

Probability and Computing Coupling, Balls into Bins, Poissonisation and the Poisson Point Process

Stefan Walzer | WS 2024/2025

www.kit.edu

Content

1. Coupling

- Motivating Examples
- Definition

2. Balls into Bins

3. Poissonisation

4. Poisson Point Process

Coupling

Balls into Bins

Poissonisation

Poisson Point Process

An easy choice?

A Simple Game

You win if you get \geq 5 heads in 10 coin tosses. Choose:

- i a fair coin with $Pr["heads"] = \frac{1}{2}$
- **ii** a biased coin with $Pr["heads"] = \frac{2}{3}$

Coupling •000000 Balls into Bins

Poissonisation

Poisson Point Process

3/25 WS 2024/2025 Stefan Walzer: Coupling, Balls into Bins, Poissonisation, Poisson Point Process

An easy choice?

A Simple Game

You win if you get \geq 5 heads in 10 coin tosses. Choose:

- a fair coin with $\Pr[\text{``heads''}] = \frac{1}{2}$
- **ii** a biased coin with $Pr["heads"] = \frac{2}{3}$

How to prove that (ii) is the better choice?

 $\sum_{i=1}^{10} {10 \choose i} \left(\frac{1}{2}\right)^{i} \left(\frac{1}{2}\right)^{10-i} \stackrel{?}{<} \sum_{i=1}^{10} {10 \choose i} \left(\frac{2}{3}\right)^{i} \left(\frac{1}{3}\right)^{10-i}$

Shouldn't there be an answer that needs no calculation?

Balls into Bins

Poissonisation

Consider two "wheels of fortune":

Balls into Bins

Poissonisation

Poisson Point Process

Consider two "wheels of fortune":

Both can be rationally preferred

- $\mathbb{E}[X] > \mathbb{E}[Y]$ // maximises expected reward
- $\Pr[Y \ge 5 \in] > \Pr[X \ge 5 \in]$ // maximises probability that you can afford ice cream

See https://en.wikipedia.org/wiki/Von_Neumann%E2%80%93Morgenstern_utility_theorem to get started on rational choice theory.

Coupling 00€0000 Balls into Bins

Poissonisation

Poisson Point Process

Formal Reason you should prefer Y

For every c we have:

Coupling

0000000

 $\Pr[X \ge c] \le \Pr[Y \ge c].$

Intuitive Reason you should prefer Y

Glueing the wheels together guarantees X < Y.

Poissonisation	
00000000	

Poisson Point Process

Balls into Bins

Content

1. Coupling

Motivating Examples

Definition

2. Balls into Bins

3. Poissonisation

4. Poisson Point Process

Coupling

Balls into Bins

Poissonisation

Poisson Point Process

Equality in Distribution

Notation

We write $X \stackrel{d}{=} X'$ for two random variables if X and X' have the same distribution.

Coupling

Balls into Bins

Poissonisation

Poisson Point Process

Notation

We write $X \stackrel{d}{=} X'$ for two random variables if X and X' have the same distribution.

Equivalent Definitions

 $\begin{aligned} X \stackrel{d}{=} X' \Leftrightarrow \forall x : \Pr[X = x] = \Pr[X' = x] & \text{(for discrete R.V. X and X')} \\ \Leftrightarrow \forall x : \Pr[X \le x] = \Pr[X' \le x] & \text{(for real-valued R.V. X and X')} \end{aligned}$

Coupling

Balls into Bins

Poissonisation

Poisson Point Process

Notation

We write $X \stackrel{d}{=} X'$ for two random variables if X and X' have the same distribution.

Equivalent Definitions

$$\begin{split} \mathbf{X} \stackrel{\mathrm{d}}{=} \mathbf{X}' \Leftrightarrow \forall \mathbf{x} : \Pr[\mathbf{X} = \mathbf{x}] = \Pr[\mathbf{X}' = \mathbf{x}] \\ \Leftrightarrow \forall \mathbf{x} : \Pr[\mathbf{X} \leq \mathbf{x}] = \Pr[\mathbf{X}' \leq \mathbf{x}] \end{split}$$

(for discrete R.V. X and X')

(for real-valued R.V. X and X')

To Clarify:

If $X, Y \sim \mathcal{U}([0, 1])$ are independent then • $X \stackrel{d}{=} Y$ • $\Pr[X = Y] = 0$

Coupling ○○○○●○○	Balls into Bins 0000	Poissonisation	Poisson Point Process

Definition: Coupling of X and Y

Coupling

Balls into Bins

Poissonisation

Poisson Point Process

Definition: Coupling of X and Y

Poisson Point Process

Definition: Coupling of X and Y

Remarks

- No assumption on joint distribution of X and Y.
 Might be independent, correlated or undefined.
- X' and Y' should be correlated in an interesting/useful way.
- Example coupling shows:

Pr

$$X \ge c] \stackrel{X \stackrel{d}{=} X'}{=} \Pr[X' \ge c]$$
$$\stackrel{X' \le Y'}{\le} \Pr[Y' \ge c]$$
$$\stackrel{Y \stackrel{d}{=} Y'}{=} \Pr[Y \ge c]$$

Poisson Point Process

An easy choice!

A Simple Game (Generalised)

You win if your random variable exceeds $c \in \mathbb{N}$. Choose:

- $X \sim Bin(n, \frac{1}{2})$ // number of heads of fair coin
- $III Y \sim Bin(n, \frac{2}{3})$ // number of heads of biased coin

Coupling

Balls into Bins

Poissonisation

Poisson Point Process

9/25 WS 2024/2025 Stefan Walzer: Coupling, Balls into Bins, Poissonisation, Poisson Point Process

An easy choice!

Couplina

000000

A Simple Game (Generalised)

You win if your random variable exceeds $c \in \mathbb{N}$. Choose:

- $X \sim Bin(n, \frac{1}{2})$ // number of heads of fair coin
- $III Y \sim Bin(n, \frac{2}{3})$ // number of heads of biased coin

Prove that Y is better than X using a Coupling

Let $R_1, \ldots, R_n \sim \mathcal{U}([6])$ be *n* fair dice rolls. • $X' = |\{i \in [n] \mid R_i \in \{1, 2, 3\}\}|$ • $Y' = |\{i \in [n] \mid R_i \in \{1, 2, 3, 4\}\}|$

Balls into Bins Poiss

Poissonisation

• X' < Y' guaranteed

Observe: $X' \stackrel{d}{=} X$

• $Y' \stackrel{d}{=} Y$

An easy choice!

A Simple Game (Generalised)

You win if your random variable exceeds $c \in \mathbb{N}$. Choose:

- $X \sim Bin(n, \frac{1}{2})$ // number of heads of fair coin
- $III Y \sim Bin(n, \frac{2}{3})$ // number of heads of biased coin

Prove that Y is better than X using a Coupling

Let $R_1, \ldots, R_n \sim \mathcal{U}([6])$ be *n* fair dice rolls. • $X' = |\{i \in [n] \mid R_i \in \{1, 2, 3\}\}|$ • $Y' = |\{i \in [n] \mid R_i \in \{1, 2, 3, 4\}\}|$ Observe: $X' \stackrel{d}{=} X$

•
$$Y' \stackrel{d}{=} Y$$

• $X' \leq Y'$ guaranteed

Hence: $\Pr[X \ge c] = \Pr[X' \ge c] \le \Pr[Y' \ge c] = \Pr[Y \ge c].$

Content

1. Coupling

- Motivating Examples
- Definition

2. Balls into Bins

3. Poissonisation

4. Poisson Point Process

Coupling 0000000 Balls into Bins

Poissonisation

Poisson Point Process

Balls Into Bins

General Terminology

- *m* balls are randomly distributed among *n* bins
- the load of a bin is the number of balls in it

Coupling 0000000 Balls into Bins

Poissonisation

Poisson Point Process

Balls Into Bins

General Terminology

- m balls are randomly distributed among n bins
- the load of a bin is the number of balls in it

Fully Random Allocation

- $X_1, \ldots, X_m \sim \mathcal{U}([n])$ independent
- L_i := |{j ∈ [m] | X_j = i}| is the load of bin i ∈ [m]
- (L₁,..., L_n) follows a (specific) multinomial distribution

Example for Partially Random Allocation (not in this lecture)

m = 13.

n=6

- balls are placed sequentially
- each ball chooses the *least loaded* among two randomly chosen bins (ties broken randomly)

Coupling	Balla inta Bina	Paiasaniastian	Deissen Beint Breese
Coupling	Dalis Into Biris	FOISSOTIISALIOTT	FOISSOIT FOITL FTOCESS
0000000	0000	0000000	00000

Balls into Bins: Many Interesting Questions

What is the expected/distribution/concentration of

- the load L_{max} of the most loaded bin
- the load L_{min} of the least loaded bin
- L_{max} L_{min}
- the number of empty bins
- ...
- Can we make the allocation more balanced by intervening in some way?
 - e.g. with partially random allocation from last slide $\mathbb{E}[L_{\max} L_{\min}]$ stays bounded when $m \to \infty$ while *n* is fixed.

Countless variants exist...

Hashing with Chaining $\leftrightarrow n$ Balls into *m* Bins

length of the list in bucket $i \leftrightarrow$ number of balls in bin i

Coupling 0000000 Balls into Bins 000● Poissonisation

Poisson Point Process

Hashing with Chaining $\leftrightarrow n$ Balls into *m* Bins

length of the list in bucket $i \leftrightarrow$ number of balls in bin i

Bloom Filter with k Hash Functions $\leftrightarrow kn$ Balls into m Bins

a filter bit is set to 1 \leftrightarrow *i*th bin is non-empty

Coupling 0000000 Balls into Bins 000● Poissonisation

Poisson Point Process

Hashing with Chaining $\leftrightarrow n$ Balls into *m* Bins

length of the list in bucket $i \leftrightarrow$ number of balls in bin i

Bloom Filter with k Hash Functions $\leftrightarrow kn$ Balls into m Bins

a filter bit is set to 1 \leftrightarrow *i*th bin is non-empty

Degree Sequence of Random (Multi-)Graph $\leftrightarrow 2m$ Balls into *n* bins

Given independent $v_1, \ldots, v_{2m} \sim \mathcal{U}([n])$ let $G = (V = [n], E = \{\{v_1, v_2\}, \ldots, \{v_{2m-1}, v_{2m}\}\})$ (we allow multiedges and loops in *G*)

degree of vertex $i \leftrightarrow load$ of bin i

Coupling	Balls into Bins 000●	Poissonisation	Poisson Point Process

Hashing with Chaining $\leftrightarrow n$ Balls into *m* Bins

length of the list in bucket $i \leftrightarrow$ number of balls in bin i

Bloom Filter with k Hash Functions $\leftrightarrow kn$ Balls into m Bins

a filter bit is set to 1 \leftrightarrow *i*th bin is non-empty

Degree Sequence of Random (Multi-)Graph $\leftrightarrow 2m$ Balls into *n* bins

Given independent $v_1, \ldots, v_{2m} \sim \mathcal{U}([n])$ let $G = (V = [n], E = \{\{v_1, v_2\}, \ldots, \{v_{2m-1}, v_{2m}\}\})$ (we allow multiedges and loops in *G*)

degree of vertex $i \longleftrightarrow$ load of bin i

•5
•2

$$n = 5, m = 4$$

 $v_1 = 1, v_2 = 4$
 $v_3 = 4, v_4 = 2$
 $v_5 = 3, v_6 = 3$
 $v_7 = 2, v_8 = 4$

"Balls into Bins" is the standard language for discussing underlying mathematical questions.

Coupling	Balls into Bins	Poissonisation	Poisson Point Process
0000000	0000	0000000	00000

Content

1. Coupling

- Motivating Examples
- Definition

2. Balls into Bins

3. Poissonisation

4. Poisson Point Process

Coupling 0000000 Balls into Bins

Poissonisation •0000000 Poisson Point Process

Setting: Expected Constant Load per Bin

- fully random allocation
- $m = \lambda n$ balls n bins for large n
- λ fixed constant

Coupling

Balls into Bins

Poissonisation

Poisson Point Process

Setting: Expected Constant Load per Bin

- fully random allocation
- $m = \lambda n$ balls n bins for large n
- λ fixed constant

Load of the First Bin

Consider
$$L^{(n)} \sim Bin(\lambda n, \frac{1}{n})$$
. For $\lambda = 1$:
 $n = m = 5$
 $0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ \cdots$
Balls into Bins

Coupling

Balls into Bin 0000 Poissonisation

Poisson Point Process

Setting: Expected Constant Load per Bin

- fully random allocation
- $m = \lambda n$ balls n bins for large n
- λ fixed constant

Load of the First Bin

Coupling

Consider
$$L^{(n)} \sim Bin(\lambda n, \frac{1}{n})$$
. For $\lambda = 1$:
 $n = m = 10$
 $0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ \cdots$
Balls into Bins

Poissonisation

Poisson Point Process

15/25 WS 2024/2025 Stefan Walzer: Coupling, Balls into Bins, Poissonisation, Poisson Point Process

Setting: Expected Constant Load per Bin

- fully random allocation
- $m = \lambda n$ balls n bins for large n
- λ fixed constant

Load of the First Bin

Coupling

Consider
$$L^{(n)} \sim Bin(\lambda n, \frac{1}{n})$$
. For $\lambda = 1$:
 $n = m = 20$
 $0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ \cdots$
Balls into Bins

Poissonisation

Poisson Point Process

15/25 WS 2024/2025 Stefan Walzer: Coupling, Balls into Bins, Poissonisation, Poisson Point Process

Setting: Expected Constant Load per Bin

- fully random allocation
- $m = \lambda n$ balls n bins for large n
- λ fixed constant

Load of the First Bin

Coupling

Consider $L^{(n)} \sim \operatorname{Bin}(\lambda n, \frac{1}{n})$. For $\lambda = 1$: $n = m \to \infty$ $0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ \cdots$ Balls into Bins

Poissonisation

Setting: Expected Constant Load per Bin

- fully random allocation
- $m = \lambda n$ balls *n* bins for large *n*
- λ fixed constant

Poisson Distribution

For $\lambda \in \mathbb{R}_{\geq 0}$, $X \sim \mathsf{Pois}(\lambda)$ is a random variable with

$$\Pr[X=i]=e^{-\lambda}rac{\lambda^i}{i!}$$
 // note: probabilities sum to 1

Load of the First Bin

Consider $L^{(n)} \sim Bin(\lambda n, \frac{1}{n})$. For $\lambda = 1$: $n = m \to \infty$

 $n = m \to \infty$

Coupling 0000000 Balls into Bins

Poissonisation

Poisson Point Process

Setting: Expected Constant Load per Bin

- fully random allocation
- $m = \lambda n$ balls *n* bins for large *n*
- λ fixed constant

Poisson Distribution

For $\lambda \in \mathbb{R}_{\geq 0},$ $X \sim \mathsf{Pois}(\lambda)$ is a random variable with

$$\Pr[X = i] = e^{-\lambda} \frac{\lambda^i}{i!}$$
 // note: probabilities sum to 1

Load of the First Bin

Consider $L^{(n)} \sim Bin(\lambda n, \frac{1}{n})$. For $\lambda = 1$:

Coupling 000000

Balls into Bins

Theorem (proof on blackboard)

$$\lim_{n\to\infty} \Pr[L^{(n)}=i] = \Pr[X=i].$$

Remarks

- we say "L⁽ⁿ⁾ converges in distribution to X"
- we write $L^{(n)} \xrightarrow{d} X$
- this formally refers to convergence of CDFs

Poissonisation

Poisson Point Process

Properties of the Poisson Distribution

Exercise: $X \sim Pois(\lambda)$ has Nice Properties

E[X] = λ.
Var(X) = λ.
Let Y ~ Pois(ρ) be independent of X. Then X + Y ~ Pois(λ + ρ).
Let X' ~ Bin(X, p). Then X' ~ Pois(λp).

Coupling 0000000 Balls into Bins

Poissonisation

Poisson Point Process

Poissonised Balls into Bins

λn Balls into *n* Bins Model

- $X_1, \ldots, X_{\lambda n} \sim \mathcal{U}([n])$
- $L_i := |\{j \in [m] \mid X_j = i\}| \sim \operatorname{Bin}(\lambda n, \frac{1}{n})$
- $(L_i)_{i \in [n]}$ not independent
 - e.g. large L₁ is (weak) evidence for small L₂
 - annoying in analysis
- number λn of balls fixed

Wouldn't it be nice...

... if we could switch between the models whenever convenient?

Coupling 000000	Balls into Bins	Poissonisation	Poisson Point Process

ITI, Algorithm Engineering

"Poissonised" Model

- $L_1, \ldots, L_n \sim \mathsf{Pois}(\lambda)$ independent
 - extremely convenient for analysis

•
$$\mathbb{E}[L_1 + \cdots + L_n] = \lambda n$$

- number of balls $random \sim Pois(\lambda n)$
 - unusual setting in practice

Connection: Poissonised and Regular Balls into Bins

Lemma 1

Let $n \in \mathbb{N}$ and $\lambda > 0$. Consider two variants of Poissonised balls into bins:

Regular Variant:

• sample $L_1, \ldots, L_n \sim \mathsf{Pois}(\lambda)$

Sum-First-Variant:

sample *M* ~ Pois(*\lambda n*)

perform a regular M balls into n bins experiment

• sample
$$X_1, \ldots, X_M \sim \mathcal{U}([n])$$

• let
$$L'_i := |\{j \in [M] \mid X_j = i\}|$$

Both variants are equivalent, i.e. $(L_1, \ldots, L_n) \stackrel{d}{=} (L'_1, \ldots, L'_n)$.

Coupling 0000000 Balls into Bins

Poissonisation

Poisson Point Process

Connection: Poissonised and Regular Balls into Bins

Lemma 1

Let $n \in \mathbb{N}$ and $\lambda > 0$. Consider two variants of Poissonised balls into bins:

Regular Variant:

• sample $L_1, \ldots, L_n \sim \mathsf{Pois}(\lambda)$

Sum-First-Variant:

sample *M* ~ Pois(*\lambda n*)

perform a regular M balls into n bins experiment

• sample
$$X_1, \ldots, X_M \sim \mathcal{U}([n])$$

• let
$$L'_i := |\{j \in [M] \mid X_j = i\}|$$

Both variants are equivalent, i.e. $(L_1, \ldots, L_n) \stackrel{d}{=} (L'_1, \ldots, L'_n)$.

What we need to show (calculation on blackboard):

For arbitrary $(\ell_1, \ldots, \ell_n) \in \mathbb{N}^n$: $\Pr[(L_1, \ldots, L_n) = (\ell_1, \ldots, \ell_n)] = \Pr[(L'_1, \ldots, L'_n) = (\ell_1, \ldots, \ell_n)].$

CouplingBalls into BinsPoissonisationPoisson Point Proces000	Coupling	Balls into Bins	Poissonisation	Poisson Point Process
--	----------	-----------------	----------------	-----------------------

Some Concentration Bounds

Lemma 2

I Let $\Lambda > 0$ and $X \sim \text{Pois}(\Lambda)$. Then $\Pr[|X - \Lambda| > t] \leq \frac{\Lambda}{t^2}$ for any t > 0. // Chebyschev Let $\lambda = \Theta(1)$, and $X \sim \text{Pois}(\lambda \ n)$ then $\Pr[X = \lambda n \pm \mathcal{O}(n^{2/3})] = 1 - o(1)$. Let $\lambda = \Theta(1), \lambda^+ := \lambda + n^{-1/3}$ and $X^+ \sim \text{Pois}(\lambda^+ n)$ then $\Pr[X^+ \geq \lambda n] = 1 - o(1)$. Let $\lambda = \Theta(1), \lambda^- := \lambda - n^{-1/3}$ and $X^- \sim \text{Pois}(\lambda^- n)$ then $\Pr[X^- \leq \lambda n] = 1 - o(1)$. In particular: $\Pr[X^- \leq \lambda n \leq X^+] = 1 - o(1)$.

Coupling 0000000 Balls into Bins

Poissonisation

Poisson Point Process

Coupling of Poissonised and Regular Balls into Bins

Theorem

Let $n, \lambda, \lambda^+, \lambda^-$ be as before. Consider three "balls into bins" models:

1 $Y_1, \ldots, Y_n \sim \mathsf{Pois}(\lambda^-)$ // poissonised with reduced λ

2 L_1, \ldots, L_n arising from regular $m = \lambda n$ balls into *n* bins

3 $Z_1, \ldots, Z_n \sim \mathsf{Pois}(\lambda^+)$ // poissonised with increased λ

There is a coupling $(Y'_i, L'_i, Z'_i)_{i \in [n]}$ of $(Y_i)_{i \in [n]}$, $(L_i)_{i \in [n]}$, $(Z_i)_{i \in [n]}$ such that

with probability 1 - o(1): $Y'_i \leq L'_i \leq Z'_i$ for all $i \in [n]$.

Coupling

Balls into Bins

Poissonisation

Poisson Point Process

Let $n, \lambda, \lambda^+, \lambda^-$ be as before. Consider three "balls into bins" models:

1 $Y_1, \ldots, Y_n \sim \mathsf{Pois}(\lambda^-)$ // poissonised with reduced λ

2 L_1, \ldots, L_n arising from regular $m = \lambda n$ balls into *n* bins

3 $Z_1, \ldots, Z_n \sim \mathsf{Pois}(\lambda^+)$ // poissonised with increased λ

There is a coupling $(Y'_i, L'_i, Z'_i)_{i \in [n]}$ of $(Y_i)_{i \in [n]}$, $(L_i)_{i \in [n]}$, $(Z_i)_{i \in [n]}$ such that

with probability 1 - o(1): $Y'_i \leq L'_i \leq Z'_i$ for all $i \in [n]$.

Coupling of Poissonised and Regular Balls into Bins

Proof.

Let
$$X_1, X_2, \ldots \sim \mathcal{U}([n]), M^- \sim \operatorname{Pois}(\lambda^- n), M^+ \sim \operatorname{Pois}(\lambda^+ n).$$

• $Y'_i := |\{j \in [M^-] \mid X_j = i\}| \text{ for } i \in [n].$
• $L'_i := |\{j \in [M^-] \mid X_j = i\}| \text{ for } i \in [n].$
• $(Y'_i)_{i \in [n]} \stackrel{d}{=} (Y_i)_{i \in [n]}$ by Lemma 1.
• $(L'_i)_{i \in [n]} \stackrel{d}{=} (L_i)_{i \in [n]}$ by Lemma 1.
• $(Z'_i)_{i \in [n]} \stackrel{d}{=} (Z_i)_{i \in [n]}$ by Lemma 1.

By the Corollary we have $M^- \le m \le M^+$ with probability 1 - o(1). In that case clearly $Y'_i \le L'_i \le Z'_i$ for all $i \in [n]$.

Coupling 0000000	Balls into Bins	Poissonisation ○○○○○○●○	Poisson Point Process
---------------------	-----------------	----------------------------	-----------------------

Let $n, \lambda, \lambda^+, \lambda^-$ be as before. Consider three "balls into bins" models:

1 $Y_1, \ldots, Y_n \sim \mathsf{Pois}(\lambda^-)$ // poissonised with reduced λ

2 L_1, \ldots, L_n arising from regular $m = \lambda n$ balls into *n* bins

3 $Z_1, \ldots, Z_n \sim \mathsf{Pois}(\lambda^+)$ // poissonised with increased λ

There is a coupling $(Y'_i, L'_i, Z'_i)_{i \in [n]}$ of $(Y_i)_{i \in [n]}, (L_i)_{i \in [n]}, (Z_i)_{i \in [n]}$ such that

with probability 1 - o(1): $Y'_i \leq L'_i \leq Z'_i$ for all $i \in [n]$.

Coupling of Poissonised and Regular Balls into Bins

Application involving Monotonous Functions

Let $f: \mathbb{N}_0^n \to \mathbb{R}$ be non-decreasing in each argument. Examples:

- maximum load of a bin
- Iongest run of non-empty bins
- collision number // numbers of pairs of co-located balls

For some bound $B \in \mathbb{R}$ let

$$\begin{array}{l} \mathbf{p}^- := \Pr[f((Y_i)_{i \in [n]}) \geq B] \ // \ \text{easier to compute} \\ \mathbf{p}^- := \Pr[f((L_i)_{i \in [n]}) \geq B] \ // \ \text{what we want} \\ \mathbf{p}^+ := \Pr[f((Z_i)_{i \in [n]}) \geq B] \ // \ \text{easier to compute} \\ \text{Then } p \in [p^- - o(1), p^+ + o(1)]. \end{array}$$

Back to Bloom Filters

Exercise:

Analyse Bloom filters in a "Poissonised" model and discuss how the results can be transferred to the exact model.

Coupling 0000000 Balls into Bins

Poissonisation

Poisson Point Process

Content

1. Coupling

- Motivating Examples
- Definition

2. Balls into Bins

3. Poissonisation

4. Poisson Point Process

Coupling 0000000 Balls into Bins

Poissonisation

Poisson Point Process

What about "Balls into Continuous Domain"?

Setting

- D is space of finite measure
- $m \in \mathbb{N}$ // number of balls
- $X_1, \ldots, X_m \sim \mathcal{U}(D)$ // randomly thrown into D

Coupling 0000000 Balls into Bins

Poissonisation

Poisson Point Process

What about "Balls into Continuous Domain"?

Setting

- D is space of finite measure
- $m \in \mathbb{N}$ // number of balls
- $X_1, \ldots, X_m \sim \mathcal{U}(D)$ // randomly thrown into D

Note: If $D = \{1, ..., n\}$ we have discrete balls into bins.

Coupling

Balls into Bins

Poissonisation

Poisson Point Process

What about "Balls into Continuous Domain"?

Setting

- D is space of finite measure
- $m \in \mathbb{N}$ // number of balls
- $X_1,\ldots,X_m\sim\mathcal{U}(D)$ // randomly thrown into D

Note: If $D = \{1, ..., n\}$ we have discrete balls into bins.

Same annoying issue

If $B_1, B_2 \subseteq D$ with $B_1 \cap B_2 = \emptyset$ are two "bins" then the numbers L_1 and L_2 of "balls" in B_1 and B_2 are correlated.

Similar elegant solution

- We can "Poissonise" the setting.
- But we drop "balls into bins" terminology:
 - we allow infinite domains D
 - we allow infinite number of balls

Coupling

Balls into Bins

Poissonisation

Poisson Point Process

General Definition

Let *D* be a measurable space with measure μ . // e.g. $D = \mathbb{R}^2$ and $\mu =$ "area" The Poisson point process with parameter $\lambda \in \mathbb{R}_{\geq 0}$ is a random set $P \subseteq D$ such that

1
$$|P \cap B| \sim \text{Pois}(\lambda \mu(B))$$
 for any $B \subseteq D$ with $\mu(B) < \infty$

2 $|P \cap B_1|$ and $|P \cap B_2|$ are independent whenever $B_1 \cap B_2 = \emptyset$

Coupling

Balls into Bins

Poissonisation

Poisson Point Process

General Definition

Let *D* be a measurable space with measure μ . // e.g. $D = \mathbb{R}^2$ and $\mu =$ "area" The Poisson point process with parameter $\lambda \in \mathbb{R}_{\geq 0}$ is a random set $P \subseteq D$ such that

1
$$|P \cap B| \sim \mathsf{Pois}(\lambda \mu(B))$$
 for any $B \subseteq D$ with $\mu(B) < \infty$

2 $|P \cap B_1|$ and $|P \cap B_2|$ are independent whenever $B_1 \cap B_2 = \emptyset$

Equivalent Definition if $\mu(D) < \infty$

	sample	$M \sim$	$Pois(\lambda \mu$	(D)
--	--------	----------	--------------------	-----

• sample $X_1, \ldots, X_M \sim \mathcal{U}(D)$

Then $P \stackrel{d}{=} \{X_1, X_2, \dots, X_M\}.$

General Definition

Let *D* be a measurable space with measure μ . // e.g. $D = \mathbb{R}^2$ and $\mu =$ "area" The Poisson point process with parameter $\lambda \in \mathbb{R}_{\geq 0}$ is a random set $P \subseteq D$ such that

1 $|P \cap B| \sim \mathsf{Pois}(\lambda \mu(B))$ for any $B \subseteq D$ with $\mu(B) < \infty$

2 $|P \cap B_1|$ and $|P \cap B_2|$ are independent whenever $B_1 \cap B_2 = \emptyset$

Construction as a limit

- subdivide D into pieces of measure ε
- Iet each piece contain a point with probability $\varepsilon\lambda$
- consider the limit for $\varepsilon \to 0$

Poisson Point Process

24/25 WS 2024/2025 Stefan Walzer: Coupling, Balls into Bins, Poissonisation, Poisson Point Process

Balls into Bins

General Definition

Let *D* be a measurable space with measure μ . // e.g. $D = \mathbb{R}^2$ and $\mu =$ "area" The Poisson point process with parameter $\lambda \in \mathbb{R}_{\geq 0}$ is a random set $P \subseteq D$ such that

1
$$|P \cap B| \sim \mathsf{Pois}(\lambda \mu(B))$$
 for any $B \subseteq D$ with $\mu(B) < \infty$

2 $|P \cap B_1|$ and $|P \cap B_2|$ are independent whenever $B_1 \cap B_2 = \emptyset$

Equivalent Definition if $D = \mathbb{R}_{\geq 0}$ (where μ is the Borel measure)

• sample
$$Z_1, Z_2, \ldots \sim \mathsf{Exp}(\lambda)$$

• define
$$X_i = \sum_{j=1}^i Z_j$$

hen
$$P \stackrel{\mathsf{d}}{=} \{X_1, X_2, \dots\}.$$

$$X_1$$
 X_2 X_3 X_4 ...

Proof idea: $\Pr[\min P > t] = \Pr[|P \cap [0, t]| = 0] = \Pr_{X \sim \mathsf{Pois}(\lambda t)}[X = 0] = e^{-\lambda t} \stackrel{\text{def}}{=} \Pr[Z_1 > t].$

Coupling 0000000	Balls into Bins	Poissonisation	Poisson Point Process
---------------------	-----------------	----------------	-----------------------

ITI, Algorithm Engineering

 \mathbb{R}

Conclusion

Coupling

- embedding of two random variables X and Y into a common probability space
- relationships between distributions of X and Y become visible as relationships between outcomes of X' and Y'

Balls into Bins

standard language when *m* objects are randomly assigned to *n* other objects

Poissonisation

- the act of replacing multinomially distributed (L_1, \ldots, L_n) with independent Poisson random variables (L'_1, \ldots, L'_n)
- often results in model with nicer mathematical properties
- often formally justifiable

Poisson Point Process

• important model where points from a continuous space occur independently from each other with fixed density λ

Coupling	Balls into Bins 0000	Poissonisation 00000000	Poisson Point Process

Anhang: Mögliche Prüfungsfragen I

- Was ist ein Coupling?
 - Nenne Beispiele in denen ein Coupling nützlich sein kann.
 - Was bedeutet Gleichheit in Verteilung?
- Wo in der Vorlesung haben wir (implizit oder explizit) Balls-into-Bins-Prozesse betrachtet?
- Poissonisierung:
 - Welche lästige Eigenschaft hat die Verteilung der Beladungen in Balls-into-Bins Prozessen? Was ist in einem poissonisierten Modell anders?
 - Wie lässt sich in einem Balls-into-Bins Setting die Poissonverteilung wiederfinden?
 - Wie haben wir das poissonisierte und das reguläre Balls-into-Bins-Modell miteinander in Verbindung gebracht? Inwiefern lässt sich ein Wechsel zwischen den Modellen formal rechtfertigen?

Poisson-Punktprozesse

Wie sind Poisson-Punktprozesse definiert?

