

Probability and Computing – Concentration Bounds

Stefan Walzer | WS 2024/2025

Content

- **1. [What is a Concentration Bound?](#page-2-0)**
- **2. [Markov's Inequality](#page-13-0)**
- **3. [Chebyshev's Inequality](#page-17-0)**
- **4. [General Chernoff Bound](#page-27-0)**
- **5. [Simplified Chernoff Bounds](#page-42-0)**

[What is a Concentration Bound?](#page-2-0) [Markov's Inequality](#page-13-0) [Chebyshev's Inequality](#page-17-0) [General Chernoff Bound](#page-27-0) [Simplified Chernoff Bounds](#page-42-0)

In general: Cannot be summarise in a few numbers

distribution on $[n]$ is given by $\vec{\rho} \in \mathbb{R}_{\geq 0}^n$ with $\sum_{i=1}^n \rho_i = 1$

- *n* − 1 degrees of freedom
- a few numbers convey little information

[What is a Concentration Bound?](#page-2-0) [Markov's Inequality](#page-13-0) [Chebyshev's Inequality](#page-17-0) [General Chernoff Bound](#page-27-0) [Simplified Chernoff Bounds](#page-42-0)

In general: Cannot be summarise in a few numbers

distribution on $[n]$ is given by $\vec{\rho} \in \mathbb{R}_{\geq 0}^n$ with $\sum_{i=1}^n \rho_i = 1$

- *n* − 1 degrees of freedom
- a few numbers convey little information

Expectation is not always meaningful

In general: Cannot be summarise in a few numbers

distribution on $[n]$ is given by $\vec{\rho} \in \mathbb{R}_{\geq 0}^n$ with $\sum_{i=1}^n \rho_i = 1$

- *n* − 1 degrees of freedom
- a few numbers convey little information

In general: Cannot be summarise in a few numbers

distribution on $[n]$ is given by $\vec{\rho} \in \mathbb{R}_{\geq 0}^n$ with $\sum_{i=1}^n \rho_i = 1$

- *n* − 1 degrees of freedom
- a few numbers convey little information

In general: Cannot be summarise in a few numbers

distribution on $[n]$ is given by $\vec{\rho} \in \mathbb{R}_{\geq 0}^n$ with $\sum_{i=1}^n \rho_i = 1$

- *n* − 1 degrees of freedom
- a few numbers convey little information

Expectation is not always meaningful

I "expect" one hair in my soup

[What is a Concentration Bound?](#page-2-0) [Markov's Inequality](#page-13-0) [Chebyshev's Inequality](#page-17-0) [General Chernoff Bound](#page-27-0) [Simplified Chernoff Bounds](#page-42-0)

OOC COO COOC COOCOOC

Karlsruhe Institute of

[What is a Concentration Bound?](#page-2-0) [Markov's Inequality](#page-13-0) [Chebyshev's Inequality](#page-17-0) [General Chernoff Bound](#page-27-0) [Simplified Chernoff Bounds](#page-42-0)

OOC COO COOC COOC COOC COOC COOCOOC

[What is a Concentration Bound?](#page-2-0) [Markov's Inequality](#page-13-0) [Chebyshev's Inequality](#page-17-0) [General Chernoff Bound](#page-27-0) [Simplified Chernoff Bounds](#page-42-0)

OOC COO COOC COOCOOC

Why is this relevant for us?

Randomised algorithm might work only if *X* falls into "nice" interval [*a*, *b*]. Want to bound failure probabily by ε.

[What is a Concentration Bound?](#page-2-0) [Markov's Inequality](#page-13-0) [Chebyshev's Inequality](#page-17-0) [General Chernoff Bound](#page-27-0) [Simplified Chernoff Bounds](#page-42-0)

Why is this relevant for us?

Randomised algorithm might work only if *X* falls into "nice" interval [*a*, *b*]. Want to bound failure probabily by ε.

Special Cases

Tail bound:

Concentration around Expectation:
$$
Pr[|X - \mathbb{E}[X]| > c] \le \varepsilon
$$
 $([a, b] = [\mathbb{E}[X] - c, \mathbb{E}[X] + c])$
Tail bound: $Pr[X > b] \le \varepsilon$ $(a = -\infty)$

[What is a Concentration Bound?](#page-2-0) [Markov's Inequality](#page-13-0) [Chebyshev's Inequality](#page-17-0) [General Chernoff Bound](#page-27-0) [Simplified Chernoff Bounds](#page-42-0)

Benchmark for What Follows

■ 0.016 is calculated explicitly // only feasible for tiny examples

later: we use general methods for obtaining bounds on $Pr[X \ge 5]$

Markov: Tail bound for non-negative random variables

Markov Inequality

Let *X* be a non-negative random variable and $b \ge 0$. Then $Pr[X \ge b] \le E[X]/b$.

[What is a Concentration Bound?](#page-2-0) **[Markov's Inequality](#page-13-0)** [Chebyshev's Inequality](#page-17-0) [General Chernoff Bound](#page-27-0) [Simplified Chernoff Bounds](#page-42-0)

ooo ooo ooooooooooooo

Markov: Tail bound for non-negative random variables

Markov Inequality

Let *X* be a non-negative random variable and $b \geq 0$. Then $Pr[X \geq b] \leq \mathbb{E}[X]/b$.

Proof by Picture

From the picture
$$
(b = 3)
$$
:
 $b \cdot Pr[X \ge b] \le \mathbb{E}[X]$

Rearranging gives: Pr[*X* ≥ *b*] ≤ E[*X*]/*b*.

Note: Tight if and only if $Pr[X \in \{0, b\}] = 1.$

Markov: Tail bound for non-negative random variables

Markov Inequality

Let *X* be a non-negative random variable and $b \geq 0$. Then $Pr[X \geq b] \leq \mathbb{E}[X]/b$.

Proof by Picture

From the picture
$$
(b = 3)
$$
:
\n $b \cdot Pr[X \ge b] \le \mathbb{E}[X]$
\nRearranging gives:
\n $Pr[X \ge b] \le \mathbb{E}[X]/b$.

Note: Tight if and only if $Pr[X \in \{0, b\}] = 1.$

Actual Proof

Markov's Inequality: Benchmark

Markov Inequality

Let *X* be a non-negative random variable and $b \ge 0$. Then $Pr[X \ge b] \le E[X]/b$.

[What is a Concentration Bound?](#page-2-0) [Markov's Inequality](#page-13-0) [Chebyshev's Inequality](#page-17-0) [General Chernoff Bound](#page-27-0) [Simplified Chernoff Bounds](#page-42-0)

Markov Inequality

Let *X* be a non-negative random variable and $b \ge 0$. Then $Pr[X \ge b] \le E[X]/b$.

Corollary for non-negative *X* and strictly increasing $f : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$

 $Pr[X \ge b] = Pr[f(X) \ge f(b)] \le E[f(X)]/f(b).$

[What is a Concentration Bound?](#page-2-0) [Markov's Inequality](#page-13-0) **[Chebyshev's Inequality](#page-17-0)** [General Chernoff Bound](#page-27-0) [Simplified Chernoff Bounds](#page-42-0)

ooo a cooooooo

Markov Inequality

Let *X* be a non-negative random variable and $b \geq 0$. Then $Pr[X \geq b] \leq \mathbb{E}[X]/b$.

Corollary for non-negative *X* and strictly increasing $f : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$

 $Pr[X \ge b] = Pr[f(X) \ge f(b)] \le E[f(X)]/f(b).$

Corollary for possibly negative *X*

 $Pr[|X - \mathbb{E}X| \ge b] \le \mathbb{E}[|X - \mathbb{E}[X]|]/b$. // but absolute values can be a pain to work with...

8/19 WS 2024/2025 Stefan Walzer: Concentration Bounds **ITI, Algorithm Engineering** Stefan Walzer: Concentration Bounds **ITI, Algorithm Engineering**

Markov Inequality

Let *X* be a non-negative random variable and $b \geq 0$. Then $Pr[X \geq b] \leq \mathbb{E}[X]/b$.

Corollary for non-negative *X* and strictly increasing $f : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$

 $Pr[X \ge b] = Pr[f(X) \ge f(b)] \le E[f(X)]/f(b).$

Corollary for possibly negative *X*

 $Pr[|X - \mathbb{E}X| \ge b] \le \mathbb{E}[|X - \mathbb{E}[X]|]/b$. // but absolute values can be a pain to work with...

Combining both Ideas with $f(x) = x^2$

$$
\Pr[|X - \mathbb{E}X| \ge b] = \Pr[|X - \mathbb{E}X|^2 \ge b^2] \le \mathbb{E}[|X - \mathbb{E}X|^2]/b^2 = \text{Var}(X)/b^2.
$$

Chebyshev's inequality Corollaries to Markov's Inequality

Markov Inequality

Let *X* be a non-negative random variable and $b \geq 0$. Then $Pr[X \geq b] \leq \mathbb{E}[X]/b$.

Corollary for non-negative *X* and strictly increasing $f : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$

 $Pr[X \ge b] = Pr[f(X) \ge f(b)] \le E[f(X)]/f(b).$

Corollary for possibly negative *X*

 $Pr[|X - \mathbb{E}X| \ge b] \le \mathbb{E}[|X - \mathbb{E}[X]|]/b$. // but absolute values can be a pain to work with...

Chebyshev's Inequality

$$
\Pr[|X - \mathbb{E}X| \ge b] = \Pr[|X - \mathbb{E}X|^2 \ge b^2] \le \mathbb{E}[|X - \mathbb{E}X|^2]/b^2 = \text{Var}(X)/b^2.
$$

[What is a Concentration Bound?](#page-2-0) [Markov's Inequality](#page-13-0) Che**byshev's Inequality** [General Chernoff Bound](#page-27-0) [Simplified Chernoff Bounds](#page-42-0)
OOC GOOGOOG GOOGOOG CHERNOFF CHERNOFF COOGOOG COOGOOG COOGOOGOOG COOGOOGOOGOOGOOGOOGOOGOOGOOGOO

Moments¹

Definitions

Let *X* be real-valued random variable and $n \in \mathbb{N}$. Then

 $\mathbb{E}[X^n]$ is the *n* th **(raw) moment**, $\qquad \mathbb{E}[(X - \mathbb{E}[X])^n]$

 $\mathbb{E}[(X - \mathbb{E}[X])^n]$ is the *n* th **central moment**, $\mathbb{E}[|X|^n]$ is the *n* th absolute^a moment, $\mathbb{E}[|X-\mathbb{E}[X]|^n]$ is the *n* th absolute central moment.

*^a*Note: | · | makes a difference only for odd *n*.

¹deutsch: *das* Moment

[What is a Concentration Bound?](#page-2-0) [Markov's Inequality](#page-13-0) **[Chebyshev's Inequality](#page-17-0)** [General Chernoff Bound](#page-27-0) [Simplified Chernoff Bounds](#page-42-0)

oo and Concentration Bound?

oo and Concentration Bound: Oo and Concentration Bounds

Moments¹

Definitions

Let *X* be real-valued random variable and $n \in \mathbb{N}$. Then

 $\mathbb{E}[X^n]$ is the *n* th (raw) moment, $\qquad \mathbb{E}[(X - \mathbb{E}[X])^n]$ is the *n* th central moment, $\mathbb{E}[|X|^n]$ is the *n* th absolute^a moment, $\mathbb{E}[|X-\mathbb{E}[X]|^n]$ is the *n* th absolute central moment.

*^a*Note: | · | makes a difference only for odd *n*.

What's so special about the second central moment $Var(X) := \mathbb{E}[(X - \mathbb{E}[X])^2]$?

Intuitive Meaning

It's the mean squared distance.

Exercise: Nice mathematical properties

If *X*, *Y* are independent, then $Var(aX + bY) = a^2 \cdot Var(X) + b^2 \cdot Var(Y).$

¹deutsch: *das* Moment

[What is a Concentration Bound?](#page-2-0) [Markov's Inequality](#page-13-0) Che**byshev's Inequality** [General Chernoff Bound](#page-27-0) [Simplified Chernoff Bounds](#page-42-0)
O Corport Chernoff Bounds Chernoff Bounds Corport Chernoff Bound Simple Chernoff Bound Chernoff

Chebyshev's Inequality: Benchmark

Chebyshev's Inequality

 $Pr[|X - \mathbb{E}X| \ge b] \le \text{Var}(X)/b^2$.

[What is a Concentration Bound?](#page-2-0) [Markov's Inequality](#page-13-0) [Chebyshev's Inequality](#page-17-0) [General Chernoff Bound](#page-27-0) [Simplified Chernoff Bounds](#page-42-0)

Chebyshev's Inequality: Benchmark

Chebyshev's Inequality

 $Pr[|X - \mathbb{E}X| \ge b] \le \text{Var}(X)/b^2$.

Variance Calculation

• let
$$
X_i = [i\text{th roll is a six}], X = \sum_{i=1}^{10} X_i
$$

•
$$
\mathbb{E}[X_i] = \frac{1}{6}, \mathbb{E}[X] = \frac{10}{6} = \frac{5}{3}
$$

\n- \n
$$
\text{Var}(X_i) = \frac{1}{6} \cdot \left(\frac{5}{6} \right)^2 + \frac{5}{6} \cdot \left(\frac{1}{6} \right)^2 = \frac{5}{36}.
$$
\n
\n- \n $\text{Var}(X) = 10 \cdot \text{Var}(X_1) = \frac{50}{36}.$ \n
\n

Running Example

\n

Let $X \sim Bin(10, \frac{1}{6})$ the number of sixes when rolling a fair die 10 times.	
0 1 2 3 4 5 6 7 8 9 10	Pr[X \ge 5] \approx 0.016.

Chebyshev's Inequality: Benchmark

Chebyshev's Inequality

 $Pr[|X - \mathbb{E}X| \ge b] \le \text{Var}(X)/b^2$.

Variance Calculation

• let
$$
X_i = [i\text{th roll is a six}], X = \sum_{i=1}^{10} X_i
$$

$$
\mathbb{E}[X_i] = \frac{1}{6}, \, \mathbb{E}[X] = \frac{10}{6} = \frac{5}{3}
$$

\n- \n
$$
\text{Var}(X_i) = \frac{1}{6} \cdot \left(\frac{5}{6} \right)^2 + \frac{5}{6} \cdot \left(\frac{1}{6} \right)^2 = \frac{5}{36}.
$$
\n
\n- \n $\text{Var}(X) = 10 \cdot \text{Var}(X_1) = \frac{50}{36}.$ \n
\n

Running Example

\nLet
$$
X \sim
$$
 number fair die 1

\n0 1 2 3 4 5 6 7 8 9 10

\nPr[

Let $X \sim Bin(10, \frac{1}{6})$ the of sixes when rolling a 10 times.

$$
Pr[X \geq 5] \approx 0.016.
$$

Bound from Chebyshev's Inequality

 $\Pr[X \ge 5] = \Pr[X - \mathbb{E}[X] \ge 5 - \frac{5}{3} = \frac{10}{3}] \le \Pr[|X - \mathbb{E}[X]| \ge \frac{10}{3}] \le \text{Var}(X) / (\frac{10}{3})^2 = \frac{50 \cdot 9}{36 \cdot 100} = \frac{1}{8} = 0.125.$

Definition

For real-valued random variable X call $M_X(t)=\mathbb{E}[e^{tX}]$ its *moment generating function*.

Definition

Remark: Why it's called "moment generating function".

$$
M_X(t) = \mathbb{E}[e^{tX}] = \mathbb{E}\Big[\sum_{i=0}^{\infty} \frac{(tX)^i}{i!}\Big] = \sum_{i=0}^{\infty} \frac{t^i}{i!} \cdot \mathbb{E}[X^i].
$$
 // generating function^a for $(\mathbb{E}[X^0], \mathbb{E}[X^1], \mathbb{E}[X^2], \dots)$

a [https://en.wikipedia.org/wiki/Generating_function#Exponential_generating_function_\(EGF\)](https://en.wikipedia.org/wiki/Generating_function#Exponential_generating_function_(EGF))

Definition

Remark: Why it's called "moment generating function".

$$
M_X(t) = \mathbb{E}[e^{tX}] = \mathbb{E}\Big[\sum_{i=0}^{\infty} \frac{(tX)^i}{i!}\Big] = \sum_{i=0}^{\infty} \frac{t^i}{i!} \cdot \mathbb{E}[X^i].
$$
 // generating function^a for $(\mathbb{E}[X^0], \mathbb{E}[X^1], \mathbb{E}[X^2], \dots)$

a [https://en.wikipedia.org/wiki/Generating_function#Exponential_generating_function_\(EGF\)](https://en.wikipedia.org/wiki/Generating_function#Exponential_generating_function_(EGF))

Chernoff Bound

Let *X* be a real-valued RV and $b > 0$. Then

$$
\blacksquare \Pr[X \ge b] \le \inf_{t>0} \mathbb{E}[e^{tX}]/e^{tb} \text{ and}
$$

$$
\quad \ \ \, \mathsf{Pr}[X \leq b] \leq \inf_{t < 0} \mathbb{E}[e^{tX}] / e^{tb}.
$$

Definition

For real-valued random variable X call $M_X(t)=\mathbb{E}[e^{tX}]$ its *moment generating function*.

Remark: Why it's called "moment generating function".

$$
M_X(t) = \mathbb{E}[e^{tX}] = \mathbb{E}\Big[\sum_{i=0}^{\infty} \frac{(tX)^i}{i!}\Big] = \sum_{i=0}^{\infty} \frac{t^i}{i!} \cdot \mathbb{E}[X^i].
$$
 // generating function^a for $(\mathbb{E}[X^0], \mathbb{E}[X^1], \mathbb{E}[X^2], \dots)$

a [https://en.wikipedia.org/wiki/Generating_function#Exponential_generating_function_\(EGF\)](https://en.wikipedia.org/wiki/Generating_function#Exponential_generating_function_(EGF))

Chernoff Bound

Let *X* be a real-valued RV and $b > 0$. Then $\mathsf{Pr}[X \geq b] \leq \mathsf{inf}_{t > 0} \mathbb{E}[e^{tX}] / e^{tb}$ and

$$
\blacksquare \Pr[X \leq b] \leq \inf_{t < 0} \mathbb{E}[e^{tX}] / e^{tb}.
$$

Proof of first variant (second works simlarly)

Let $t > 0$ be arbitrary. Then $x \mapsto e^{tx}$ is increasing. $\mathsf{Pr}[X \geq b] = \mathsf{Pr}[e^{tX} \geq e^{tb}] \stackrel{\mathsf{Markov}}{\leq} \mathbb{E}[e^{tX}]/e^{tb}.$

Done, since $t > 0$ was arbitrary.

Generic Chernoff Bound: Benchmark

Chernoff Bound

 $\mathsf{Pr}[X \geq b] \leq \mathsf{inf}_{t>0} \, \mathbb{E}[e^{tX}] / e^{tb}$

Let $X \sim Bin(10, \frac{1}{6})$ the number of sixes when rolling a fair die 10 times.

 $Pr[X \ge 5] \approx 0.016$.

Generic Chernoff Bound: Benchmark

Chernoff Bound

 $\mathsf{Pr}[X \geq b] \leq \mathsf{inf}_{t>0} \, \mathbb{E}[e^{tX}] / e^{tb}$

Calculations

• let
$$
X_i = [i\text{th roll is a six}], X = \sum_{i=1}^{10} X_i
$$

$$
\blacksquare \mathbb{E}[e^{t \cdot X_i}] = \tfrac{1}{6} \cdot e^t + \tfrac{5}{6} = \tfrac{e^t + 5}{6}
$$

$$
\mathbb{E}[e^{t \cdot X}] = \mathbb{E}[e^{t \cdot X_1}]^{10} = (\frac{e^t + 5}{6})^{10}
$$

Running Example

Note: For independent
$$
X_1, \ldots, X_n
$$

\n
$$
\mathbb{E}[e^{t(X_1+\cdots+X_n)}] = \mathbb{E}[e^{tX_1} \cdot \ldots \cdot e^{tX_n}] = \mathbb{E}[e^{tX_1}] \cdot \ldots \cdot \mathbb{E}[e^{tX_n}].
$$

[Chebyshev's Inequality](#page-17-0) **[General Chernoff Bound](#page-27-0)** [Simplified Chernoff Bounds](#page-42-0)

COO COOOOOO

Generic Chernoff Bound: Benchmark

Chernoff Bound

 $\mathsf{Pr}[X \geq b] \leq \mathsf{inf}_{t>0} \, \mathbb{E}[e^{tX}] / e^{tb}$

Calculations

• let
$$
X_i = [i\text{th roll is a six}], X = \sum_{i=1}^{10} X_i
$$

•
$$
\mathbb{E}[e^{t \cdot X_i}] = \frac{1}{6} \cdot e^t + \frac{5}{6} = \frac{e^t + 5}{6}
$$

$$
\mathbb{E}[e^{t \cdot X}] = \mathbb{E}[e^{t \cdot X_1}]^{10} = (\frac{e^t + 5}{6})^{10}
$$

Let $X \sim Bin(10, \frac{1}{6})$ the number of sixes when rolling a fair die 10 times.

 $Pr[X \ge 5] \approx 0.016$.

Note: For independent
$$
X_1, \ldots, X_n
$$

$$
\mathbb{E}[e^{t(X_1 + \cdots + X_n)}] = \mathbb{E}[e^{tX_1} \cdot \ldots \cdot e^{tX_n}] = \mathbb{E}[e^{tX_1}] \cdot \ldots \cdot \mathbb{E}[e^{tX_n}].
$$

Resulting Chernoff Bound

$$
\Pr[X \geq 5] \leq \inf_{t>0} \mathbb{E}[e^{tX}]/e^{5t} = \inf_{t>0} \left(\frac{e^t+5}{6}\right)^{10}/e^{5t} \stackrel{\text{Wolfram Alpha}}{\approx} 0.053.
$$
 // with $t = \ln(5)$

Let *X* \in N be random variable and p_i = Pr[*X* = *i*] for *i* \in N. Consider bounds for $Pr[X \ge b]$.

Let *X* \in *N* be random variable and p_i = Pr[*X* = *i*] for *i* \in *N*. Consider bounds for $Pr[X \ge b]$.

Markov

The bound is $\frac{\mathbb{E}[X]}{b}$. The contribution of " $X = i$ " to is $\frac{p_i \cdot i}{b}$.

Let *X* \in N be random variable and $p_i = Pr[X = i]$ for $i \in$ N. Consider bounds for Pr[*X* ≥ *b*].

Markov

The bound is $\frac{\mathbb{E}[X]}{b}$. The contribution of " $X = i$ " to is $\frac{p_i \cdot i}{b}$.

Chernoff

The bound is
$$
\frac{\mathbb{E}[e^{tX}]}{e^{tb}}
$$
. The contribution of " $X = i$ " is $C_i(t) := \frac{\rho_i \cdot e^t}{e^{tb}} = p_i \cdot e^{t(i-b)}$

if $i < b$ then $C_i(t)$ is decreasing in t

 \rightarrow If Pr[*X* > *b*] = 0 then Chernoff can prove this with $t \rightarrow \infty$.

if $i > b$ then $C_i(t)$ is increasing in t

 \hookrightarrow that's okay for a while as long as p_i are very small for $i > b$.

Let *X* \in N be random variable and $p_i = Pr[X = i]$ for $i \in$ N. Consider bounds for Pr[*X* ≥ *b*].

Markov

The bound is $\frac{\mathbb{E}[X]}{b}$. The contribution of " $X = i$ " to is $\frac{p_i \cdot i}{b}$.

Chernoff

The bound is
$$
\frac{\mathbb{E}[e^{iX}]}{e^{ib}}
$$
. The contribution of " $X = i$ " is $C_i(t) := \frac{p_i \cdot e^{it}}{e^{ib}} = p_i \cdot e^{t(i-b)}$.

if $i < b$ then $C_i(t)$ is decreasing in t

 \rightarrow If Pr[*X* > *b*] = 0 then Chernoff can prove this with $t \rightarrow \infty$.

if $i > b$ then $C_i(t)$ is increasing in t

 \hookrightarrow that's okay for a while as long as p_i are very small for $i > b$.

Let *X* \in N be random variable and $p_i = Pr[X = i]$ for $i \in$ N. Consider bounds for Pr[*X* ≥ *b*].

Markov

The bound is $\frac{\mathbb{E}[X]}{b}$. The contribution of " $X = i$ " to is $\frac{p_i \cdot i}{b}$.

Chernoff

The bound is
$$
\frac{\mathbb{E}[e^{tX}]}{e^{tb}}
$$
. The contribution of " $X = i$ " is $C_i(t) := \frac{\rho_i \cdot e^{t}}{e^{tb}} = p_i \cdot e^{t(i-b)}$

if $i < b$ then $C_i(t)$ is decreasing in t

 \rightarrow If Pr[*X* > *b*] = 0 then Chernoff can prove this with $t \rightarrow \infty$.

if $i > b$ then $C_i(t)$ is increasing in t

 \hookrightarrow that's okay for a while as long as p_i are very small for $i > b$.

.

Let *X* \in N be random variable and $p_i = Pr[X = i]$ for $i \in$ N. Consider bounds for Pr[*X* ≥ *b*].

Markov

The bound is $\frac{\mathbb{E}[X]}{b}$. The contribution of " $X = i$ " to is $\frac{p_i \cdot i}{b}$.

Chernoff

The bound is
$$
\frac{\mathbb{E}[e^{tX}]}{e^{tb}}
$$
. The contribution of " $X = i$ " is $C_i(t) := \frac{\rho_i \cdot e^t}{e^{tb}} = p_i \cdot e^{t(i-b)}$

if $i < b$ then $C_i(t)$ is decreasing in t

 \rightarrow If Pr[*X* > *b*] = 0 then Chernoff can prove this with $t \rightarrow \infty$.

if $i > b$ then $C_i(t)$ is increasing in t

 \hookrightarrow that's okay for a while as long as p_i are very small for $i > b$.

Let *X* \in N be random variable and $p_i = Pr[X = i]$ for $i \in$ N. Consider bounds for Pr[*X* ≥ *b*].

Markov

The bound is $\frac{\mathbb{E}[X]}{b}$. The contribution of " $X = i$ " to is $\frac{p_i \cdot i}{b}$.

Chernoff

The bound is
$$
\frac{\mathbb{E}[e^{tX}]}{e^{tb}}
$$
. The contribution of " $X = i$ " is $C_i(t) := \frac{\rho_i \cdot e^t}{e^{tb}} = p_i \cdot e^{t(i-b)}$

if $i < b$ then $C_i(t)$ is decreasing in t

 \rightarrow If Pr[*X* > *b*] = 0 then Chernoff can prove this with $t \rightarrow \infty$.

if $i > b$ then $C_i(t)$ is increasing in t

 \hookrightarrow that's okay for a while as long as p_i are very small for $i > b$.

Let *X* \in N be random variable and $p_i = Pr[X = i]$ for $i \in$ N. Consider bounds for Pr[*X* ≥ *b*].

Markov

The bound is $\frac{\mathbb{E}[X]}{b}$. The contribution of " $X = i$ " to is $\frac{p_i \cdot i}{b}$.

Chernoff

The bound is
$$
\frac{\mathbb{E}[e^{tX}]}{e^{tb}}
$$
. The contribution of " $X = i$ " is $C_i(t) := \frac{\rho_i \cdot e^{t}}{e^{tb}} = p_i \cdot e^{t(i-b)}$

if $i < b$ then $C_i(t)$ is decreasing in t

 \rightarrow If Pr[*X* > *b*] = 0 then Chernoff can prove this with $t \rightarrow \infty$.

if $i > b$ then $C_i(t)$ is increasing in t

 \hookrightarrow that's okay for a while as long as p_i are very small for $i > b$.

Remark: Finding the best *t* numerically is easy

 $C_i''(t) > 0$ for all *t*, so $t \mapsto \mathbb{E}[e^{tX}] / e^{tb}$ is convex.

The Chernoff Bound for *your* **Favourite Random Variable**

Maybe someone already did the work...?

- The general Chernoff bound is hard to use
	- How to compute $\mathbb{E}[e^{tX}]$?
	- **How to choose t?**
- **Many variants for special cases exist.**

[What is a Concentration Bound?](#page-2-0) [Markov's Inequality](#page-13-0) [Chebyshev's Inequality](#page-17-0) [General Chernoff Bound](#page-27-0) [Simplified Chernoff Bounds](#page-42-0)

Theorem

Let $X = X_1 + \cdots + X_n$ with $X_i \sim Ber(p_i)$ and $\mu := \mathbb{E}[X] = \sum_{i=1}^n p_i.$ Then for any $\delta > 0$: $\Pr[X \geq (1+\delta)\mu] \leq \Big(\frac{e^{\delta}}{(1+\delta)\epsilon}\Big)$ $\frac{e^{\delta}}{(1+\delta)^{1+\delta}}$ $f(\delta)$ Note: $f(0) = 1$ and *f* is decreasing on $(0, \infty)$. Hence for constant $\delta > 0$ the bound is exponentially small in μ .

Theorem

Let $X = X_1 + \cdots + X_n$ with $X_i \sim Ber(p_i)$ and $\mu := \mathbb{E}[X] = \sum_{i=1}^n p_i.$ Then for any $\delta > 0$: $\Pr[X \geq (1+\delta)\mu] \leq \Big(\frac{e^{\delta}}{(1+\delta)\epsilon}\Big)$ $\frac{e^{\delta}}{(1+\delta)^{1+\delta}}$ Note: $f(0) = 1$ and *f* is decreasing on $(0, \infty)$.

Hence for constant $\delta > 0$ the bound is exponentially small in μ .

Proof.

$$
\blacksquare \mathbb{E}[e^{tX_i}] = p_i \cdot e^t + (1-p_i) = 1 + p_i(e^t - 1) \le e^{p_i(e^t - 1)}.
$$

 $f(\delta)$

Theorem

Let $X = X_1 + \cdots + X_n$ with $X_i \sim Ber(p_i)$ and $\mu := \mathbb{E}[X] = \sum_{i=1}^n p_i.$ Then for any $\delta > 0$: $\Pr[X \geq (1+\delta)\mu] \leq \Big(\frac{e^{\delta}}{(1+\delta)\epsilon}\Big)$ $\frac{e^{\delta}}{(1+\delta)^{1+\delta}}$ Note: $f(0) = 1$ and *f* is decreasing on $(0, \infty)$.

Hence for constant $\delta > 0$ the bound is exponentially small in μ .

Proof.

\n- \n
$$
\mathbb{E}[e^{tX}] = p_i \cdot e^t + (1 - p_i) = 1 + p_i(e^t - 1) \leq e^{p_i(e^t - 1)}.
$$
\n
\n- \n
$$
\mathbb{E}[e^{tX}] = \prod_{i=1}^n \mathbb{E}[e^{tX_i}] \leq \prod_{i=1}^n e^{p_i(e^t - 1)} = e^{\sum_{i=1}^n p_i(e^t - 1)} = e^{\mu(e^t - 1)}.
$$
\n
\n

 $f(\delta)$

 $f(\delta)$

Theorem

Let $X = X_1 + \cdots + X_n$ with $X_i \sim Ber(p_i)$ and $\mu := \mathbb{E}[X] = \sum_{i=1}^n p_i.$ Then for any $\delta > 0$: $\Pr[X \geq (1+\delta)\mu] \leq \Big(\frac{e^{\delta}}{(1+\delta)\epsilon}\Big)$ $\frac{e^{\delta}}{(1+\delta)^{1+\delta}}$ Note: $f(0) = 1$ and *f* is decreasing on $(0, \infty)$.

Hence for constant $\delta > 0$ the bound is exponentially small in μ .

Proof.

\n- \n
$$
\mathbb{E}[e^{tX_i}] = p_i \cdot e^t + (1 - p_i) = 1 + p_i(e^t - 1) \leq e^{p_i(e^t - 1)}.
$$
\n
\n- \n
$$
\mathbb{E}[e^{tX}] = \prod_{i=1}^n \mathbb{E}[e^{tX_i}] \leq \prod_{i=1}^n e^{p_i(e^t - 1)} = e^{\sum_{i=1}^n p_i(e^t - 1)} = e^{\mu(e^t - 1)}.
$$
\n
\n- \n
$$
\Pr[X \geq (1 + \delta)\mu] \stackrel{\text{Chernoff}}{\leq} \frac{\mathbb{E}[e^{tX}]}{e^{(1 + \delta)\mu t}} \leq \frac{e^{\mu(e^t - 1)}}{e^{(1 + \delta)\mu t}} = \left(\frac{e^{e^t - 1}}{e^{(1 + \delta)t}}\right)^{\mu} \stackrel{\text{t = ln}(1 + \delta)}{=} \left(\frac{e^{\delta}}{(1 + \delta)^{1 + \delta}}\right)^{\mu}.
$$
\n
\n

Theorem

Let $X = X_1 + \cdots + X_n$ with $X_i \sim Ber(p_i)$ and $\mu := \mathbb{E}[X] = \sum_{i=1}^n p_i.$ Then for any $\delta > 0$: $\Pr[X \geq (1+\delta)\mu] \leq \Big(\frac{e^{\delta}}{(1+\delta)\epsilon}\Big)$ $\frac{e^{\delta}}{(1+\delta)^{1+\delta}}$ Note: $f(0) = 1$ and *f* is decreasing on $(0, \infty)$.

Hence for constant $\delta > 0$ the bound is exponentially small in μ .

Proof.

\n- \n
$$
\mathbb{E}[e^{tX_i}] = p_i \cdot e^t + (1 - p_i) = 1 + p_i(e^t - 1) \leq e^{p_i(e^t - 1)}.
$$
\n
\n- \n
$$
\mathbb{E}[e^{tX}] = \prod_{i=1}^n \mathbb{E}[e^{tX_i}] \leq \prod_{i=1}^n e^{p_i(e^t - 1)} = e^{\sum_{i=1}^n p_i(e^t - 1)} = e^{\mu(e^t - 1)}.
$$
\n
\n- \n
$$
\Pr[X \geq (1 + \delta)\mu] \stackrel{\text{Chernoff}}{\leq} \frac{\mathbb{E}[e^{tX}]}{e^{(1+\delta)\mu t}} \leq \frac{e^{\mu(e^t - 1)}}{e^{(1+\delta)\mu t}} = \left(\frac{e^{e^t - 1}}{e^{(1+\delta)t}}\right)^{\mu} t = \ln(1+\delta) \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu}.
$$
\n
\n- \n Consider $\ln(f(\delta)) = \delta - (1+\delta)\ln(1+\delta) =: g(\delta)$. Note that $g'(\delta) = 1 - \frac{1+\delta}{1+\delta} - \ln(1+\delta) = -\ln(1+\delta) < 0$ for $\delta > 0$. Hence $g(\delta)$ is decreasing on $\mathbb{R}_{\geq 0}$ and so $f(\delta)$ is also decreasing on $\mathbb{R}_{\geq 0}$.\n \n
\n

[What is a Concentration Bound?](#page-2-0) [Markov's Inequality](#page-13-0) [Chebyshev's Inequality](#page-17-0) [General Chernoff Bound](#page-27-0) [Simplified Chernoff Bounds](#page-42-0)

000

000

000

000

15/19 WS 2024/2025 Stefan Walzer: Concentration Bounds **ITI, Algorithm Engineering** Stefan Walzer: Concentration Bounds **ITI, Algorithm Engineering**

 $f(\delta)$

The function $f(\delta) = \frac{e^{\delta}}{(1+\delta)^2}$ $\frac{e}{(1+\delta)^{1+\delta}}$ is still inconvenient to work with...

Theorem (from last slide, slightly generalised)

Let $X = X_1 + \cdots + X_n$ with $X_i \sim Ber(p_i)$ and $\mu := \mathbb{E}[X]$. Then $\Pr[X \geq (1 + \delta)\mu] \leq \Big(\frac{e^{\delta}}{(1 + \delta)}\Big)$ $\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\Big)^{\mu}$ for any $\delta\geq 0$ and $\Pr[X\leq (1-\delta)\mu]\leq \Big(\frac{e^{-\delta}}{(1-\delta)^4}\Big)$ $\left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^{\mu}$ for any $\delta \in [0,1)$.

[What is a Concentration Bound?](#page-2-0) [Markov's Inequality](#page-13-0) [Chebyshev's Inequality](#page-17-0) [General Chernoff Bound](#page-27-0) [Simplified Chernoff Bounds](#page-42-0)
OOC COOS

The function $f(\delta) = \frac{e^{\delta}}{(1+\delta)^2}$ $\frac{e}{(1+\delta)^{1+\delta}}$ is still inconvenient to work with...

Theorem (from last slide, slightly generalised)

Let $X = X_1 + \cdots + X_n$ with $X_i \sim Ber(p_i)$ and $\mu := \mathbb{E}[X]$. Then $\Pr[X \geq (1 + \delta)\mu] \leq \Big(\frac{e^{\delta}}{(1 + \delta)}\Big)$ $\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\Big)^{\mu}$ for any $\delta\geq 0$ and $\Pr[X\leq (1-\delta)\mu]\leq \Big(\frac{e^{-\delta}}{(1-\delta)^4}\Big)$ $\left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^{\mu}$ for any $\delta \in [0,1)$.

Corollary (in the same setting)

\n- $$
\Pr[X \ge (1 + \delta)\mu] \le e^{-\frac{\delta^2}{2+\delta}\mu}
$$
 for $\delta \ge 0$,
\n- $\Pr[X \le (1 - \delta)\mu] \le e^{-\frac{\delta^2}{2}\mu}$ for $\delta \in [0, 1)$, and
\n- $\Pr[|X - \mu| \ge \delta\mu] \le 2e^{-\frac{\delta^2}{3}\mu}$ for $0 \le \delta \le 1$
\n

See also https://en.wikipedia.org/wiki/Chernoff_bound

[What is a Concentration Bound?](#page-2-0) [Markov's Inequality](#page-13-0) [Chebyshev's Inequality](#page-17-0) [General Chernoff Bound](#page-27-0) [Simplified Chernoff Bounds](#page-42-0)
OOC COOS

$\Pr[X\leq (1-\delta)\mu]\leq e^{-\frac{\delta^2}{2}\mu}$ for $\delta\in [0,1),$ and $\Pr[|X-\mu|\geq \delta\mu]\leq 2e^{-\frac{\delta^2}{3}\mu}$ for $0\leq \delta\leq 1$

See also https://en.wikipedia.org/wiki/Chernoff_bound

Multiplicative Form for Sums of Bernoulli RV (ii)

The function $f(\delta) = \frac{e^{\delta}}{(1+\delta)^2}$ $\frac{e}{(1+\delta)^{1+\delta}}$ is still inconvenient to work with...

Theorem (from last slide, slightly generalised)

Let $X = X_1 + \cdots + X_n$ with $X_i \sim Ber(p_i)$ and $\mu := \mathbb{E}[X]$. Then $\Pr[X \geq (1 + \delta)\mu] \leq \Big(\frac{e^{\delta}}{(1 + \delta)}\Big)$ $\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\Big)^{\mu}$ for any $\delta\geq 0$ and $\Pr[X\leq (1-\delta)\mu]\leq \Big(\frac{e^{-\delta}}{(1-\delta)^4}\Big)$ $\left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^{\mu}$ for any $\delta \in [0,1)$.

Corollary (in the same setting)

 $\mathsf{Pr}[X \geq (1+\delta)\mu] \leq e^{-\frac{\delta^2}{2+\delta}\mu}$

$$
\begin{array}{c|c}\n\text{for } \delta \geq 0, \\
\text{or } \delta \in [0, 1), \text{ and} \\
\hline\n\text{for } 0 \leq \delta \leq 1\n\end{array}
$$

"Proof by Plot"

[What is a Concentration Bound?](#page-2-0) [Markov's Inequality](#page-13-0) [Chebyshev's Inequality](#page-17-0) [General Chernoff Bound](#page-27-0) [Simplified Chernoff Bounds](#page-42-0)
OOC GOOGLAD SIMPLIFIED CONTROVERS ON SOLUTION SIMPLIFIED CONTROVERS ON SOLUTION SOLUTION SOLUTION

Simplified Chernoff Bounds: Benchmark

A Simplified Chernoff Bound

$$
\Pr[X \ge (1+\delta)\mu] \le e^{-\frac{\delta^2}{2+\delta}\mu} \text{ for } 0 \le \delta.
$$

[What is a Concentration Bound?](#page-2-0) [Markov's Inequality](#page-13-0) [Chebyshev's Inequality](#page-17-0) [General Chernoff Bound](#page-27-0) [Simplified Chernoff Bounds](#page-42-0)

000 000 000 000 000 000 000 000 000

Simplified Chernoff Bounds: Benchmark

[What is a Concentration Bound?](#page-2-0) [Markov's Inequality](#page-13-0) [Chebyshev's Inequality](#page-17-0) [General Chernoff Bound](#page-27-0) [Simplified Chernoff Bounds](#page-42-0)

000 000 000 000 000 000 000 000 000

Simplified Chernoff Bounds: Benchmark

Resulting Chernoff Bound

$$
\Pr[X \ge 5] = \Pr[X \ge (1+2)\mu] \stackrel{\text{Chernoff}}{\le} e^{-\frac{2^2}{2+2}\mu} = e^{-\frac{10}{6}} \approx 0.189.
$$

How do the methods compare?

Exercise

When throwing a fair die *n* times, bound the probability for seeing twice as many sixes as expected. . .

- **...** using Markov,
- **...** using Chebyshev,
- **...** using Chernoff (simplified).

Compare the results.

[What is a Concentration Bound?](#page-2-0) [Markov's Inequality](#page-13-0) [Chebyshev's Inequality](#page-17-0) [General Chernoff Bound](#page-27-0) [Simplified Chernoff Bounds](#page-42-0)

Summary: Methods for Obtaining Concentration Bounds for real-valued *X*

Further Chernoff-flavoured concentration bounds (*X* aggregates independent $(X_i)_{i\in\mathbb{N}}$)

Hoeffding's inequality, McDiarmid's inequality, Bernstein inequalities.

[What is a Concentration Bound?](#page-2-0) [Markov's Inequality](#page-13-0) [Chebyshev's Inequality](#page-17-0) [General Chernoff Bound](#page-27-0) [Simplified Chernoff Bounds](#page-42-0)

Anhang: Mögliche Prüfungsfragen I

- Was versteht man unter einen Konzentrationsschranke?
- Was besagt die Markov-Ungleichung / Tschebyscheffsche Ungleichung / Chernoff-Ungleichung?
	- Was sind die jeweiligen Vorraussetzungen?
	- Wie schwierig sind die Schranken anzuwenden?
	- Wie gut oder schlecht sind die resultierenden Konzentrationsschranken im Vergleich?
- **Detailfragen:**
	- Beweise die Markov-Ungleichung.
	- Beweise die Tschebyscheffsche Ungleichung (aus der Markov-Ungleichung).
		- Bieten sich statt des zweiten auch höhere Momente zur Ableitung einer Ungleichung an?
	- Beweise die Chernoff-Ungleichung (aus der Markov-Ungleichung).
	- Was ist die momenterzeugende Funktion und warum heißt sie so?
	- Wie konnten wir $\mathbb{E}[e^{tX}]$ beschränken, als *X* Summe von Bernoulli Zufallsvariablen war?