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A Simple Game
You win if you get ≥ 5 heads in 10 coin tosses. Choose:

i a fair coin with Pr[“heads”] = 1
2

ii a biased coin with Pr[“heads”] = 2
3

How to prove that (ii) is the better choice?
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Shouldn’t there be an answer that needs no calculation?
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Consider two “wheels of fortune”:

X ∼
0C

10C

and Y ∼

0C

5C

Both can be rationally preferred
E[X ] > E[Y ] // maximises expected reward

Pr[Y ≥ 5C] > Pr[X ≥ 5C] // maximises probability that you can afford ice cream

See https://en.wikipedia.org/wiki/Von_Neumann%E2%80%93Morgenstern_utility_theorem to get started on rational choice theory.
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Formal Reason you should prefer Y
For every c we have:

Pr[X ≥ c] ≤ Pr[Y ≥ c].

Intuitive Reason you should prefer Y
Glueing the wheels together guarantees X < Y .
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Notation

We write X
d
= X ′ for two random variables if X and X ′ have the same distribution.

Equivalent Definitions

X
d
= X ′ ⇔ ∀x : Pr[X = x ] = Pr[X ′ = x ] (for discrete R.V. X and X ′)

⇔ ∀x : Pr[X ≤ x ] = Pr[X ′ ≤ x ] (for real-valued R.V. X and X ′)

To Clarify:
If X ,Y ∼ U([0, 1]) are independent then

X
d
= Y

Pr[X = Y ] = 0
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A random variable X
↓

A random variable Y
↓

A Coupling of X and Y

A random variable (X ′,Y ′) with X ′ d
= X

Y ′ d
= Y

X ∼
↓

Y ∼
↓

A Coupling of X and Y

(X ′,Y ′) ∼ X ′ d
= X ✓

Y ′ d
= Y ✓

Remarks
No assumption on joint
distribution of X and Y .
Might be independent, correlated
or undefined.

X ′ and Y ′ should be correlated in
an interesting/useful way.

Example coupling shows:

Pr[X ≥ c]
X

d
=X ′

= Pr[X ′ ≥ c]

X ′≤Y ′

≤ Pr[Y ′ ≥ c]

Y
d
=Y ′

= Pr[Y ≥ c]

Coupling Balls into Bins Poissonisation Poisson Point Process

8/25 WS 2024/2025 Stefan Walzer: Coupling, Balls into Bins, Poissonisation, Poisson Point Process ITI, Algorithm Engineering

Definition: Coupling of X and Y



A random variable X
↓

A random variable Y
↓

A Coupling of X and Y

A random variable (X ′,Y ′) with X ′ d
= X

Y ′ d
= Y

X ∼
↓

Y ∼
↓

A Coupling of X and Y

(X ′,Y ′) ∼ X ′ d
= X ✓

Y ′ d
= Y ✓

Remarks
No assumption on joint
distribution of X and Y .
Might be independent, correlated
or undefined.

X ′ and Y ′ should be correlated in
an interesting/useful way.

Example coupling shows:

Pr[X ≥ c]
X

d
=X ′

= Pr[X ′ ≥ c]

X ′≤Y ′

≤ Pr[Y ′ ≥ c]

Y
d
=Y ′

= Pr[Y ≥ c]

Coupling Balls into Bins Poissonisation Poisson Point Process

8/25 WS 2024/2025 Stefan Walzer: Coupling, Balls into Bins, Poissonisation, Poisson Point Process ITI, Algorithm Engineering

Definition: Coupling of X and Y



A random variable X
↓

A random variable Y
↓

A Coupling of X and Y

A random variable (X ′,Y ′) with X ′ d
= X

Y ′ d
= Y

X ∼
↓

Y ∼
↓

A Coupling of X and Y

(X ′,Y ′) ∼ X ′ d
= X ✓

Y ′ d
= Y ✓

Remarks
No assumption on joint
distribution of X and Y .
Might be independent, correlated
or undefined.

X ′ and Y ′ should be correlated in
an interesting/useful way.

Example coupling shows:

Pr[X ≥ c]
X

d
=X ′

= Pr[X ′ ≥ c]

X ′≤Y ′

≤ Pr[Y ′ ≥ c]

Y
d
=Y ′

= Pr[Y ≥ c]

Coupling Balls into Bins Poissonisation Poisson Point Process

8/25 WS 2024/2025 Stefan Walzer: Coupling, Balls into Bins, Poissonisation, Poisson Point Process ITI, Algorithm Engineering

Definition: Coupling of X and Y



A Simple Game (Generalised)
You win if your random variable exceeds c ∈ N. Choose:

i X ∼ Bin(n, 1
2 ) // number of heads of fair coin

ii Y ∼ Bin(n, 2
3 ) // number of heads of biased coin

Prove that Y is better than X using a Coupling
Let R1, . . . ,Rn ∼ U([6]) be n fair dice rolls.

X ′ = |{i ∈ [n] | Ri ∈ {1, 2, 3}}|
Y ′ = |{i ∈ [n] | Ri ∈ {1, 2, 3, 4}}|

Observe:

X ′ d
= X

Y ′ d
= Y

X ′ ≤ Y ′ guaranteed

Hence: Pr[X ≥ c] = Pr[X ′ ≥ c] ≤ Pr[Y ′ ≥ c] = Pr[Y ≥ c].
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General Terminology
m balls are randomly distributed among n bins

the load of a bin is the number of balls in it 1 2 3 4 5 6

m = 13, n = 6

Fully Random Allocation
X1, . . . ,Xm ∼ U([n]) independent

Li := |{j ∈ [m] | Xj = i}|
is the load of bin i ∈ [m]

(L1, . . . , Ln) follows a (specific)
multinomial distribution

Example for Partially Random Allocation (not in this lecture)

balls are placed sequentially

each ball chooses the least
loaded among two randomly
chosen bins (ties broken
randomly) 1 2 3 4 5 6

✓✗
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What is the expected/distribution/concentration of
the load Lmax of the most loaded bin
the load Lmin of the least loaded bin
Lmax − Lmin

the number of empty bins
. . .

Can we make the allocation more balanced by intervening in some way?
e.g. with partially random allocation from last slide E[Lmax − Lmin] stays bounded when m → ∞ while n is fixed.

Countless variants exist...
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Hashing with Chaining←→ n Balls into m Bins
length of the list in bucket i ←→ number of balls in bin i

Bloom Filter with k Hash Functions←→ kn Balls into m Bins
a filter bit is set to 1←→ i th bin is non-empty

Degree Sequence of Random (Multi-)Graph←→ 2m Balls into n bins

Given independent v1, . . . , v2m ∼ U([n]) let
G = (V = [n],E = {{v1, v2}, . . . , {v2m−1, v2m}})
(we allow multiedges and loops in G)

degree of vertex i ←→ load of bin i

1
2

3

4
5

v1 = 1, v2 = 4
v3 = 4, v4 = 2
v5 = 3, v6 = 3
v7 = 2, v8 = 4

n = 5, m = 4

“Balls into Bins” is the standard language for discussing underlying mathematical questions.
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Setting: Expected Constant Load per Bin
fully random allocation

m = λn balls n bins for large n

λ fixed constant

Load of the First Bin
Consider L(n) ∼ Bin(λn, 1

n ). For λ = 1:

0 1 2 3 4 5 6 7 8 9 · · ·

n = m = 5

Poisson Distribution
For λ ∈ R≥0, X ∼ Pois(λ) is a random variable with

Pr[X = i] = e−λλ
i

i!
// note: probabilities sum to 1

Theorem (proof on blackboard)

limn→∞ Pr[L(n) = i] = Pr[X = i].

Remarks
we say “L(n) converges in distribution to X ”

we write L(n) d−→ X

this formally refers to convergence of CDFs
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Exercise: X ∼ Pois(λ) has Nice Properties
i E[X ] = λ.

ii Var(X) = λ.

iii Let Y ∼ Pois(ρ) be independent of X . Then X + Y ∼ Pois(λ+ ρ).

iv Let X ′ ∼ Bin(X , p). Then X ′ ∼ Pois(λp).
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3 3 1 5 0 1(Li) :

λn Balls into n Bins Model
X1, . . . ,Xλn ∼ U([n])
Li := |{j ∈ [m] | Xj = i}| ∼ Bin(λn, 1

n )

(Li)i∈[n] not independent
e.g. large L1 is (weak) evidence for small L2

annoying in analysis

number λn of balls fixed

“Poissonised” Model
L1, . . . , Ln ∼ Pois(λ) independent

extremely convenient for analysis

E[L1 + · · ·+ Ln] = λn
number of balls random ∼ Pois(λn)

unusual setting in practice

Wouldn’t it be nice. . .
. . . if we could switch between the models whenever convenient?
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Poissonised Balls into Bins



Lemma 1
Let n ∈ N and λ > 0. Consider two variants of Poissonised balls into bins:
Regular Variant:

sample L1, . . . , Ln ∼ Pois(λ)

Sum-First-Variant:

sample M ∼ Pois(λn)
perform a regular M balls into n bins experiment

sample X1, . . . ,XM ∼ U([n])
let L′

i := |{j ∈ [M] | Xj = i}|
Both variants are equivalent, i.e. (L1, . . . , Ln)

d
= (L′

1, . . . , L
′
n).

What we need to show (calculation on blackboard):
For arbitrary (ℓ1, . . . , ℓn) ∈ Nn : Pr[(L1, . . . , Ln) = (ℓ1, . . . , ℓn)] = Pr[(L′

1, . . . , L
′
n) = (ℓ1, . . . , ℓn)].
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Connection: Poissonised and Regular Balls into Bins



Lemma 1
Let n ∈ N and λ > 0. Consider two variants of Poissonised balls into bins:
Regular Variant:

sample L1, . . . , Ln ∼ Pois(λ)

Sum-First-Variant:

sample M ∼ Pois(λn)
perform a regular M balls into n bins experiment

sample X1, . . . ,XM ∼ U([n])
let L′

i := |{j ∈ [M] | Xj = i}|
Both variants are equivalent, i.e. (L1, . . . , Ln)

d
= (L′

1, . . . , L
′
n).

What we need to show (calculation on blackboard):
For arbitrary (ℓ1, . . . , ℓn) ∈ Nn : Pr[(L1, . . . , Ln) = (ℓ1, . . . , ℓn)] = Pr[(L′

1, . . . , L
′
n) = (ℓ1, . . . , ℓn)].
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Connection: Poissonised and Regular Balls into Bins



Lemma 2
i Let Λ > 0 and X ∼ Pois(Λ). Then Pr[|X − Λ| > t] ≤ Λ

t2 for any t > 0. // Chebyschev

ii Let λ = Θ(1), and X ∼ Pois(λ n) then Pr[X = λn ±O(n2/3)] = 1− o(1).

iii Let λ = Θ(1), λ+ := λ+ n−1/3 and X+ ∼ Pois(λ+n) then Pr[X+ ≥ λn] = 1− o(1).

iv Let λ = Θ(1), λ− := λ− n−1/3 and X− ∼ Pois(λ−n) then Pr[X− ≤ λn] = 1− o(1).

v In particular: Pr[X− ≤ λn ≤ X+] = 1− o(1).
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Some Concentration Bounds



Theorem
Let n, λ, λ+, λ− be as before. Consider three “balls into bins” models:

1 Y1, . . . ,Yn ∼ Pois(λ−) // poissonised with reduced λ

2 L1, . . . , Ln arising from regular m = λn balls into n bins
3 Z1, . . . ,Zn ∼ Pois(λ+) // poissonised with increased λ

There is a coupling (Y ′
i , L

′
i ,Z

′
i )i∈[n] of (Yi)i∈[n], (Li)i∈[n], (Zi)i∈[n] such that

with probability 1− o(1): Y ′
i ≤ L′

i ≤ Z ′
i for all i ∈ [n].

(Y ′i ) : 3 3 1 5 0 1

(L′i ) : 3 3 2 5 1 2

(Z′i ) : 5 4 3 5 1 2
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Coupling of Poissonised and Regular Balls into Bins



Theorem
Let n, λ, λ+, λ− be as before. Consider three “balls into bins” models:

1 Y1, . . . ,Yn ∼ Pois(λ−) // poissonised with reduced λ

2 L1, . . . , Ln arising from regular m = λn balls into n bins
3 Z1, . . . ,Zn ∼ Pois(λ+) // poissonised with increased λ

There is a coupling (Y ′
i , L

′
i ,Z

′
i )i∈[n] of (Yi)i∈[n], (Li)i∈[n], (Zi)i∈[n] such that

with probability 1− o(1): Y ′
i ≤ L′

i ≤ Z ′
i for all i ∈ [n].

(Y ′i ) : 3 3 1 5 0 1

(L′i ) : 3 3 2 5 1 2

(Z′i ) : 5 4 3 5 1 2

Proof.
Let X1,X2, . . . ∼ U([n]), M− ∼ Pois(λ−n),M+ ∼ Pois(λ+n).

Y ′
i := |{j ∈ [M−] | Xj = i}| for i ∈ [n].

L′
i := |{j ∈ [m ] | Xj = i}| for i ∈ [n].

Z ′
i := |{j ∈ [M+] | Xj = i}| for i ∈ [n].

This is indeed a coupling as claimed:

(Y ′
i )i∈[n]

d
= (Yi)i∈[n] by Lemma 1.

(L′
i )i∈[n]

d
= (Li)i∈[n] by construction.

(Z ′
i )i∈[n]

d
= (Zi)i∈[n] by Lemma 1.

By the Corollary we have M− ≤ m ≤ M+ with probability 1− o(1). In that case clearly Y ′
i ≤ L′

i ≤ Z ′
i for all i ∈ [n].
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Coupling of Poissonised and Regular Balls into Bins



Theorem
Let n, λ, λ+, λ− be as before. Consider three “balls into bins” models:

1 Y1, . . . ,Yn ∼ Pois(λ−) // poissonised with reduced λ

2 L1, . . . , Ln arising from regular m = λn balls into n bins
3 Z1, . . . ,Zn ∼ Pois(λ+) // poissonised with increased λ

There is a coupling (Y ′
i , L

′
i ,Z

′
i )i∈[n] of (Yi)i∈[n], (Li)i∈[n], (Zi)i∈[n] such that

with probability 1− o(1): Y ′
i ≤ L′

i ≤ Z ′
i for all i ∈ [n].

(Y ′i ) : 3 3 1 5 0 1

(L′i ) : 3 3 2 5 1 2

(Z′i ) : 5 4 3 5 1 2

Application involving Monotonous Functions

Let f : Nn
0 → R be non-decreasing in each argument.

Examples:

maximum load of a bin
longest run of non-empty bins
collision number // numbers of pairs of co-located balls

For some bound B ∈ R let

p− := Pr[f ((Yi)i∈[n]) ≥ B] // easier to compute

p := Pr[f ((Li)i∈[n]) ≥ B] // what we want

p+ := Pr[f ((Zi)i∈[n]) ≥ B] // easier to compute

Then p ∈ [p− − o(1), p+ + o(1)].
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Coupling of Poissonised and Regular Balls into Bins



Exercise:
Analyse Bloom filters in a “Poissonised” model and discuss how
the results can be transferred to the exact model.
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Back to Bloom Filters



1. Coupling
Motivating Examples
Definition

2. Balls into Bins

3. Poissonisation

4. Poisson Point Process
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Content



Setting
D is space of finite measure

m ∈ N // number of balls

X1, . . . ,Xm ∼ U(D) // randomly thrown into D

D m = 7

Note: If D = {1, . . . , n} we have discrete balls into bins.

Same annoying issue
If B1,B2 ⊆ D with B1 ∩ B2 = ∅ are two “bins”
then the numbers L1 and L2 of “balls” in B1 and B2

are correlated.

Similar elegant solution
We can “Poissonise” the setting.
But we drop “balls into bins” terminology:

we allow infinite domains D
we allow infinite number of balls
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What about “Balls into Continuous Domain”?



Setting
D is space of finite measure

m ∈ N // number of balls

X1, . . . ,Xm ∼ U(D) // randomly thrown into D

D m = 7

Note: If D = {1, . . . , n} we have discrete balls into bins.

Same annoying issue
If B1,B2 ⊆ D with B1 ∩ B2 = ∅ are two “bins”
then the numbers L1 and L2 of “balls” in B1 and B2

are correlated.

Similar elegant solution
We can “Poissonise” the setting.
But we drop “balls into bins” terminology:

we allow infinite domains D
we allow infinite number of balls
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What about “Balls into Continuous Domain”?



Setting
D is space of finite measure

m ∈ N // number of balls

X1, . . . ,Xm ∼ U(D) // randomly thrown into D

D m = 7

B1 B2

B3

Note: If D = {1, . . . , n} we have discrete balls into bins.

Same annoying issue
If B1,B2 ⊆ D with B1 ∩ B2 = ∅ are two “bins”
then the numbers L1 and L2 of “balls” in B1 and B2

are correlated.

Similar elegant solution
We can “Poissonise” the setting.
But we drop “balls into bins” terminology:

we allow infinite domains D
we allow infinite number of balls
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What about “Balls into Continuous Domain”?



General Definition
Let D be a measurable space with measure µ. // e.g. D = R2 and µ =“area”

The Poisson point process with parameter λ ∈ R≥0 is a random set
P ⊆ D such that

1 |P ∩ B| ∼ Pois(λµ(B)) for any B ⊆ D with µ(B) <∞
2 |P ∩ B1| and |P ∩ B2| are independent whenever B1 ∩ B2 = ∅

B1

B2

Generally:
|B1 ∩ P | ∼ Po(3λ)
|B2 ∩ P | ∼ Po( 1

2 λ)

This outcome:
|B1 ∩ P | = 2
|B2 ∩ P | = 0
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Definitions of the Poisson Point Process



General Definition
Let D be a measurable space with measure µ. // e.g. D = R2 and µ =“area”

The Poisson point process with parameter λ ∈ R≥0 is a random set
P ⊆ D such that

1 |P ∩ B| ∼ Pois(λµ(B)) for any B ⊆ D with µ(B) <∞
2 |P ∩ B1| and |P ∩ B2| are independent whenever B1 ∩ B2 = ∅

B1

B2

Generally:
|B1 ∩ P | ∼ Po(3λ)
|B2 ∩ P | ∼ Po( 1

2 λ)

This outcome:
|B1 ∩ P | = 2
|B2 ∩ P | = 0

Equivalent Definition if µ(D) <∞
sample M ∼ Pois(λµ(D))

sample X1, . . . ,XM ∼ U(D)

Then P
d
= {X1,X2, . . . ,XM}.
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Definitions of the Poisson Point Process



General Definition
Let D be a measurable space with measure µ. // e.g. D = R2 and µ =“area”

The Poisson point process with parameter λ ∈ R≥0 is a random set
P ⊆ D such that

1 |P ∩ B| ∼ Pois(λµ(B)) for any B ⊆ D with µ(B) <∞
2 |P ∩ B1| and |P ∩ B2| are independent whenever B1 ∩ B2 = ∅

B1

B2

Generally:
|B1 ∩ P | ∼ Po(3λ)
|B2 ∩ P | ∼ Po( 1

2 λ)

This outcome:
|B1 ∩ P | = 2
|B2 ∩ P | = 0

Construction as a limit
subdivide D into pieces of measure ε

let each piece contain a point with probability ελ

consider the limit for ε→ 0

|B ∩ P | ∼ Bin(µ(B)/ϵ, λϵ)
ϵ→0−→ Po(λµ(B))
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Definitions of the Poisson Point Process



General Definition
Let D be a measurable space with measure µ. // e.g. D = R2 and µ =“area”

The Poisson point process with parameter λ ∈ R≥0 is a random set
P ⊆ D such that

1 |P ∩ B| ∼ Pois(λµ(B)) for any B ⊆ D with µ(B) <∞
2 |P ∩ B1| and |P ∩ B2| are independent whenever B1 ∩ B2 = ∅

B1

B2

Generally:
|B1 ∩ P | ∼ Po(3λ)
|B2 ∩ P | ∼ Po( 1

2 λ)

This outcome:
|B1 ∩ P | = 2
|B2 ∩ P | = 0

Equivalent Definition if D = R≥0 (where µ is the Borel measure)

sample Z1,Z2, . . . ∼ Exp(λ)

define Xi =
∑i

j=1 Zj

Then P
d
= {X1,X2, . . . }.

X1 X2 X3 X4 · · ·

Z1 Z2 Z3 Z4 · · ·
0

R

Proof idea: Pr[minP > t] = Pr[|P ∩ [0, t]| = 0] = PrX∼Pois(λt)[X = 0] = e−λt def
= Pr[Z1 > t].
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Definitions of the Poisson Point Process



Coupling
embedding of two random variables X and Y into a common probability space
relationships between distributions of X and Y become visible as relationships between outcomes of X ′ and Y ′

Balls into Bins
standard language when m objects are randomly assigned to n other objects

Poissonisation
the act of replacing multinomially distributed (L1, . . . , Ln) with independent Poisson random variables (L′

1, . . . , L′
n)

often results in model with nicer mathematical properties
often formally justifiable

Poisson Point Process
important model where points from a continuous space occur independently from each other with fixed density λ
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Conclusion



Was ist ein Coupling?
Nenne Beispiele in denen ein Coupling nützlich sein kann.
Was bedeutet Gleichheit in Verteilung?

Wo in der Vorlesung haben wir (implizit oder explizit) Balls-into-Bins-Prozesse betrachtet?

Poissonisierung:
Welche lästige Eigenschaft hat die Verteilung der Beladungen in Balls-into-Bins Prozessen? Was ist in einem
poissonisierten Modell anders?
Wie lässt sich in einem Balls-into-Bins Setting die Poissonverteilung wiederfinden?
Wie haben wir das poissonisierte und das reguläre Balls-into-Bins-Modell miteinander in Verbindung gebracht?
Inwiefern lässt sich ein Wechsel zwischen den Modellen formal rechtfertigen?

Poisson-Punktprozesse
Wie sind Poisson-Punktprozesse definiert?
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Anhang: Mögliche Prüfungsfragen I
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