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Terminology

D: Universe (or domain) of keys
(strings, integers, game states in chess)

S ⊆ D: set of n keys (possibly with associated data)
h : D → R: hash function, range usually R = [m]

α = n
m : load factor, α = O(1)
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set S of
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Goal
Operations in time t with E[t] = O(1).
Randomness comes from the hash function.

Ideal Hash Functions
Every function from D to R is equally likely to be h.
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Naive Idea
Let RD denote all functions from D to R. We pick h ∼ U(RD).

There are |R| options for the hash of each x ∈ D

Hence: |RD| = |R||D|

x ∈ D x1 x2 x3 . . . x|D|
h(x) ∈ R ? ? ? . . . ?

Why h ∼ U(RD) is desirable

h ∼ U(RD) ⇔ ∀x1, . . . , xn ∈ D : h(x1), h(x2), . . . , h(xn) are independent and uniformly random in R.
↪→ independence is very useful in an analysis

In particular: ∀x1, . . . , xn ∈ D,∀i1, . . . , in : Pr
h∼U(RD)

[h(x1) = i1 ∧ . . . ∧ h(xn) = in] = |R|−n.

Why h ∼ U(RD) is unwieldy

log2(|R||D|) = |D| · log2(|R|) bits to store h ∼ U(RD) ⇝ for D = {0, 1}64: more than 264 bits.
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Cryptographic Hash Function
A collision resistant function such as h = sha256sum

$ sha256sum myfile.txt

018a7eaee8a...3e79043e21ab4 myfile.txt

Range R = {0, 1}256. It is hard to find x , y with h(x) = h(y).
↪→ Files with equal hashes are likely the same.

Cryptographic Pseudorandom Function
A function f : Seeds × D → R where log2 |Seeds| is small
and no efficient algorithm can distinguish

f (s, ·) for s ∼ U(Seeds) and

h(·) for h ∼ U(RD),

except with negligible probability.

Hash Function in Algorithm Engineering
typically small range |R| = O(n)
↪→ cannot be collision resistant

should behave like h ∼ U(RD) in my application

should be fast to evaluate

adversarial settings rarely considered, although:

! HashDoS is a thing.
However: Hash function and hash
values need not be public.

⊥ ⊥

!#b zy yol %$! m3411i {r3

⊥ ⊥ ⊥

!#b

zy

11i

yol

%$!

{r3
m34
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MurmurHash
Bitshifts, Magic Constants, . . .
uint32_t murmur3_32(const uint8_t* key,

size_t len, uint32_t seed) {

uint32_t h = seed;

uint32_t k;

for (size_t i = len >> 2; i; i--) {

memcpy(&k, key, sizeof(uint32_t));

key += sizeof(uint32_t);

h ^= murmur_32_scramble(k);

h = (h << 13) | (h >> 19);

h = h * 5 + 0xe6546b64;

}

[...]

return h;

}

static inline uint32_t murmur_32_scramble(uint32_t k) {

k *= 0xcc9e2d51;

k = (k << 15) | (k >> 17);

k *= 0x1b873593;

return k;

}

Usage

For R = [m], pick seed ∼ U({0, 1}32) and use

h(x) = murmur3_32(x , seed) mod m.

(should avoid modulo in practice, see https://github.com/lemire/fastrange)

Does h behave like a random function?
YES, with respect to many statistical tests.
see https://github.com/aappleby/smhasher

NO, HashDoS attacks are known.
see https://en.wikipedia.org/wiki/MurmurHash#Vulnerabilities

MAYBE, for your favourite application.
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h = (h << 13) | (h >> 19);

h = h * 5 + 0xe6546b64;

}

[...]

return h;

}

static inline uint32_t murmur_32_scramble(uint32_t k) {

k *= 0xcc9e2d51;

k = (k << 15) | (k >> 17);

k *= 0x1b873593;

return k;

}

Usage
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Does h behave like a random function?
YES, with respect to many statistical tests.
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NO, HashDoS attacks are known.
see https://en.wikipedia.org/wiki/MurmurHash#Vulnerabilities

MAYBE, for your favourite application.
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Simple Uniform Hashing Assumption (SUHA)

We have access to h ∼ U(RD) for any R and D.

h takes O(1) time to evaluate.

h takes no space to store.

How to Analyse your Algorithm
1 Assume SUHA holds.

2 Analyse algorithm under SUHA.

3 Hope that algorithm still works with real hash
functions.

SUHA is “wrong” but adequate
Modelling assumption.
↪→ like e.g. ideal gas law in physics

Excellent track record in non-adversarial
settings.
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Analyse Algorithm using Universal Hashing

1 Define family H ⊆ RD of hash functions with log(|H|) not too large.
↪→ sampling and storing h ∈ H is cheap

2 Proof that algorithm with h ∼ U(H) has good expected behaviour.

Remarks
Mathematical structure of H must be amenable to analysis.

Rigorously covers non-adversarial settings.

Proofs often difficult.
↪→ Wider theory practice gap than with SUHA.
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How to Analyse your Algorithm using Cryptographic Assumptions
1 Analyse algorithm under SUHA.
2 Actually use cryptographic pseudorandom function f .

Case 1: Everything still works. Great! :-)
Case 2: Something fails.
⇒ Your use case can tell the difference between f and true randomness.
↪→ The cryptographers said this is impossible. E

Should we use cryptographic pseudorandom functions?

YES. Algorithms become robust even in some adversarial settings.
↪→ e.g. Python, Haskell, Ruby, Rust use SipHash by default

https://en.wikipedia.org/wiki/SipHash

NO. Too slow in high-performance settings.

Hash Function MiB / sec

SipHash 944
Murmur3F 7623
xxHash64 12109

(source: https://github.com/rurban/smhasher)
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Search Time under Chaining

Tchaining(n,m,H) =

max
S⊆D
|S|=n

max
x∈D

Eh∼U(H)

[

1 + |{y ∈ S | h(y) = h(x)}|

]
! Key set is worst case. Only h ∈ H is random. Key set is fixed before h is chosen.

⊥ ⊥

♢ △

♣

♠ ♡

⋆

†

♢ △
♠

♡
†

♣ ⋆

m buckets

linked lists

set S of
n keys

Theorem: Hash Table with Chaining under SUHA

If H = [m]D then Tchaining(n,m,H) ≤ 2 + α = O(1) if α ∈ O(1).
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Theorem: Hash Table with Chaining under SUHA

Let H = [m]D , S ⊆ D with |S| = n and x ∈ D then

Eh∼U(H)

[
1 + |{y ∈ S | h(y) = h(x)}|

]
≤ 2 + α

Proof.

Eh∼U(H)

[
1 + |{y ∈ S | h(y) = h(x)}|

]
= Eh∼U(H)

[
1 +

∑
y∈S

[h(y) = h(x)]
]

= 1 +
∑
y∈S

Eh∼U(H)

[
[h(y) = h(x)]

]
= 1 +

∑
y∈S

Prh∼U(H)[h(y) = h(x)]

≤ 1 + 1 +
∑

y∈S\{x}

Prh∼U(H)[h(y) = h(x)]

= 2 +
∑

y∈S\{x}

1
m

≤ 2 +
n
m

= 2 + α.
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Definition: c-universal hash family

A class H ⊆ [m]D is called c-universal if: ∀x ̸= y ∈ D : Pr
h∼U(H)

[h(x) = h(y)] ≤ c
m
.

Reminder (?): Finite Fields
Let Fp = {0, . . . , p − 1} for a prime number p. Then (Fp,×,⊕) is a field where

a × b := (a · b) mod p and a ⊕ b := (a + b) mod p.

In particular (F∗
p := Fp \ {0},×) is a group.

The class of Linear Hash Functions
Assume D ⊆ Fp for prime p. Then the following class is 1-universal:

Hlin
p,m := {x 7→ ((a × x)⊕ b) mod m | a ∈ F∗

p , b ∈ Fp}.
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modm
p = 17
m = 5

What about just x 7→ x mod m?
Nothing is random. We have h(0) = h(5) but this should hold only with probability 1/5.
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m = 5
a = 3 // ∼ U(F∗
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Example: Do 2 and 3 collide? Picture {(a × 2, a × 3) | a ∈ F∗

p}.
Pra∼U(F∗
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16 > 3
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5 .
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Also note: h(0) = 0 is not random.
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Mathematically “cleaner”. Proof of 1-universality on next slide.
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Proof that Hlin
p,m := {x 7→ ((a × x)⊕ b) mod m | a ∈ F∗

p, b ∈ Fp} is 1-universal.

Let x ̸= y ∈ Fp. (To show: Prh∼Hlin
p,m

[h(x) = h(y)] ≤ 1/m.)

Define
c = (a × x)⊕ b
d = (a × y)⊕ b

⇔
(

c
d

)
=

(
x 1
y 1

)
︸ ︷︷ ︸

regular!

(
a
b

)
.

The mapping (a, b) 7→ (c, d) is a bijection (for every x ̸= y )
from F

∗

p × Fp → Fp × Fp

\ {(b, b) | b ∈ Fp}

Define bad set B := {(c, d) ∈ P | c mod m = d mod m}.
↪→ from picture: |B|

|P| ≤
1
m .

c

d

0 p-1
0

p-1
(p = 13,m = 4)

P := Fp × Fp \ {(b, b) | b ∈ Fp}

Pra,b∼U(F∗
p ×Fp)[h(x) = h(y)] = Pr

a,b
[((a × x)⊕ b) mod m = ((a × y)⊕ b) mod m]

= Pr
a,b
[c mod m = d mod m] = Pr

a,b
[(c, d) ∈ B] = Pr

c,d∼U(P)
[(c, d) ∈ B] =

|B|
|P|

≤ 1
m
.
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d
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(
a
b

)
.

The mapping (a, b) 7→ (c, d) is a bijection (for every x ̸= y )
from F∗p × Fp → P. // (a, b) ∼ U(F∗

p × Fp) ⇒ (c, d) ∼ U(P)

Define bad set B := {(c, d) ∈ P | c mod m = d mod m}.
↪→ from picture: |B|

|P| ≤
1
m .

c

d

0 p-1
0

p-1
(p = 13,m = 4)

P := Fp × Fp \ {(b, b) | b ∈ Fp}

Pra,b∼U(F∗
p ×Fp)[h(x) = h(y)] = Pr

a,b
[((a × x)⊕ b) mod m = ((a × y)⊕ b) mod m]
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a,b
[c mod m = d mod m] = Pr

a,b
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|B|
|P|
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m
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Theorem
If H ⊆ [m]D is a c-universal hash family then Tchaining(n,m,H) ≤ 2 + cα = O(1) if α ∈ O(1) and c ∈ O(1).

Proof: Mostly the same.

∀S ⊆ [D],∀x ∈ D : Eh∼U(H)

[
1 + |{y ∈ S | h(y) = h(x)}|

]

≤ . . . ≤ 2 +
∑

y∈S\{x}

Prh∼U(H)[h(y) = h(x)]

= 2 +
∑

y∈S\{x}

c
m

≤ 2 +
cn
m

= 2 + cα.
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Examples for Universal Hash Families

“((ax + b) mod p) mod m” is 1-universal

as discussed: D = Fp, R = [m],

Hlin
p,m := {x 7→ ((a × b)⊕ b) mod m | a ∈ F∗

p , b ∈ Fp}

“(ax mod p) mod m” is only 2-universal:

D = Fp, R = [m],

H = {x 7→ (a × b) mod m | a ∈ F∗
p}

Multiply-Shift is 1-universal:

D = {0, . . . , 2w − 1}, R = {0, . . . , 2ℓ − 1}

H = {x 7→ ⌊((a · x + b) mod 22w)/22w−ℓ⌋ |

a, b ∈ {0, . . . , 22w − 1}}.

Selling point of multiply shift:

“x mod 22w ” drops some higher order bits

“⌊x/22w−ℓ⌋ drops some lower order bits

No division or modulo operation needed!

For w = 32 (taken from Thorup 2015):

uint32_t hash(uint32_t x, uint32_t l,

uint64_t a, uint64_t b) {

return (a * x + b) >> (64-l);

}
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1. Conceptions: What is a Hash Function?
Hashing in the Wild
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♢

△

♠ ♡ †♣ ⋆

S : set of n keys
m : # of buckets
α = n/m

Operations
For key x probe buckets h(x),h(x) + 1,h(x) + 2, . . . (mod m).

Insert. Put x into first empty bucket.

Lookup. Look for x , abort when encountering empty bucket.

Delete. Lookup and remove x and ! check if a key to the
right wants to move into the hole.a

↪→ For details see https://en.wikipedia.org/wiki/Linear_probing

aAlternative implementations leaves special tombstones markers.

Running Times
Lookup(x ∈ S): At most x ’s insertion time.

Lookup(x /∈ S): At most the time it would take to
insert x now.

Delete(x ∈ S): At most the time it would take to
insert y /∈ S with h(y) = h(x).

↪→ It suffices to understand insertion times!

Theorem: Linear Probing under SUHA
Let Tn,m be the random insertion time into a linear
probing hash table. If 1

2 ≤ α < 1 then under SUHA we
have

E[Tn,m] =

O( 1
(1−α)2 ) =

O(1).

(not here)
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Delete. Lookup and remove x and ! check if a key to the
right wants to move into the hole.a

↪→ For details see https://en.wikipedia.org/wiki/Linear_probing

aAlternative implementations leaves special tombstones markers.

Running Times
Lookup(x ∈ S): At most x ’s insertion time.

Lookup(x /∈ S): At most the time it would take to
insert x now.

Delete(x ∈ S): At most the time it would take to
insert y /∈ S with h(y) = h(x).

↪→ It suffices to understand insertion times!

Theorem: Linear Probing under SUHA
Let Tn,m be the random insertion time into a linear
probing hash table. If 1

2 ≤ α < 1 then under SUHA we
have

E[Tn,m] =

O( 1
(1−α)2 ) =

O(1).

(not here)

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References
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1. Conceptions: What is a Hash Function?
Hashing in the Wild
What should a Theorist do?

2. Use Case 1: Hash Table with Chaining
Using SUHA
Using Universal Hashing

3. Use Case 2: Linear Probing
Using SUHA
Using Universal Hashing

4. Conclusion

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References
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Chernoff
For X ∼ Bin(n, p) and δ ∈ [0, 1] we have Pr[X ≥ (1 + δ)E[X ]] ≤ exp(−δ2E[X ]/3).

Lemma: Pr[≥ k hits in segment of length k ]

range of k buckets (wlog i = 1)

X ≥ k keys hashing to range

i+ki

Let k ∈ N and X = |{y ∈ S | h(y) ∈ {1, . . . , k}}|.

Then Pr
h∼U(RD)

[X ≥ k ] ≤ exp(−(1 − α)2k/3).

Proof
Let S = {x1, . . . , xn} and Xi = [h(xi) ∈ {1, . . . , k}] ∼ Ber( k

m ).
Then X =

∑
i∈[n] Xi ∼ Bin(n, k

m ) with E[X ] = kn
m = αk .

Pr[X ≥ k ] = Pr[X ≥ 1
αE[X ]]

= Pr[X ≥ (1 + 1−α
α )E[X ]]

≤ exp(−( 1−α
α )2αk/3)

≤ exp(−(1 − α)2k/3).

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References
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Proof: Expected LP-Insertion Time under SUHA is O(1)

E[T ]

≤ E[B] =
∑
k≥1

k · Pr[B = k ] =
∑
k≥1

k · Pr
[ k−1⋃

d=0

Ah(x)−d,h(x)−d+k−1

]
(1)
≤

∑
k≥1

k ·
k−1∑
d=0

Pr
[
Ah(x)−d,h(x)−d+k−1

]
(2)
=

∑
k≥1

k · k · Pr[A1,k ]

(3)
≤

∑
k≥1

k2 · Pr[|{y ∈ S | h(y) ∈ {1, . . . , k}| ≥ k ]

(4)
≤

∑
k≥1

k2 · exp(−(1 − α)2k/3) = O(1).

Wolfram Alpha gives:
∫ ∞

0
k2 exp(−(1 − α)2k/3) =

54
(1 − α)6

.

x = occupied

T + 1 steps

T

B

Au,v : {u, v} is maximal occupied block:
u v. . . . . .

Reasoning:

(1) Union Bound.
(2) h(x) is independent of keys in the

table and hash distribution is invariant
under cyclic shifts.

(3) Note: Keys stored in block cannot
come in from the left.

(4) Chernoff argument from previous
slide.

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References
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54
(1 − α)6

.

x = occupied

T + 1 steps

T

B

Au,v : {u, v} is maximal occupied block:
u v. . . . . .

Reasoning:

(1) Union Bound.
(2) h(x) is independent of keys in the

table and hash distribution is invariant
under cyclic shifts.

(3) Note: Keys stored in block cannot
come in from the left.

(4) Chernoff argument from previous
slide.

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

25/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering



Proof: Expected LP-Insertion Time under SUHA is O(1)

E[T ] ≤ E[B] =
∑
k≥1

k · Pr[B = k ] =
∑
k≥1

k · Pr
[ k−1⋃

d=0

Ah(x)−d,h(x)−d+k−1

]
(1)
≤

∑
k≥1

k ·
k−1∑
d=0

Pr
[
Ah(x)−d,h(x)−d+k−1

]
(2)
=

∑
k≥1

k · k · Pr[A1,k ]

(3)
≤

∑
k≥1

k2 · Pr[|{y ∈ S | h(y) ∈ {1, . . . , k}| ≥ k ]

(4)
≤

∑
k≥1

k2 · exp(−(1 − α)2k/3) = O(1).

Wolfram Alpha gives:
∫ ∞

0
k2 exp(−(1 − α)2k/3) =

54
(1 − α)6

.

x = occupied

T + 1 steps

T

B

Au,v : {u, v} is maximal occupied block:
u v. . . . . .

Reasoning:

(1) Union Bound.
(2) h(x) is independent of keys in the

table and hash distribution is invariant
under cyclic shifts.

(3) Note: Keys stored in block cannot
come in from the left.

(4) Chernoff argument from previous
slide.

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

25/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering



1. Conceptions: What is a Hash Function?
Hashing in the Wild
What should a Theorist do?

2. Use Case 1: Hash Table with Chaining
Using SUHA
Using Universal Hashing

3. Use Case 2: Linear Probing
Using SUHA
Using Universal Hashing

4. Conclusion

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

26/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Content



(Mutual / Collective) Independence
A family E of events is independent if ∀k ∈ N and
distinct E1, . . . ,Ek ∈ E we have

Pr
[ k⋂

i=1

Ei

]
=

k∏
i=1

Pr[Ei ].

A family X of discrete random variables is
independent if ∀k ∈ N, distinct X1, . . . ,Xk ∈ X
and all x1, . . . , xk we have

Pr
[ k∧

i=1

Xi = xi

]
=

k∏
i=1

Pr[Xi = xi ].

Pairwise Independence
A family of events is pairwise independent if any
subfamily of size 2 is independent.

A family of random variables is pairwise
independent if any subfamily of size 2 is
independent.

d-wise Independence
A family of events is d-wise independent if any
subfamily of size at most d is independent.

A family of random variables is d-wise
independent if any subfamily of size at most d is
independent.
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Definition: d-Independent Hash Family
A family H ⊆ RD of hash functions is d-independent if for distinct
x1, . . . , xd ∈ D and any i1, . . . , id ∈ R: (grey is implied by black)

Pr
h∼U(H)

[h(x1) = i1 ∧ . . . ∧ h(xd) = id ] =
d∏

j=1

Pr
h∼U(H)

[h(xj) = ij ] = |R|−d .

Alternative Definition
H is d-independent if for h ∼ U(H)

the family (h(x))x∈D of random variables
is d-independent and
h(x) ∼ U(R) for each x ∈ D.

Theorem
Let D = R = F be a finite field. Then

H := {x 7→
d−1∑
i=0

aix i | a0, . . . , ad−1 ∈ F}

is a d-independent family.
Note: H ⊆ FF ⇝ not yet useful.

Corollary: Smaller Ranges (proof omitted)
If m divides |F|, then adding “modm” gives a
d-independent family H′ ⊆ [m]F.
If m does not divide |F|, then adding “modm” gives a
family H′ ⊆ [m]F such that for h ∼ U(H′) the family
(h(x))x∈F is d-independent but only approximately
uniformly distributed in [m].
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Proof: H := {x 7→
∑d−1

i=0 aix i | a0, . . . , ad−1 ∈ F} is d-independent

Let x1, . . . , xd ∈ F be distinct keys and i1, . . . id ∈ F arbitrary.
↪→ to show : Prh∼U(H)[∀j ∈ [d] : h(xj) = ij ] = |F|−d .
For h ∈ H (given via a0, . . . , ad−1) the following is equivalent:

h(x1) = i1
h(x2) = i2

...
h(xd) = id

⇐⇒

a0 + a1x1 + · · ·+ ad−1xd−1
1 = i1

a0 + a1x2 + · · ·+ ad−1xd−1
2 = i2

...
a0 + a1xd + · · ·+ ad−1xd−1

d = id

⇐⇒


1 x1 x2

1 . . . xd−1
1

1 x2 x2
2 . . . xd−1

2
...

. . .
...

1 xd x2
d . . . xd−1

d


︸ ︷︷ ︸

Vandermonde matrix M ⇒ regular

·


a0

a1
...

ad−1

 =


i1
i2
...
id



Exactly one vector a⃗ = M−1 · i⃗ solves the equation.

⇒ Prh∼U(H)[∀j : h(xj) = ij ] = Pra0,...,ad−1∼U(F) [⃗a = M−1 · i⃗ ] = |F|−d .
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(Tricky) Exercise
Let d be even and X1, . . . ,Xn ∼ Ber(p) a d-independent family of random variables with p = Ω(1/n).
Let X =

∑n
i=1 Xi . Then for any δ > 0 we have

Pr[X − E[X ] ≥ δE[X ]] = O(δ−dE[X ]−d/2).

Remark: Weaker than Chernoff, stronger than Chebyshev

Chebycheff gives Pr[X − E[X ] ≥ δE[X ]] ≤ 1−p
δ2E[X ] . (requires d = 2)

↪→ uses that Var(X1 + · · ·+ Xn) = Var(X1) + · · ·+ Var(Xn) for pairwise independent X1, . . . ,Xn.

Chernoff gave Pr[X − E[X ] ≥ δE[X ]] ≤ exp(−δ2E[X ]/3). (requires d = n).
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Lemma (last slide)

For d-independent X1, . . . ,Xn ∼ Ber(p) and X =
∑

i∈[n] Xi we have Pr[X ≥ (1 + δ)E[X ]] = O(δ−dE[X ]−d/2).

Lemma: ≥ k hits in segment of length k

range of k buckets (wlog i = 1)

X ≥ k keys hashing to range

i+ki

Let H be a d-independent hash family and h ∼ U(H).
Let k ∈ N and X = |{y ∈ S | h(y) ∈ {1, . . . , k}}|.

Then Pr[X ≥ k ] ≤ O((1 − α)−d k−d/2).

Proof
Let S = {x1, . . . , xn} and
Xi = [h(xi) ∈ {1, . . . , k}] ∼ Ber( k

m ).
Then X =

∑
i∈[n] Xi fits the Lemma with E[X ] = kn

m = αk .

Pr[X ≥ k ] = Pr[X ≥ 1
αE[X ]]

= Pr[X ≥ (1 + 1−α
α )E[X ]]

= O(
(

1−α
α

)−d
(αk)−d/2)

≤ O((1 − α)−d k−d/2). (using α ≤ 1)
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Theorem: Linear Probing with d-independence
Under the same conditions as before, except with 9-independent
hash functions, the insertion time Tn,m for linear probing satisfies:

E[Tn,m] = O(1)

Proof Sketch

E[T ] ≤ E[B] ≤ . . .

(1)
≤

∑
k≥1

k2 · Pr[|{y ∈ S | h(y) ∈ {1, . . . , k}}| ≥ k ]

(2)
≤

∑
k≥1

k2 · O((1 − α)−8k−8/2)

≤
∑
k≥1

k−2 · O((1 − α)−8)

(3)
= π2

6 O((1 − α)−8) = O(1).

x = occupied

T + 1 steps

T

B

Au,v : {u, v} is a maximal occupied block:
u v. . . . . .

Reasoning:

(1) Same as before, except we have to condition on
h(x) and may only use 8-independence in the
following. (this is the hand wavy part!)

(2) Concentration bound from previous slide for
d = 8.

(3) If interested, see 3Blue1Brown video:
https://www.youtube.com/watch?v=d-o3eB9sfls
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Much more is known about insertion times of linear probing:

Any 5-independent family gives O( 1
(1−α)2 ).

↪→ A. Pagh, R. Pagh, and Ruzic 2011

An (artificially bad) 4-independent family gives Ω(log n).
↪→ Pătraşcu and Thorup 2016

A (well-designed) 4-independent family gives O( 1
(1−α)2 ).

↪→ Puatracscu and Thorup 2013
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Final Remarks on Linear Probing + Universal Hashing



Storing Elements Naively is Inefficient (Cleary 1984)
Example: If D = [2n] and |S| = n, then bitvector of 2n bits suffices.
↪→ Much smaller than Array with O(n) entries of log2 |D| bits!
In General: Should aim for log2

(|D|
n

)
bits rather than n · log2 |D|.

Tabulation Hashing offers Chernoff-type Concentration Bounds (Pǎtraşcu and Thorup 2012)
Pairs good practical performance with rigorous mathematical guarantees.

In Practice: Linear Probing can be Supercharged
E.g. using SIMD instructions. Don’t implement high-performance hash tables yourself.

In Theory: Go Beyond Linear Probing (Bender, Farach-Colton, et al. 2022; Bender, Kuszmaul, and Zhou 2024)

Goals: Improve worst-case access times, improve running time for α → 1.
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We Glossed over many Modern Insights



Technical Takeaway: Performance of Hash Tables
For both an ideal hash function (SUHA) and a random hash function from a suitable universal class, a hash
table using linear probing or chaining provably has an expected running time of O(1) per operation.

Non-Technical Takeaway: Approaches to analyse hashing based algorithms

algorithm or data structure
using hashing

analysis using SUHA

hash function from
universal class

(possibly fast)

high performance
hash function

(fast, not analysable)

analysis using
universal hashing

models

justifies &

deepens
understanding of

builds on

requires &

deepens
understanding of

can usecan use

rigorously
justifies

We’ll always use SUHA in the following.
Less probability theory, more algorithms!
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Was könnte eine Idealvorstellung einer Hashfunktion sein? Inwiefern wäre eine ideale Hashfunktion
nützlich? Was ist das Problem an dieser Vorstellung?

Was ist die Simple Uniform Hashing Assumption (SUHA)? Was spricht dafür diese Annahme zu treffen?
Welche Alternativen gibt es?

Inwiefern ist eine pseudozufällige Funktion mit kryptographischen Ununterscheidbarkeitsgarantien nützlich
für uns? Wie ist der Zusammenhang zur SUHA?*
Universelles Hashing:

Wie ist c-Universalität definiert?
Welche c-universellen Hashklasse haben wir kennengelernt? Wie haben wir die c-Universalität bewiesen?
Wie ist d-Unabhängigkeit für eine Hashklasse definiert?
Welche d-universelle Hashklasse haben wir kennengelernt?
Welcher Zusammenhang besteht zwischen d-Unabhängigkeit und c-Universalität? (Übungsaufgabe)
Chernoff Schranken sind für Summen unabhängiger Zufallsvariablen gedacht. Was kann man machen, wenn die
Zufallsvariablen nur d-unabhängig sind?*
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Anhang: Mögliche Prüfungsfragen I



Betrachten wir Hashing mit verketteten Listen:
Welche Schranke an die erwartete Einfügezeit haben wir bewiesen? Wie?
An welcher Stelle spielt die Verteilung der Hashfunktion eine Rolle?
Nenne eine hinreichende Eigenschaft, die eine universelle Hashklasse haben sollte, damit der Beweis
funktioniert.

Betrachten wir Hashing mit linearem Sondieren:
Welche Schranke an die erwartete Laufzeit haben wir bewiesen? Wie?
An welcher Stelle spielt die Verteilung der Hashfunktion eine Rolle?
Nenne eine hinreichende Eigenschaft, die eine universelle Hashklasse haben sollte, damit der Beweis
funktioniert.
Wie wir diese Eigenschaft ausgenutzt?*
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