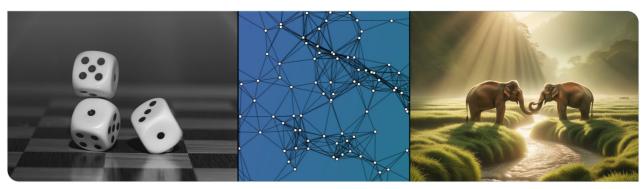


Probability and Computing Coupling, Balls into Bins, Poissonisation and the Poisson Point Process

Stefan Walzer | WS 2024/2025



Content

- 1. Coupling
 - Motivating Examples
 - Definition
- 2. Balls into Bins
- 3. Poissonisation
- 4. Poisson Point Process

2/25

An easy choice?

A Simple Game

You win if you get \geq 5 heads in 10 coin tosses. Choose:

- a fair coin with $Pr["heads"] = \frac{1}{2}$
- a biased coin with $Pr["heads"] = \frac{2}{3}$

How to prove that (ii) is the better choice?

fair coin biased coin

$$\sum_{i=5}^{10} \binom{10}{i} \left(\frac{1}{2}\right)^{i} \left(\frac{1}{2}\right)^{10-i} \stackrel{?}{<} \sum_{i=5}^{10} \binom{10}{i} \left(\frac{2}{3}\right)^{i} \left(\frac{1}{3}\right)^{10-i}$$

Shouldn't there be an answer that needs no calculation?

Coupling **●**0000000

3/25

Balls into Bins

Which Lottery do you prefer?

Consider two "wheels of fortune":

Both can be rationally preferred

- $\blacksquare \mathbb{E}[X] > \mathbb{E}[Y]$ // maximises expected reward
- $ightharpoonup \Pr[Y \ge 5€] > \Pr[X \ge 5€]$ // maximises probability that you can afford ice cream

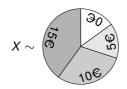
See https://en.wikipedia.org/wiki/Von_Neumann%E2%80%93Morgenstern_utility_theorem to get started on rational choice theory.

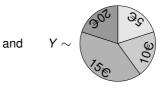
Coupling

Balls into Bins

Poissonisation

Which Lottery do you prefer?





Formal Reason you should prefer Y

For every c we have:

$$\Pr[X \ge c] \le \Pr[Y \ge c].$$

$(X,Y) \sim \begin{pmatrix} 30 & 30 & 30 \\ 50 & 30 & 30 \\ 60 & 30 & 30 \end{pmatrix}$

Intuitive Reason you should prefer Y

Glueing the wheels together guarantees X < Y.

Coupling 000000 Balls into Bins

Poissonisation

Content

- 1. Coupling
 - Motivating Examples
 - Definition

6/25

Equality in Distribution

Notation

We write $X \stackrel{d}{=} X'$ for two random variables if X and X' have the same distribution.

Equivalent Definitions

$$X \stackrel{\mathsf{d}}{=} X' \Leftrightarrow \forall x : \Pr[X = x] = \Pr[X' = x]$$

 $\Leftrightarrow \forall x : \Pr[X < x] = \Pr[X' < x]$

(for discrete R.V. X and X')

(for real-valued R.V. X and X')

To Clarify:

If $X, Y \sim \mathcal{U}([0,1])$ are independent then

- $X \stackrel{\mathsf{d}}{=} Y$
- Pr[X = Y] = 0

Coupling 0000000

7/25

Balls into Bins

Definition: Coupling of X and Y

A random variable X

A random variable Y

A Coupling of *X* and *Y*

A random variable (X', Y') with

- $X' \stackrel{\mathsf{d}}{=} X$
- $Y' \stackrel{d}{=} Y$

$X \sim \mathbb{A}$

A Coupling of X and Y

$$(X',Y')\sim$$

- $X' \stackrel{d}{=} X \checkmark$
- $Y' \stackrel{d}{=} Y \checkmark$

Remarks

- No assumption on joint distribution of X and Y. Might be independent, correlated or undefined.
- X' and Y' should be correlated in an interesting/useful way.
- Example coupling shows:

$$\Pr[X \ge c] \stackrel{X \stackrel{d}{=} X'}{=} \Pr[X' \ge c]$$

$$\stackrel{X' \leq Y'}{\leq} \Pr[Y' \geq c]$$

$$\stackrel{Y\stackrel{d}{=}Y'}{=}\Pr[Y\geq c]$$

Coupling 0000000 Balls into Bins

An easy choice!

A Simple Game (Generalised)

You win if your random variable exceeds $c \in \mathbb{N}$. Choose:

- $X \sim \text{Bin}(n, \frac{1}{2})$ // number of heads of fair coin
- $Y \sim \text{Bin}(n, \frac{2}{3})$ // number of heads of biased coin

Prove that Y is better than X using a Coupling

Let $R_1, \ldots, R_n \sim \mathcal{U}([6])$ be *n* fair dice rolls.

- $X' = |\{i \in [n] \mid R_i \in \{1, 2, 3\}\}|$
- $Y' = |\{i \in [n] \mid R_i \in \{1, 2, 3, 4\}\}|$

Observe:

- $X' \stackrel{d}{=} X$
- $\mathbf{v}' \stackrel{\mathsf{d}}{=} \mathbf{v}'$
- X' < Y' guaranteed

Hence:
$$\Pr[X \ge c] = \Pr[X' \ge c] \le \Pr[Y' \ge c] = \Pr[Y \ge c]$$
.

Coupling

Balls into Bins

Content

- 1. Coupling
 - Motivating Examples
 - Definition
- 2. Balls into Bins
- 3 Poissonisation
- 4. Poisson Point Process

Balls Into Bins

General Terminology

- m balls are randomly distributed among *n* bins
- the load of a bin is the number of balls in it.

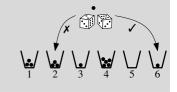
$$m=13, \qquad n=6$$

Fully Random Allocation

- $X_1, \ldots, X_m \sim \mathcal{U}([n])$ independent
- $L_i := |\{j \in [m] \mid X_j = i\}|$ is the load of bin $i \in [m]$
- (L_1, \ldots, L_n) follows a (specific) multinomial distribution

Example for Partially Random Allocation (not in this lecture)

- balls are placed sequentially
- each ball chooses the least loaded among two randomly chosen bins (ties broken randomly)



Coupling

Balls into Bins

Poissonisatio 00000000

Balls into Bins: Many Interesting Questions

- What is the expected/distribution/concentration of
 - the load L_{max} of the most loaded bin
 - the load L_{min} of the least loaded bin
 - $L_{\text{max}} L_{\text{min}}$
 - the number of empty bins
 - **.** . . .
- Can we make the allocation more balanced by intervening in some way?
 - lacktriangle e.g. with partially random allocation from last slide $\mathbb{E}[L_{\max}-L_{\min}]$ stays bounded when $m o \infty$ while n is fixed.

Countless variants exist...

Coupling

Balls into Bins

Poissonisation

"Balls into Bins" is everywhere

Hashing with Chaining \longleftrightarrow n Balls into m Bins

length of the list in bucket $i \longleftrightarrow$ number of balls in bin i

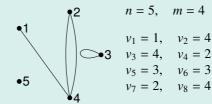
Bloom Filter with k Hash Functions $\longleftrightarrow kn$ Balls into m Bins

a filter bit is set to 1 \longleftrightarrow ith bin is non-empty

Degree Sequence of Random (Multi-)Graph \longleftrightarrow 2*m* Balls into *n* bins

Given independent $v_1, \ldots, v_{2m} \sim \mathcal{U}([n])$ let $G = (V = [n], E = \{\{v_1, v_2\}, \dots, \{v_{2m-1}, v_{2m}\}\})$ (we allow multiedges and loops in G)

degree of vertex $i \longleftrightarrow load$ of bin i



"Balls into Bins" is the standard language for discussing underlying mathematical questions.

Balls into Bins Poisson Point Process Coupling 000

Content

- - Motivating Examples
 - Definition
- 3. Poissonisation

Load of a Single Bin

Setting: Expected Constant Load per Bin

- fully random allocation
- $\mathbf{n} = \lambda n$ balls n bins for large n
- λ fixed constant

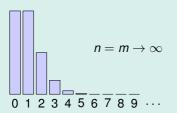
Poisson Distribution

For $\lambda \in \mathbb{R}_{>0}$, $X \sim \text{Pois}(\lambda)$ is a random variable with

$$\Pr[X=i] = e^{-\lambda} \frac{\lambda^i}{i!}$$
 // note: probabilities sum to 1

Load of the First Bin

Consider $L^{(n)} \sim \text{Bin}(\lambda n, \frac{1}{n})$. For $\lambda = 1$:



Balls into Bins

Theorem (proof on blackboard)

$$\lim_{n\to\infty}\Pr[L^{(n)}=i]=\Pr[X=i].$$

Remarks

- we say " $L^{(n)}$ converges in distribution to X"
- we write $I^{(n)} \stackrel{d}{\longrightarrow} X$
- this formally refers to convergence of CDFs

00000000

Poisson Point Process

15/25

Properties of the Poisson Distribution

Exercise: $X \sim Pois(\lambda)$ has Nice Properties

- $\mathbb{E}[X] = \lambda.$
- $\operatorname{III} \operatorname{Var}(X) = \lambda.$
- Let $Y \sim \text{Pois}(\rho)$ be independent of X. Then $X + Y \sim \text{Pois}(\lambda + \rho)$.
- Let $X' \sim \text{Bin}(X, p)$. Then $X' \sim \text{Pois}(\lambda p)$.

Poissonised Balls into Bins

λn Balls into n Bins Model

- $X_1, \ldots, X_{\lambda n} \sim \mathcal{U}([n])$
- $L_i := |\{j \in [m] \mid X_j = i\}| \sim \text{Bin}(\lambda n, \frac{1}{n})$
- $(L_i)_{i \in [n]}$ not independent
 - e.g. large L₁ is (weak) evidence for small L₂
 - annoying in analysis
- \blacksquare number λn of balls fixed

"Poissonised" Model

- $L_1, \ldots, L_n \sim \mathsf{Pois}(\lambda)$ independent
 - extremely convenient for analysis
- $\blacksquare \mathbb{E}[L_1 + \cdots + L_n] = \lambda n$
- number of balls $random \sim Pois(\lambda n)$
 - unusual setting in practice

Wouldn't it be nice...

... if we could switch between the models whenever convenient?

Coupling

Balls into Bins

Poissonisation 00000000

Connection: Poissonised and Regular Balls into Bins

Lemma 1

Let $n \in \mathbb{N}$ and $\lambda > 0$. Consider two variants of Poissonised balls into bins:

Regular Variant:

• sample $L_1, \ldots, L_n \sim \text{Pois}(\lambda)$

Sum-First-Variant:

- sample $M \sim \text{Pois}(\lambda n)$
- perform a regular M balls into n bins experiment
 - sample $X_1, \ldots, X_M \sim \mathcal{U}([n])$
 - let $L'_i := |\{j \in [M] \mid X_j = i\}|$

Both variants are equivalent, i.e. $(L_1, \ldots, L_n) \stackrel{d}{=} (L'_1, \ldots, L'_n)$.

What we need to show (calculation on blackboard):

For arbitrary
$$(\ell_1,\ldots,\ell_n)\in\mathbb{N}^n$$
: $\Pr[(L_1,\ldots,L_n)=(\ell_1,\ldots,\ell_n)]=\Pr[(L'_1,\ldots,L'_n)=(\ell_1,\ldots,\ell_n)]$.

Coupling

Balls into Bins

Poissonisation 0000 • 000

Some Concentration Bounds

Lemma 2

- Let $\Lambda > 0$ and $X \sim \text{Pois}(\Lambda)$. Then $\Pr[|X \Lambda| > t] \leq \frac{\Lambda}{t^2}$ for any t > 0. // Chebyschev
- ii Let $\lambda = \Theta(1)$, and $X \sim \text{Pois}(\lambda \ n)$ then $\Pr[X = \lambda n \pm \mathcal{O}(n^{2/3})] = 1 o(1)$.
- Let $\lambda = \Theta(1)$, $\lambda^+ := \lambda + n^{-1/3}$ and $X^+ \sim \text{Pois}(\lambda^+ n)$ then $\Pr[X^+ \ge \lambda n] = 1 o(1)$.
- Let $\lambda = \Theta(1)$, $\lambda^- := \lambda n^{-1/3}$ and $X^- \sim \text{Pois}(\lambda^- n)$ then $\Pr[X^- \le \lambda n] = 1 o(1)$.
- In particular: $\Pr[X^- \le \lambda n \le X^+] = 1 o(1)$.

Coupling of Poissonised and Regular Balls into Bins

Theorem

Let $n, \lambda, \lambda^+, \lambda^-$ be as before. Consider three "balls into bins" models:

- 1 $Y_1, \ldots, Y_n \sim \text{Pois}(\lambda^-)$ // poissonised with reduced λ
- 2 L_1, \ldots, L_n arising from regular $m = \lambda n$ balls into n bins
- 3 $Z_1, \ldots, Z_n \sim \mathsf{Pois}(\lambda^+)$ // poissonised with increased λ

There is a coupling $(Y_i', L_i', Z_i')_{i \in [n]}$ of $(Y_i)_{i \in [n]}, (L_i)_{i \in [n]}, (Z_i)_{i \in [n]}$ such that

with probability 1 - o(1): $Y_i' < L_i' < Z_i'$ for all $i \in [n]$.

$(Y_i'): 3$	3	\ <u>_</u>	\	\bigcup_{0}	
$(L'_i):$ 3	3	\ <u>.</u>	5	\ <u>.</u>	2
(Z'_i) : 5	4	3	5	\ <u>.</u>	2

Proof.

Let $X_1, X_2, \ldots \sim \mathcal{U}([n]), M^- \sim \text{Pois}(\lambda^- n), M^+ \sim \text{Pois}(\lambda^+ n)$.

- $Y_i' := |\{j \in [M^-] \mid X_i = i\}| \text{ for } i \in [n].$
- $L'_i := |\{i \in [m] \mid X_i = i\}| \text{ for } i \in [n].$
- $Z_i' := |\{j \in [M^+] \mid X_i = i\}| \text{ for } i \in [n].$

This is indeed a coupling as claimed:

- $(Y_i')_{i \in [n]} \stackrel{d}{=} (Y_i)_{i \in [n]}$ by Lemma 1.
- $(L'_i)_{i \in [n]} \stackrel{d}{=} (L_i)_{i \in [n]}$ by construction.
- $(Z_i')_{i \in [n]} \stackrel{d}{=} (Z_i)_{i \in [n]}$ by Lemma 1.

By the Corollary we have $M^- \le m \le M^+$ with probability 1 - o(1). In that case clearly $Y_i' \le L_i' \le Z_i'$ for all $i \in [n]$.

20/25

Balls into Bins

00000000

Coupling of Poissonised and Regular Balls into Bins

Theorem

Let $n, \lambda, \lambda^+, \lambda^-$ be as before. Consider three "balls into bins" models:

- 1 $Y_1, \ldots, Y_n \sim \mathsf{Pois}(\lambda^-)$ // poissonised with reduced λ
- 2 L_1, \ldots, L_n arising from regular $m = \lambda n$ balls into n bins
- 3 $Z_1, \ldots, Z_n \sim \mathsf{Pois}(\lambda^+)$ // poissonised with increased λ

There is a coupling $(Y_i', L_i', Z_i')_{i \in [n]}$ of $(Y_i)_{i \in [n]}, (L_i)_{i \in [n]}, (Z_i)_{i \in [n]}$ such that

with probability 1 - o(1): $Y_i' < L_i' < Z_i'$ for all $i \in [n]$.

$(Y'_i): 3$	3	\ <u>_</u>	5	\bigcup_{0}	\ _ 1
(L'_i) : 3	3	\ <u>.</u>	5	\ <u></u>	\ <u>.</u>
(Z_i') : 5	4	3	\ 5	\bigcup_{1}	\ <u>.</u>

Application involving Monotonous Functions

Let $f: \mathbb{N}_0^n \to \mathbb{R}$ be non-decreasing in each argument. Examples:

- maximum load of a bin
- longest run of non-empty bins
- collision number // numbers of pairs of co-located balls

For some bound $B \in \mathbb{R}$ let

- $p^- := \Pr[f((Y_i)_{i \in [n]}) \ge B]$ // easier to compute
- $p := \Pr[f((L_i)_{i \in [n]}) \ge B]$ // what we want
- $p^+ := \Pr[f((Z_i)_{i \in [n]}) \ge B]$ // easier to compute

Then
$$p \in [p^- - o(1), p^+ + o(1)].$$

20/25

Balls into Bins

00000000

Back to Bloom Filters

Exercise:

Analyse Bloom filters in a "Poissonised" model and discuss how the results can be transferred to the exact model.

Coupling

Balls into Bins

Poissonisation ooooooo●

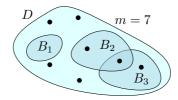
Content

- 1. Coupling
 - Motivating Examples
 - Definition
- 2. Balls into Bins
- 3 Poissonisation
- 4. Poisson Point Process

What about "Balls into Continuous Domain"?

Setting

- D is space of finite measure
- $\mathbf{m} \in \mathbb{N}$ // number of balls
- $X_1, \ldots, X_m \sim \mathcal{U}(D)$ // randomly thrown into D



Note: If $D = \{1, ..., n\}$ we have discrete <u>balls into bins</u>.

Same annoying issue

If $B_1, B_2 \subseteq D$ with $B_1 \cap B_2 = \emptyset$ are two "bins" then the numbers L_1 and L_2 of "balls" in B_1 and B_2 are correlated.

Similar elegant solution

- We can "Poissonise" the setting.
- But we drop "balls into bins" terminology:
 - we allow infinite domains D
 - we allow infinite number of balls

Coupling 000000

23/25

Balls into Bins

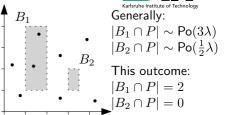
Poissonisatio 0000000

Definitions of the Poisson Point Process

General Definition

Let D be a measurable space with measure μ . # e.g. $D=\mathbb{R}^2$ and $\mu=$ "area" The Poisson point process with parameter $\lambda\in\mathbb{R}_{\geq0}$ is a random set $P\subseteq D$ such that

- **1** $|P \cap B|$ ∼ Pois $(\lambda \mu(B))$ for any $B \subseteq D$ with $\mu(B) < \infty$
- $|P \cap B_1|$ and $|P \cap B_2|$ are independent whenever $B_1 \cap B_2 = \emptyset$



Equivalent Definition if $\mu(D) < \infty$

- sample $M \sim \text{Pois}(\lambda \mu(D))$
- sample $X_1, \ldots, X_M \sim \mathcal{U}(D)$

Then
$$P \stackrel{d}{=} \{X_1, X_2, ..., X_M\}.$$

Coupling

Balls into Bins

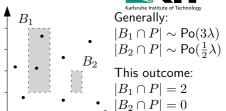
Poissonisation 0000000

Definitions of the Poisson Point Process

General Definition

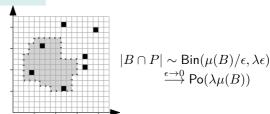
Let D be a measurable space with measure μ . // e.g. $D = \mathbb{R}^2$ and μ ="area" The Poisson point process with parameter $\lambda \in \mathbb{R}_{>0}$ is a random set $P \subseteq D$ such that

- **1** $|P \cap B|$ ∼ Pois $(\lambda \mu(B))$ for any $B \subseteq D$ with $\mu(B) < \infty$
- $P \cap B_1$ and $P \cap B_2$ are independent whenever $B_1 \cap B_2 = \emptyset$



Construction as a limit

- subdivide D into pieces of measure ε
- let each piece contain a point with probability $\varepsilon\lambda$
- consider the limit for $\varepsilon \to 0$



Balls into Bins

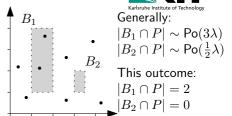
Definitions of the Poisson Point Process

Karlsruhe Institute of Technology

General Definition

Let D be a measurable space with measure μ . # e.g. $D=\mathbb{R}^2$ and # = "area" The Poisson point process with parameter $\lambda \in \mathbb{R}_{\geq 0}$ is a random set $P \subseteq D$ such that

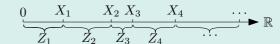
- **1** $|P \cap B|$ ∼ Pois $(\lambda \mu(B))$ for any $B \subseteq D$ with $\mu(B) < \infty$
- $|P \cap B_1|$ and $|P \cap B_2|$ are independent whenever $B_1 \cap B_2 = \emptyset$



Equivalent Definition if $D=\mathbb{R}_{\geq 0}$ (where μ is the Borel measure)

- sample $Z_1, Z_2, \ldots \sim \mathsf{Exp}(\lambda)$
- define $X_i = \sum_{i=1}^i Z_i$

Then $P \stackrel{d}{=} \{X_1, X_2, \dots\}$.



Proof idea:
$$Pr[\min P > t] = Pr[|P \cap [0, t]| = 0] = Pr_{X \sim Pois(\lambda t)}[X = 0] = e^{-\lambda t} \stackrel{\text{def}}{=} Pr[Z_1 > t].$$

Coupling

24/25

Balls into Bins

Poissonisation 00000000

Conclusion

Coupling

- embedding of two random variables X and Y into a common probability space
- \blacksquare relationships between distributions of X and Y become visible as relationships between outcomes of X' and Y'

Balls into Bins

standard language when m objects are randomly assigned to n other objects

Poissonisation

- the act of replacing multinomially distributed (L_1, \ldots, L_n) with independent Poisson random variables (L'_1, \ldots, L'_n)
- often results in model with nicer mathematical properties
- often formally justifiable

Poisson Point Process

lacktriangledown important model where points from a continuous space occur independently from each other with fixed density λ

Coupling

25/25

Balls into Bins

Poissonisatio

Anhang: Mögliche Prüfungsfragen I

- Was ist ein Coupling?
 - Nenne Beispiele in denen ein Coupling nützlich sein kann.
 - Was bedeutet Gleichheit in Verteilung?
- Wo in der Vorlesung haben wir (implizit oder explizit) Balls-into-Bins-Prozesse betrachtet?
- Poissonisierung:
 - Welche lästige Eigenschaft hat die Verteilung der Beladungen in Balls-into-Bins Prozessen? Was ist in einem poissonisierten Modell anders?
 - Wie lässt sich in einem Balls-into-Bins Setting die Poissonverteilung wiederfinden?
 - Wie haben wir das poissonisierte und das reguläre Balls-into-Bins-Modell miteinander in Verbindung gebracht? Inwiefern lässt sich ein Wechsel zwischen den Modellen formal rechtfertigen?
- Poisson-Punktprozesse
 - Wie sind Poisson-Punktprozesse definiert?

Coupling	Balls into Bins	Poissonisation	Poisson Point Process
0000000	0000	0000000	0000