

Probability and Computing Coupling, Balls into Bins, Poissonisation and the Poisson Point Process

Stefan Walzer | WS 2024/2025

Content

1. [Coupling](#page-2-0)

- **[Motivating Examples](#page-2-0)**
- **[Definition](#page-8-0)**

2. [Balls into Bins](#page-18-0)

3. [Poissonisation](#page-26-0)

4. [Poisson Point Process](#page-43-0)

[Coupling](#page-2-0) Coupling [Balls into Bins](#page-18-0) [Poissonisation](#page-26-0) Poissonisation Coupling [Poisson Point Process](#page-43-0)

An easy choice?

A Simple Game

You win if you get ≥ 5 heads in 10 coin tosses. Choose:

- **i** a fair coin with Pr["heads"] $=\frac{1}{2}$
- \blacksquare a biased coin with Pr["heads"] $=\frac{2}{3}$

An easy choice?

A Simple Game

You win if you get > 5 heads in 10 coin tosses. Choose:

- **i** a fair coin with Pr["heads"] $=\frac{1}{2}$
- \blacksquare a biased coin with Pr["heads"] $=\frac{2}{3}$

How to prove that (ii) is the better choice?

 \sum *i*=5 $(10$ *i* (1) 2 $\big)^{i}$ $\big($ ¹ 2 $\big)^{10-i}$? $\frac{10}{\leq}$ *i*=5 $(10$ *i* $\binom{2}{2}$ 3 $\big)^{i}$ $\big($ ¹ 3 ¹⁰−*ⁱ*

Shouldn't there be an answer that needs no calculation?

Consider two "wheels of fortune":

Consider two "wheels of fortune":

Both can be rationally preferred

- **E** $[K] > \mathbb{E}[Y]$ // maximises expected reward
- **Pr** $[Y \geq 5\epsilon]$ > $Pr[X \geq 5\epsilon]$ // maximises probability that you can afford ice cream

See https://en.wikipedia.org/wiki/Von_Neumann%E2%80%93Morgenstern_utility_theorem to get started on rational choice theory.

Formal Reason you should prefer *Y*

For every *c* we have:

 $Pr[X \ge c] \le Pr[Y \ge c]$.

Intuitive Reason you should prefer *Y*

Glueing the wheels together guarantees $X < Y$.

Content

1. [Coupling](#page-2-0)

[Motivating Examples](#page-2-0)

[Definition](#page-8-0)

2. [Balls into Bins](#page-18-0)

3. [Poissonisation](#page-26-0)

4. [Poisson Point Process](#page-43-0)

Equality in Distribution

Notation

We write $X \stackrel{d}{=} X'$ for two random variables if X and X' have the same distribution.

Notation

We write $X \stackrel{d}{=} X'$ for two random variables if X and X' have the same distribution.

Equivalent Definitions

 $X\overset{\rm d}{=}X'\Leftrightarrow \forall x:\mathsf{Pr}[X=x]=\mathsf{Pr}[X]$ $\mathbf{y}' = \mathbf{x}$ (for discrete R.V. *X* and *X'*) \Leftrightarrow ∀*x* : Pr[*X* \leq *x*] = Pr[*X'* \leq *x*] $\mathbf{Y} \leq \mathbf{x}$ (for real-valued R.V. *X* and *X'*)

Notation

We write $X \stackrel{d}{=} X'$ for two random variables if X and X' have the same distribution.

Equivalent Definitions

$$
X \stackrel{d}{=} X' \Leftrightarrow \forall x : \Pr[X = x] = \Pr[X' = x]
$$

$$
\Leftrightarrow \forall x : \Pr[X \le x] = \Pr[X' \le x]
$$

 $\mathbf{y}' = \mathbf{x}$ (for discrete R.V. *X* and *X'*)

 $\mathbf{Y} \leq \mathbf{x}$ (for real-valued R.V. *X* and *X'*)

To Clarify:

If *X*, $Y \sim \mathcal{U}([0, 1])$ are independent then $X \stackrel{d}{=} Y$ **•** $Pr[X = Y] = 0$

Definition: Coupling of *X* **and** *Y*

Definition: Coupling of *X* **and** *Y*

8/25 WS 2024/2025 Stefan Walzer: Coupling, Balls into Bins, Poissonisation, Poisson Point Process ITI, Algorithm Engineering

 $Y' \stackrel{d}{=} Y \checkmark$

Definition: Coupling of *X* **and** *Y*

Remarks

- No assumption on joint distribution of *X* and *Y*. Might be independent, correlated or undefined.
- *X* ′ and *Y* ′ should be correlated in an interesting/useful way.
- Example coupling shows:

 Pr

$$
X \geq c \rceil \stackrel{x \stackrel{d}{=} x'}{\leq} \Pr[X' \geq c]
$$

$$
\stackrel{x' \leq Y'}{\leq} \Pr[Y' \geq c]
$$

$$
\stackrel{y \stackrel{d}{=} Y'}{\equiv} \Pr[Y \geq c]
$$

An easy choice!

A Simple Game (Generalised)

You win if your random variable exceeds $c \in \mathbb{N}$. Choose:

- i $\textit{X} \sim \textsf{Bin}\big(n,\frac{1}{2}\big)$ // number of heads of fair coin
- ii *Y* ∼ Bin(*n*, 2 3) // number of heads of biased coin

An easy choice!

A Simple Game (Generalised)

You win if your random variable exceeds $c \in \mathbb{N}$. Choose:

- i $\textit{X} \sim \textsf{Bin}\big(n,\frac{1}{2}\big)$ // number of heads of fair coin
- ii *Y* ∼ Bin(*n*, 2 3) // number of heads of biased coin

Prove that *Y* is better than *X* using a Coupling

Let $R_1, \ldots, R_n \sim \mathcal{U}([6])$ be *n* fair dice rolls. $X' = |\{i \in [n] \mid R_i \in \{1, 2, 3\}\}|$ *Y*^{$′ = |{*i* ∈ [*n*] | *R_i* ∈ {1, 2, 3, 4}}|$}

Observe: $X' \stackrel{d}{=} X$ $Y' \stackrel{d}{=} Y$

 $X' \leq Y'$ guaranteed

An easy choice!

A Simple Game (Generalised)

You win if your random variable exceeds $c \in \mathbb{N}$. Choose:

- i $\textit{X} \sim \textsf{Bin}\big(n,\frac{1}{2}\big)$ // number of heads of fair coin
- ii *Y* ∼ Bin(*n*, 2 3) // number of heads of biased coin

Prove that *Y* is better than *X* using a Coupling

Let $R_1, \ldots, R_n \sim \mathcal{U}([6])$ be *n* fair dice rolls. $X' = |\{i \in [n] \mid R_i \in \{1, 2, 3\}\}|$ *Y*^{$′ = |{*i* ∈ [*n*] | *R_i* ∈ {1, 2, 3, 4}}|$}

Observe: $X' \stackrel{d}{=} X$ $Y' \stackrel{d}{=} Y$

 $X' \leq Y'$ guaranteed

$Hence: Pr[X \ge c] = Pr[X' \ge c] \le Pr[Y' \ge c] = Pr[Y' \ge c].$

9/25 WS 2024/2025 Stefan Walzer: Coupling, Balls into Bins, Poissonisation, Poisson Point Process **ITI, Algorithm Engineering**

Content

1. [Coupling](#page-2-0)

- **[Motivating Examples](#page-2-0)**
- **[Definition](#page-8-0)**

2. [Balls into Bins](#page-18-0)

3. [Poissonisation](#page-26-0)

4. [Poisson Point Process](#page-43-0)

[Coupling](#page-2-0) **[Balls into Bins](#page-18-0) [Poissonisation](#page-26-0)** Poissonisation Poissonisation Poisson [Poisson Point Process](#page-43-0)

Balls Into Bins

General Terminology

- *m* balls are randomly distributed among *n* bins
- the *load* of a bin is the number of balls in it

 $m = 13, \quad n = 6$ し 1 2 3 4 5 6

[Coupling](#page-2-0) **[Balls into Bins](#page-18-0) [Poissonisation](#page-26-0)** Poissonisation Poissonisation Poisson [Poisson Point Process](#page-43-0)

Balls Into Bins

General Terminology

- *m* balls are randomly distributed among *n* bins
- **the** *load* of a bin is the number of balls in it

Fully Random Allocation

- \blacksquare *X*₁, . . . , *X_m* ∼ *U*([*n*]) independent
- $L_i := |\{j \in [m] \mid X_j = i\}|$ is the load of bin $i \in [m]$
- (L_1, \ldots, L_n) follows a (specific) *multinomial distribution*

Example for Partially Random Allocation (not in this lecture)

1 2 3 4 5 6

 $m = 13, \quad n = 6$

- balls are placed sequentially
- each ball chooses the *least loaded* among two randomly chosen bins (ties broken randomly)

Balls into Bins: Many Interesting Questions

■ What is the expected/distribution/concentration of

- the load *L*_{max} of the most loaded bin
- the load *L*_{min} of the least loaded bin
- *L*max − *L*min
- \blacksquare the number of empty bins
- \blacksquare . . .
- **Can we make the allocation more balanced by intervening in some way?**
	- **■** e.g. with partially random allocation from last slide $\mathbb{E}[L_{\text{max}} L_{\text{min}}]$ stays bounded when $m \to \infty$ while *n* is fixed.

Countless variants exist...

Hashing with Chaining ←→ *n* Balls into *m* Bins

length of the list in bucket *i* ←→ number of balls in bin *i*

[Coupling](#page-2-0) **[Balls into Bins](#page-18-0) [Poissonisation](#page-26-0)** Poissonisation Poissonisation Poisson [Poisson Point Process](#page-43-0)

Hashing with Chaining ←→ *n* Balls into *m* Bins

length of the list in bucket $i \leftrightarrow$ number of balls in bin *i*

Bloom Filter with *k* Hash Functions ←→ *kn* Balls into *m* Bins

a filter bit is set to $1 \leftrightarrow i$ th bin is non-empty

[Coupling](#page-2-0) **[Balls into Bins](#page-18-0) [Poissonisation](#page-26-0)** Poissonisation Poissonisation Poisson [Poisson Point Process](#page-43-0)

Hashing with Chaining ←→ *n* Balls into *m* Bins

length of the list in bucket $i \leftrightarrow$ number of balls in bin *i*

Bloom Filter with *k* Hash Functions ←→ *kn* Balls into *m* Bins

a filter bit is set to $1 \leftrightarrow i$ th bin is non-empty

Degree Sequence of Random (Multi-)Graph ←→ 2*m* Balls into *n* bins

Given independent $v_1, \ldots, v_{2m} \sim \mathcal{U}([n])$ let $G = (V = [n], E = \{\{v_1, v_2\}, \ldots, \{v_{2m-1}, v_{2m}\}\})$ (we allow multiedges and loops in *G*)

degree of vertex *i* ←→ load of bin *i*

$$
\begin{array}{c}\n\bullet \\
\bullet \\
\bullet \\
\bullet \\
\bullet \\
\bullet\n\end{array}\n\qquad\n\begin{array}{c}\n\text{ } n = 5, \quad m = 4 \\
v_1 = 1, \quad v_2 = 4 \\
v_3 = 4, \quad v_4 = 2 \\
v_5 = 3, \quad v_6 = 3 \\
v_7 = 2, \quad v_8 = 4\n\end{array}
$$

Hashing with Chaining ←→ *n* Balls into *m* Bins

length of the list in bucket $i \leftrightarrow$ number of balls in bin *i*

Bloom Filter with *k* Hash Functions ←→ *kn* Balls into *m* Bins

a filter bit is set to $1 \leftrightarrow i$ th bin is non-empty

Degree Sequence of Random (Multi-)Graph ←→ 2*m* Balls into *n* bins

Given independent $v_1, \ldots, v_{2m} \sim \mathcal{U}([n])$ let $G = (V = [n], E = \{\{v_1, v_2\}, \ldots, \{v_{2m-1}, v_{2m}\}\})$ (we allow multiedges and loops in *G*)

degree of vertex *i* ←→ load of bin *i*

$$
\begin{array}{c}\n\bullet \\
\bullet \\
\bullet \\
\bullet \\
\bullet\n\end{array}\n\qquad\n\begin{array}{c}\n2 & n = 5, & m = 4 \\
v_1 = 1, & v_2 = 4 \\
v_3 = 4, & v_4 = 2 \\
v_5 = 3, & v_6 = 3 \\
v_7 = 2, & v_8 = 4\n\end{array}
$$

"Balls into Bins" is the standard language for discussing underlying mathematical questions.

Content

1. [Coupling](#page-2-0)

- **[Motivating Examples](#page-2-0)**
- **[Definition](#page-8-0)**

2. [Balls into Bins](#page-18-0)

3. [Poissonisation](#page-26-0)

4. [Poisson Point Process](#page-43-0)

Setting: Expected Constant Load per Bin

- **n** fully random allocation
- **n** $m = \lambda n$ balls *n* bins for large *n*
- \blacksquare λ fixed constant

Setting: Expected Constant Load per Bin

- **n** fully random allocation
- \blacksquare *m* = λ *n* balls *n* bins for large *n*
- \blacksquare λ fixed constant

Load of the First Bin

Consider
$$
L^{(n)} \sim \text{Bin}(\lambda n, \frac{1}{n})
$$
. For $\lambda = 1$:

$$
n = m = 5
$$

0 1 2 3 4 5 6 7 8 9 ...
Equlying
Balls into Bins

15/25 WS 2024/2025 Stefan Walzer: Coupling, Balls into Bins, Poissonisation, Poisson Point Process ITI, Algorithm Engineering

Setting: Expected Constant Load per Bin

- **n** fully random allocation
- \blacksquare *m* = λ *n* balls *n* bins for large *n*
- \blacksquare λ fixed constant

Load of the First Bin

Consider
$$
L^{(n)} \sim \text{Bin}(\lambda n, \frac{1}{n})
$$
. For $\lambda = 1$:

$$
n = m = 10
$$

0 1 2 3 4 5 6 7 8 9 ...
Using
Balls into Bins

Setting: Expected Constant Load per Bin

- **n** fully random allocation
- \blacksquare *m* = λ *n* balls *n* bins for large *n*
- \blacksquare λ fixed constant

Load of the First Bin

Consider
$$
L^{(n)} \sim \text{Bin}(\lambda n, \frac{1}{n})
$$
. For $\lambda = 1$:

$$
n = m = 20
$$

0 1 2 3 4 5 6 7 8 9 ...
Equlying
Balls into Bins

Setting: Expected Constant Load per Bin

- **n** fully random allocation
- \blacksquare *m* = λ *n* balls *n* bins for large *n*
- \blacksquare λ fixed constant

Load of the First Bin

Consider
$$
L^{(n)} \sim \text{Bin}(\lambda n, \frac{1}{n})
$$
. For $\lambda = 1$:

$$
n = m \rightarrow \infty
$$

0 1 2 3 4 5 6 7 8 9 ...
Equlying
Balls into Bins
Plissonisation
PoissonPoint Process

Setting: Expected Constant Load per Bin

- **fully random allocation**
- \blacksquare *m* = λ *n* balls *n* bins for large *n*
- \blacksquare λ fixed constant

Poisson Distribution

For $\lambda \in \mathbb{R}_{\geq 0}$, $X \sim \text{Pois}(\lambda)$ is a random variable with

$$
\Pr[X = i] = e^{-\lambda} \frac{\lambda^i}{i!} \quad \text{// note: probabilities sum to 1}
$$

Load of the First Bin

Consider $L^{(n)} \sim \text{Bin}(\lambda n, \frac{1}{n})$. For $\lambda = 1$:

$$
n=m\rightarrow\infty
$$

0 1 2 3 4 5 6 7 8 9 ...

Setting: Expected Constant Load per Bin

- **fully random allocation**
- \blacksquare *m* = λ *n* balls *n* bins for large *n*
- \blacksquare λ fixed constant

Poisson Distribution

For $\lambda \in \mathbb{R}_{\geq 0}$, $X \sim \text{Pois}(\lambda)$ is a random variable with

$$
Pr[X = i] = e^{-\lambda} \frac{\lambda^i}{i!}
$$
 // note: probabilities sum to 1

Load of the First Bin

Consider $L^{(n)} \sim \text{Bin}(\lambda n, \frac{1}{n})$. For $\lambda = 1$:

Theorem (proof on blackboard)

$$
\lim_{n\to\infty}\Pr[L^{(n)}=i]=\Pr[X=i].
$$

Remarks

we say "*L* (*n*) converges in distribution to *X*"

- we write *L*^(*n*) $\stackrel{d}{\longrightarrow} X$
- this formally refers to convergence of CDFs

Properties of the Poisson Distribution

Exercise: $X \sim \text{Pois}(\lambda)$ has Nice Properties

i $\mathbb{E}[X] = \lambda$. ii $Var(X) = \lambda$. iii Let *Y* ∼ Pois(ρ) be independent of *X*. Then *X* + *Y* ∼ Pois(λ + ρ). iv Let *X* ′ ∼ Bin(*X*, *p*). Then *X* ′ ∼ Pois(λ*p*).

Poissonised Balls into Bins

$$
(L_i) : 3 \qquad \qquad \bigvee \limits_{j=1}^{\infty} \left(\bigvee \limits
$$

λ*n* Balls into *n* Bins Model

- \blacksquare *X*₁, . . . , *X*_{λ *n*} ∼ *U*([*n*])
- *L*_{*i*} := |{*j* ∈ [*m*] | *X*_{*j*} = *i*}| ∼ Bin($\lambda n, \frac{1}{n}$)
- (*Li*)*i*∈[*n*] *not independent*
	- e.g. large *L*₁ is (weak) evidence for small *L*₂
	- **annoying in analysis**
- number λ*n* of balls *fixed*

Wouldn't it be nice. . .

. . . if we could switch between the models whenever convenient?

"Poissonised" Model

- *L*1, . . . , *Lⁿ* ∼ Pois(λ) independent
	- \blacksquare extremely convenient for analysis

$$
\bullet \ \mathbb{E}[L_1 + \cdots + L_n] = \lambda n
$$

- number of balls *random* ∼ Pois(λ*n*)
	- unusual setting in practice

Connection: Poissonised and Regular Balls into Bins

Lemma 1

Let $n \in \mathbb{N}$ and $\lambda > 0$. Consider two variants of Poissonised balls into bins:

Regular Variant:

sample *L*1, . . . , *Lⁿ* ∼ Pois(λ)

Sum-First-Variant:

sample *M* ∼ Pois(λ*n*)

■ perform a regular *M* balls into *n* bins experiment

Example
$$
X_1, \ldots, X_M \sim \mathcal{U}([n])
$$

■ let
$$
L'_i := |\{j \in [M] | X_j = i\}|
$$

Both variants are equivalent, i.e. $(L_1, \ldots, L_n) \stackrel{d}{=} (L'_1, \ldots, L'_n)$.

Connection: Poissonised and Regular Balls into Bins

Lemma 1

Let $n \in \mathbb{N}$ and $\lambda > 0$. Consider two variants of Poissonised balls into bins:

Regular Variant:

sample *L*1, . . . , *Lⁿ* ∼ Pois(λ)

Sum-First-Variant:

sample *M* ∼ Pois(λ*n*)

■ perform a regular *M* balls into *n* bins experiment

Example
$$
X_1, \ldots, X_M \sim \mathcal{U}([n])
$$

■ let
$$
L'_i := |\{j \in [M] | X_j = i\}|
$$

Both variants are equivalent, i.e. $(L_1, \ldots, L_n) \stackrel{d}{=} (L'_1, \ldots, L'_n)$.

What we need to show (calculation on blackboard):

For arbitrary $(\ell_1,\ldots,\ell_n)\in\mathbb{N}^n$: $\Pr[(L_1,\ldots,L_n)=(\ell_1,\ldots,\ell_n)]=\Pr[(L'_1,\ldots,L'_n)=(\ell_1,\ldots,\ell_n)].$

Some Concentration Bounds

Lemma 2

i Let Λ $>$ 0 and X \sim Pois(Λ). Then Pr[$|X - Λ| > t$] $\leq \frac{Λ}{t^2}$ for any $t >$ 0. // Chebyschev \mathbf{a} Let $\lambda = \Theta(1)$, and *X* ∼ Pois $(\lambda \, n)$ then Pr $[X = \lambda n \pm \mathcal{O}(n^{2/3})] = 1 - o(1)$. \blacksquare Let $\lambda = \Theta(1),$ $\lambda^+ := \lambda + n^{-1/3}$ and $X^+ \sim \operatorname{Pois}(\lambda^+ n)$ then $\Pr[X^+ \ge \lambda n] = 1 - o(1).$ λ_{in} Let $\lambda = \Theta(1), \, \lambda^- := \lambda - n^{-1/3}$ and $X^- \sim \text{Pois}(\lambda^- n)$ then $\text{Pr}[X^- \le \lambda n] = 1 - o(1).$ v In particular: Pr $[X^- \leq \lambda n \leq X^+] = 1 - o(1)$.

Coupling of Poissonised and Regular Balls into Bins

Theorem

Let $n, \lambda, \lambda^+, \lambda^-$ be as before. Consider three "balls into bins" models:

 1 $Y_1, \ldots, Y_n \sim \mathsf{Pois}(\lambda^-)$ // poissonised with reduced λ **2** L_1, \ldots, L_n arising from regular $m = \lambda n$ balls into *n* bins

3 $\,$ $Z_1,\ldots,Z_n \sim \mathsf{Pois}(\lambda^+)$ // poissonised with increased λ

There is a coupling $(Y'_i,L'_i,Z'_i)_{i\in[n]}$ of $(Y_i)_{i\in[n]},$ $(L_i)_{i\in[n]},$ $(Z_i)_{i\in[n]}$ such that

with probability 1 – $o(1)$: $Y'_i \leq L'_i \leq Z'_i$ for all $i \in [n]$.

1 $Y_1, \ldots, Y_n \sim \mathsf{Pois}(\lambda^-)$ // poissonised with reduced λ

2 *L*₁, ..., *L*_n arising from regular $m = \lambda n$ balls into *n* bins

3 $\,$ $Z_1,\ldots,Z_n \sim \mathsf{Pois}(\lambda^+)$ // poissonised with increased λ

There is a coupling $(Y'_i,L'_i,Z'_i)_{i\in[n]}$ of $(Y_i)_{i\in[n]},$ $(L_i)_{i\in[n]},$ $(Z_i)_{i\in[n]}$ such that

with probability 1 – $o(1)$: $Y'_i \leq L'_i \leq Z'_i$ for all $i \in [n]$.

Theorem **Coupling of Poissonised and Regular Balls into Bins**

Let $n, \lambda, \lambda^+, \lambda^-$ be as before. Consider three "balls into bins" models:

$$
(Y'_i): \frac{\sum_{i=1}^{n} \binom{n}{i} \binom{n}{i} \binom{n}{i}}{\sum_{i=1}^{n} \binom{n}{i} \binom{n}{i}} \binom{n}{i} \binom{n}{i} \binom{n}{i}}{\sum_{i=1}^{n} \binom{n}{i} \binom{n}{i}} \binom{n}{i} \binom{n}{i} \binom{n}{i}} \binom{n}{i} \binom{n}{i} \binom{n}{i} \binom{n}{i} \binom{n}{i} \binom{n}{i} \binom{n}{i} \binom{n}{i} \binom{n}{i} \binom{n}{i}} \binom{n}{i} \bin
$$

Proof.

\n $Let X_1, X_2, \ldots \sim \mathcal{U}([n]), M^- \sim \text{Pois}(\lambda^- n), M^+ \sim \text{Pois}(\lambda^+ n).$ \n	\n This is indeed a coupling as claimed:\n $Y_i' := \{j \in [M^-] \mid X_j = i\} \text{ for } i \in [n].$ \n	\n $L_i' := \{j \in [m^-] \mid X_j = i\} \text{ for } i \in [n].$ \n	\n $L_i' := \{j \in [m^+] \mid X_j = i\} \text{ for } i \in [n].$ \n	\n $L_i' := \{j \in [M^+] \mid X_j = i\} \text{ for } i \in [n].$ \n	\n $L_i' := \{j \in [M^+] \mid X_j = i\} \text{ for } i \in [n].$ \n	\n $L_i' := \{j \in [M^+] \mid X_j = i\} \text{ for } i \in [n].$ \n	\n $L_i' := \{j \in [M^+] \mid X_j = i\} \text{ for } i \in [n].$ \n	\n $L_i' := \{j \in [M^+] \mid X_j = i\} \text{ for } i \in [n].$ \n	\n $L_i' := \{j \in [M^+] \mid X_j = i\} \text{ for } i \in [n].$ \n	\n $L_i' := \{j \in [M^+] \mid X_j = i\} \text{ for } i \in [n].$ \n	\n $L_i' := \{j \in [M^+] \mid X_j = i\} \text{ for } i \in [n].$ \n	\n $L_i' := \{j \in [M^+] \mid X_j = i\} \text{ for } i \in [n].$ \n
---	---	--	--	--	--	--	--	--	--	--	--	--

Let $n, \lambda, \lambda^+, \lambda^-$ be as before. Consider three "balls into bins" models:

 1 $Y_1, \ldots, Y_n \sim \mathsf{Pois}(\lambda^-)$ // poissonised with reduced λ

2 L_1, \ldots, L_n arising from regular $m = \lambda n$ balls into *n* bins

3 $\,$ $Z_1,\ldots,Z_n \sim \mathsf{Pois}(\lambda^+)$ // poissonised with increased λ

There is a coupling $(Y'_i,L'_i,Z'_i)_{i\in[n]}$ of $(Y_i)_{i\in[n]},$ $(L_i)_{i\in[n]},$ $(Z_i)_{i\in[n]}$ such that

with probability 1 – $o(1)$: $Y'_i \leq L'_i \leq Z'_i$ for all $i \in [n]$.

Coupling of Poissonised and Regular Balls into Bins

$$
(Y'_i): \frac{\sum_{i=1}^{n} \binom{n}{i} \binom{n}{i} \binom{n}{i}}{\sum_{i=1}^{n} \binom{n}{i} \binom{n}{i}} \binom{n}{i} \binom{n}{i} \binom{n}{i}}{\sum_{i=1}^{n} \binom{n}{i} \binom{n}{i}} \binom{n}{i} \binom{n}{i}} \binom{n}{i} \binom{n}{i} \binom{n}{i} \binom{n}{i}} \binom{n}{i} \binom{n}{i} \binom{n}{i} \binom{n}{i} \binom{n}{i}} \binom{n}{i} \binom{n}{i} \binom{n}{i} \binom{n}{i} \binom{n}{i} \binom{n}{i}} \binom{n}{i} \bin
$$

Application involving Monotonous Functions

Let $f: \mathbb{N}_0^n \to \mathbb{R}$ be non-decreasing in each argument. Examples:

n maximum load of a bin

Theorem

- longest run of non-empty bins
- collision number // numbers of pairs of co-located balls

For some bound $B \in \mathbb{R}$ let

\n- $$
p^- := \Pr[f((Y_i)_{i \in [n]}) \geq B]
$$
 // easier to compute
\n- $p := \Pr[f((L_i)_{i \in [n]}) \geq B]$ // what we want
\n

$$
\blacksquare \ \ p^+ := \Pr[f((Z_i)_{i \in [n]}) \geq B] \ \text{# easier to compute}
$$

Then
$$
p \in [p^- - o(1), p^+ + o(1)].
$$

Back to Bloom Filters

Exercise:

Analyse Bloom filters in a "Poissonised" model and discuss how the results can be transferred to the exact model.

Content

1. [Coupling](#page-2-0)

- **[Motivating Examples](#page-2-0)**
- **[Definition](#page-8-0)**

2. [Balls into Bins](#page-18-0)

3. [Poissonisation](#page-26-0)

4. [Poisson Point Process](#page-43-0)

What about "Balls into Continuous Domain"?

Setting

- *D* is space of finite measure
- **n** \in N // number of balls
- $X_1, \ldots, X_m \sim \mathcal{U}(D)$ // randomly thrown into *D*

What about "Balls into Continuous Domain"?

Setting

- *D* is space of finite measure
- **n** \in N // number of balls
- *X*1, . . . , *X^m* ∼ U(*D*) // randomly thrown into *^D*

Note: If $D = \{1, \ldots, n\}$ we have discrete balls into bins.

What about "Balls into Continuous Domain"?

Setting

- *D* is space of finite measure
- **n** \in N // number of balls
- *X*1, . . . , *X^m* ∼ U(*D*) // randomly thrown into *^D*

Note: If $D = \{1, \ldots, n\}$ we have discrete balls into bins.

Same annoying issue

If $B_1, B_2 \subseteq D$ with $B_1 \cap B_2 = \emptyset$ are two "bins" then the numbers L_1 and L_2 of "balls" in B_1 and B_2 are correlated.

Similar elegant solution

- We can "Poissonise" the setting.
- But we drop "balls into bins" terminology:
	- we allow infinite domains *D*
	- we allow infinite number of balls

General Definition

Let *D* be a measurable space with measure μ . *||* e.g. $D = \mathbb{R}^2$ and $\mu =$ area" The Poisson point process with parameter $\lambda \in \mathbb{R}_{\geq 0}$ is a random set *P* ⊆ *D* such that

$$
|P \cap B| \sim \text{Pois}(\lambda \mu(B)) \text{ for any } B \subseteq D \text{ with } \mu(B) < \infty
$$

2 $|P \cap B_1|$ and $|P \cap B_2|$ are independent whenever $B_1 \cap B_2 = \emptyset$

General Definition

Let *D* be a measurable space with measure μ . *||* e.g. $D = \mathbb{R}^2$ and $\mu =$ area" The Poisson point process with parameter $\lambda \in \mathbb{R}_{\geq 0}$ is a random set *P* ⊆ *D* such that

$$
|\hspace{-.1em}1\hspace{-.1em}1| \hspace{.1em}|\hspace{.1em}P\cap B|\sim \mathrm{Pois}(\lambda\mu(B))\text{ for any }B\subseteq D\text{ with }\mu(B)<\infty
$$

2 $|P \cap B_1|$ and $|P \cap B_2|$ are independent whenever $B_1 \cap B_2 = \emptyset$

Equivalent Definition if $\mu(D) < \infty$

Example
$$
M \sim \text{Pois}(\lambda \mu(D))
$$

■ sample $X_1, \ldots, X_M \sim \mathcal{U}(D)$

Then $P \stackrel{d}{=} \{X_1, X_2, \ldots, X_M\}.$

General Definition

Let *D* be a measurable space with measure μ . *||* e.g. $D = \mathbb{R}^2$ and $\mu =$ area" The Poisson point process with parameter $\lambda \in \mathbb{R}_{\geq 0}$ is a random set $P \subseteq D$ such that

 $|P \cap B|$ ∼ Pois $(\lambda \mu(B))$ for any $B \subseteq D$ with $\mu(B) < \infty$

2 $|P \cap B_1|$ and $|P \cap B_2|$ are independent whenever $B_1 \cap B_2 = \emptyset$

Construction as a limit

- subdivide *D* into pieces of measure ε
- let each piece contain a point with probability $\varepsilon \lambda$
- **consider the limit for** $\varepsilon \to 0$

General Definition

Let *D* be a measurable space with measure μ . *||* e.g. $D = \mathbb{R}^2$ and $\mu =$ area" The Poisson point process with parameter $\lambda \in \mathbb{R}_{\geq 0}$ is a random set *P* ⊆ *D* such that

$$
|P \cap B| \sim \text{Pois}(\lambda \mu(B)) \text{ for any } B \subseteq D \text{ with } \mu(B) < \infty
$$

2 $|P \cap B_1|$ and $|P \cap B_2|$ are independent whenever $B_1 \cap B_2 = \emptyset$

Equivalent Definition if $D = \mathbb{R}_{\geq 0}$ (where μ is the Borel measure)

 $\textsf{Proof~idea:}~ \Pr[\min P > t] = \Pr[|P \cap [0,t]| = 0] = \Pr_{X \sim \text{Pois}(\lambda t)}[X=0] = e^{-\lambda t} \stackrel{\text{def}}{=} \Pr[Z_1 > t].$

Conclusion

Coupling

- **e** embedding of two random variables *X* and *Y* into a common probability space
- relationships between distributions of *X* and *Y* become visible as relationships between outcomes of *X* ′ and *Y* ′

Balls into Bins

standard language when *m* objects are randomly assigned to *n* other objects

Poissonisation

- the act of replacing multinomially distributed (L_1,\ldots,L_n) with independent Poisson random variables (L'_1,\ldots,L'_n)
- often results in model with nicer mathematical properties
- **often formally justifiable**

Poisson Point Process

important model where points from a continuous space occur independently from each other with fixed density λ

Anhang: Mögliche Prüfungsfragen I

- Was ist ein Coupling?
	- Nenne Beispiele in denen ein Coupling nützlich sein kann.
	- Was bedeutet Gleichheit in Verteilung?
- Wo in der Vorlesung haben wir (implizit oder explizit) Balls-into-Bins-Prozesse betrachtet?
- **Poissonisierung:**
	- Welche lästige Eigenschaft hat die Verteilung der Beladungen in Balls-into-Bins Prozessen? Was ist in einem poissonisierten Modell anders?
	- Wie lässt sich in einem Balls-into-Bins Setting die Poissonverteilung wiederfinden?
	- Wie haben wir das poissonisierte und das reguläre Balls-into-Bins-Modell miteinander in Verbindung gebracht? Inwiefern lässt sich ein Wechsel zwischen den Modellen formal rechtfertigen?
- **Poisson-Punktprozesse**
	- Wie sind Poisson-Punktprozesse definiert?

