
Probability and Computing – Classic Hash Tables

Stefan Walzer | WS 2024/2025

KIT – The Research University in the Helmholtz Association www.kit.edu

https://www.kit.edu

1. Conceptions: What is a Hash Function?
Hashing in the Wild
What should a Theorist do?

2. Use Case 1: Hash Table with Chaining
Using SUHA
Using Universal Hashing

3. Use Case 2: Linear Probing
Using SUHA
Using Universal Hashing

4. Conclusion

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

2/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Content

Terminology

D: Universe (or domain) of keys
(strings, integers, game states in chess)

S ⊆ D: set of n keys (possibly with associated data)
h : D → R: hash function, range usually R = [m]

α = n
m : load factor, α = O(1)

⊥ ⊥

♢ △

♣

♠ ♡

⋆

†

♢ △
♠

♡
†

♣ ⋆

m buckets

linked lists

set S of
n keys

Goal
Operations in time t with E[t] = O(1).
Randomness comes from the hash function.

Ideal Hash Functions
Every function from D to R is equally likely to be h.

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

3/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Hash Table with Chaining
e.g. std::unordered_set, java.util.HashMap

Terminology

D: Universe (or domain) of keys
(strings, integers, game states in chess)

S ⊆ D: set of n keys (possibly with associated data)
h : D → R: hash function, range usually R = [m]

α = n
m : load factor, α = O(1)

⊥ ⊥

♢ △

♣

♠ ♡

⋆

†

♢ △
♠

♡
†

♣ ⋆

m buckets

linked lists

set S of
n keys

Goal
Operations in time t with E[t] = O(1).
Randomness comes from the hash function.

Ideal Hash Functions
Every function from D to R is equally likely to be h.

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

3/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Hash Table with Chaining
e.g. std::unordered_set, java.util.HashMap

Terminology

D: Universe (or domain) of keys
(strings, integers, game states in chess)

S ⊆ D: set of n keys (possibly with associated data)
h : D → R: hash function, range usually R = [m]

α = n
m : load factor, α = O(1)

⊥ ⊥

♢ △

♣

♠ ♡

⋆

†

♢ △
♠

♡
†

♣ ⋆

m buckets

linked lists

set S of
n keys

Goal
Operations in time t with E[t] = O(1).
Randomness comes from the hash function.

Ideal Hash Functions
Every function from D to R is equally likely to be h.

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

3/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Hash Table with Chaining
e.g. std::unordered_set, java.util.HashMap

Naive Idea
Let RD denote all functions from D to R. We pick h ∼ U(RD).

There are |R| options for the hash of each x ∈ D

Hence: |RD| = |R||D|

x ∈ D x1 x2 x3 . . . x|D|
h(x) ∈ R ? ? ? . . . ?

Why h ∼ U(RD) is desirable

h ∼ U(RD) ⇔ ∀x1, . . . , xn ∈ D : h(x1), h(x2), . . . , h(xn) are independent and uniformly random in R.
↪→ independence is very useful in an analysis

In particular: ∀x1, . . . , xn ∈ D,∀i1, . . . , in : Pr
h∼U(RD)

[h(x1) = i1 ∧ . . . ∧ h(xn) = in] = |R|−n.

Why h ∼ U(RD) is unwieldy

log2(|R||D|) = |D| · log2(|R|) bits to store h ∼ U(RD) ⇝ for D = {0, 1}64: more than 264 bits.

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

4/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Ideal Hash Functions are Impractical

Naive Idea
Let RD denote all functions from D to R. We pick h ∼ U(RD).

There are |R| options for the hash of each x ∈ D

Hence: |RD| = |R||D|

x ∈ D x1 x2 x3 . . . x|D|
h(x) ∈ R ? ? ? . . . ?

Why h ∼ U(RD) is desirable

h ∼ U(RD) ⇔ ∀x1, . . . , xn ∈ D : h(x1), h(x2), . . . , h(xn) are independent and uniformly random in R.
↪→ independence is very useful in an analysis

In particular: ∀x1, . . . , xn ∈ D,∀i1, . . . , in : Pr
h∼U(RD)

[h(x1) = i1 ∧ . . . ∧ h(xn) = in] = |R|−n.

Why h ∼ U(RD) is unwieldy

log2(|R||D|) = |D| · log2(|R|) bits to store h ∼ U(RD) ⇝ for D = {0, 1}64: more than 264 bits.

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

4/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Ideal Hash Functions are Impractical

Naive Idea
Let RD denote all functions from D to R. We pick h ∼ U(RD).

There are |R| options for the hash of each x ∈ D

Hence: |RD| = |R||D|

x ∈ D x1 x2 x3 . . . x|D|
h(x) ∈ R ? ? ? . . . ?

Why h ∼ U(RD) is desirable

h ∼ U(RD) ⇔ ∀x1, . . . , xn ∈ D : h(x1), h(x2), . . . , h(xn) are independent and uniformly random in R.
↪→ independence is very useful in an analysis

In particular: ∀x1, . . . , xn ∈ D,∀i1, . . . , in : Pr
h∼U(RD)

[h(x1) = i1 ∧ . . . ∧ h(xn) = in] = |R|−n.

Why h ∼ U(RD) is unwieldy

log2(|R||D|) = |D| · log2(|R|) bits to store h ∼ U(RD) ⇝ for D = {0, 1}64: more than 264 bits.

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

4/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Ideal Hash Functions are Impractical

1. Conceptions: What is a Hash Function?
Hashing in the Wild
What should a Theorist do?

2. Use Case 1: Hash Table with Chaining
Using SUHA
Using Universal Hashing

3. Use Case 2: Linear Probing
Using SUHA
Using Universal Hashing

4. Conclusion

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

5/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Content

Cryptographic Hash Function
A collision resistant function such as h = sha256sum

$ sha256sum myfile.txt

018a7eaee8a...3e79043e21ab4 myfile.txt

Range R = {0, 1}256. It is hard to find x , y with h(x) = h(y).
↪→ Files with equal hashes are likely the same.

Cryptographic Pseudorandom Function
A function f : Seeds × D → R where log2 |Seeds| is small
and no efficient algorithm can distinguish

f (s, ·) for s ∼ U(Seeds) and

h(·) for h ∼ U(RD),

except with negligible probability.

Hash Function in Algorithm Engineering
typically small range |R| = O(n)
↪→ cannot be collision resistant

should behave like h ∼ U(RD) in my application

should be fast to evaluate

adversarial settings rarely considered, although:

! HashDoS is a thing.
However: Hash function and hash
values need not be public.

⊥ ⊥

!#b zy yol %$! m3411i {r3

⊥ ⊥ ⊥

!#b

zy

11i

yol

%$!

{r3
m34

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

6/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

What is a Hash Function?
(it depends on who you ask)

Cryptographic Hash Function
A collision resistant function such as h = sha256sum

$ sha256sum myfile.txt

018a7eaee8a...3e79043e21ab4 myfile.txt

Range R = {0, 1}256. It is hard to find x , y with h(x) = h(y).
↪→ Files with equal hashes are likely the same.

Cryptographic Pseudorandom Function
A function f : Seeds × D → R where log2 |Seeds| is small
and no efficient algorithm can distinguish

f (s, ·) for s ∼ U(Seeds) and

h(·) for h ∼ U(RD),

except with negligible probability.

Hash Function in Algorithm Engineering
typically small range |R| = O(n)
↪→ cannot be collision resistant

should behave like h ∼ U(RD) in my application

should be fast to evaluate

adversarial settings rarely considered, although:

! HashDoS is a thing.
However: Hash function and hash
values need not be public.

⊥ ⊥

!#b zy yol %$! m3411i {r3

⊥ ⊥ ⊥

!#b

zy

11i

yol

%$!

{r3
m34

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

6/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

What is a Hash Function?
(it depends on who you ask)

Cryptographic Hash Function
A collision resistant function such as h = sha256sum

$ sha256sum myfile.txt

018a7eaee8a...3e79043e21ab4 myfile.txt

Range R = {0, 1}256. It is hard to find x , y with h(x) = h(y).
↪→ Files with equal hashes are likely the same.

Cryptographic Pseudorandom Function
A function f : Seeds × D → R where log2 |Seeds| is small
and no efficient algorithm can distinguish

f (s, ·) for s ∼ U(Seeds) and

h(·) for h ∼ U(RD),

except with negligible probability.

Hash Function in Algorithm Engineering
typically small range |R| = O(n)
↪→ cannot be collision resistant

should behave like h ∼ U(RD) in my application

should be fast to evaluate

adversarial settings rarely considered, although:

! HashDoS is a thing.
However: Hash function and hash
values need not be public.

⊥ ⊥

!#b zy yol %$! m3411i {r3

⊥ ⊥ ⊥

!#b

zy

11i

yol

%$!

{r3
m34

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

6/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

What is a Hash Function?
(it depends on who you ask)

Cryptographic Hash Function
A collision resistant function such as h = sha256sum

$ sha256sum myfile.txt

018a7eaee8a...3e79043e21ab4 myfile.txt

Range R = {0, 1}256. It is hard to find x , y with h(x) = h(y).
↪→ Files with equal hashes are likely the same.

Cryptographic Pseudorandom Function
A function f : Seeds × D → R where log2 |Seeds| is small
and no efficient algorithm can distinguish

f (s, ·) for s ∼ U(Seeds) and

h(·) for h ∼ U(RD),

except with negligible probability.

Hash Function in Algorithm Engineering
typically small range |R| = O(n)
↪→ cannot be collision resistant

should behave like h ∼ U(RD) in my application

should be fast to evaluate

adversarial settings rarely considered, although:

! HashDoS is a thing.
However: Hash function and hash
values need not be public.

⊥ ⊥

!#b zy yol %$! m3411i {r3

⊥ ⊥ ⊥

!#b

zy

11i

yol

%$!

{r3
m34

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

6/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

What is a Hash Function?
(it depends on who you ask)

Cryptographic Hash Function
A collision resistant function such as h = sha256sum

$ sha256sum myfile.txt

018a7eaee8a...3e79043e21ab4 myfile.txt

Range R = {0, 1}256. It is hard to find x , y with h(x) = h(y).
↪→ Files with equal hashes are likely the same.

Cryptographic Pseudorandom Function
A function f : Seeds × D → R where log2 |Seeds| is small
and no efficient algorithm can distinguish

f (s, ·) for s ∼ U(Seeds) and

h(·) for h ∼ U(RD),

except with negligible probability.

Hash Function in Algorithm Engineering
typically small range |R| = O(n)
↪→ cannot be collision resistant

should behave like h ∼ U(RD) in my application

should be fast to evaluate

adversarial settings rarely considered

, although:

! HashDoS is a thing.
However: Hash function and hash
values need not be public.

⊥ ⊥

!#b zy yol %$! m3411i {r3

⊥ ⊥ ⊥

!#b

zy

11i

yol

%$!

{r3
m34

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

6/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

What is a Hash Function?
(it depends on who you ask)

Cryptographic Hash Function
A collision resistant function such as h = sha256sum

$ sha256sum myfile.txt

018a7eaee8a...3e79043e21ab4 myfile.txt

Range R = {0, 1}256. It is hard to find x , y with h(x) = h(y).
↪→ Files with equal hashes are likely the same.

Cryptographic Pseudorandom Function
A function f : Seeds × D → R where log2 |Seeds| is small
and no efficient algorithm can distinguish

f (s, ·) for s ∼ U(Seeds) and

h(·) for h ∼ U(RD),

except with negligible probability.

Hash Function in Algorithm Engineering
typically small range |R| = O(n)
↪→ cannot be collision resistant

should behave like h ∼ U(RD) in my application

should be fast to evaluate

adversarial settings rarely considered, although:

! HashDoS is a thing.

However: Hash function and hash
values need not be public.

⊥ ⊥

!#b zy yol %$! m3411i {r3

⊥ ⊥ ⊥

!#b

zy

11i

yol

%$!

{r3
m34

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

6/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

What is a Hash Function?
(it depends on who you ask)

Cryptographic Hash Function
A collision resistant function such as h = sha256sum

$ sha256sum myfile.txt

018a7eaee8a...3e79043e21ab4 myfile.txt

Range R = {0, 1}256. It is hard to find x , y with h(x) = h(y).
↪→ Files with equal hashes are likely the same.

Cryptographic Pseudorandom Function
A function f : Seeds × D → R where log2 |Seeds| is small
and no efficient algorithm can distinguish

f (s, ·) for s ∼ U(Seeds) and

h(·) for h ∼ U(RD),

except with negligible probability.

Hash Function in Algorithm Engineering
typically small range |R| = O(n)
↪→ cannot be collision resistant

should behave like h ∼ U(RD) in my application

should be fast to evaluate

adversarial settings rarely considered, although:

! HashDoS is a thing.
However: Hash function and hash
values need not be public.

⊥ ⊥

!#b zy yol %$! m3411i {r3

⊥ ⊥ ⊥

!#b

zy

11i

yol

%$!

{r3
m34

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

6/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

What is a Hash Function?
(it depends on who you ask)

MurmurHash
Bitshifts, Magic Constants, . . .
uint32_t murmur3_32(const uint8_t* key,

size_t len, uint32_t seed) {

uint32_t h = seed;

uint32_t k;

for (size_t i = len >> 2; i; i--) {

memcpy(&k, key, sizeof(uint32_t));

key += sizeof(uint32_t);

h ^= murmur_32_scramble(k);

h = (h << 13) | (h >> 19);

h = h * 5 + 0xe6546b64;

}

[...]

return h;

}

static inline uint32_t murmur_32_scramble(uint32_t k) {

k *= 0xcc9e2d51;

k = (k << 15) | (k >> 17);

k *= 0x1b873593;

return k;

}

Usage

For R = [m], pick seed ∼ U({0, 1}32) and use

h(x) = murmur3_32(x , seed) mod m.

(should avoid modulo in practice, see https://github.com/lemire/fastrange)

Does h behave like a random function?
YES, with respect to many statistical tests.
see https://github.com/aappleby/smhasher

NO, HashDoS attacks are known.
see https://en.wikipedia.org/wiki/MurmurHash#Vulnerabilities

MAYBE, for your favourite application.

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

7/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

High-Speed Hashing in Practical Data Structures
Black Magic, do not touch!

https://github.com/lemire/fastrange
https://github.com/aappleby/smhasher
https://en.wikipedia.org/wiki/MurmurHash#Vulnerabilities

MurmurHash
Bitshifts, Magic Constants, . . .
uint32_t murmur3_32(const uint8_t* key,

size_t len, uint32_t seed) {

uint32_t h = seed;

uint32_t k;

for (size_t i = len >> 2; i; i--) {

memcpy(&k, key, sizeof(uint32_t));

key += sizeof(uint32_t);

h ^= murmur_32_scramble(k);

h = (h << 13) | (h >> 19);

h = h * 5 + 0xe6546b64;

}

[...]

return h;

}

static inline uint32_t murmur_32_scramble(uint32_t k) {

k *= 0xcc9e2d51;

k = (k << 15) | (k >> 17);

k *= 0x1b873593;

return k;

}

Usage

For R = [m], pick seed ∼ U({0, 1}32) and use

h(x) = murmur3_32(x , seed) mod m.

(should avoid modulo in practice, see https://github.com/lemire/fastrange)

Does h behave like a random function?
YES, with respect to many statistical tests.
see https://github.com/aappleby/smhasher

NO, HashDoS attacks are known.
see https://en.wikipedia.org/wiki/MurmurHash#Vulnerabilities

MAYBE, for your favourite application.

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

7/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

High-Speed Hashing in Practical Data Structures
Black Magic, do not touch!

https://github.com/lemire/fastrange
https://github.com/aappleby/smhasher
https://en.wikipedia.org/wiki/MurmurHash#Vulnerabilities

MurmurHash
Bitshifts, Magic Constants, . . .
uint32_t murmur3_32(const uint8_t* key,

size_t len, uint32_t seed) {

uint32_t h = seed;

uint32_t k;

for (size_t i = len >> 2; i; i--) {

memcpy(&k, key, sizeof(uint32_t));

key += sizeof(uint32_t);

h ^= murmur_32_scramble(k);

h = (h << 13) | (h >> 19);

h = h * 5 + 0xe6546b64;

}

[...]

return h;

}

static inline uint32_t murmur_32_scramble(uint32_t k) {

k *= 0xcc9e2d51;

k = (k << 15) | (k >> 17);

k *= 0x1b873593;

return k;

}

Usage

For R = [m], pick seed ∼ U({0, 1}32) and use

h(x) = murmur3_32(x , seed) mod m.

(should avoid modulo in practice, see https://github.com/lemire/fastrange)

Does h behave like a random function?
YES, with respect to many statistical tests.
see https://github.com/aappleby/smhasher

NO, HashDoS attacks are known.
see https://en.wikipedia.org/wiki/MurmurHash#Vulnerabilities

MAYBE, for your favourite application.

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

7/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

High-Speed Hashing in Practical Data Structures
Black Magic, do not touch!

https://github.com/lemire/fastrange
https://github.com/aappleby/smhasher
https://en.wikipedia.org/wiki/MurmurHash#Vulnerabilities

MurmurHash
Bitshifts, Magic Constants, . . .
uint32_t murmur3_32(const uint8_t* key,

size_t len, uint32_t seed) {

uint32_t h = seed;

uint32_t k;

for (size_t i = len >> 2; i; i--) {

memcpy(&k, key, sizeof(uint32_t));

key += sizeof(uint32_t);

h ^= murmur_32_scramble(k);

h = (h << 13) | (h >> 19);

h = h * 5 + 0xe6546b64;

}

[...]

return h;

}

static inline uint32_t murmur_32_scramble(uint32_t k) {

k *= 0xcc9e2d51;

k = (k << 15) | (k >> 17);

k *= 0x1b873593;

return k;

}

Usage

For R = [m], pick seed ∼ U({0, 1}32) and use

h(x) = murmur3_32(x , seed) mod m.

(should avoid modulo in practice, see https://github.com/lemire/fastrange)

Does h behave like a random function?

YES, with respect to many statistical tests.
see https://github.com/aappleby/smhasher

NO, HashDoS attacks are known.
see https://en.wikipedia.org/wiki/MurmurHash#Vulnerabilities

MAYBE, for your favourite application.

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

7/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

High-Speed Hashing in Practical Data Structures
Black Magic, do not touch!

https://github.com/lemire/fastrange
https://github.com/aappleby/smhasher
https://en.wikipedia.org/wiki/MurmurHash#Vulnerabilities

MurmurHash
Bitshifts, Magic Constants, . . .
uint32_t murmur3_32(const uint8_t* key,

size_t len, uint32_t seed) {

uint32_t h = seed;

uint32_t k;

for (size_t i = len >> 2; i; i--) {

memcpy(&k, key, sizeof(uint32_t));

key += sizeof(uint32_t);

h ^= murmur_32_scramble(k);

h = (h << 13) | (h >> 19);

h = h * 5 + 0xe6546b64;

}

[...]

return h;

}

static inline uint32_t murmur_32_scramble(uint32_t k) {

k *= 0xcc9e2d51;

k = (k << 15) | (k >> 17);

k *= 0x1b873593;

return k;

}

Usage

For R = [m], pick seed ∼ U({0, 1}32) and use

h(x) = murmur3_32(x , seed) mod m.

(should avoid modulo in practice, see https://github.com/lemire/fastrange)

Does h behave like a random function?
YES, with respect to many statistical tests.
see https://github.com/aappleby/smhasher

NO, HashDoS attacks are known.
see https://en.wikipedia.org/wiki/MurmurHash#Vulnerabilities

MAYBE, for your favourite application.

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

7/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

High-Speed Hashing in Practical Data Structures
Black Magic, do not touch!

https://github.com/lemire/fastrange
https://github.com/aappleby/smhasher
https://en.wikipedia.org/wiki/MurmurHash#Vulnerabilities

MurmurHash
Bitshifts, Magic Constants, . . .
uint32_t murmur3_32(const uint8_t* key,

size_t len, uint32_t seed) {

uint32_t h = seed;

uint32_t k;

for (size_t i = len >> 2; i; i--) {

memcpy(&k, key, sizeof(uint32_t));

key += sizeof(uint32_t);

h ^= murmur_32_scramble(k);

h = (h << 13) | (h >> 19);

h = h * 5 + 0xe6546b64;

}

[...]

return h;

}

static inline uint32_t murmur_32_scramble(uint32_t k) {

k *= 0xcc9e2d51;

k = (k << 15) | (k >> 17);

k *= 0x1b873593;

return k;

}

Usage

For R = [m], pick seed ∼ U({0, 1}32) and use

h(x) = murmur3_32(x , seed) mod m.

(should avoid modulo in practice, see https://github.com/lemire/fastrange)

Does h behave like a random function?
YES, with respect to many statistical tests.
see https://github.com/aappleby/smhasher

NO, HashDoS attacks are known.
see https://en.wikipedia.org/wiki/MurmurHash#Vulnerabilities

MAYBE, for your favourite application.

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

7/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

High-Speed Hashing in Practical Data Structures
Black Magic, do not touch!

https://github.com/lemire/fastrange
https://github.com/aappleby/smhasher
https://en.wikipedia.org/wiki/MurmurHash#Vulnerabilities

MurmurHash
Bitshifts, Magic Constants, . . .
uint32_t murmur3_32(const uint8_t* key,

size_t len, uint32_t seed) {

uint32_t h = seed;

uint32_t k;

for (size_t i = len >> 2; i; i--) {

memcpy(&k, key, sizeof(uint32_t));

key += sizeof(uint32_t);

h ^= murmur_32_scramble(k);

h = (h << 13) | (h >> 19);

h = h * 5 + 0xe6546b64;

}

[...]

return h;

}

static inline uint32_t murmur_32_scramble(uint32_t k) {

k *= 0xcc9e2d51;

k = (k << 15) | (k >> 17);

k *= 0x1b873593;

return k;

}

Usage

For R = [m], pick seed ∼ U({0, 1}32) and use

h(x) = murmur3_32(x , seed) mod m.

(should avoid modulo in practice, see https://github.com/lemire/fastrange)

Does h behave like a random function?
YES, with respect to many statistical tests.
see https://github.com/aappleby/smhasher

NO, HashDoS attacks are known.
see https://en.wikipedia.org/wiki/MurmurHash#Vulnerabilities

MAYBE, for your favourite application.

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

7/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

High-Speed Hashing in Practical Data Structures
Black Magic, do not touch!

https://github.com/lemire/fastrange
https://github.com/aappleby/smhasher
https://en.wikipedia.org/wiki/MurmurHash#Vulnerabilities

1. Conceptions: What is a Hash Function?
Hashing in the Wild
What should a Theorist do?

2. Use Case 1: Hash Table with Chaining
Using SUHA
Using Universal Hashing

3. Use Case 2: Linear Probing
Using SUHA
Using Universal Hashing

4. Conclusion

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

8/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Content

Simple Uniform Hashing Assumption (SUHA)

We have access to h ∼ U(RD) for any R and D.

h takes O(1) time to evaluate.

h takes no space to store.

How to Analyse your Algorithm
1 Assume SUHA holds.

2 Analyse algorithm under SUHA.

3 Hope that algorithm still works with real hash
functions.

SUHA is “wrong” but adequate
Modelling assumption.
↪→ like e.g. ideal gas law in physics

Excellent track record in non-adversarial
settings.

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

9/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

What should a Theorist do?
Approach 1: Ignore the Problem

Simple Uniform Hashing Assumption (SUHA)

We have access to h ∼ U(RD) for any R and D.

h takes O(1) time to evaluate.

h takes no space to store.

How to Analyse your Algorithm
1 Assume SUHA holds.

2 Analyse algorithm under SUHA.

3 Hope that algorithm still works with real hash
functions.

SUHA is “wrong” but adequate
Modelling assumption.
↪→ like e.g. ideal gas law in physics

Excellent track record in non-adversarial
settings.

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

9/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

What should a Theorist do?
Approach 1: Ignore the Problem

Simple Uniform Hashing Assumption (SUHA)

We have access to h ∼ U(RD) for any R and D.

h takes O(1) time to evaluate.

h takes no space to store.

How to Analyse your Algorithm
1 Assume SUHA holds.

2 Analyse algorithm under SUHA.

3 Hope that algorithm still works with real hash
functions.

SUHA is “wrong” but adequate
Modelling assumption.
↪→ like e.g. ideal gas law in physics

Excellent track record in non-adversarial
settings.

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

9/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

What should a Theorist do?
Approach 1: Ignore the Problem

Simple Uniform Hashing Assumption (SUHA)

We have access to h ∼ U(RD) for any R and D.

h takes O(1) time to evaluate.

h takes no space to store.

How to Analyse your Algorithm
1 Assume SUHA holds.

2 Analyse algorithm under SUHA.

3 Hope that algorithm still works with real hash
functions.

SUHA is “wrong” but adequate
Modelling assumption.
↪→ like e.g. ideal gas law in physics

Excellent track record in non-adversarial
settings.

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

9/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

What should a Theorist do?
Approach 1: Ignore the Problem

Analyse Algorithm using Universal Hashing

1 Define family H ⊆ RD of hash functions with log(|H|) not too large.
↪→ sampling and storing h ∈ H is cheap

2 Proof that algorithm with h ∼ U(H) has good expected behaviour.

Remarks
Mathematical structure of H must be amenable to analysis.

Rigorously covers non-adversarial settings.

Proofs often difficult.
↪→ Wider theory practice gap than with SUHA.

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

10/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

What should a Theorist do?
Approach 2: Bring your own Hash Functions

Analyse Algorithm using Universal Hashing

1 Define family H ⊆ RD of hash functions with log(|H|) not too large.
↪→ sampling and storing h ∈ H is cheap

2 Proof that algorithm with h ∼ U(H) has good expected behaviour.

Remarks

Mathematical structure of H must be amenable to analysis.

Rigorously covers non-adversarial settings.

Proofs often difficult.
↪→ Wider theory practice gap than with SUHA.

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

10/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

What should a Theorist do?
Approach 2: Bring your own Hash Functions

Analyse Algorithm using Universal Hashing

1 Define family H ⊆ RD of hash functions with log(|H|) not too large.
↪→ sampling and storing h ∈ H is cheap

2 Proof that algorithm with h ∼ U(H) has good expected behaviour.

Remarks
Mathematical structure of H must be amenable to analysis.

Rigorously covers non-adversarial settings.

Proofs often difficult.
↪→ Wider theory practice gap than with SUHA.

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

10/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

What should a Theorist do?
Approach 2: Bring your own Hash Functions

Analyse Algorithm using Universal Hashing

1 Define family H ⊆ RD of hash functions with log(|H|) not too large.
↪→ sampling and storing h ∈ H is cheap

2 Proof that algorithm with h ∼ U(H) has good expected behaviour.

Remarks
Mathematical structure of H must be amenable to analysis.

Rigorously covers non-adversarial settings.

Proofs often difficult.
↪→ Wider theory practice gap than with SUHA.

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

10/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

What should a Theorist do?
Approach 2: Bring your own Hash Functions

Analyse Algorithm using Universal Hashing

1 Define family H ⊆ RD of hash functions with log(|H|) not too large.
↪→ sampling and storing h ∈ H is cheap

2 Proof that algorithm with h ∼ U(H) has good expected behaviour.

Remarks
Mathematical structure of H must be amenable to analysis.

Rigorously covers non-adversarial settings.

Proofs often difficult.
↪→ Wider theory practice gap than with SUHA.

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

10/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

What should a Theorist do?
Approach 2: Bring your own Hash Functions

How to Analyse your Algorithm using Cryptographic Assumptions
1 Analyse algorithm under SUHA.
2 Actually use cryptographic pseudorandom function f .

Case 1: Everything still works. Great! :-)
Case 2: Something fails.
⇒ Your use case can tell the difference between f and true randomness.
↪→ The cryptographers said this is impossible. E

Should we use cryptographic pseudorandom functions?

YES. Algorithms become robust even in some adversarial settings.
↪→ e.g. Python, Haskell, Ruby, Rust use SipHash by default

https://en.wikipedia.org/wiki/SipHash

NO. Too slow in high-performance settings.

Hash Function MiB / sec

SipHash 944
Murmur3F 7623
xxHash64 12109

(source: https://github.com/rurban/smhasher)

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

11/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

What should a Theorist do?
Approach 3: Let the Cryptographers do the Work

https://en.wikipedia.org/wiki/SipHash
https://github.com/rurban/smhasher

How to Analyse your Algorithm using Cryptographic Assumptions
1 Analyse algorithm under SUHA.
2 Actually use cryptographic pseudorandom function f .

Case 1: Everything still works. Great! :-)
Case 2: Something fails.
⇒ Your use case can tell the difference between f and true randomness.
↪→ The cryptographers said this is impossible. E

Should we use cryptographic pseudorandom functions?

YES. Algorithms become robust even in some adversarial settings.
↪→ e.g. Python, Haskell, Ruby, Rust use SipHash by default

https://en.wikipedia.org/wiki/SipHash

NO. Too slow in high-performance settings.

Hash Function MiB / sec

SipHash 944
Murmur3F 7623
xxHash64 12109

(source: https://github.com/rurban/smhasher)

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

11/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

What should a Theorist do?
Approach 3: Let the Cryptographers do the Work

https://en.wikipedia.org/wiki/SipHash
https://github.com/rurban/smhasher

How to Analyse your Algorithm using Cryptographic Assumptions
1 Analyse algorithm under SUHA.
2 Actually use cryptographic pseudorandom function f .

Case 1: Everything still works. Great! :-)
Case 2: Something fails.
⇒ Your use case can tell the difference between f and true randomness.
↪→ The cryptographers said this is impossible. E

Should we use cryptographic pseudorandom functions?

YES. Algorithms become robust even in some adversarial settings.
↪→ e.g. Python, Haskell, Ruby, Rust use SipHash by default

https://en.wikipedia.org/wiki/SipHash

NO. Too slow in high-performance settings.

Hash Function MiB / sec

SipHash 944
Murmur3F 7623
xxHash64 12109

(source: https://github.com/rurban/smhasher)

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

11/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

What should a Theorist do?
Approach 3: Let the Cryptographers do the Work

https://en.wikipedia.org/wiki/SipHash
https://github.com/rurban/smhasher

How to Analyse your Algorithm using Cryptographic Assumptions
1 Analyse algorithm under SUHA.
2 Actually use cryptographic pseudorandom function f .

Case 1: Everything still works. Great! :-)
Case 2: Something fails.
⇒ Your use case can tell the difference between f and true randomness.
↪→ The cryptographers said this is impossible. E

Should we use cryptographic pseudorandom functions?

YES. Algorithms become robust even in some adversarial settings.
↪→ e.g. Python, Haskell, Ruby, Rust use SipHash by default

https://en.wikipedia.org/wiki/SipHash

NO. Too slow in high-performance settings.

Hash Function MiB / sec

SipHash 944
Murmur3F 7623
xxHash64 12109

(source: https://github.com/rurban/smhasher)

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

11/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

What should a Theorist do?
Approach 3: Let the Cryptographers do the Work

https://en.wikipedia.org/wiki/SipHash
https://github.com/rurban/smhasher

1. Conceptions: What is a Hash Function?
Hashing in the Wild
What should a Theorist do?

2. Use Case 1: Hash Table with Chaining
Using SUHA
Using Universal Hashing

3. Use Case 2: Linear Probing
Using SUHA
Using Universal Hashing

4. Conclusion

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

12/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Content

Search Time under Chaining

Tchaining(n,m,H) =

max
S⊆D
|S|=n

max
x∈D

Eh∼U(H)

[

1 + |{y ∈ S | h(y) = h(x)}|

]
! Key set is worst case. Only h ∈ H is random. Key set is fixed before h is chosen.

⊥ ⊥

♢ △

♣

♠ ♡

⋆

†

♢ △
♠

♡
†

♣ ⋆

m buckets

linked lists

set S of
n keys

Theorem: Hash Table with Chaining under SUHA

If H = [m]D then Tchaining(n,m,H) ≤ 2 + α = O(1) if α ∈ O(1).

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

13/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Hash Table with Chaining

Search Time under Chaining

For n,m ∈ N and a family H ⊆ [m]D of hash functions the maximum expected search time is at most

Tchaining(n,m,H) = max
S⊆D
|S|=n

max
x∈D

Eh∼U(H)

[
1 + |{y ∈ S | h(y) = h(x)}|

]

! Key set is worst case. Only h ∈ H is random. Key set is fixed before h is chosen.

⊥ ⊥

♢ △

♣

♠ ♡

⋆

†

♢ △
♠

♡
†

♣ ⋆

m buckets

linked lists

set S of
n keys

Theorem: Hash Table with Chaining under SUHA

If H = [m]D then Tchaining(n,m,H) ≤ 2 + α = O(1) if α ∈ O(1).

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

13/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Hash Table with Chaining

Search Time under Chaining

For n,m ∈ N and a family H ⊆ [m]D of hash functions the maximum expected search time is at most

Tchaining(n,m,H) = max
S⊆D
|S|=n

max
x∈D

Eh∼U(H)

[
1 + |{y ∈ S | h(y) = h(x)}|

]
! Key set is worst case. Only h ∈ H is random. Key set is fixed before h is chosen.

⊥ ⊥

♢ △

♣

♠ ♡

⋆

†

♢ △
♠

♡
†

♣ ⋆

m buckets

linked lists

set S of
n keys

Theorem: Hash Table with Chaining under SUHA

If H = [m]D then Tchaining(n,m,H) ≤ 2 + α = O(1) if α ∈ O(1).

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

13/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Hash Table with Chaining

Search Time under Chaining

For n,m ∈ N and a family H ⊆ [m]D of hash functions the maximum expected search time is at most

Tchaining(n,m,H) = max
S⊆D
|S|=n

max
x∈D

Eh∼U(H)

[
1 + |{y ∈ S | h(y) = h(x)}|

]
! Key set is worst case. Only h ∈ H is random. Key set is fixed before h is chosen.

⊥ ⊥

♢ △

♣

♠ ♡

⋆

†

♢ △
♠

♡
†

♣ ⋆

m buckets

linked lists

set S of
n keys

Theorem: Hash Table with Chaining under SUHA

If H = [m]D then Tchaining(n,m,H) ≤ 2 + α = O(1) if α ∈ O(1).

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

13/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Hash Table with Chaining

Theorem: Hash Table with Chaining under SUHA

Let H = [m]D , S ⊆ D with |S| = n and x ∈ D then

Eh∼U(H)

[
1 + |{y ∈ S | h(y) = h(x)}|

]
≤ 2 + α

Proof.

Eh∼U(H)

[
1 + |{y ∈ S | h(y) = h(x)}|

]
= Eh∼U(H)

[
1 +

∑
y∈S

[h(y) = h(x)]
]

= 1 +
∑
y∈S

Eh∼U(H)

[
[h(y) = h(x)]

]
= 1 +

∑
y∈S

Prh∼U(H)[h(y) = h(x)]

≤ 1 + 1 +
∑

y∈S\{x}

Prh∼U(H)[h(y) = h(x)]

= 2 +
∑

y∈S\{x}

1
m

≤ 2 +
n
m

= 2 + α.

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

14/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Analysis of Hash Table with Chaining under SUHA

Theorem: Hash Table with Chaining under SUHA

Let H = [m]D , S ⊆ D with |S| = n and x ∈ D then

Eh∼U(H)

[
1 + |{y ∈ S | h(y) = h(x)}|

]
≤ 2 + α

Proof.

Eh∼U(H)

[
1 + |{y ∈ S | h(y) = h(x)}|

]

= Eh∼U(H)

[
1 +

∑
y∈S

[h(y) = h(x)]
]

= 1 +
∑
y∈S

Eh∼U(H)

[
[h(y) = h(x)]

]
= 1 +

∑
y∈S

Prh∼U(H)[h(y) = h(x)]

≤ 1 + 1 +
∑

y∈S\{x}

Prh∼U(H)[h(y) = h(x)]

= 2 +
∑

y∈S\{x}

1
m

≤ 2 +
n
m

= 2 + α.

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

14/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Analysis of Hash Table with Chaining under SUHA

Theorem: Hash Table with Chaining under SUHA

Let H = [m]D , S ⊆ D with |S| = n and x ∈ D then

Eh∼U(H)

[
1 + |{y ∈ S | h(y) = h(x)}|

]
≤ 2 + α

Proof.

Eh∼U(H)

[
1 + |{y ∈ S | h(y) = h(x)}|

]
= Eh∼U(H)

[
1 +

∑
y∈S

[h(y) = h(x)]
]

= 1 +
∑
y∈S

Eh∼U(H)

[
[h(y) = h(x)]

]
= 1 +

∑
y∈S

Prh∼U(H)[h(y) = h(x)]

≤ 1 + 1 +
∑

y∈S\{x}

Prh∼U(H)[h(y) = h(x)]

= 2 +
∑

y∈S\{x}

1
m

≤ 2 +
n
m

= 2 + α.

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

14/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Analysis of Hash Table with Chaining under SUHA

Theorem: Hash Table with Chaining under SUHA

Let H = [m]D , S ⊆ D with |S| = n and x ∈ D then

Eh∼U(H)

[
1 + |{y ∈ S | h(y) = h(x)}|

]
≤ 2 + α

Proof.

Eh∼U(H)

[
1 + |{y ∈ S | h(y) = h(x)}|

]
= Eh∼U(H)

[
1 +

∑
y∈S

[h(y) = h(x)]
]

= 1 +
∑
y∈S

Eh∼U(H)

[
[h(y) = h(x)]

]

= 1 +
∑
y∈S

Prh∼U(H)[h(y) = h(x)]

≤ 1 + 1 +
∑

y∈S\{x}

Prh∼U(H)[h(y) = h(x)]

= 2 +
∑

y∈S\{x}

1
m

≤ 2 +
n
m

= 2 + α.

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

14/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Analysis of Hash Table with Chaining under SUHA

Theorem: Hash Table with Chaining under SUHA

Let H = [m]D , S ⊆ D with |S| = n and x ∈ D then

Eh∼U(H)

[
1 + |{y ∈ S | h(y) = h(x)}|

]
≤ 2 + α

Proof.

Eh∼U(H)

[
1 + |{y ∈ S | h(y) = h(x)}|

]
= Eh∼U(H)

[
1 +

∑
y∈S

[h(y) = h(x)]
]

= 1 +
∑
y∈S

Eh∼U(H)

[
[h(y) = h(x)]

]
= 1 +

∑
y∈S

Prh∼U(H)[h(y) = h(x)]

≤ 1 + 1 +
∑

y∈S\{x}

Prh∼U(H)[h(y) = h(x)]

= 2 +
∑

y∈S\{x}

1
m

≤ 2 +
n
m

= 2 + α.

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

14/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Analysis of Hash Table with Chaining under SUHA

Theorem: Hash Table with Chaining under SUHA

Let H = [m]D , S ⊆ D with |S| = n and x ∈ D then

Eh∼U(H)

[
1 + |{y ∈ S | h(y) = h(x)}|

]
≤ 2 + α

Proof.

Eh∼U(H)

[
1 + |{y ∈ S | h(y) = h(x)}|

]
= Eh∼U(H)

[
1 +

∑
y∈S

[h(y) = h(x)]
]

= 1 +
∑
y∈S

Eh∼U(H)

[
[h(y) = h(x)]

]
= 1 +

∑
y∈S

Prh∼U(H)[h(y) = h(x)]

≤ 1 + 1 +
∑

y∈S\{x}

Prh∼U(H)[h(y) = h(x)]

= 2 +
∑

y∈S\{x}

1
m

≤ 2 +
n
m

= 2 + α.

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

14/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Analysis of Hash Table with Chaining under SUHA

Theorem: Hash Table with Chaining under SUHA

Let H = [m]D , S ⊆ D with |S| = n and x ∈ D then

Eh∼U(H)

[
1 + |{y ∈ S | h(y) = h(x)}|

]
≤ 2 + α

Proof.

Eh∼U(H)

[
1 + |{y ∈ S | h(y) = h(x)}|

]
= Eh∼U(H)

[
1 +

∑
y∈S

[h(y) = h(x)]
]

= 1 +
∑
y∈S

Eh∼U(H)

[
[h(y) = h(x)]

]
= 1 +

∑
y∈S

Prh∼U(H)[h(y) = h(x)]

≤ 1 + 1 +
∑

y∈S\{x}

Prh∼U(H)[h(y) = h(x)]

= 2 +
∑

y∈S\{x}

1
m

≤ 2 +
n
m

= 2 + α.

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

14/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Analysis of Hash Table with Chaining under SUHA

1. Conceptions: What is a Hash Function?
Hashing in the Wild
What should a Theorist do?

2. Use Case 1: Hash Table with Chaining
Using SUHA
Using Universal Hashing

3. Use Case 2: Linear Probing
Using SUHA
Using Universal Hashing

4. Conclusion

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

15/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Content

Definition: c-universal hash family

A class H ⊆ [m]D is called c-universal if: ∀x ̸= y ∈ D : Pr
h∼U(H)

[h(x) = h(y)] ≤ c
m
.

Reminder (?): Finite Fields
Let Fp = {0, . . . , p − 1} for a prime number p. Then (Fp,×,⊕) is a field where

a × b := (a · b) mod p and a ⊕ b := (a + b) mod p.

In particular (F∗
p := Fp \ {0},×) is a group.

The class of Linear Hash Functions
Assume D ⊆ Fp for prime p. Then the following class is 1-universal:

Hlin
p,m := {x 7→ ((a × x)⊕ b) mod m | a ∈ F∗

p , b ∈ Fp}.

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

16/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

A Universal Hash Family

Definition: c-universal hash family

A class H ⊆ [m]D is called c-universal if: ∀x ̸= y ∈ D : Pr
h∼U(H)

[h(x) = h(y)] ≤ c
m
.

Note: H = [m]D is 1-universal.

Reminder (?): Finite Fields
Let Fp = {0, . . . , p − 1} for a prime number p. Then (Fp,×,⊕) is a field where

a × b := (a · b) mod p and a ⊕ b := (a + b) mod p.

In particular (F∗
p := Fp \ {0},×) is a group.

The class of Linear Hash Functions
Assume D ⊆ Fp for prime p. Then the following class is 1-universal:

Hlin
p,m := {x 7→ ((a × x)⊕ b) mod m | a ∈ F∗

p , b ∈ Fp}.

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

16/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

A Universal Hash Family

Definition: c-universal hash family

A class H ⊆ [m]D is called c-universal if: ∀x ̸= y ∈ D : Pr
h∼U(H)

[h(x) = h(y)] ≤ c
m
.

Reminder (?): Finite Fields
Let Fp = {0, . . . , p − 1} for a prime number p. Then (Fp,×,⊕) is a field where

a × b := (a · b) mod p and a ⊕ b := (a + b) mod p.

In particular (F∗
p := Fp \ {0},×) is a group.

The class of Linear Hash Functions
Assume D ⊆ Fp for prime p. Then the following class is 1-universal:

Hlin
p,m := {x 7→ ((a × x)⊕ b) mod m | a ∈ F∗

p , b ∈ Fp}.

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

16/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

A Universal Hash Family

Definition: c-universal hash family

A class H ⊆ [m]D is called c-universal if: ∀x ̸= y ∈ D : Pr
h∼U(H)

[h(x) = h(y)] ≤ c
m
.

Reminder (?): Finite Fields
Let Fp = {0, . . . , p − 1} for a prime number p. Then (Fp,×,⊕) is a field where

a × b := (a · b) mod p and a ⊕ b := (a + b) mod p.

In particular (F∗
p := Fp \ {0},×) is a group.

The class of Linear Hash Functions
Assume D ⊆ Fp for prime p. Then the following class is 1-universal:

Hlin
p,m := {x 7→ ((a × x)⊕ b) mod m | a ∈ F∗

p , b ∈ Fp}.

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

16/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

A Universal Hash Family

Definition: c-universal hash family

A class H ⊆ [m]D is called c-universal if: ∀x ̸= y ∈ D : Pr
h∼U(H)

[h(x) = h(y)] ≤ c
m
.

Reminder (?): Finite Fields
Let Fp = {0, . . . , p − 1} for a prime number p. Then (Fp,×,⊕) is a field where

a × b := (a · b) mod p and a ⊕ b := (a + b) mod p.

In particular (F∗
p := Fp \ {0},×) is a group.

The class of Linear Hash Functions
Assume D ⊆ Fp for prime p. Then the following class is 1-universal:

Hlin
p,m := {x 7→ ((a × x)⊕ b) mod m | a ∈ F∗

p , b ∈ Fp}.

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

16/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

A Universal Hash Family

0 1 2 3 4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

modm
p = 17
m = 5

What about just x 7→ x mod m?
Nothing is random. We have h(0) = h(5) but this should hold only with probability 1/5.

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

17/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Can’t we use a simpler class?

0 1 2 3 4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

modm

×a p = 17
m = 5
a = 3 // ∼ U(F∗

p)

What about just x 7→ (a × x) mod m?
Example: Do 2 and 3 collide? Picture {(a × 2, a × 3) | a ∈ F∗

p}.
Pra∼U(F∗

p)
[h(2) = h(3)] = Pr[a ∈ {5, 7, 10, 12}] = 4

16 > 3
15 = 1

5 .
⇒ not 1-universal (but 2-universal)

Also note: h(0) = 0 is not random.
2 × a

3 × a

0 p-1
0

p-1

1
2

3
4

5

6
7

8
9

10
11

12
13

14
15

16

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

17/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Can’t we use a simpler class?

0 1 2 3 4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

modm

×a p = 17
m = 5
a = 2 // ∼ U(F∗

p)

What about just x 7→ (a × x) mod m?
Example: Do 2 and 3 collide? Picture {(a × 2, a × 3) | a ∈ F∗

p}.
Pra∼U(F∗

p)
[h(2) = h(3)] = Pr[a ∈ {5, 7, 10, 12}] = 4

16 > 3
15 = 1

5 .
⇒ not 1-universal (but 2-universal)

Also note: h(0) = 0 is not random.
2 × a

3 × a

0 p-1
0

p-1

1
2

3
4

5

6
7

8
9

10
11

12
13

14
15

16

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

17/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Can’t we use a simpler class?

0 1 2 3 4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

modm

×a p = 17
m = 5
a = 1 // ∼ U(F∗

p)

What about just x 7→ (a × x) mod m?
Example: Do 2 and 3 collide? Picture {(a × 2, a × 3) | a ∈ F∗

p}.
Pra∼U(F∗

p)
[h(2) = h(3)] = Pr[a ∈ {5, 7, 10, 12}] = 4

16 > 3
15 = 1

5 .
⇒ not 1-universal (but 2-universal)

Also note: h(0) = 0 is not random.
2 × a

3 × a

0 p-1
0

p-1

1
2

3
4

5

6
7

8
9

10
11

12
13

14
15

16

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

17/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Can’t we use a simpler class?

0 1 2 3 4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

modm

×a p = 17
m = 5
a = 7 // ∼ U(F∗

p)

What about just x 7→ (a × x) mod m?
Example: Do 2 and 3 collide? Picture {(a × 2, a × 3) | a ∈ F∗

p}.
Pra∼U(F∗

p)
[h(2) = h(3)] = Pr[a ∈ {5, 7, 10, 12}] = 4

16 > 3
15 = 1

5 .
⇒ not 1-universal (but 2-universal)

Also note: h(0) = 0 is not random.
2 × a

3 × a

0 p-1
0

p-1

1
2

3
4

5

6
7

8
9

10
11

12
13

14
15

16

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

17/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Can’t we use a simpler class?

0 1 2 3 4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

modm

×a

⊕b

p = 17
m = 5
a = 7 // ∼ U(F∗

p)
b = 5 // ∼ U(Fp)

Back to x 7→ ((a × x)⊕ b) mod m
Mathematically “cleaner”. Proof of 1-universality on next slide.

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

17/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Can’t we use a simpler class?

0 1 2 3 4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

modm

×a

⊕b

p = 17
m = 5
a = 7 // ∼ U(F∗

p)
b = 6 // ∼ U(Fp)

Back to x 7→ ((a × x)⊕ b) mod m
Mathematically “cleaner”. Proof of 1-universality on next slide.

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

17/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Can’t we use a simpler class?

0 1 2 3 4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

modm

×a

⊕b

p = 17
m = 5
a = 7 // ∼ U(F∗

p)
b = 7 // ∼ U(Fp)

Back to x 7→ ((a × x)⊕ b) mod m
Mathematically “cleaner”. Proof of 1-universality on next slide.

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

17/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Can’t we use a simpler class?

Proof that Hlin
p,m := {x 7→ ((a × x)⊕ b) mod m | a ∈ F∗

p, b ∈ Fp} is 1-universal.

Let x ̸= y ∈ Fp. (To show: Prh∼Hlin
p,m

[h(x) = h(y)] ≤ 1/m.)

Define
c = (a × x)⊕ b
d = (a × y)⊕ b

⇔
(

c
d

)
=

(
x 1
y 1

)
︸ ︷︷ ︸

regular!

(
a
b

)
.

The mapping (a, b) 7→ (c, d) is a bijection (for every x ̸= y)
from F

∗

p × Fp → Fp × Fp

\ {(b, b) | b ∈ Fp}

Define bad set B := {(c, d) ∈ P | c mod m = d mod m}.
↪→ from picture: |B|

|P| ≤
1
m .

c

d

0 p-1
0

p-1
(p = 13,m = 4)

P := Fp × Fp \ {(b, b) | b ∈ Fp}

Pra,b∼U(F∗
p ×Fp)[h(x) = h(y)] = Pr

a,b
[((a × x)⊕ b) mod m = ((a × y)⊕ b) mod m]

= Pr
a,b
[c mod m = d mod m] = Pr

a,b
[(c, d) ∈ B] = Pr

c,d∼U(P)
[(c, d) ∈ B] =

|B|
|P|

≤ 1
m
.

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

18/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Proof that Hlin
p,m := {x 7→ ((a × x)⊕ b) mod m | a ∈ F∗

p, b ∈ Fp} is 1-universal.

Let x ̸= y ∈ Fp. (To show: Prh∼Hlin
p,m

[h(x) = h(y)] ≤ 1/m.)

Define
c = (a × x)⊕ b
d = (a × y)⊕ b

⇔
(

c
d

)
=

(
x 1
y 1

)
︸ ︷︷ ︸

regular!

(
a
b

)
.

The mapping (a, b) 7→ (c, d) is a bijection (for every x ̸= y)
from F

∗

p × Fp → Fp × Fp

\ {(b, b) | b ∈ Fp}

Define bad set B := {(c, d) ∈ P | c mod m = d mod m}.
↪→ from picture: |B|

|P| ≤
1
m .

c

d

0 p-1
0

p-1
(p = 13,m = 4)

P := Fp × Fp \ {(b, b) | b ∈ Fp}

Pra,b∼U(F∗
p ×Fp)[h(x) = h(y)] = Pr

a,b
[((a × x)⊕ b) mod m = ((a × y)⊕ b) mod m]

= Pr
a,b
[c mod m = d mod m] = Pr

a,b
[(c, d) ∈ B] = Pr

c,d∼U(P)
[(c, d) ∈ B] =

|B|
|P|

≤ 1
m
.

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

18/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Proof that Hlin
p,m := {x 7→ ((a × x)⊕ b) mod m | a ∈ F∗

p, b ∈ Fp} is 1-universal.

Let x ̸= y ∈ Fp. (To show: Prh∼Hlin
p,m

[h(x) = h(y)] ≤ 1/m.)

Define
c = (a × x)⊕ b
d = (a × y)⊕ b

⇔
(

c
d

)
=

(
x 1
y 1

)
︸ ︷︷ ︸

regular!

(
a
b

)
.

The mapping (a, b) 7→ (c, d) is a bijection (for every x ̸= y)
from F

∗

p × Fp → Fp × Fp

\ {(b, b) | b ∈ Fp}

Define bad set B := {(c, d) ∈ P | c mod m = d mod m}.
↪→ from picture: |B|

|P| ≤
1
m .

c

d

0 p-1
0

p-1
(p = 13,m = 4)

P := Fp × Fp \ {(b, b) | b ∈ Fp}

Pra,b∼U(F∗
p ×Fp)[h(x) = h(y)] = Pr

a,b
[((a × x)⊕ b) mod m = ((a × y)⊕ b) mod m]

= Pr
a,b
[c mod m = d mod m] = Pr

a,b
[(c, d) ∈ B] = Pr

c,d∼U(P)
[(c, d) ∈ B] =

|B|
|P|

≤ 1
m
.

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

18/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Proof that Hlin
p,m := {x 7→ ((a × x)⊕ b) mod m | a ∈ F∗

p, b ∈ Fp} is 1-universal.

Let x ̸= y ∈ Fp. (To show: Prh∼Hlin
p,m

[h(x) = h(y)] ≤ 1/m.)

Define
c = (a × x)⊕ b
d = (a × y)⊕ b

⇔
(

c
d

)
=

(
x 1
y 1

)
︸ ︷︷ ︸

regular!

(
a
b

)
.

The mapping (a, b) 7→ (c, d) is a bijection (for every x ̸= y)
from F

∗

p × Fp → Fp × Fp

\ {(b, b) | b ∈ Fp}
Define bad set B := {(c, d) ∈ P | c mod m = d mod m}.
↪→ from picture: |B|

|P| ≤
1
m .

c

d

0 p-1
0

p-1
(p = 13,m = 4)

P := Fp × Fp \ {(b, b) | b ∈ Fp}

Pra,b∼U(F∗
p ×Fp)[h(x) = h(y)] = Pr

a,b
[((a × x)⊕ b) mod m = ((a × y)⊕ b) mod m]

= Pr
a,b
[c mod m = d mod m] = Pr

a,b
[(c, d) ∈ B] = Pr

c,d∼U(P)
[(c, d) ∈ B] =

|B|
|P|

≤ 1
m
.

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

18/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Proof that Hlin
p,m := {x 7→ ((a × x)⊕ b) mod m | a ∈ F∗

p, b ∈ Fp} is 1-universal.

Let x ̸= y ∈ Fp. (To show: Prh∼Hlin
p,m

[h(x) = h(y)] ≤ 1/m.)

Define
c = (a × x)⊕ b
d = (a × y)⊕ b

⇔
(

c
d

)
=

(
x 1
y 1

)
︸ ︷︷ ︸

regular!

(
a
b

)
.

The mapping (a, b) 7→ (c, d) is a bijection (for every x ̸= y)
from F∗p × Fp → Fp × Fp \ {(b, b) | b ∈ Fp}

Define bad set B := {(c, d) ∈ P | c mod m = d mod m}.
↪→ from picture: |B|

|P| ≤
1
m .

c

d

0 p-1
0

p-1
(p = 13,m = 4)

P := Fp × Fp \ {(b, b) | b ∈ Fp}

Pra,b∼U(F∗
p ×Fp)[h(x) = h(y)] = Pr

a,b
[((a × x)⊕ b) mod m = ((a × y)⊕ b) mod m]

= Pr
a,b
[c mod m = d mod m] = Pr

a,b
[(c, d) ∈ B] = Pr

c,d∼U(P)
[(c, d) ∈ B] =

|B|
|P|

≤ 1
m
.

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

18/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Proof that Hlin
p,m := {x 7→ ((a × x)⊕ b) mod m | a ∈ F∗

p, b ∈ Fp} is 1-universal.

Let x ̸= y ∈ Fp. (To show: Prh∼Hlin
p,m

[h(x) = h(y)] ≤ 1/m.)

Define
c = (a × x)⊕ b
d = (a × y)⊕ b

⇔
(

c
d

)
=

(
x 1
y 1

)
︸ ︷︷ ︸

regular!

(
a
b

)
.

The mapping (a, b) 7→ (c, d) is a bijection (for every x ̸= y)
from F∗p × Fp → P. // (a, b) ∼ U(F∗

p × Fp) ⇒ (c, d) ∼ U(P)

Define bad set B := {(c, d) ∈ P | c mod m = d mod m}.
↪→ from picture: |B|

|P| ≤
1
m .

c

d

0 p-1
0

p-1
(p = 13,m = 4)

P := Fp × Fp \ {(b, b) | b ∈ Fp}

Pra,b∼U(F∗
p ×Fp)[h(x) = h(y)] = Pr

a,b
[((a × x)⊕ b) mod m = ((a × y)⊕ b) mod m]

= Pr
a,b
[c mod m = d mod m] = Pr

a,b
[(c, d) ∈ B] = Pr

c,d∼U(P)
[(c, d) ∈ B] =

|B|
|P|

≤ 1
m
.

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

18/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Proof that Hlin
p,m := {x 7→ ((a × x)⊕ b) mod m | a ∈ F∗

p, b ∈ Fp} is 1-universal.

Let x ̸= y ∈ Fp. (To show: Prh∼Hlin
p,m

[h(x) = h(y)] ≤ 1/m.)

Define
c = (a × x)⊕ b
d = (a × y)⊕ b

⇔
(

c
d

)
=

(
x 1
y 1

)
︸ ︷︷ ︸

regular!

(
a
b

)
.

The mapping (a, b) 7→ (c, d) is a bijection (for every x ̸= y)
from F∗p × Fp → P. // (a, b) ∼ U(F∗

p × Fp) ⇒ (c, d) ∼ U(P)

Define bad set B := {(c, d) ∈ P | c mod m = d mod m}.
↪→ from picture: |B|

|P| ≤
1
m .

c

d

0 p-1
0

p-1
(p = 13,m = 4)

P := Fp × Fp \ {(b, b) | b ∈ Fp}

Pra,b∼U(F∗
p ×Fp)[h(x) = h(y)] = Pr

a,b
[((a × x)⊕ b) mod m = ((a × y)⊕ b) mod m]

= Pr
a,b
[c mod m = d mod m] = Pr

a,b
[(c, d) ∈ B] = Pr

c,d∼U(P)
[(c, d) ∈ B] =

|B|
|P|

≤ 1
m
.

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

18/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Proof that Hlin
p,m := {x 7→ ((a × x)⊕ b) mod m | a ∈ F∗

p, b ∈ Fp} is 1-universal.

Let x ̸= y ∈ Fp. (To show: Prh∼Hlin
p,m

[h(x) = h(y)] ≤ 1/m.)

Define
c = (a × x)⊕ b
d = (a × y)⊕ b

⇔
(

c
d

)
=

(
x 1
y 1

)
︸ ︷︷ ︸

regular!

(
a
b

)
.

The mapping (a, b) 7→ (c, d) is a bijection (for every x ̸= y)
from F∗p × Fp → P. // (a, b) ∼ U(F∗

p × Fp) ⇒ (c, d) ∼ U(P)

Define bad set B := {(c, d) ∈ P | c mod m = d mod m}.
↪→ from picture: |B|

|P| ≤
1
m .

c

d

0 p-1
0

p-1
(p = 13,m = 4)

P := Fp × Fp \ {(b, b) | b ∈ Fp}

Pra,b∼U(F∗
p ×Fp)[h(x) = h(y)]

= Pr
a,b
[((a × x)⊕ b) mod m = ((a × y)⊕ b) mod m]

= Pr
a,b
[c mod m = d mod m] = Pr

a,b
[(c, d) ∈ B] = Pr

c,d∼U(P)
[(c, d) ∈ B] =

|B|
|P|

≤ 1
m
.

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

18/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Proof that Hlin
p,m := {x 7→ ((a × x)⊕ b) mod m | a ∈ F∗

p, b ∈ Fp} is 1-universal.

Let x ̸= y ∈ Fp. (To show: Prh∼Hlin
p,m

[h(x) = h(y)] ≤ 1/m.)

Define
c = (a × x)⊕ b
d = (a × y)⊕ b

⇔
(

c
d

)
=

(
x 1
y 1

)
︸ ︷︷ ︸

regular!

(
a
b

)
.

The mapping (a, b) 7→ (c, d) is a bijection (for every x ̸= y)
from F∗p × Fp → P. // (a, b) ∼ U(F∗

p × Fp) ⇒ (c, d) ∼ U(P)

Define bad set B := {(c, d) ∈ P | c mod m = d mod m}.
↪→ from picture: |B|

|P| ≤
1
m .

c

d

0 p-1
0

p-1
(p = 13,m = 4)

P := Fp × Fp \ {(b, b) | b ∈ Fp}

Pra,b∼U(F∗
p ×Fp)[h(x) = h(y)] = Pr

a,b
[((a × x)⊕ b) mod m = ((a × y)⊕ b) mod m]

= Pr
a,b
[c mod m = d mod m] = Pr

a,b
[(c, d) ∈ B] = Pr

c,d∼U(P)
[(c, d) ∈ B] =

|B|
|P|

≤ 1
m
.

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

18/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Proof that Hlin
p,m := {x 7→ ((a × x)⊕ b) mod m | a ∈ F∗

p, b ∈ Fp} is 1-universal.

Let x ̸= y ∈ Fp. (To show: Prh∼Hlin
p,m

[h(x) = h(y)] ≤ 1/m.)

Define
c = (a × x)⊕ b
d = (a × y)⊕ b

⇔
(

c
d

)
=

(
x 1
y 1

)
︸ ︷︷ ︸

regular!

(
a
b

)
.

The mapping (a, b) 7→ (c, d) is a bijection (for every x ̸= y)
from F∗p × Fp → P. // (a, b) ∼ U(F∗

p × Fp) ⇒ (c, d) ∼ U(P)

Define bad set B := {(c, d) ∈ P | c mod m = d mod m}.
↪→ from picture: |B|

|P| ≤
1
m .

c

d

0 p-1
0

p-1
(p = 13,m = 4)

P := Fp × Fp \ {(b, b) | b ∈ Fp}

Pra,b∼U(F∗
p ×Fp)[h(x) = h(y)] = Pr

a,b
[((a × x)⊕ b) mod m = ((a × y)⊕ b) mod m]

= Pr
a,b
[c mod m = d mod m] = Pr

a,b
[(c, d) ∈ B]

= Pr
c,d∼U(P)

[(c, d) ∈ B] =
|B|
|P|

≤ 1
m
.

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

18/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Proof that Hlin
p,m := {x 7→ ((a × x)⊕ b) mod m | a ∈ F∗

p, b ∈ Fp} is 1-universal.

Let x ̸= y ∈ Fp. (To show: Prh∼Hlin
p,m

[h(x) = h(y)] ≤ 1/m.)

Define
c = (a × x)⊕ b
d = (a × y)⊕ b

⇔
(

c
d

)
=

(
x 1
y 1

)
︸ ︷︷ ︸

regular!

(
a
b

)
.

The mapping (a, b) 7→ (c, d) is a bijection (for every x ̸= y)
from F∗p × Fp → P. // (a, b) ∼ U(F∗

p × Fp) ⇒ (c, d) ∼ U(P)

Define bad set B := {(c, d) ∈ P | c mod m = d mod m}.
↪→ from picture: |B|

|P| ≤
1
m .

c

d

0 p-1
0

p-1
(p = 13,m = 4)

P := Fp × Fp \ {(b, b) | b ∈ Fp}

Pra,b∼U(F∗
p ×Fp)[h(x) = h(y)] = Pr

a,b
[((a × x)⊕ b) mod m = ((a × y)⊕ b) mod m]

= Pr
a,b
[c mod m = d mod m] = Pr

a,b
[(c, d) ∈ B] = Pr

c,d∼U(P)
[(c, d) ∈ B]

=
|B|
|P|

≤ 1
m
.

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

18/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Proof that Hlin
p,m := {x 7→ ((a × x)⊕ b) mod m | a ∈ F∗

p, b ∈ Fp} is 1-universal.

Let x ̸= y ∈ Fp. (To show: Prh∼Hlin
p,m

[h(x) = h(y)] ≤ 1/m.)

Define
c = (a × x)⊕ b
d = (a × y)⊕ b

⇔
(

c
d

)
=

(
x 1
y 1

)
︸ ︷︷ ︸

regular!

(
a
b

)
.

The mapping (a, b) 7→ (c, d) is a bijection (for every x ̸= y)
from F∗p × Fp → P. // (a, b) ∼ U(F∗

p × Fp) ⇒ (c, d) ∼ U(P)

Define bad set B := {(c, d) ∈ P | c mod m = d mod m}.
↪→ from picture: |B|

|P| ≤
1
m .

c

d

0 p-1
0

p-1
(p = 13,m = 4)

P := Fp × Fp \ {(b, b) | b ∈ Fp}

Pra,b∼U(F∗
p ×Fp)[h(x) = h(y)] = Pr

a,b
[((a × x)⊕ b) mod m = ((a × y)⊕ b) mod m]

= Pr
a,b
[c mod m = d mod m] = Pr

a,b
[(c, d) ∈ B] = Pr

c,d∼U(P)
[(c, d) ∈ B] =

|B|
|P|

≤ 1
m
.

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

18/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Proof that Hlin
p,m := {x 7→ ((a × x)⊕ b) mod m | a ∈ F∗

p, b ∈ Fp} is 1-universal.

Let x ̸= y ∈ Fp. (To show: Prh∼Hlin
p,m

[h(x) = h(y)] ≤ 1/m.)

Define
c = (a × x)⊕ b
d = (a × y)⊕ b

⇔
(

c
d

)
=

(
x 1
y 1

)
︸ ︷︷ ︸

regular!

(
a
b

)
.

The mapping (a, b) 7→ (c, d) is a bijection (for every x ̸= y)
from F∗p × Fp → P. // (a, b) ∼ U(F∗

p × Fp) ⇒ (c, d) ∼ U(P)

Define bad set B := {(c, d) ∈ P | c mod m = d mod m}.
↪→ from picture: |B|

|P| ≤
1
m .

c

d

0 p-1
0

p-1
(p = 13,m = 4)

P := Fp × Fp \ {(b, b) | b ∈ Fp}

Pra,b∼U(F∗
p ×Fp)[h(x) = h(y)] = Pr

a,b
[((a × x)⊕ b) mod m = ((a × y)⊕ b) mod m]

= Pr
a,b
[c mod m = d mod m] = Pr

a,b
[(c, d) ∈ B] = Pr

c,d∼U(P)
[(c, d) ∈ B] =

|B|
|P|

≤ 1
m
.

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

18/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Theorem
If H ⊆ [m]D is a c-universal hash family then Tchaining(n,m,H) ≤ 2 + cα = O(1) if α ∈ O(1) and c ∈ O(1).

Proof: Mostly the same.

∀S ⊆ [D],∀x ∈ D : Eh∼U(H)

[
1 + |{y ∈ S | h(y) = h(x)}|

]

≤ . . . ≤ 2 +
∑

y∈S\{x}

Prh∼U(H)[h(y) = h(x)]

= 2 +
∑

y∈S\{x}

c
m

≤ 2 +
cn
m

= 2 + cα.

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

19/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Analysis of Hash Table with Chaining
. . . using a Universal Hash Family

Theorem
If H ⊆ [m]D is a c-universal hash family then Tchaining(n,m,H) ≤ 2 + cα = O(1) if α ∈ O(1) and c ∈ O(1).

Proof: Mostly the same.

∀S ⊆ [D],∀x ∈ D : Eh∼U(H)

[
1 + |{y ∈ S | h(y) = h(x)}|

]
≤ . . . ≤ 2 +

∑
y∈S\{x}

Prh∼U(H)[h(y) = h(x)]

= 2 +
∑

y∈S\{x}

c
m

≤ 2 +
cn
m

= 2 + cα.

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

19/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Analysis of Hash Table with Chaining
. . . using a Universal Hash Family

Theorem
If H ⊆ [m]D is a c-universal hash family then Tchaining(n,m,H) ≤ 2 + cα = O(1) if α ∈ O(1) and c ∈ O(1).

Proof: Mostly the same.

∀S ⊆ [D],∀x ∈ D : Eh∼U(H)

[
1 + |{y ∈ S | h(y) = h(x)}|

]
≤ . . . ≤ 2 +

∑
y∈S\{x}

Prh∼U(H)[h(y) = h(x)]

= 2 +
∑

y∈S\{x}

c
m

≤ 2 +
cn
m

= 2 + cα.

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

19/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Analysis of Hash Table with Chaining
. . . using a Universal Hash Family

Examples for Universal Hash Families

“((ax + b) mod p) mod m” is 1-universal

as discussed: D = Fp, R = [m],

Hlin
p,m := {x 7→ ((a × b)⊕ b) mod m | a ∈ F∗

p , b ∈ Fp}

“(ax mod p) mod m” is only 2-universal:

D = Fp, R = [m],

H = {x 7→ (a × b) mod m | a ∈ F∗
p}

Multiply-Shift is 1-universal:

D = {0, . . . , 2w − 1}, R = {0, . . . , 2ℓ − 1}

H = {x 7→ ⌊((a · x + b) mod 22w)/22w−ℓ⌋ |

a, b ∈ {0, . . . , 22w − 1}}.

Selling point of multiply shift:

“x mod 22w ” drops some higher order bits

“⌊x/22w−ℓ⌋ drops some lower order bits

No division or modulo operation needed!

For w = 32 (taken from Thorup 2015):

uint32_t hash(uint32_t x, uint32_t l,

uint64_t a, uint64_t b) {

return (a * x + b) >> (64-l);

}

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

20/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

More Universal Families

Examples for Universal Hash Families

“((ax + b) mod p) mod m” is 1-universal

as discussed: D = Fp, R = [m],

Hlin
p,m := {x 7→ ((a × b)⊕ b) mod m | a ∈ F∗

p , b ∈ Fp}

“(ax mod p) mod m” is only 2-universal:

D = Fp, R = [m],

H = {x 7→ (a × b) mod m | a ∈ F∗
p}

Multiply-Shift is 1-universal:

D = {0, . . . , 2w − 1}, R = {0, . . . , 2ℓ − 1}

H = {x 7→ ⌊((a · x + b) mod 22w)/22w−ℓ⌋ |

a, b ∈ {0, . . . , 22w − 1}}.

Selling point of multiply shift:

“x mod 22w ” drops some higher order bits

“⌊x/22w−ℓ⌋ drops some lower order bits

No division or modulo operation needed!

For w = 32 (taken from Thorup 2015):

uint32_t hash(uint32_t x, uint32_t l,

uint64_t a, uint64_t b) {

return (a * x + b) >> (64-l);

}

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

20/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

More Universal Families

Examples for Universal Hash Families

“((ax + b) mod p) mod m” is 1-universal

as discussed: D = Fp, R = [m],

Hlin
p,m := {x 7→ ((a × b)⊕ b) mod m | a ∈ F∗

p , b ∈ Fp}

“(ax mod p) mod m” is only 2-universal:

D = Fp, R = [m],

H = {x 7→ (a × b) mod m | a ∈ F∗
p}

Multiply-Shift is 1-universal:

D = {0, . . . , 2w − 1}, R = {0, . . . , 2ℓ − 1}

H = {x 7→ ⌊((a · x + b) mod 22w)/22w−ℓ⌋ |

a, b ∈ {0, . . . , 22w − 1}}.

Selling point of multiply shift:

“x mod 22w ” drops some higher order bits

“⌊x/22w−ℓ⌋ drops some lower order bits

No division or modulo operation needed!

For w = 32 (taken from Thorup 2015):

uint32_t hash(uint32_t x, uint32_t l,

uint64_t a, uint64_t b) {

return (a * x + b) >> (64-l);

}

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

20/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

More Universal Families

Examples for Universal Hash Families

“((ax + b) mod p) mod m” is 1-universal

as discussed: D = Fp, R = [m],

Hlin
p,m := {x 7→ ((a × b)⊕ b) mod m | a ∈ F∗

p , b ∈ Fp}

“(ax mod p) mod m” is only 2-universal:

D = Fp, R = [m],

H = {x 7→ (a × b) mod m | a ∈ F∗
p}

Multiply-Shift is 1-universal:

D = {0, . . . , 2w − 1}, R = {0, . . . , 2ℓ − 1}

H = {x 7→ ⌊((a · x + b) mod 22w)/22w−ℓ⌋ |

a, b ∈ {0, . . . , 22w − 1}}.

Selling point of multiply shift:

“x mod 22w ” drops some higher order bits

“⌊x/22w−ℓ⌋ drops some lower order bits

No division or modulo operation needed!

For w = 32 (taken from Thorup 2015):

uint32_t hash(uint32_t x, uint32_t l,

uint64_t a, uint64_t b) {

return (a * x + b) >> (64-l);

}

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

20/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

More Universal Families

1. Conceptions: What is a Hash Function?
Hashing in the Wild
What should a Theorist do?

2. Use Case 1: Hash Table with Chaining
Using SUHA
Using Universal Hashing

3. Use Case 2: Linear Probing
Using SUHA
Using Universal Hashing

4. Conclusion

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

21/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Content

♢

△

♠ ♡ †♣ ⋆

S : set of n keys
m : # of buckets
α = n/m

Operations
For key x probe buckets h(x),h(x) + 1,h(x) + 2, . . . (mod m).

Insert. Put x into first empty bucket.

Lookup. Look for x , abort when encountering empty bucket.

Delete. Lookup and remove x and ! check if a key to the
right wants to move into the hole.a

↪→ For details see https://en.wikipedia.org/wiki/Linear_probing

aAlternative implementations leaves special tombstones markers.

Running Times
Lookup(x ∈ S): At most x ’s insertion time.

Lookup(x /∈ S): At most the time it would take to
insert x now.

Delete(x ∈ S): At most the time it would take to
insert y /∈ S with h(y) = h(x).

↪→ It suffices to understand insertion times!

Theorem: Linear Probing under SUHA
Let Tn,m be the random insertion time into a linear
probing hash table. If 1

2 ≤ α < 1 then under SUHA we
have

E[Tn,m] =

O(1
(1−α)2) =

O(1).

(not here)

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

22/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Hash Table with Linear Probing

https://en.wikipedia.org/wiki/Linear_probing

♢♠ ♡ †♣ ⋆

S : set of n keys
m : # of buckets
α = n/m

△

Operations
For key x probe buckets h(x),h(x) + 1,h(x) + 2, . . . (mod m).

Insert. Put x into first empty bucket.

Lookup. Look for x , abort when encountering empty bucket.

Delete. Lookup and remove x and ! check if a key to the
right wants to move into the hole.a

↪→ For details see https://en.wikipedia.org/wiki/Linear_probing

aAlternative implementations leaves special tombstones markers.

Running Times
Lookup(x ∈ S): At most x ’s insertion time.

Lookup(x /∈ S): At most the time it would take to
insert x now.

Delete(x ∈ S): At most the time it would take to
insert y /∈ S with h(y) = h(x).

↪→ It suffices to understand insertion times!

Theorem: Linear Probing under SUHA
Let Tn,m be the random insertion time into a linear
probing hash table. If 1

2 ≤ α < 1 then under SUHA we
have

E[Tn,m] =

O(1
(1−α)2) =

O(1).

(not here)

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

22/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Hash Table with Linear Probing

https://en.wikipedia.org/wiki/Linear_probing

♢♠ ♡ †♣ ⋆

‡
S : set of n keys
m : # of buckets
α = n/m

△

Operations
For key x probe buckets h(x),h(x) + 1,h(x) + 2, . . . (mod m).

Insert. Put x into first empty bucket.

Lookup. Look for x , abort when encountering empty bucket.

Delete. Lookup and remove x and ! check if a key to the
right wants to move into the hole.a

↪→ For details see https://en.wikipedia.org/wiki/Linear_probing

aAlternative implementations leaves special tombstones markers.

Running Times
Lookup(x ∈ S): At most x ’s insertion time.

Lookup(x /∈ S): At most the time it would take to
insert x now.

Delete(x ∈ S): At most the time it would take to
insert y /∈ S with h(y) = h(x).

↪→ It suffices to understand insertion times!

Theorem: Linear Probing under SUHA
Let Tn,m be the random insertion time into a linear
probing hash table. If 1

2 ≤ α < 1 then under SUHA we
have

E[Tn,m] =

O(1
(1−α)2) =

O(1).

(not here)

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

22/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Hash Table with Linear Probing

https://en.wikipedia.org/wiki/Linear_probing

♢♠ ♡ †♣ ⋆

S : set of n keys
m : # of buckets
α = n/m

△ ‡

Operations
For key x probe buckets h(x),h(x) + 1,h(x) + 2, . . . (mod m).

Insert. Put x into first empty bucket.

Lookup. Look for x , abort when encountering empty bucket.

Delete. Lookup and remove x and ! check if a key to the
right wants to move into the hole.a

↪→ For details see https://en.wikipedia.org/wiki/Linear_probing

aAlternative implementations leaves special tombstones markers.

Running Times
Lookup(x ∈ S): At most x ’s insertion time.

Lookup(x /∈ S): At most the time it would take to
insert x now.

Delete(x ∈ S): At most the time it would take to
insert y /∈ S with h(y) = h(x).

↪→ It suffices to understand insertion times!

Theorem: Linear Probing under SUHA
Let Tn,m be the random insertion time into a linear
probing hash table. If 1

2 ≤ α < 1 then under SUHA we
have

E[Tn,m] =

O(1
(1−α)2) =

O(1).

(not here)

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

22/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Hash Table with Linear Probing

https://en.wikipedia.org/wiki/Linear_probing

♢♠ ♡ †♣ ⋆

Ξ

S : set of n keys
m : # of buckets
α = n/m

△ ‡

Operations
For key x probe buckets h(x),h(x) + 1,h(x) + 2, . . . (mod m).

Insert. Put x into first empty bucket.

Lookup. Look for x , abort when encountering empty bucket.

Delete. Lookup and remove x and ! check if a key to the
right wants to move into the hole.a

↪→ For details see https://en.wikipedia.org/wiki/Linear_probing

aAlternative implementations leaves special tombstones markers.

Running Times
Lookup(x ∈ S): At most x ’s insertion time.

Lookup(x /∈ S): At most the time it would take to
insert x now.

Delete(x ∈ S): At most the time it would take to
insert y /∈ S with h(y) = h(x).

↪→ It suffices to understand insertion times!

Theorem: Linear Probing under SUHA
Let Tn,m be the random insertion time into a linear
probing hash table. If 1

2 ≤ α < 1 then under SUHA we
have

E[Tn,m] =

O(1
(1−α)2) =

O(1).

(not here)

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

22/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Hash Table with Linear Probing

https://en.wikipedia.org/wiki/Linear_probing

♢♠ ♡ †♣ ⋆

S : set of n keys
m : # of buckets
α = n/m

△ ‡Ξ

Operations
For key x probe buckets h(x),h(x) + 1,h(x) + 2, . . . (mod m).

Insert. Put x into first empty bucket.

Lookup. Look for x , abort when encountering empty bucket.

Delete. Lookup and remove x and ! check if a key to the
right wants to move into the hole.a

↪→ For details see https://en.wikipedia.org/wiki/Linear_probing

aAlternative implementations leaves special tombstones markers.

Running Times
Lookup(x ∈ S): At most x ’s insertion time.

Lookup(x /∈ S): At most the time it would take to
insert x now.

Delete(x ∈ S): At most the time it would take to
insert y /∈ S with h(y) = h(x).

↪→ It suffices to understand insertion times!

Theorem: Linear Probing under SUHA
Let Tn,m be the random insertion time into a linear
probing hash table. If 1

2 ≤ α < 1 then under SUHA we
have

E[Tn,m] =

O(1
(1−α)2) =

O(1).

(not here)

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

22/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Hash Table with Linear Probing

https://en.wikipedia.org/wiki/Linear_probing

♢♠ ♡ †♣ ⋆

Λ

S : set of n keys
m : # of buckets
α = n/m

△ ‡Ξ

Operations
For key x probe buckets h(x),h(x) + 1,h(x) + 2, . . . (mod m).

Insert. Put x into first empty bucket.

Lookup. Look for x , abort when encountering empty bucket.

Delete. Lookup and remove x and ! check if a key to the
right wants to move into the hole.a

↪→ For details see https://en.wikipedia.org/wiki/Linear_probing

aAlternative implementations leaves special tombstones markers.

Running Times
Lookup(x ∈ S): At most x ’s insertion time.

Lookup(x /∈ S): At most the time it would take to
insert x now.

Delete(x ∈ S): At most the time it would take to
insert y /∈ S with h(y) = h(x).

↪→ It suffices to understand insertion times!

Theorem: Linear Probing under SUHA
Let Tn,m be the random insertion time into a linear
probing hash table. If 1

2 ≤ α < 1 then under SUHA we
have

E[Tn,m] =

O(1
(1−α)2) =

O(1).

(not here)

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

22/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Hash Table with Linear Probing

https://en.wikipedia.org/wiki/Linear_probing

♢♠ ♡ †♣ ⋆

Λ

S : set of n keys
m : # of buckets
α = n/m

△ ‡Ξ

Operations
For key x probe buckets h(x),h(x) + 1,h(x) + 2, . . . (mod m).

Insert. Put x into first empty bucket.

Lookup. Look for x , abort when encountering empty bucket.

Delete. Lookup and remove x and ! check if a key to the
right wants to move into the hole.a

↪→ For details see https://en.wikipedia.org/wiki/Linear_probing

aAlternative implementations leaves special tombstones markers.

Running Times
Lookup(x ∈ S): At most x ’s insertion time.

Lookup(x /∈ S): At most the time it would take to
insert x now.

Delete(x ∈ S): At most the time it would take to
insert y /∈ S with h(y) = h(x).

↪→ It suffices to understand insertion times!

Theorem: Linear Probing under SUHA
Let Tn,m be the random insertion time into a linear
probing hash table. If 1

2 ≤ α < 1 then under SUHA we
have

E[Tn,m] =

O(1
(1−α)2) =

O(1).

(not here)

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

22/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Hash Table with Linear Probing

https://en.wikipedia.org/wiki/Linear_probing

♢♠ ♡ †♣ ⋆

Λ

S : set of n keys
m : # of buckets
α = n/m

△ ‡Ξ

Operations
For key x probe buckets h(x),h(x) + 1,h(x) + 2, . . . (mod m).

Insert. Put x into first empty bucket.

Lookup. Look for x , abort when encountering empty bucket.

Delete. Lookup and remove x and ! check if a key to the
right wants to move into the hole.a

↪→ For details see https://en.wikipedia.org/wiki/Linear_probing

aAlternative implementations leaves special tombstones markers.

Running Times
Lookup(x ∈ S): At most x ’s insertion time.

Lookup(x /∈ S): At most the time it would take to
insert x now.

Delete(x ∈ S): At most the time it would take to
insert y /∈ S with h(y) = h(x).

↪→ It suffices to understand insertion times!

Theorem: Linear Probing under SUHA
Let Tn,m be the random insertion time into a linear
probing hash table. If 1

2 ≤ α < 1 then under SUHA we
have

E[Tn,m] =

O(1
(1−α)2) =

O(1).

(not here)

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

22/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Hash Table with Linear Probing

https://en.wikipedia.org/wiki/Linear_probing

♢♠ ♡ †♣ ⋆

Λ

S : set of n keys
m : # of buckets
α = n/m

△ ‡Ξ

Operations
For key x probe buckets h(x),h(x) + 1,h(x) + 2, . . . (mod m).

Insert. Put x into first empty bucket.

Lookup. Look for x , abort when encountering empty bucket.

Delete. Lookup and remove x and ! check if a key to the
right wants to move into the hole.a

↪→ For details see https://en.wikipedia.org/wiki/Linear_probing

aAlternative implementations leaves special tombstones markers.

Running Times
Lookup(x ∈ S): At most x ’s insertion time.

Lookup(x /∈ S): At most the time it would take to
insert x now.

Delete(x ∈ S): At most the time it would take to
insert y /∈ S with h(y) = h(x).

↪→ It suffices to understand insertion times!

Theorem: Linear Probing under SUHA
Let Tn,m be the random insertion time into a linear
probing hash table. If 1

2 ≤ α < 1 then under SUHA we
have

E[Tn,m] =

O(1
(1−α)2) =

O(1).

(not here)

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

22/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Hash Table with Linear Probing

https://en.wikipedia.org/wiki/Linear_probing

♢♠ ♡ †♣ ⋆

Λ

S : set of n keys
m : # of buckets
α = n/m

△ ‡Ξ

Operations
For key x probe buckets h(x),h(x) + 1,h(x) + 2, . . . (mod m).

Insert. Put x into first empty bucket.

Lookup. Look for x , abort when encountering empty bucket.

Delete. Lookup and remove x and ! check if a key to the
right wants to move into the hole.a

↪→ For details see https://en.wikipedia.org/wiki/Linear_probing

aAlternative implementations leaves special tombstones markers.

Running Times
Lookup(x ∈ S): At most x ’s insertion time.

Lookup(x /∈ S): At most the time it would take to
insert x now.

Delete(x ∈ S): At most the time it would take to
insert y /∈ S with h(y) = h(x).

↪→ It suffices to understand insertion times!

Theorem: Linear Probing under SUHA
Let Tn,m be the random insertion time into a linear
probing hash table. If 1

2 ≤ α < 1 then under SUHA we
have

E[Tn,m] =

O(1
(1−α)2) =

O(1).

(not here)

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

22/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Hash Table with Linear Probing

https://en.wikipedia.org/wiki/Linear_probing

♢♠ ♡ †♣ ⋆

Λ

S : set of n keys
m : # of buckets
α = n/m

△ ‡Ξ

Operations
For key x probe buckets h(x),h(x) + 1,h(x) + 2, . . . (mod m).

Insert. Put x into first empty bucket.

Lookup. Look for x , abort when encountering empty bucket.

Delete. Lookup and remove x and ! check if a key to the
right wants to move into the hole.a

↪→ For details see https://en.wikipedia.org/wiki/Linear_probing

aAlternative implementations leaves special tombstones markers.

Running Times
Lookup(x ∈ S): At most x ’s insertion time.

Lookup(x /∈ S): At most the time it would take to
insert x now.

Delete(x ∈ S): At most the time it would take to
insert y /∈ S with h(y) = h(x).

↪→ It suffices to understand insertion times!

Theorem: Linear Probing under SUHA
Let Tn,m be the random insertion time into a linear
probing hash table. If 1

2 ≤ α < 1 then under SUHA we
have

E[Tn,m] =

O(1
(1−α)2) =

O(1).

(not here)

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

22/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Hash Table with Linear Probing

https://en.wikipedia.org/wiki/Linear_probing

♢♠ ♡ †♣ ⋆

Λ

S : set of n keys
m : # of buckets
α = n/m

△ ‡Ξ

Operations
For key x probe buckets h(x),h(x) + 1,h(x) + 2, . . . (mod m).

Insert. Put x into first empty bucket.

Lookup. Look for x , abort when encountering empty bucket.

Delete. Lookup and remove x and ! check if a key to the
right wants to move into the hole.a

↪→ For details see https://en.wikipedia.org/wiki/Linear_probing

aAlternative implementations leaves special tombstones markers.

Running Times
Lookup(x ∈ S): At most x ’s insertion time.

Lookup(x /∈ S): At most the time it would take to
insert x now.

Delete(x ∈ S): At most the time it would take to
insert y /∈ S with h(y) = h(x).

↪→ It suffices to understand insertion times!

Theorem: Linear Probing under SUHA
Let Tn,m be the random insertion time into a linear
probing hash table. If 1

2 ≤ α < 1 then under SUHA we
have

E[Tn,m] =

O(1
(1−α)2) =

O(1).

(not here)

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

22/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Hash Table with Linear Probing

https://en.wikipedia.org/wiki/Linear_probing

♢♠ ♡ †♣ ⋆

Λ

S : set of n keys
m : # of buckets
α = n/m

△ ‡Ξ

Operations
For key x probe buckets h(x),h(x) + 1,h(x) + 2, . . . (mod m).

Insert. Put x into first empty bucket.

Lookup. Look for x , abort when encountering empty bucket.

Delete. Lookup and remove x and ! check if a key to the
right wants to move into the hole.a

↪→ For details see https://en.wikipedia.org/wiki/Linear_probing

aAlternative implementations leaves special tombstones markers.

Running Times
Lookup(x ∈ S): At most x ’s insertion time.

Lookup(x /∈ S): At most the time it would take to
insert x now.

Delete(x ∈ S): At most the time it would take to
insert y /∈ S with h(y) = h(x).

↪→ It suffices to understand insertion times!

Theorem: Linear Probing under SUHA
Let Tn,m be the random insertion time into a linear
probing hash table. If 1

2 ≤ α < 1 then under SUHA we
have

E[Tn,m] =

O(1
(1−α)2) =

O(1).

(not here)

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

22/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Hash Table with Linear Probing

https://en.wikipedia.org/wiki/Linear_probing

♢♠ ♡ †♣ ⋆

Λ

S : set of n keys
m : # of buckets
α = n/m

△ ‡Ξ

Operations
For key x probe buckets h(x),h(x) + 1,h(x) + 2, . . . (mod m).

Insert. Put x into first empty bucket.

Lookup. Look for x , abort when encountering empty bucket.

Delete. Lookup and remove x and ! check if a key to the
right wants to move into the hole.a

↪→ For details see https://en.wikipedia.org/wiki/Linear_probing

aAlternative implementations leaves special tombstones markers.

Running Times
Lookup(x ∈ S): At most x ’s insertion time.

Lookup(x /∈ S): At most the time it would take to
insert x now.

Delete(x ∈ S): At most the time it would take to
insert y /∈ S with h(y) = h(x).

↪→ It suffices to understand insertion times!

Theorem: Linear Probing under SUHA
Let Tn,m be the random insertion time into a linear
probing hash table. If 1

2 ≤ α < 1 then under SUHA we
have

E[Tn,m] = O(1
(1−α)2) = O(1). (not here)

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

22/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Hash Table with Linear Probing

https://en.wikipedia.org/wiki/Linear_probing

1. Conceptions: What is a Hash Function?
Hashing in the Wild
What should a Theorist do?

2. Use Case 1: Hash Table with Chaining
Using SUHA
Using Universal Hashing

3. Use Case 2: Linear Probing
Using SUHA
Using Universal Hashing

4. Conclusion

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

23/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Content

Chernoff
For X ∼ Bin(n, p) and δ ∈ [0, 1] we have Pr[X ≥ (1 + δ)E[X]] ≤ exp(−δ2E[X]/3).

Lemma: Pr[≥ k hits in segment of length k]

range of k buckets (wlog i = 1)

X ≥ k keys hashing to range

i+ki

Let k ∈ N and X = |{y ∈ S | h(y) ∈ {1, . . . , k}}|.

Then Pr
h∼U(RD)

[X ≥ k] ≤ exp(−(1 − α)2k/3).

Proof
Let S = {x1, . . . , xn} and Xi = [h(xi) ∈ {1, . . . , k}] ∼ Ber(k

m).
Then X =

∑
i∈[n] Xi ∼ Bin(n, k

m) with E[X] = kn
m = αk .

Pr[X ≥ k] = Pr[X ≥ 1
αE[X]]

= Pr[X ≥ (1 + 1−α
α)E[X]]

≤ exp(−(1−α
α)2αk/3)

≤ exp(−(1 − α)2k/3).

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

24/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Preparation: A concentration bound

Chernoff
For X ∼ Bin(n, p) and δ ∈ [0, 1] we have Pr[X ≥ (1 + δ)E[X]] ≤ exp(−δ2E[X]/3).

Lemma: Pr[≥ k hits in segment of length k]

range of k buckets (wlog i = 1)

X ≥ k keys hashing to range

i+ki

Let k ∈ N and X = |{y ∈ S | h(y) ∈ {1, . . . , k}}|.

Then Pr
h∼U(RD)

[X ≥ k] ≤ exp(−(1 − α)2k/3).

Proof
Let S = {x1, . . . , xn} and Xi = [h(xi) ∈ {1, . . . , k}] ∼ Ber(k

m).
Then X =

∑
i∈[n] Xi ∼ Bin(n, k

m) with E[X] = kn
m = αk .

Pr[X ≥ k] = Pr[X ≥ 1
αE[X]]

= Pr[X ≥ (1 + 1−α
α)E[X]]

≤ exp(−(1−α
α)2αk/3)

≤ exp(−(1 − α)2k/3).

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

24/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Preparation: A concentration bound

Chernoff
For X ∼ Bin(n, p) and δ ∈ [0, 1] we have Pr[X ≥ (1 + δ)E[X]] ≤ exp(−δ2E[X]/3).

Lemma: Pr[≥ k hits in segment of length k]

range of k buckets (wlog i = 1)

X ≥ k keys hashing to range

i+ki

Let k ∈ N and X = |{y ∈ S | h(y) ∈ {1, . . . , k}}|.

Then Pr
h∼U(RD)

[X ≥ k] ≤ exp(−(1 − α)2k/3).

Proof
Let S = {x1, . . . , xn} and Xi = [h(xi) ∈ {1, . . . , k}] ∼ Ber(k

m).
Then X =

∑
i∈[n] Xi ∼ Bin(n, k

m) with E[X] = kn
m = αk .

Pr[X ≥ k] = Pr[X ≥ 1
αE[X]]

= Pr[X ≥ (1 + 1−α
α)E[X]]

≤ exp(−(1−α
α)2αk/3)

≤ exp(−(1 − α)2k/3).

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

24/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Preparation: A concentration bound

Chernoff
For X ∼ Bin(n, p) and δ ∈ [0, 1] we have Pr[X ≥ (1 + δ)E[X]] ≤ exp(−δ2E[X]/3).

Lemma: Pr[≥ k hits in segment of length k]

range of k buckets (wlog i = 1)

X ≥ k keys hashing to range

i+ki

Let k ∈ N and X = |{y ∈ S | h(y) ∈ {1, . . . , k}}|.

Then Pr
h∼U(RD)

[X ≥ k] ≤ exp(−(1 − α)2k/3).

Proof
Let S = {x1, . . . , xn} and Xi = [h(xi) ∈ {1, . . . , k}] ∼ Ber(k

m).
Then X =

∑
i∈[n] Xi ∼ Bin(n, k

m) with E[X] = kn
m = αk .

Pr[X ≥ k] = Pr[X ≥ 1
αE[X]]

= Pr[X ≥ (1 + 1−α
α)E[X]]

≤ exp(−(1−α
α)2αk/3)

≤ exp(−(1 − α)2k/3).

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

24/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Preparation: A concentration bound

Proof: Expected LP-Insertion Time under SUHA is O(1)

E[T]

≤ E[B] =
∑
k≥1

k · Pr[B = k] =
∑
k≥1

k · Pr
[k−1⋃

d=0

Ah(x)−d,h(x)−d+k−1

]
(1)
≤

∑
k≥1

k ·
k−1∑
d=0

Pr
[
Ah(x)−d,h(x)−d+k−1

]
(2)
=

∑
k≥1

k · k · Pr[A1,k]

(3)
≤

∑
k≥1

k2 · Pr[|{y ∈ S | h(y) ∈ {1, . . . , k}| ≥ k]

(4)
≤

∑
k≥1

k2 · exp(−(1 − α)2k/3) = O(1).

Wolfram Alpha gives:
∫ ∞

0
k2 exp(−(1 − α)2k/3) =

54
(1 − α)6

.

x = occupied

T + 1 steps

T

B

Au,v : {u, v} is maximal occupied block:
u v.

Reasoning:

(1) Union Bound.
(2) h(x) is independent of keys in the

table and hash distribution is invariant
under cyclic shifts.

(3) Note: Keys stored in block cannot
come in from the left.

(4) Chernoff argument from previous
slide.

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

25/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Proof: Expected LP-Insertion Time under SUHA is O(1)

E[T] ≤ E[B]

=
∑
k≥1

k · Pr[B = k] =
∑
k≥1

k · Pr
[k−1⋃

d=0

Ah(x)−d,h(x)−d+k−1

]
(1)
≤

∑
k≥1

k ·
k−1∑
d=0

Pr
[
Ah(x)−d,h(x)−d+k−1

]
(2)
=

∑
k≥1

k · k · Pr[A1,k]

(3)
≤

∑
k≥1

k2 · Pr[|{y ∈ S | h(y) ∈ {1, . . . , k}| ≥ k]

(4)
≤

∑
k≥1

k2 · exp(−(1 − α)2k/3) = O(1).

Wolfram Alpha gives:
∫ ∞

0
k2 exp(−(1 − α)2k/3) =

54
(1 − α)6

.

x = occupied

T + 1 steps

T

B

Au,v : {u, v} is maximal occupied block:
u v.

Reasoning:

(1) Union Bound.
(2) h(x) is independent of keys in the

table and hash distribution is invariant
under cyclic shifts.

(3) Note: Keys stored in block cannot
come in from the left.

(4) Chernoff argument from previous
slide.

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

25/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Proof: Expected LP-Insertion Time under SUHA is O(1)

E[T] ≤ E[B] =
∑
k≥1

k · Pr[B = k]

=
∑
k≥1

k · Pr
[k−1⋃

d=0

Ah(x)−d,h(x)−d+k−1

]
(1)
≤

∑
k≥1

k ·
k−1∑
d=0

Pr
[
Ah(x)−d,h(x)−d+k−1

]
(2)
=

∑
k≥1

k · k · Pr[A1,k]

(3)
≤

∑
k≥1

k2 · Pr[|{y ∈ S | h(y) ∈ {1, . . . , k}| ≥ k]

(4)
≤

∑
k≥1

k2 · exp(−(1 − α)2k/3) = O(1).

Wolfram Alpha gives:
∫ ∞

0
k2 exp(−(1 − α)2k/3) =

54
(1 − α)6

.

x = occupied

T + 1 steps

T

B

Au,v : {u, v} is maximal occupied block:
u v.

Reasoning:

(1) Union Bound.
(2) h(x) is independent of keys in the

table and hash distribution is invariant
under cyclic shifts.

(3) Note: Keys stored in block cannot
come in from the left.

(4) Chernoff argument from previous
slide.

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

25/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Proof: Expected LP-Insertion Time under SUHA is O(1)

E[T] ≤ E[B] =
∑
k≥1

k · Pr[B = k] =
∑
k≥1

k · Pr
[k−1⋃

d=0

Ah(x)−d,h(x)−d+k−1

]

(1)
≤

∑
k≥1

k ·
k−1∑
d=0

Pr
[
Ah(x)−d,h(x)−d+k−1

]
(2)
=

∑
k≥1

k · k · Pr[A1,k]

(3)
≤

∑
k≥1

k2 · Pr[|{y ∈ S | h(y) ∈ {1, . . . , k}| ≥ k]

(4)
≤

∑
k≥1

k2 · exp(−(1 − α)2k/3) = O(1).

Wolfram Alpha gives:
∫ ∞

0
k2 exp(−(1 − α)2k/3) =

54
(1 − α)6

.

x = occupied

T + 1 steps

T

B

Au,v : {u, v} is maximal occupied block:
u v.

Reasoning:

(1) Union Bound.
(2) h(x) is independent of keys in the

table and hash distribution is invariant
under cyclic shifts.

(3) Note: Keys stored in block cannot
come in from the left.

(4) Chernoff argument from previous
slide.

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

25/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Proof: Expected LP-Insertion Time under SUHA is O(1)

E[T] ≤ E[B] =
∑
k≥1

k · Pr[B = k] =
∑
k≥1

k · Pr
[k−1⋃

d=0

Ah(x)−d,h(x)−d+k−1

]
(1)
≤

∑
k≥1

k ·
k−1∑
d=0

Pr
[
Ah(x)−d,h(x)−d+k−1

]

(2)
=

∑
k≥1

k · k · Pr[A1,k]

(3)
≤

∑
k≥1

k2 · Pr[|{y ∈ S | h(y) ∈ {1, . . . , k}| ≥ k]

(4)
≤

∑
k≥1

k2 · exp(−(1 − α)2k/3) = O(1).

Wolfram Alpha gives:
∫ ∞

0
k2 exp(−(1 − α)2k/3) =

54
(1 − α)6

.

x = occupied

T + 1 steps

T

B

Au,v : {u, v} is maximal occupied block:
u v.

Reasoning:

(1) Union Bound.

(2) h(x) is independent of keys in the
table and hash distribution is invariant
under cyclic shifts.

(3) Note: Keys stored in block cannot
come in from the left.

(4) Chernoff argument from previous
slide.

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

25/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Proof: Expected LP-Insertion Time under SUHA is O(1)

E[T] ≤ E[B] =
∑
k≥1

k · Pr[B = k] =
∑
k≥1

k · Pr
[k−1⋃

d=0

Ah(x)−d,h(x)−d+k−1

]
(1)
≤

∑
k≥1

k ·
k−1∑
d=0

Pr
[
Ah(x)−d,h(x)−d+k−1

]
(2)
=

∑
k≥1

k · k · Pr[A1,k]

(3)
≤

∑
k≥1

k2 · Pr[|{y ∈ S | h(y) ∈ {1, . . . , k}| ≥ k]

(4)
≤

∑
k≥1

k2 · exp(−(1 − α)2k/3) = O(1).

Wolfram Alpha gives:
∫ ∞

0
k2 exp(−(1 − α)2k/3) =

54
(1 − α)6

.

x = occupied

T + 1 steps

T

B

Au,v : {u, v} is maximal occupied block:
u v.

Reasoning:

(1) Union Bound.
(2) h(x) is independent of keys in the

table and hash distribution is invariant
under cyclic shifts.

(3) Note: Keys stored in block cannot
come in from the left.

(4) Chernoff argument from previous
slide.

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

25/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Proof: Expected LP-Insertion Time under SUHA is O(1)

E[T] ≤ E[B] =
∑
k≥1

k · Pr[B = k] =
∑
k≥1

k · Pr
[k−1⋃

d=0

Ah(x)−d,h(x)−d+k−1

]
(1)
≤

∑
k≥1

k ·
k−1∑
d=0

Pr
[
Ah(x)−d,h(x)−d+k−1

]
(2)
=

∑
k≥1

k · k · Pr[A1,k]

(3)
≤

∑
k≥1

k2 · Pr[|{y ∈ S | h(y) ∈ {1, . . . , k}| ≥ k]

(4)
≤

∑
k≥1

k2 · exp(−(1 − α)2k/3) = O(1).

Wolfram Alpha gives:
∫ ∞

0
k2 exp(−(1 − α)2k/3) =

54
(1 − α)6

.

x = occupied

T + 1 steps

T

B

Au,v : {u, v} is maximal occupied block:
u v.

Reasoning:

(1) Union Bound.
(2) h(x) is independent of keys in the

table and hash distribution is invariant
under cyclic shifts.

(3) Note: Keys stored in block cannot
come in from the left.

(4) Chernoff argument from previous
slide.

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

25/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Proof: Expected LP-Insertion Time under SUHA is O(1)

E[T] ≤ E[B] =
∑
k≥1

k · Pr[B = k] =
∑
k≥1

k · Pr
[k−1⋃

d=0

Ah(x)−d,h(x)−d+k−1

]
(1)
≤

∑
k≥1

k ·
k−1∑
d=0

Pr
[
Ah(x)−d,h(x)−d+k−1

]
(2)
=

∑
k≥1

k · k · Pr[A1,k]

(3)
≤

∑
k≥1

k2 · Pr[|{y ∈ S | h(y) ∈ {1, . . . , k}| ≥ k]

(4)
≤

∑
k≥1

k2 · exp(−(1 − α)2k/3)

= O(1).

Wolfram Alpha gives:
∫ ∞

0
k2 exp(−(1 − α)2k/3) =

54
(1 − α)6

.

x = occupied

T + 1 steps

T

B

Au,v : {u, v} is maximal occupied block:
u v.

Reasoning:

(1) Union Bound.
(2) h(x) is independent of keys in the

table and hash distribution is invariant
under cyclic shifts.

(3) Note: Keys stored in block cannot
come in from the left.

(4) Chernoff argument from previous
slide.

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

25/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Proof: Expected LP-Insertion Time under SUHA is O(1)

E[T] ≤ E[B] =
∑
k≥1

k · Pr[B = k] =
∑
k≥1

k · Pr
[k−1⋃

d=0

Ah(x)−d,h(x)−d+k−1

]
(1)
≤

∑
k≥1

k ·
k−1∑
d=0

Pr
[
Ah(x)−d,h(x)−d+k−1

]
(2)
=

∑
k≥1

k · k · Pr[A1,k]

(3)
≤

∑
k≥1

k2 · Pr[|{y ∈ S | h(y) ∈ {1, . . . , k}| ≥ k]

(4)
≤

∑
k≥1

k2 · exp(−(1 − α)2k/3) = O(1).

Wolfram Alpha gives:
∫ ∞

0
k2 exp(−(1 − α)2k/3) =

54
(1 − α)6

.

x = occupied

T + 1 steps

T

B

Au,v : {u, v} is maximal occupied block:
u v.

Reasoning:

(1) Union Bound.
(2) h(x) is independent of keys in the

table and hash distribution is invariant
under cyclic shifts.

(3) Note: Keys stored in block cannot
come in from the left.

(4) Chernoff argument from previous
slide.

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

25/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

1. Conceptions: What is a Hash Function?
Hashing in the Wild
What should a Theorist do?

2. Use Case 1: Hash Table with Chaining
Using SUHA
Using Universal Hashing

3. Use Case 2: Linear Probing
Using SUHA
Using Universal Hashing

4. Conclusion

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

26/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Content

(Mutual / Collective) Independence
A family E of events is independent if ∀k ∈ N and
distinct E1, . . . ,Ek ∈ E we have

Pr
[k⋂

i=1

Ei

]
=

k∏
i=1

Pr[Ei].

A family X of discrete random variables is
independent if ∀k ∈ N, distinct X1, . . . ,Xk ∈ X
and all x1, . . . , xk we have

Pr
[k∧

i=1

Xi = xi

]
=

k∏
i=1

Pr[Xi = xi].

Pairwise Independence
A family of events is pairwise independent if any
subfamily of size 2 is independent.

A family of random variables is pairwise
independent if any subfamily of size 2 is
independent.

d-wise Independence
A family of events is d-wise independent if any
subfamily of size at most d is independent.

A family of random variables is d-wise
independent if any subfamily of size at most d is
independent.

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

27/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Degrees of Independence

(Mutual / Collective) Independence
A family E of events is independent if ∀k ∈ N and
distinct E1, . . . ,Ek ∈ E we have

Pr
[k⋂

i=1

Ei

]
=

k∏
i=1

Pr[Ei].

A family X of discrete random variables is
independent if ∀k ∈ N, distinct X1, . . . ,Xk ∈ X
and all x1, . . . , xk we have

Pr
[k∧

i=1

Xi = xi

]
=

k∏
i=1

Pr[Xi = xi].

Pairwise Independence
A family of events is pairwise independent if any
subfamily of size 2 is independent.

A family of random variables is pairwise
independent if any subfamily of size 2 is
independent.

d-wise Independence
A family of events is d-wise independent if any
subfamily of size at most d is independent.

A family of random variables is d-wise
independent if any subfamily of size at most d is
independent.

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

27/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Degrees of Independence

(Mutual / Collective) Independence
A family E of events is independent if ∀k ∈ N and
distinct E1, . . . ,Ek ∈ E we have

Pr
[k⋂

i=1

Ei

]
=

k∏
i=1

Pr[Ei].

A family X of discrete random variables is
independent if ∀k ∈ N, distinct X1, . . . ,Xk ∈ X
and all x1, . . . , xk we have

Pr
[k∧

i=1

Xi = xi

]
=

k∏
i=1

Pr[Xi = xi].

Pairwise Independence
A family of events is pairwise independent if any
subfamily of size 2 is independent.

A family of random variables is pairwise
independent if any subfamily of size 2 is
independent.

d-wise Independence
A family of events is d-wise independent if any
subfamily of size at most d is independent.

A family of random variables is d-wise
independent if any subfamily of size at most d is
independent.

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

27/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Degrees of Independence

Definition: d-Independent Hash Family
A family H ⊆ RD of hash functions is d-independent if for distinct
x1, . . . , xd ∈ D and any i1, . . . , id ∈ R: (grey is implied by black)

Pr
h∼U(H)

[h(x1) = i1 ∧ . . . ∧ h(xd) = id] =
d∏

j=1

Pr
h∼U(H)

[h(xj) = ij] = |R|−d .

Alternative Definition
H is d-independent if for h ∼ U(H)

the family (h(x))x∈D of random variables
is d-independent and
h(x) ∼ U(R) for each x ∈ D.

Theorem
Let D = R = F be a finite field. Then

H := {x 7→
d−1∑
i=0

aix i | a0, . . . , ad−1 ∈ F}

is a d-independent family.
Note: H ⊆ FF ⇝ not yet useful.

Corollary: Smaller Ranges (proof omitted)
If m divides |F|, then adding “modm” gives a
d-independent family H′ ⊆ [m]F.
If m does not divide |F|, then adding “modm” gives a
family H′ ⊆ [m]F such that for h ∼ U(H′) the family
(h(x))x∈F is d-independent but only approximately
uniformly distributed in [m].

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

28/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

d-Independent Hash Family

Definition: d-Independent Hash Family
A family H ⊆ RD of hash functions is d-independent if for distinct
x1, . . . , xd ∈ D and any i1, . . . , id ∈ R: (grey is implied by black)

Pr
h∼U(H)

[h(x1) = i1 ∧ . . . ∧ h(xd) = id] =
d∏

j=1

Pr
h∼U(H)

[h(xj) = ij] = |R|−d .

Alternative Definition
H is d-independent if for h ∼ U(H)

the family (h(x))x∈D of random variables
is d-independent and
h(x) ∼ U(R) for each x ∈ D.

Theorem
Let D = R = F be a finite field. Then

H := {x 7→
d−1∑
i=0

aix i | a0, . . . , ad−1 ∈ F}

is a d-independent family.
Note: H ⊆ FF ⇝ not yet useful.

Corollary: Smaller Ranges (proof omitted)
If m divides |F|, then adding “modm” gives a
d-independent family H′ ⊆ [m]F.
If m does not divide |F|, then adding “modm” gives a
family H′ ⊆ [m]F such that for h ∼ U(H′) the family
(h(x))x∈F is d-independent but only approximately
uniformly distributed in [m].

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

28/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

d-Independent Hash Family

Definition: d-Independent Hash Family
A family H ⊆ RD of hash functions is d-independent if for distinct
x1, . . . , xd ∈ D and any i1, . . . , id ∈ R: (grey is implied by black)

Pr
h∼U(H)

[h(x1) = i1 ∧ . . . ∧ h(xd) = id] =
d∏

j=1

Pr
h∼U(H)

[h(xj) = ij] = |R|−d .

Alternative Definition
H is d-independent if for h ∼ U(H)

the family (h(x))x∈D of random variables
is d-independent and
h(x) ∼ U(R) for each x ∈ D.

Theorem
Let D = R = F be a finite field. Then

H := {x 7→
d−1∑
i=0

aix i | a0, . . . , ad−1 ∈ F}

is a d-independent family.
Note: H ⊆ FF ⇝ not yet useful.

Corollary: Smaller Ranges (proof omitted)
If m divides |F|, then adding “modm” gives a
d-independent family H′ ⊆ [m]F.
If m does not divide |F|, then adding “modm” gives a
family H′ ⊆ [m]F such that for h ∼ U(H′) the family
(h(x))x∈F is d-independent but only approximately
uniformly distributed in [m].

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

28/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

d-Independent Hash Family

Definition: d-Independent Hash Family
A family H ⊆ RD of hash functions is d-independent if for distinct
x1, . . . , xd ∈ D and any i1, . . . , id ∈ R: (grey is implied by black)

Pr
h∼U(H)

[h(x1) = i1 ∧ . . . ∧ h(xd) = id] =
d∏

j=1

Pr
h∼U(H)

[h(xj) = ij] = |R|−d .

Alternative Definition
H is d-independent if for h ∼ U(H)

the family (h(x))x∈D of random variables
is d-independent and
h(x) ∼ U(R) for each x ∈ D.

Theorem
Let D = R = F be a finite field. Then

H := {x 7→
d−1∑
i=0

aix i | a0, . . . , ad−1 ∈ F}

is a d-independent family.
Note: H ⊆ FF ⇝ not yet useful.

Corollary: Smaller Ranges (proof omitted)
If m divides |F|, then adding “modm” gives a
d-independent family H′ ⊆ [m]F.
If m does not divide |F|, then adding “modm” gives a
family H′ ⊆ [m]F such that for h ∼ U(H′) the family
(h(x))x∈F is d-independent but only approximately
uniformly distributed in [m].

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

28/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

d-Independent Hash Family

Proof: H := {x 7→
∑d−1

i=0 aix i | a0, . . . , ad−1 ∈ F} is d-independent

Let x1, . . . , xd ∈ F be distinct keys and i1, . . . id ∈ F arbitrary.
↪→ to show : Prh∼U(H)[∀j ∈ [d] : h(xj) = ij] = |F|−d .
For h ∈ H (given via a0, . . . , ad−1) the following is equivalent:

h(x1) = i1
h(x2) = i2

...
h(xd) = id

⇐⇒

a0 + a1x1 + · · ·+ ad−1xd−1
1 = i1

a0 + a1x2 + · · ·+ ad−1xd−1
2 = i2

...
a0 + a1xd + · · ·+ ad−1xd−1

d = id

⇐⇒

1 x1 x2

1 . . . xd−1
1

1 x2 x2
2 . . . xd−1

2
...

. . .
...

1 xd x2
d . . . xd−1

d

︸ ︷︷ ︸

Vandermonde matrix M ⇒ regular

·

a0

a1
...

ad−1

 =

i1
i2
...
id

Exactly one vector a⃗ = M−1 · i⃗ solves the equation.

⇒ Prh∼U(H)[∀j : h(xj) = ij] = Pra0,...,ad−1∼U(F) [⃗a = M−1 · i⃗] = |F|−d .

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

29/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Proof: H := {x 7→
∑d−1

i=0 aix i | a0, . . . , ad−1 ∈ F} is d-independent
Let x1, . . . , xd ∈ F be distinct keys and i1, . . . id ∈ F arbitrary.
↪→ to show : Prh∼U(H)[∀j ∈ [d] : h(xj) = ij] = |F|−d .

For h ∈ H (given via a0, . . . , ad−1) the following is equivalent:

h(x1) = i1
h(x2) = i2

...
h(xd) = id

⇐⇒

a0 + a1x1 + · · ·+ ad−1xd−1
1 = i1

a0 + a1x2 + · · ·+ ad−1xd−1
2 = i2

...
a0 + a1xd + · · ·+ ad−1xd−1

d = id

⇐⇒

1 x1 x2

1 . . . xd−1
1

1 x2 x2
2 . . . xd−1

2
...

. . .
...

1 xd x2
d . . . xd−1

d

︸ ︷︷ ︸

Vandermonde matrix M ⇒ regular

·

a0

a1
...

ad−1

 =

i1
i2
...
id

Exactly one vector a⃗ = M−1 · i⃗ solves the equation.

⇒ Prh∼U(H)[∀j : h(xj) = ij] = Pra0,...,ad−1∼U(F) [⃗a = M−1 · i⃗] = |F|−d .

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

29/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Proof: H := {x 7→
∑d−1

i=0 aix i | a0, . . . , ad−1 ∈ F} is d-independent
Let x1, . . . , xd ∈ F be distinct keys and i1, . . . id ∈ F arbitrary.
↪→ to show : Prh∼U(H)[∀j ∈ [d] : h(xj) = ij] = |F|−d .
For h ∈ H (given via a0, . . . , ad−1) the following is equivalent:

h(x1) = i1
h(x2) = i2

...
h(xd) = id

⇐⇒

a0 + a1x1 + · · ·+ ad−1xd−1
1 = i1

a0 + a1x2 + · · ·+ ad−1xd−1
2 = i2

...
a0 + a1xd + · · ·+ ad−1xd−1

d = id

⇐⇒

1 x1 x2

1 . . . xd−1
1

1 x2 x2
2 . . . xd−1

2
...

. . .
...

1 xd x2
d . . . xd−1

d

︸ ︷︷ ︸

Vandermonde matrix M ⇒ regular

·

a0

a1
...

ad−1

 =

i1
i2
...
id

Exactly one vector a⃗ = M−1 · i⃗ solves the equation.

⇒ Prh∼U(H)[∀j : h(xj) = ij] = Pra0,...,ad−1∼U(F) [⃗a = M−1 · i⃗] = |F|−d .

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

29/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Proof: H := {x 7→
∑d−1

i=0 aix i | a0, . . . , ad−1 ∈ F} is d-independent
Let x1, . . . , xd ∈ F be distinct keys and i1, . . . id ∈ F arbitrary.
↪→ to show : Prh∼U(H)[∀j ∈ [d] : h(xj) = ij] = |F|−d .
For h ∈ H (given via a0, . . . , ad−1) the following is equivalent:

h(x1) = i1
h(x2) = i2

...
h(xd) = id

⇐⇒

a0 + a1x1 + · · ·+ ad−1xd−1
1 = i1

a0 + a1x2 + · · ·+ ad−1xd−1
2 = i2

...
a0 + a1xd + · · ·+ ad−1xd−1

d = id

⇐⇒

1 x1 x2

1 . . . xd−1
1

1 x2 x2
2 . . . xd−1

2
...

. . .
...

1 xd x2
d . . . xd−1

d

︸ ︷︷ ︸

Vandermonde matrix M ⇒ regular

·

a0

a1
...

ad−1

 =

i1
i2
...
id

Exactly one vector a⃗ = M−1 · i⃗ solves the equation.

⇒ Prh∼U(H)[∀j : h(xj) = ij] = Pra0,...,ad−1∼U(F) [⃗a = M−1 · i⃗] = |F|−d .

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

29/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Proof: H := {x 7→
∑d−1

i=0 aix i | a0, . . . , ad−1 ∈ F} is d-independent
Let x1, . . . , xd ∈ F be distinct keys and i1, . . . id ∈ F arbitrary.
↪→ to show : Prh∼U(H)[∀j ∈ [d] : h(xj) = ij] = |F|−d .
For h ∈ H (given via a0, . . . , ad−1) the following is equivalent:

h(x1) = i1
h(x2) = i2

...
h(xd) = id

⇐⇒

a0 + a1x1 + · · ·+ ad−1xd−1
1 = i1

a0 + a1x2 + · · ·+ ad−1xd−1
2 = i2

...
a0 + a1xd + · · ·+ ad−1xd−1

d = id

⇐⇒

1 x1 x2

1 . . . xd−1
1

1 x2 x2
2 . . . xd−1

2
...

. . .
...

1 xd x2
d . . . xd−1

d

︸ ︷︷ ︸

Vandermonde matrix M ⇒ regular

·

a0

a1
...

ad−1

 =

i1
i2
...
id

Exactly one vector a⃗ = M−1 · i⃗ solves the equation.

⇒ Prh∼U(H)[∀j : h(xj) = ij] = Pra0,...,ad−1∼U(F) [⃗a = M−1 · i⃗] = |F|−d .

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

29/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Proof: H := {x 7→
∑d−1

i=0 aix i | a0, . . . , ad−1 ∈ F} is d-independent
Let x1, . . . , xd ∈ F be distinct keys and i1, . . . id ∈ F arbitrary.
↪→ to show : Prh∼U(H)[∀j ∈ [d] : h(xj) = ij] = |F|−d .
For h ∈ H (given via a0, . . . , ad−1) the following is equivalent:

h(x1) = i1
h(x2) = i2

...
h(xd) = id

⇐⇒

a0 + a1x1 + · · ·+ ad−1xd−1
1 = i1

a0 + a1x2 + · · ·+ ad−1xd−1
2 = i2

...
a0 + a1xd + · · ·+ ad−1xd−1

d = id

⇐⇒

1 x1 x2

1 . . . xd−1
1

1 x2 x2
2 . . . xd−1

2
...

. . .
...

1 xd x2
d . . . xd−1

d

︸ ︷︷ ︸

Vandermonde matrix M ⇒ regular

·

a0

a1
...

ad−1

 =

i1
i2
...
id

Exactly one vector a⃗ = M−1 · i⃗ solves the equation.

⇒ Prh∼U(H)[∀j : h(xj) = ij] = Pra0,...,ad−1∼U(F) [⃗a = M−1 · i⃗] = |F|−d .

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

29/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Proof: H := {x 7→
∑d−1

i=0 aix i | a0, . . . , ad−1 ∈ F} is d-independent
Let x1, . . . , xd ∈ F be distinct keys and i1, . . . id ∈ F arbitrary.
↪→ to show : Prh∼U(H)[∀j ∈ [d] : h(xj) = ij] = |F|−d .
For h ∈ H (given via a0, . . . , ad−1) the following is equivalent:

h(x1) = i1
h(x2) = i2

...
h(xd) = id

⇐⇒

a0 + a1x1 + · · ·+ ad−1xd−1
1 = i1

a0 + a1x2 + · · ·+ ad−1xd−1
2 = i2

...
a0 + a1xd + · · ·+ ad−1xd−1

d = id

⇐⇒

1 x1 x2

1 . . . xd−1
1

1 x2 x2
2 . . . xd−1

2
...

. . .
...

1 xd x2
d . . . xd−1

d

︸ ︷︷ ︸

Vandermonde matrix M ⇒ regular

·

a0

a1
...

ad−1

 =

i1
i2
...
id

Exactly one vector a⃗ = M−1 · i⃗ solves the equation.

⇒ Prh∼U(H)[∀j : h(xj) = ij] = Pra0,...,ad−1∼U(F) [⃗a = M−1 · i⃗] = |F|−d .

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

29/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

(Tricky) Exercise
Let d be even and X1, . . . ,Xn ∼ Ber(p) a d-independent family of random variables with p = Ω(1/n).
Let X =

∑n
i=1 Xi . Then for any δ > 0 we have

Pr[X − E[X] ≥ δE[X]] = O(δ−dE[X]−d/2).

Remark: Weaker than Chernoff, stronger than Chebyshev

Chebycheff gives Pr[X − E[X] ≥ δE[X]] ≤ 1−p
δ2E[X] . (requires d = 2)

↪→ uses that Var(X1 + · · ·+ Xn) = Var(X1) + · · ·+ Var(Xn) for pairwise independent X1, . . . ,Xn.

Chernoff gave Pr[X − E[X] ≥ δE[X]] ≤ exp(−δ2E[X]/3). (requires d = n).

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

30/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Concentration Bound for d-Independent Variables

(Tricky) Exercise
Let d be even and X1, . . . ,Xn ∼ Ber(p) a d-independent family of random variables with p = Ω(1/n).
Let X =

∑n
i=1 Xi . Then for any δ > 0 we have

Pr[X − E[X] ≥ δE[X]] = O(δ−dE[X]−d/2).

Remark: Weaker than Chernoff, stronger than Chebyshev

Chebycheff gives Pr[X − E[X] ≥ δE[X]] ≤ 1−p
δ2E[X] . (requires d = 2)

↪→ uses that Var(X1 + · · ·+ Xn) = Var(X1) + · · ·+ Var(Xn) for pairwise independent X1, . . . ,Xn.

Chernoff gave Pr[X − E[X] ≥ δE[X]] ≤ exp(−δ2E[X]/3). (requires d = n).

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

30/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Concentration Bound for d-Independent Variables

Lemma (last slide)

For d-independent X1, . . . ,Xn ∼ Ber(p) and X =
∑

i∈[n] Xi we have Pr[X ≥ (1 + δ)E[X]] = O(δ−dE[X]−d/2).

Lemma: ≥ k hits in segment of length k

range of k buckets (wlog i = 1)

X ≥ k keys hashing to range

i+ki

Let H be a d-independent hash family and h ∼ U(H).
Let k ∈ N and X = |{y ∈ S | h(y) ∈ {1, . . . , k}}|.

Then Pr[X ≥ k] ≤ O((1 − α)−d k−d/2).

Proof
Let S = {x1, . . . , xn} and
Xi = [h(xi) ∈ {1, . . . , k}] ∼ Ber(k

m).
Then X =

∑
i∈[n] Xi fits the Lemma with E[X] = kn

m = αk .

Pr[X ≥ k] = Pr[X ≥ 1
αE[X]]

= Pr[X ≥ (1 + 1−α
α)E[X]]

= O(
(

1−α
α

)−d
(αk)−d/2)

≤ O((1 − α)−d k−d/2). (using α ≤ 1)

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

31/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Preparation: A Concentration Bound
again for d-independence

Lemma (last slide)

For d-independent X1, . . . ,Xn ∼ Ber(p) and X =
∑

i∈[n] Xi we have Pr[X ≥ (1 + δ)E[X]] = O(δ−dE[X]−d/2).

Lemma: ≥ k hits in segment of length k

range of k buckets (wlog i = 1)

X ≥ k keys hashing to range

i+ki

Let H be a d-independent hash family and h ∼ U(H).
Let k ∈ N and X = |{y ∈ S | h(y) ∈ {1, . . . , k}}|.

Then Pr[X ≥ k] ≤ O((1 − α)−d k−d/2).

Proof
Let S = {x1, . . . , xn} and
Xi = [h(xi) ∈ {1, . . . , k}] ∼ Ber(k

m).
Then X =

∑
i∈[n] Xi fits the Lemma with E[X] = kn

m = αk .

Pr[X ≥ k] = Pr[X ≥ 1
αE[X]]

= Pr[X ≥ (1 + 1−α
α)E[X]]

= O(
(

1−α
α

)−d
(αk)−d/2)

≤ O((1 − α)−d k−d/2). (using α ≤ 1)

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

31/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Preparation: A Concentration Bound
again for d-independence

Lemma (last slide)

For d-independent X1, . . . ,Xn ∼ Ber(p) and X =
∑

i∈[n] Xi we have Pr[X ≥ (1 + δ)E[X]] = O(δ−dE[X]−d/2).

Lemma: ≥ k hits in segment of length k

range of k buckets (wlog i = 1)

X ≥ k keys hashing to range

i+ki

Let H be a d-independent hash family and h ∼ U(H).
Let k ∈ N and X = |{y ∈ S | h(y) ∈ {1, . . . , k}}|.

Then Pr[X ≥ k] ≤ O((1 − α)−d k−d/2).

Proof
Let S = {x1, . . . , xn} and
Xi = [h(xi) ∈ {1, . . . , k}] ∼ Ber(k

m).
Then X =

∑
i∈[n] Xi fits the Lemma with E[X] = kn

m = αk .

Pr[X ≥ k] = Pr[X ≥ 1
αE[X]]

= Pr[X ≥ (1 + 1−α
α)E[X]]

= O(
(

1−α
α

)−d
(αk)−d/2)

≤ O((1 − α)−d k−d/2). (using α ≤ 1)

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

31/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Preparation: A Concentration Bound
again for d-independence

Lemma (last slide)

For d-independent X1, . . . ,Xn ∼ Ber(p) and X =
∑

i∈[n] Xi we have Pr[X ≥ (1 + δ)E[X]] = O(δ−dE[X]−d/2).

Lemma: ≥ k hits in segment of length k

range of k buckets (wlog i = 1)

X ≥ k keys hashing to range

i+ki

Let H be a d-independent hash family and h ∼ U(H).
Let k ∈ N and X = |{y ∈ S | h(y) ∈ {1, . . . , k}}|.

Then Pr[X ≥ k] ≤ O((1 − α)−d k−d/2).

Proof
Let S = {x1, . . . , xn} and
Xi = [h(xi) ∈ {1, . . . , k}] ∼ Ber(k

m).
Then X =

∑
i∈[n] Xi fits the Lemma with E[X] = kn

m = αk .

Pr[X ≥ k] = Pr[X ≥ 1
αE[X]]

= Pr[X ≥ (1 + 1−α
α)E[X]]

= O(
(

1−α
α

)−d
(αk)−d/2)

≤ O((1 − α)−d k−d/2). (using α ≤ 1)

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

31/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Preparation: A Concentration Bound
again for d-independence

Theorem: Linear Probing with d-independence
Under the same conditions as before, except with 9-independent
hash functions, the insertion time Tn,m for linear probing satisfies:

E[Tn,m] = O(1)

Proof Sketch

E[T] ≤ E[B] ≤ . . .

(1)
≤

∑
k≥1

k2 · Pr[|{y ∈ S | h(y) ∈ {1, . . . , k}}| ≥ k]

(2)
≤

∑
k≥1

k2 · O((1 − α)−8k−8/2)

≤
∑
k≥1

k−2 · O((1 − α)−8)

(3)
= π2

6 O((1 − α)−8) = O(1).

x = occupied

T + 1 steps

T

B

Au,v : {u, v} is a maximal occupied block:
u v.

Reasoning:

(1) Same as before, except we have to condition on
h(x) and may only use 8-independence in the
following. (this is the hand wavy part!)

(2) Concentration bound from previous slide for
d = 8.

(3) If interested, see 3Blue1Brown video:
https://www.youtube.com/watch?v=d-o3eB9sfls

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

32/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

https://www.youtube.com/watch?v=d-o3eB9sfls

Theorem: Linear Probing with d-independence
Under the same conditions as before, except with 9-independent
hash functions, the insertion time Tn,m for linear probing satisfies:

E[Tn,m] = O(1)

Proof Sketch

E[T]

≤ E[B] ≤ . . .

(1)
≤

∑
k≥1

k2 · Pr[|{y ∈ S | h(y) ∈ {1, . . . , k}}| ≥ k]

(2)
≤

∑
k≥1

k2 · O((1 − α)−8k−8/2)

≤
∑
k≥1

k−2 · O((1 − α)−8)

(3)
= π2

6 O((1 − α)−8) = O(1).

x = occupied

T + 1 steps

T

B

Au,v : {u, v} is a maximal occupied block:
u v.

Reasoning:

(1) Same as before, except we have to condition on
h(x) and may only use 8-independence in the
following. (this is the hand wavy part!)

(2) Concentration bound from previous slide for
d = 8.

(3) If interested, see 3Blue1Brown video:
https://www.youtube.com/watch?v=d-o3eB9sfls

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

32/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

https://www.youtube.com/watch?v=d-o3eB9sfls

Theorem: Linear Probing with d-independence
Under the same conditions as before, except with 9-independent
hash functions, the insertion time Tn,m for linear probing satisfies:

E[Tn,m] = O(1)

Proof Sketch

E[T] ≤ E[B]

≤ . . .

(1)
≤

∑
k≥1

k2 · Pr[|{y ∈ S | h(y) ∈ {1, . . . , k}}| ≥ k]

(2)
≤

∑
k≥1

k2 · O((1 − α)−8k−8/2)

≤
∑
k≥1

k−2 · O((1 − α)−8)

(3)
= π2

6 O((1 − α)−8) = O(1).

x = occupied

T + 1 steps

T

B

Au,v : {u, v} is a maximal occupied block:
u v.

Reasoning:

(1) Same as before, except we have to condition on
h(x) and may only use 8-independence in the
following. (this is the hand wavy part!)

(2) Concentration bound from previous slide for
d = 8.

(3) If interested, see 3Blue1Brown video:
https://www.youtube.com/watch?v=d-o3eB9sfls

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

32/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

https://www.youtube.com/watch?v=d-o3eB9sfls

Theorem: Linear Probing with d-independence
Under the same conditions as before, except with 9-independent
hash functions, the insertion time Tn,m for linear probing satisfies:

E[Tn,m] = O(1)

Proof Sketch

E[T] ≤ E[B] ≤ . . .

(1)
≤

∑
k≥1

k2 · Pr[|{y ∈ S | h(y) ∈ {1, . . . , k}}| ≥ k]

(2)
≤

∑
k≥1

k2 · O((1 − α)−8k−8/2)

≤
∑
k≥1

k−2 · O((1 − α)−8)

(3)
= π2

6 O((1 − α)−8) = O(1).

x = occupied

T + 1 steps

T

B

Au,v : {u, v} is a maximal occupied block:
u v.

Reasoning:

(1) Same as before, except we have to condition on
h(x) and may only use 8-independence in the
following. (this is the hand wavy part!)

(2) Concentration bound from previous slide for
d = 8.

(3) If interested, see 3Blue1Brown video:
https://www.youtube.com/watch?v=d-o3eB9sfls

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

32/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

https://www.youtube.com/watch?v=d-o3eB9sfls

Theorem: Linear Probing with d-independence
Under the same conditions as before, except with 9-independent
hash functions, the insertion time Tn,m for linear probing satisfies:

E[Tn,m] = O(1)

Proof Sketch

E[T] ≤ E[B] ≤ . . .

(1)
≤

∑
k≥1

k2 · Pr[|{y ∈ S | h(y) ∈ {1, . . . , k}}| ≥ k]

(2)
≤

∑
k≥1

k2 · O((1 − α)−8k−8/2)

≤
∑
k≥1

k−2 · O((1 − α)−8)

(3)
= π2

6 O((1 − α)−8) = O(1).

x = occupied

T + 1 steps

T

B

Au,v : {u, v} is a maximal occupied block:
u v.

Reasoning:

(1) Same as before, except we have to condition on
h(x) and may only use 8-independence in the
following. (this is the hand wavy part!)

(2) Concentration bound from previous slide for
d = 8.

(3) If interested, see 3Blue1Brown video:
https://www.youtube.com/watch?v=d-o3eB9sfls

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

32/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

https://www.youtube.com/watch?v=d-o3eB9sfls

Theorem: Linear Probing with d-independence
Under the same conditions as before, except with 9-independent
hash functions, the insertion time Tn,m for linear probing satisfies:

E[Tn,m] = O(1)

Proof Sketch

E[T] ≤ E[B] ≤ . . .

(1)
≤

∑
k≥1

k2 · Pr[|{y ∈ S | h(y) ∈ {1, . . . , k}}| ≥ k]

(2)
≤

∑
k≥1

k2 · O((1 − α)−8k−8/2)

≤
∑
k≥1

k−2 · O((1 − α)−8)

(3)
= π2

6 O((1 − α)−8) = O(1).

x = occupied

T + 1 steps

T

B

Au,v : {u, v} is a maximal occupied block:
u v.

Reasoning:

(1) Same as before, except we have to condition on
h(x) and may only use 8-independence in the
following. (this is the hand wavy part!)

(2) Concentration bound from previous slide for
d = 8.

(3) If interested, see 3Blue1Brown video:
https://www.youtube.com/watch?v=d-o3eB9sfls

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

32/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

https://www.youtube.com/watch?v=d-o3eB9sfls

Theorem: Linear Probing with d-independence
Under the same conditions as before, except with 9-independent
hash functions, the insertion time Tn,m for linear probing satisfies:

E[Tn,m] = O(1)

Proof Sketch

E[T] ≤ E[B] ≤ . . .

(1)
≤

∑
k≥1

k2 · Pr[|{y ∈ S | h(y) ∈ {1, . . . , k}}| ≥ k]

(2)
≤

∑
k≥1

k2 · O((1 − α)−8k−8/2)

≤
∑
k≥1

k−2 · O((1 − α)−8)

(3)
= π2

6 O((1 − α)−8) = O(1).

x = occupied

T + 1 steps

T

B

Au,v : {u, v} is a maximal occupied block:
u v.

Reasoning:

(1) Same as before, except we have to condition on
h(x) and may only use 8-independence in the
following. (this is the hand wavy part!)

(2) Concentration bound from previous slide for
d = 8.

(3) If interested, see 3Blue1Brown video:
https://www.youtube.com/watch?v=d-o3eB9sfls

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

32/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

https://www.youtube.com/watch?v=d-o3eB9sfls

Much more is known about insertion times of linear probing:

Any 5-independent family gives O(1
(1−α)2).

↪→ A. Pagh, R. Pagh, and Ruzic 2011

An (artificially bad) 4-independent family gives Ω(log n).
↪→ Pătraşcu and Thorup 2016

A (well-designed) 4-independent family gives O(1
(1−α)2).

↪→ Puatracscu and Thorup 2013

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

33/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Final Remarks on Linear Probing + Universal Hashing

Storing Elements Naively is Inefficient (Cleary 1984)
Example: If D = [2n] and |S| = n, then bitvector of 2n bits suffices.
↪→ Much smaller than Array with O(n) entries of log2 |D| bits!
In General: Should aim for log2

(|D|
n

)
bits rather than n · log2 |D|.

Tabulation Hashing offers Chernoff-type Concentration Bounds (Pǎtraşcu and Thorup 2012)
Pairs good practical performance with rigorous mathematical guarantees.

In Practice: Linear Probing can be Supercharged
E.g. using SIMD instructions. Don’t implement high-performance hash tables yourself.

In Theory: Go Beyond Linear Probing (Bender, Farach-Colton, et al. 2022; Bender, Kuszmaul, and Zhou 2024)

Goals: Improve worst-case access times, improve running time for α → 1.

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

34/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

We Glossed over many Modern Insights

Technical Takeaway: Performance of Hash Tables
For both an ideal hash function (SUHA) and a random hash function from a suitable universal class, a hash
table using linear probing or chaining provably has an expected running time of O(1) per operation.

Non-Technical Takeaway: Approaches to analyse hashing based algorithms

algorithm or data structure
using hashing

analysis using SUHA

hash function from
universal class

(possibly fast)

high performance
hash function

(fast, not analysable)

analysis using
universal hashing

models

justifies &

deepens
understanding of

builds on

requires &

deepens
understanding of

can usecan use

rigorously
justifies

We’ll always use SUHA in the following.
Less probability theory, more algorithms!

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

35/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Conclusion

Technical Takeaway: Performance of Hash Tables
For both an ideal hash function (SUHA) and a random hash function from a suitable universal class, a hash
table using linear probing or chaining provably has an expected running time of O(1) per operation.

Non-Technical Takeaway: Approaches to analyse hashing based algorithms

algorithm or data structure
using hashing

analysis using SUHA

hash function from
universal class

(possibly fast)

high performance
hash function

(fast, not analysable)

analysis using
universal hashing

models

justifies &

deepens
understanding of

builds on

requires &

deepens
understanding of

can usecan use

rigorously
justifies

We’ll always use SUHA in the following.
Less probability theory, more algorithms!

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

35/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Conclusion

Technical Takeaway: Performance of Hash Tables
For both an ideal hash function (SUHA) and a random hash function from a suitable universal class, a hash
table using linear probing or chaining provably has an expected running time of O(1) per operation.

Non-Technical Takeaway: Approaches to analyse hashing based algorithms

algorithm or data structure
using hashing

analysis using SUHA

hash function from
universal class

(possibly fast)

high performance
hash function

(fast, not analysable)

analysis using
universal hashing

models

justifies &

deepens
understanding of

builds on

requires &

deepens
understanding of

can usecan use

rigorously
justifies

We’ll always use SUHA in the following.
Less probability theory, more algorithms!

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

35/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Conclusion

Was könnte eine Idealvorstellung einer Hashfunktion sein? Inwiefern wäre eine ideale Hashfunktion
nützlich? Was ist das Problem an dieser Vorstellung?

Was ist die Simple Uniform Hashing Assumption (SUHA)? Was spricht dafür diese Annahme zu treffen?
Welche Alternativen gibt es?

Inwiefern ist eine pseudozufällige Funktion mit kryptographischen Ununterscheidbarkeitsgarantien nützlich
für uns? Wie ist der Zusammenhang zur SUHA?*
Universelles Hashing:

Wie ist c-Universalität definiert?
Welche c-universellen Hashklasse haben wir kennengelernt? Wie haben wir die c-Universalität bewiesen?
Wie ist d-Unabhängigkeit für eine Hashklasse definiert?
Welche d-universelle Hashklasse haben wir kennengelernt?
Welcher Zusammenhang besteht zwischen d-Unabhängigkeit und c-Universalität? (Übungsaufgabe)
Chernoff Schranken sind für Summen unabhängiger Zufallsvariablen gedacht. Was kann man machen, wenn die
Zufallsvariablen nur d-unabhängig sind?*

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

36/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Anhang: Mögliche Prüfungsfragen I

Betrachten wir Hashing mit verketteten Listen:
Welche Schranke an die erwartete Einfügezeit haben wir bewiesen? Wie?
An welcher Stelle spielt die Verteilung der Hashfunktion eine Rolle?
Nenne eine hinreichende Eigenschaft, die eine universelle Hashklasse haben sollte, damit der Beweis
funktioniert.

Betrachten wir Hashing mit linearem Sondieren:
Welche Schranke an die erwartete Laufzeit haben wir bewiesen? Wie?
An welcher Stelle spielt die Verteilung der Hashfunktion eine Rolle?
Nenne eine hinreichende Eigenschaft, die eine universelle Hashklasse haben sollte, damit der Beweis
funktioniert.
Wie wir diese Eigenschaft ausgenutzt?*

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

37/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

Anhang: Mögliche Prüfungsfragen II

[1] Michael A. Bender, Martin Farach-Colton, et al. “On the optimal time/space tradeoff for hash tables”. In:
54th STOC. 2022, pp. 1284–1297. DOI: 10.1145/3519935.3519969.

[2] Michael A. Bender, William Kuszmaul, and Renfei Zhou. “Tight Bounds for Classical Open Addressing”. In:
CoRR abs/2409.11280 (2024). DOI: 10.48550/ARXIV.2409.11280.

[3] John G. Cleary. “Compact Hash Tables Using Bidirectional Linear Probing”. In: IEEE Trans. Computers
33.9 (1984), pp. 828–834. DOI: 10.1109/TC.1984.1676499.

[4] Anna Pagh, Rasmus Pagh, and Milan Ruzic. “Linear Probing with 5-wise Independence”. In: SIAM Rev.
53.3 (2011), pp. 547–558. DOI: 10.1137/110827831. URL: https://doi.org/10.1137/110827831.

[5] Mihai Pătraşcu and Mikkel Thorup. “On the k-Independence Required by Linear Probing and Minwise
Independence”. In: ACM Trans. Algorithms 12.1 (2016), 8:1–8:27. DOI: 10.1145/2716317. URL:
https://doi.org/10.1145/2716317.

[6] Mihai Pǎtraşcu and Mikkel Thorup. “The Power of Simple Tabulation Hashing”. In: J. ACM (2012). DOI:
10.1145/2220357.2220361.

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

38/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

References I

https://doi.org/10.1145/3519935.3519969
https://doi.org/10.48550/ARXIV.2409.11280
https://doi.org/10.1109/TC.1984.1676499
https://doi.org/10.1137/110827831
https://doi.org/10.1137/110827831
https://doi.org/10.1145/2716317
https://doi.org/10.1145/2716317
https://doi.org/10.1145/2220357.2220361

[7] Mihai Puatracscu and Mikkel Thorup. “Twisted Tabulation Hashing”. In: Proceedings of the Twenty-Fourth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, New Orleans, Louisiana, USA,
January 6-8, 2013. Ed. by Sanjeev Khanna. SIAM, 2013, pp. 209–228. DOI:
10.1137/1.9781611973105.16. URL: https://doi.org/10.1137/1.9781611973105.16.

[8] Mikkel Thorup. “High Speed Hashing for Integers and Strings”. In: CoRR abs/1504.06804 (2015). arXiv:
1504.06804. URL: http://arxiv.org/abs/1504.06804.

Conceptions: What is a Hash Function? Use Case 1: Hash Table with Chaining Use Case 2: Linear Probing Conclusion References

39/35 WS 2024/2025 Stefan Walzer: Classic Hash Tables ITI, Algorithm Engineering

References II

https://doi.org/10.1137/1.9781611973105.16
https://doi.org/10.1137/1.9781611973105.16
https://arxiv.org/abs/1504.06804
http://arxiv.org/abs/1504.06804

	Conceptions: What is a Hash Function?
	Hashing in the Wild
	What should a Theorist do?

	Use Case 1: Hash Table with Chaining
	Using SUHA
	Using Universal Hashing

	Use Case 2: Linear Probing
	Using SUHA
	Using Universal Hashing

	Conclusion
	References

