v)|}}$

- A pair of adjacent vertices is similar if they share many neighbors
- Original SCAN algorithm uses cosine similarity

• for vertices u and v with neighborhoods $N(\cdot)$,

- A pair of adjacent vertices is similar if they share many neighbors
- Original SCAN algorithm uses cosine similarity

• for vertices u and v with neighborhoods $N(\cdot)$,

- A pair of adjacent vertices is similar if they share many neighbors
- Original SCAN algorithm uses cosine similarity

• for vertices u and v with neighborhoods $N(\cdot)$,

- A pair of adjacent vertices is similar if they share many neighbors
- Original SCAN algorithm uses cosine similarity

• for vertices u and v with neighborhoods $N(\cdot)$,

$$\frac{|N(u) \cap N(v)|}{\sqrt{|N(u)||N(v)|}}$$

- Other similarity functions we consider:
 - Jaccard similarity
 - Weighted cosine similarity

- User-selected parameters: μ , ε
- Vertex is a **core** vertex if it has at least μ neighbors that are ε -similar

- User-selected parameters: μ , ε
- Vertex is a **core** vertex if it has at least μ neighbors that are ε -similar

- User-selected parameters: μ , ε
- Vertex is a **core** vertex if it has at least μ neighbors that are ε -similar

- Clusters: connected component of core vertices along with any other ε -similar neighbors (**border** vertices)
- **Outliers** are vertices not belonging to any cluster

SCAN Complexity

- Work of SCAN: $O(m\alpha) \le O(m^{1.5})$
 - Arboricity (α): a measure of graph sparsity
 - Computing similarities is the expensive part: $O(m\alpha)$
 - Finding clusters from similarities: O(m)
- SCAN is especially costly for dense graphs
- Furthermore, users often have to try many different parameters to obtain good clusters

GS-Index: precompute index to test parameters quickly

- SCAN variant GS-Index constructs an index from which querying for clusters under arbitrary μ and ϵ is fast (Wen et al., VLDB 2017)
- Maintain **neighbor ordering** to quickly find ε -similar neighbors
 - Vertices' neighbor lists are sorted in decreasing order by similarity
- Maintain core ordering to quickly find core vertices
 - For each μ , store list of vertices sorted in decreasing order by the maximum value of ε such that the vertex is a core vertex

GS-Index: precompute index to test parameters quickly

- Neighbor ordering: vertices' neighbor lists sorted by similarity
- Core ordering: For each μ , vertices sorted by max ε at which vertex is a core

GS-Index gives fast queries but is still sequential

- Work to compute index: $O((\alpha + \log n)m)$
 - Cost for computing similarities and sorting
- Work to query for clusters: linear in the total sizes of clusters
 - No work done for non- ε -similar edges and unclustered vertices
- Queries are fast, but computing the index sequentially is slow

Our contributions

- Parallel index-based SCAN algorithm
 - Provably work-efficient with logarithmic span
- Approximate similarity computation via locality-sensitive hashing for even greater speedups
- Practical, optimized multicore implementations that empirically outperform state-of-the-art SCAN algorithms

Computing similarities

- Finding shared neighbors is counting triangles
 - This can be done in O(α m) work and O(log n) span with high probability using parallel hash tables
- Important to optimize similarity computation since it's so costly

Computing similarities

- Count each triangle once instead of three times by directing the graph and counting directed triangles (Latapy 2008)
 - Direct each edge from lower-degree to higher-degree endpoint
- For better cache locality, instead of using parallel hash tables, intersect sorted neighbor lists with parallel merge (Shun and Tangwongsan 2015)

Computing neighbor and core orderings

- Use parallel comparison sort
- Additional observation: can integer sort on unweighted graphs to get better work bounds
 - Transform similarities monotonically into integers • $\frac{|N(u) \cap N(v)|}{\sqrt{|N(u)||N(v)|}} \rightarrow \left[\left(\frac{|N(u) \cap N(v)|}{\sqrt{|N(u)||N(v)|}} \right)^2 n^4 \right]$
 - Reduces the log n term in the O((α + log n)m) work bound
 - $O(\alpha m)$ work with $O(n^{\beta})$ span, or
 - $O((\alpha + \log \log n)m)$ work and $O(\log n)$ span

Querying: doubling search on index

• Doubling search to find core vertices and ε -similar edges from index

Querying: finding clusters

- Parallel connectivity on core vertices and ε -similar edges
- In theory, we use a linear work and O(log n) span connected components algorithm
- In practice, we use a parallel union-find data structure

Our Work: Approximating similarities

- Similarity computation in index construction is still the computational bottleneck, especially on dense graphs
- Locality-sensitive hashing (LSH) approximates similarity between vertices
 - SimHash for cosine similarity
 - MinHash for Jaccard similarity
- LSH sample size k trades accuracy vs. running time

LSH increases speed on dense graphs

- For sample size k, further reduce the O((α + log n)m) work bound to
 - O(km) work with O(n^{β}) span, or
 - O((k + log log n)m) work and O(log n) span

LSH still maintains guarantees on resulting clusters

 We prove that if the number of samples k is sufficiently large, we correctly "classify" all edges as above or below ε in similarity, except inside a small interval around ε

LSH heuristic: only LSH on high-degree vertices

- If neighborhoods are small, better to just compute exact similarities
- Solution: use LSH on pairs of high-degree vertices, and use triangle counting elsewhere

Experimental Setup

- AWS machine
 - 48 cores, two-way hyperthreading (max 96 hyper-threads)
 - 192 GiB of RAM

Comparison against state-of-the-art

- ppSCAN: fastest parallel SCAN algorithm (Che et al., ICPP 2018)
- GS-Index: original (sequential) index-based SCAN algorithm (Wen et al., VLDB 2017)

Exact index construction: 50–151× speedup vs. GS-Index

Friendster graph: large social network (65M vertices, 1.8B edges)

Cochlea graph: dense, weighted biological graph (26K vertices, 282M edges)

- Even sequentially, 1.4–2.2× speedup over GS-Index
- 23–70× self-relative parallel speedup

Query time: always faster than ppSCAN

Fix μ =5 and vary ε

- 1.26–12,070×
 speedup
 vs. ppSCAN
- 5–32× speedup vs. GS-Index

LSH gives faster index construction with similar cluster quality

 Modularity: popular and standard clustering metric based on how many edges are within clusters

Conclusion

- Theoretically-efficient and practical parallel algorithms for densitybased spatial clustering (DBSCAN) and structural graph clustering (SCAN)
- Code publicly available
 - DBSCAN: https://sites.google.com/view/yiqiuwang/dbscan
 - SCAN: https://github.com/ParAlg/gbbs/tree/master/benchmarks/SCAN/IndexBased

Questions?

Future work

- Index-based DBSCAN
- Hierarchical versions of DBSCAN and SCAN
- Dynamic updates
- Framework for evaluating speed vs. accuracy of parallel clustering algorithms