
Probability and Computing – The Peeling Algorithm

Stefan Walzer | WS 2024/2025

KIT – The Research University in the Helmholtz Association www.kit.edu

https://www.kit.edu

1. Cuckoo hashing with more than two hash functions

2. The Peeling Algorithm

3. The Peeling Theorem

4. Conclusion

Cuckoo hashing with more than two hash functions The Peeling Algorithm The Peeling Theorem Conclusion

2/25 WS 2024/2025 Stefan Walzer: Peeling ITI, Algorithm Engineering

Content

1. Cuckoo hashing with more than two hash functions

2. The Peeling Algorithm

3. The Peeling Theorem

4. Conclusion

Cuckoo hashing with more than two hash functions The Peeling Algorithm The Peeling Theorem Conclusion

3/25 WS 2024/2025 Stefan Walzer: Peeling ITI, Algorithm Engineering

Content

n ∈ N keys
m ∈ N table size
α = n

m load factor
h1, . . . , hk ∼ U([m]D) hash functions

↪→ Could also use a separate table per hash function.

randomWalkInsert(x)

while x ̸= ⊥ do // TODO: limit

sample i ∼ U([k])
swap(x ,T [hi(x)])

(some improvements possible)

Theorem (without proof)
For each k ∈ N there is a threshold c∗

k such that:

if α < c∗
k all keys can be placed with probability 1−O(1

m).
if α > c∗

k not all keys can be placed with probability 1−O(1
m).

c∗
2 = 1

2 , c∗
3 ≈ 0.92, c∗

4 ≈ 0.98, . . .

Theorem (Bell, Frieze, 2024)
If k ≥ 4 and α < c∗k then, conditioned on a high probability eventa, the expected insertion time is O(1).

aWithout this conditioning, randomWalkInsert might be trapped in an infinite loop.

Cuckoo hashing with more than two hash functions The Peeling Algorithm The Peeling Theorem Conclusion

4/25 WS 2024/2025 Stefan Walzer: Peeling ITI, Algorithm Engineering

Cuckoo Hashing with one table and k hash functions

n ∈ N keys
m ∈ N table size
α = n

m load factor
h1, . . . , hk ∼ U([m]D) hash functions

↪→ Could also use a separate table per hash function.

randomWalkInsert(x)

while x ̸= ⊥ do // TODO: limit

sample i ∼ U([k])
swap(x ,T [hi(x)])

(some improvements possible)

Theorem (without proof)
For each k ∈ N there is a threshold c∗

k such that:

if α < c∗
k all keys can be placed with probability 1−O(1

m).
if α > c∗

k not all keys can be placed with probability 1−O(1
m).

c∗
2 = 1

2 , c∗
3 ≈ 0.92, c∗

4 ≈ 0.98, . . .

Theorem (Bell, Frieze, 2024)
If k ≥ 4 and α < c∗k then, conditioned on a high probability eventa, the expected insertion time is O(1).

aWithout this conditioning, randomWalkInsert might be trapped in an infinite loop.

Cuckoo hashing with more than two hash functions The Peeling Algorithm The Peeling Theorem Conclusion

4/25 WS 2024/2025 Stefan Walzer: Peeling ITI, Algorithm Engineering

Cuckoo Hashing with one table and k hash functions

n ∈ N keys
m ∈ N table size
α = n

m load factor
h1, . . . , hk ∼ U([m]D) hash functions

↪→ Could also use a separate table per hash function.

randomWalkInsert(x)

while x ̸= ⊥ do // TODO: limit

sample i ∼ U([k])
swap(x ,T [hi(x)])

(some improvements possible)

Theorem (without proof)
For each k ∈ N there is a threshold c∗

k such that:

if α < c∗
k all keys can be placed with probability 1−O(1

m).
if α > c∗

k not all keys can be placed with probability 1−O(1
m).

c∗
2 = 1

2 , c∗
3 ≈ 0.92, c∗

4 ≈ 0.98, . . .

Theorem (Bell, Frieze, 2024)
If k ≥ 4 and α < c∗k then, conditioned on a high probability eventa, the expected insertion time is O(1).

aWithout this conditioning, randomWalkInsert might be trapped in an infinite loop.

Cuckoo hashing with more than two hash functions The Peeling Algorithm The Peeling Theorem Conclusion

4/25 WS 2024/2025 Stefan Walzer: Peeling ITI, Algorithm Engineering

Cuckoo Hashing with one table and k hash functions

n ∈ N keys
m ∈ N table size
α = n

m load factor
h1, . . . , hk ∼ U([m]D) hash functions

↪→ Could also use a separate table per hash function.

randomWalkInsert(x)

while x ̸= ⊥ do // TODO: limit

sample i ∼ U([k])
swap(x ,T [hi(x)])

(some improvements possible)

Theorem (without proof)
For each k ∈ N there is a threshold c∗

k such that:

if α < c∗
k all keys can be placed with probability 1−O(1

m).
if α > c∗

k not all keys can be placed with probability 1−O(1
m).

c∗
2 = 1

2 , c∗
3 ≈ 0.92, c∗

4 ≈ 0.98, . . .

Theorem (Bell, Frieze, 2024)
If k ≥ 4 and α < c∗k then, conditioned on a high probability eventa, the expected insertion time is O(1).

aWithout this conditioning, randomWalkInsert might be trapped in an infinite loop.

Cuckoo hashing with more than two hash functions The Peeling Algorithm The Peeling Theorem Conclusion

4/25 WS 2024/2025 Stefan Walzer: Peeling ITI, Algorithm Engineering

Cuckoo Hashing with one table and k hash functions

Static Hash Table
construct(S): builds table T with key set S

lookup(x): checks if x is in T or not
↪→ no insertions or deletions after construction!

Constructing cuckoo hash tables:
solved by Khosla 2013: “Balls into Bins Made Faster”
matching algorithm resembling preflow push
expected running time O(n), finds placement whenever one exists
not in this lecture

Greedily constructing cuckoo hash tables
Peeling: simple algorithm but sophisticated analysis
interesting applications beyond hash tables (see “retrieval” in next lecture)

Cuckoo hashing with more than two hash functions The Peeling Algorithm The Peeling Theorem Conclusion

5/25 WS 2024/2025 Stefan Walzer: Peeling ITI, Algorithm Engineering

Static Hash Tables

Static Hash Table
construct(S): builds table T with key set S

lookup(x): checks if x is in T or not
↪→ no insertions or deletions after construction!

Constructing cuckoo hash tables:
solved by Khosla 2013: “Balls into Bins Made Faster”
matching algorithm resembling preflow push
expected running time O(n), finds placement whenever one exists
not in this lecture

Greedily constructing cuckoo hash tables
Peeling: simple algorithm but sophisticated analysis
interesting applications beyond hash tables (see “retrieval” in next lecture)

Cuckoo hashing with more than two hash functions The Peeling Algorithm The Peeling Theorem Conclusion

5/25 WS 2024/2025 Stefan Walzer: Peeling ITI, Algorithm Engineering

Static Hash Tables

Static Hash Table
construct(S): builds table T with key set S

lookup(x): checks if x is in T or not
↪→ no insertions or deletions after construction!

Constructing cuckoo hash tables:
solved by Khosla 2013: “Balls into Bins Made Faster”
matching algorithm resembling preflow push
expected running time O(n), finds placement whenever one exists
not in this lecture

Greedily constructing cuckoo hash tables
Peeling: simple algorithm but sophisticated analysis
interesting applications beyond hash tables (see “retrieval” in next lecture)

Cuckoo hashing with more than two hash functions The Peeling Algorithm The Peeling Theorem Conclusion

5/25 WS 2024/2025 Stefan Walzer: Peeling ITI, Algorithm Engineering

Static Hash Tables

1. Cuckoo hashing with more than two hash functions

2. The Peeling Algorithm

3. The Peeling Theorem

4. Conclusion

Cuckoo hashing with more than two hash functions The Peeling Algorithm The Peeling Theorem Conclusion

6/25 WS 2024/2025 Stefan Walzer: Peeling ITI, Algorithm Engineering

Content

constructByPeeling(S ⊆ D, h1, h2, h3 ∈ [m]D)

T ← [⊥, . . . ,⊥] // empty table of size m

while ∃i ∈ [m] : ∃ exactly one x ∈ S : i ∈ {h1(x), h2(x), h3(x)} do
// x is only unplaced key that may be placed in i

T [i]← x
S ← S \ {x}

if S = ∅ then
return T

else
return NOT-PEELABLE

c dba e f

Exercise
Success of constructByPeeling does not depend on choices for i made by while.
constructByPeeling can be implemented in linear time.

Cuckoo hashing with more than two hash functions The Peeling Algorithm The Peeling Theorem Conclusion

7/25 WS 2024/2025 Stefan Walzer: Peeling ITI, Algorithm Engineering

The Peeling Algorithm

constructByPeeling(S ⊆ D, h1, h2, h3 ∈ [m]D)

T ← [⊥, . . . ,⊥] // empty table of size m

while ∃i ∈ [m] : ∃ exactly one x ∈ S : i ∈ {h1(x), h2(x), h3(x)} do
// x is only unplaced key that may be placed in i

T [i]← x
S ← S \ {x}

if S = ∅ then
return T

else
return NOT-PEELABLE c

c dba e f

Exercise
Success of constructByPeeling does not depend on choices for i made by while.
constructByPeeling can be implemented in linear time.

Cuckoo hashing with more than two hash functions The Peeling Algorithm The Peeling Theorem Conclusion

7/25 WS 2024/2025 Stefan Walzer: Peeling ITI, Algorithm Engineering

The Peeling Algorithm

constructByPeeling(S ⊆ D, h1, h2, h3 ∈ [m]D)

T ← [⊥, . . . ,⊥] // empty table of size m

while ∃i ∈ [m] : ∃ exactly one x ∈ S : i ∈ {h1(x), h2(x), h3(x)} do
// x is only unplaced key that may be placed in i

T [i]← x
S ← S \ {x}

if S = ∅ then
return T

else
return NOT-PEELABLE c

c

d

dba e f

Exercise
Success of constructByPeeling does not depend on choices for i made by while.
constructByPeeling can be implemented in linear time.

Cuckoo hashing with more than two hash functions The Peeling Algorithm The Peeling Theorem Conclusion

7/25 WS 2024/2025 Stefan Walzer: Peeling ITI, Algorithm Engineering

The Peeling Algorithm

constructByPeeling(S ⊆ D, h1, h2, h3 ∈ [m]D)

T ← [⊥, . . . ,⊥] // empty table of size m

while ∃i ∈ [m] : ∃ exactly one x ∈ S : i ∈ {h1(x), h2(x), h3(x)} do
// x is only unplaced key that may be placed in i

T [i]← x
S ← S \ {x}

if S = ∅ then
return T

else
return NOT-PEELABLE c

c

d

d

b

ba e f

Exercise
Success of constructByPeeling does not depend on choices for i made by while.
constructByPeeling can be implemented in linear time.

Cuckoo hashing with more than two hash functions The Peeling Algorithm The Peeling Theorem Conclusion

7/25 WS 2024/2025 Stefan Walzer: Peeling ITI, Algorithm Engineering

The Peeling Algorithm

constructByPeeling(S ⊆ D, h1, h2, h3 ∈ [m]D)

T ← [⊥, . . . ,⊥] // empty table of size m

while ∃i ∈ [m] : ∃ exactly one x ∈ S : i ∈ {h1(x), h2(x), h3(x)} do
// x is only unplaced key that may be placed in i

T [i]← x
S ← S \ {x}

if S = ∅ then
return T

else
return NOT-PEELABLE c

c

d

d

b

b

a

a e f

Exercise
Success of constructByPeeling does not depend on choices for i made by while.
constructByPeeling can be implemented in linear time.

Cuckoo hashing with more than two hash functions The Peeling Algorithm The Peeling Theorem Conclusion

7/25 WS 2024/2025 Stefan Walzer: Peeling ITI, Algorithm Engineering

The Peeling Algorithm

constructByPeeling(S ⊆ D, h1, h2, h3 ∈ [m]D)

T ← [⊥, . . . ,⊥] // empty table of size m

while ∃i ∈ [m] : ∃ exactly one x ∈ S : i ∈ {h1(x), h2(x), h3(x)} do
// x is only unplaced key that may be placed in i

T [i]← x
S ← S \ {x}

if S = ∅ then
return T

else
return NOT-PEELABLE c

c

d

d

b

b

a

a

e

e f

Exercise
Success of constructByPeeling does not depend on choices for i made by while.
constructByPeeling can be implemented in linear time.

Cuckoo hashing with more than two hash functions The Peeling Algorithm The Peeling Theorem Conclusion

7/25 WS 2024/2025 Stefan Walzer: Peeling ITI, Algorithm Engineering

The Peeling Algorithm

constructByPeeling(S ⊆ D, h1, h2, h3 ∈ [m]D)

T ← [⊥, . . . ,⊥] // empty table of size m

while ∃i ∈ [m] : ∃ exactly one x ∈ S : i ∈ {h1(x), h2(x), h3(x)} do
// x is only unplaced key that may be placed in i

T [i]← x
S ← S \ {x}

if S = ∅ then
return T

else
return NOT-PEELABLE c

c

d

d

b

b

a

a

e

e

f

f

Exercise
Success of constructByPeeling does not depend on choices for i made by while.
constructByPeeling can be implemented in linear time.

Cuckoo hashing with more than two hash functions The Peeling Algorithm The Peeling Theorem Conclusion

7/25 WS 2024/2025 Stefan Walzer: Peeling ITI, Algorithm Engineering

The Peeling Algorithm

constructByPeeling(S ⊆ D, h1, h2, h3 ∈ [m]D)

T ← [⊥, . . . ,⊥] // empty table of size m

while ∃i ∈ [m] : ∃ exactly one x ∈ S : i ∈ {h1(x), h2(x), h3(x)} do
// x is only unplaced key that may be placed in i

T [i]← x
S ← S \ {x}

if S = ∅ then
return T

else
return NOT-PEELABLE c

c

d

d

b

b

a

a

e

e

f

f

Exercise
Success of constructByPeeling does not depend on choices for i made by while.
constructByPeeling can be implemented in linear time.

Cuckoo hashing with more than two hash functions The Peeling Algorithm The Peeling Theorem Conclusion

7/25 WS 2024/2025 Stefan Walzer: Peeling ITI, Algorithm Engineering

The Peeling Algorithm

Cuckoo Graph and Peelability
The Cuckoo Graph is the bipartite graph

GS,h1,h2,h3 = (S, [m], {(x , hi(x)) | x ∈ S, i ∈ [3]})

Call GS,h1,h2,h3 peelable if constructByPeeling(S, h1, h2, h3) succeeds.

If h1, h2, h3 ∼ U([m]D) then the distribution of GS,h1,h2,h3 does not
depend on S. We then simply write Gm,αm.

m -nodes and ⌊αm⌋- -nodes
think: α is constant and m → ∞.

Peeling simplified (not computing placement)

while ∃ -node of degree 1 do
remove it and its incident

G is peelable if and only if
this algorithm removes all -nodes.

Cuckoo hashing with more than two hash functions The Peeling Algorithm The Peeling Theorem Conclusion

8/25 WS 2024/2025 Stefan Walzer: Peeling ITI, Algorithm Engineering

Peelability and the Cuckoo Graph

Cuckoo Graph and Peelability
The Cuckoo Graph is the bipartite graph

GS,h1,h2,h3 = (S, [m], {(x , hi(x)) | x ∈ S, i ∈ [3]})

Call GS,h1,h2,h3 peelable if constructByPeeling(S, h1, h2, h3) succeeds.

If h1, h2, h3 ∼ U([m]D) then the distribution of GS,h1,h2,h3 does not
depend on S. We then simply write Gm,αm.

m -nodes and ⌊αm⌋- -nodes
think: α is constant and m → ∞.

Peeling simplified (not computing placement)

while ∃ -node of degree 1 do
remove it and its incident

G is peelable if and only if
this algorithm removes all -nodes.

Cuckoo hashing with more than two hash functions The Peeling Algorithm The Peeling Theorem Conclusion

8/25 WS 2024/2025 Stefan Walzer: Peeling ITI, Algorithm Engineering

Peelability and the Cuckoo Graph

1. Cuckoo hashing with more than two hash functions

2. The Peeling Algorithm

3. The Peeling Theorem

4. Conclusion

Cuckoo hashing with more than two hash functions The Peeling Algorithm The Peeling Theorem Conclusion

9/25 WS 2024/2025 Stefan Walzer: Peeling ITI, Algorithm Engineering

Content

Peeling Threshold

Let c∆
3 = miny∈[0,1]

y
3(1−e−y)2 ≈ 0.81.

Theorem (today’s goal)

Let α < c∆
3 . Then Pr[Gm,αm is peelable] = 1− o(1).

Remark: More is known.
For “α < c∆

3 ” we get “peelable” with probability 1−O(1/m).

For “α > c∆
3 ” we get “not peelable” with probability 1−O(1/m).

Corresponding thresholds c∆
k for k ≥ 3 hash functions are also known.

Exercise: What about k = 2?
Peeling does not reliably work for k = 2 for any α > 0.

Cuckoo hashing with more than two hash functions The Peeling Algorithm The Peeling Theorem Conclusion

10/25 WS 2024/2025 Stefan Walzer: Peeling ITI, Algorithm Engineering

Peeling Theorem

Peeling Threshold

Let c∆
3 = miny∈[0,1]

y
3(1−e−y)2 ≈ 0.81.

Theorem (today’s goal)

Let α < c∆
3 . Then Pr[Gm,αm is peelable] = 1− o(1).

Remark: More is known.
For “α < c∆

3 ” we get “peelable” with probability 1−O(1/m).

For “α > c∆
3 ” we get “not peelable” with probability 1−O(1/m).

Corresponding thresholds c∆
k for k ≥ 3 hash functions are also known.

Exercise: What about k = 2?
Peeling does not reliably work for k = 2 for any α > 0.

Cuckoo hashing with more than two hash functions The Peeling Algorithm The Peeling Theorem Conclusion

10/25 WS 2024/2025 Stefan Walzer: Peeling ITI, Algorithm Engineering

Peeling Theorem

Peeling Threshold

Let c∆
3 = miny∈[0,1]

y
3(1−e−y)2 ≈ 0.81.

Theorem (today’s goal)

Let α < c∆
3 . Then Pr[Gm,αm is peelable] = 1− o(1).

Remark: More is known.
For “α < c∆

3 ” we get “peelable” with probability 1−O(1/m).

For “α > c∆
3 ” we get “not peelable” with probability 1−O(1/m).

Corresponding thresholds c∆
k for k ≥ 3 hash functions are also known.

Exercise: What about k = 2?
Peeling does not reliably work for k = 2 for any α > 0.

Cuckoo hashing with more than two hash functions The Peeling Algorithm The Peeling Theorem Conclusion

10/25 WS 2024/2025 Stefan Walzer: Peeling ITI, Algorithm Engineering

Peeling Theorem

Theorem (today’s goal)

Let α < c∆
3 . Then Pr[Gm,αm is peelable] = 1− o(1).

Proof Idea
The random (possibly) infinite tree Tα can be peeled for α < c∆

3 and Tα is locally like Gm,αm.

Steps
I What is Tα?
II What does peeling mean in this setting?
III What role does c∆

3 play?
IV What does it mean for Tα to be locally like Gm,αm?
V What is the probability that a fixed key of Gm,αm is peeled?
VI What is the probability that all keys of Gm,αm are peeled?

Tα :

Cuckoo hashing with more than two hash functions The Peeling Algorithm The Peeling Theorem Conclusion

11/25 WS 2024/2025 Stefan Walzer: Peeling ITI, Algorithm Engineering

Peeling Theorem: Proof outline

Theorem (today’s goal)

Let α < c∆
3 . Then Pr[Gm,αm is peelable] = 1− o(1).

Proof Idea
The random (possibly) infinite tree Tα can be peeled for α < c∆

3 and Tα is locally like Gm,αm.

Steps
I What is Tα?
II What does peeling mean in this setting?
III What role does c∆

3 play?
IV What does it mean for Tα to be locally like Gm,αm?
V What is the probability that a fixed key of Gm,αm is peeled?
VI What is the probability that all keys of Gm,αm are peeled?

Tα :

Cuckoo hashing with more than two hash functions The Peeling Algorithm The Peeling Theorem Conclusion

11/25 WS 2024/2025 Stefan Walzer: Peeling ITI, Algorithm Engineering

Peeling Theorem: Proof outline

Observations for the finite Graph Gm,αm

each has 3 as neighbours (rare exception: h1(x), h2(x), h3(x) not distinct)
each has random number X of as neighbours with
X ∼ Bin(3n, 1

m) = Bin(3⌊αm⌋, 1
m). In an exercise you’ll show

Pr[X = i] m→∞−→ Pr
Y∼Pois(3α)

[Y = i].

Definition of the (possibly) infinite random tree Tα

root is and has three as children
each has random number of children,
sampled Pois(3α) (independently for each).
each non-root has two as children.

Remark: Tα is finite with positive probability > 0, e.g. when the first three Pois(3α)
random variables come out as 0. But Tα is also infinite with positive probability.

Cuckoo hashing with more than two hash functions The Peeling Algorithm The Peeling Theorem Conclusion

12/25 WS 2024/2025 Stefan Walzer: Peeling ITI, Algorithm Engineering

i What is Tα?

Observations for the finite Graph Gm,αm

each has 3 as neighbours (rare exception: h1(x), h2(x), h3(x) not distinct)
each has random number X of as neighbours with
X ∼ Bin(3n, 1

m) = Bin(3⌊αm⌋, 1
m). In an exercise you’ll show

Pr[X = i] m→∞−→ Pr
Y∼Pois(3α)

[Y = i].

Definition of the (possibly) infinite random tree Tα

root is and has three as children
each has random number of children,
sampled Pois(3α) (independently for each).
each non-root has two as children.

Remark: Tα is finite with positive probability > 0, e.g. when the first three Pois(3α)
random variables come out as 0. But Tα is also infinite with positive probability.

Cuckoo hashing with more than two hash functions The Peeling Algorithm The Peeling Theorem Conclusion

12/25 WS 2024/2025 Stefan Walzer: Peeling ITI, Algorithm Engineering

i What is Tα?

Peeling Algorithm

while ∃ -node of degree 1 do
remove it and its incident

↪→ not well defined outcome on Tα!

↪→ but well defined on T R
α !

Peel only the first R ∈ N layers

Let T R
α be the first 2R + 1 levels of Tα.

R layers of -nodes, labeled bottom to top.
Run peeling on T R

α (later R → ∞).

↪→ Why not consider the first 2R levels? (without +1)

Only care whether root is removed (root represents arbitrary node in Gm,αm)

We may then simplify the peeling algorithm.

replace “ -node of degree 1” condition with
stronger “childless -node”.

prevents peeling of -nodes with one child and no parent
no matter: such nodes are disconnected from the root anyway

whether node is peeled only depends on subtree
↪→ one bottom up pass suffices for peeling

Cuckoo hashing with more than two hash functions The Peeling Algorithm The Peeling Theorem Conclusion

13/25 WS 2024/2025 Stefan Walzer: Peeling ITI, Algorithm Engineering

ii What does peeling mean in this setting?

Peeling Algorithm

while ∃ -node of degree 1 do
remove it and its incident

↪→ not well defined outcome on Tα!

↪→ but well defined on T R
α !

layer 2 = R

layer 1

Peel only the first R ∈ N layers

Let T R
α be the first 2R + 1 levels of Tα.

R layers of -nodes, labeled bottom to top.
Run peeling on T R

α (later R → ∞).

↪→ Why not consider the first 2R levels? (without +1)

Only care whether root is removed (root represents arbitrary node in Gm,αm)

We may then simplify the peeling algorithm.

replace “ -node of degree 1” condition with
stronger “childless -node”.

prevents peeling of -nodes with one child and no parent
no matter: such nodes are disconnected from the root anyway

whether node is peeled only depends on subtree
↪→ one bottom up pass suffices for peeling

Cuckoo hashing with more than two hash functions The Peeling Algorithm The Peeling Theorem Conclusion

13/25 WS 2024/2025 Stefan Walzer: Peeling ITI, Algorithm Engineering

ii What does peeling mean in this setting?

Peeling Algorithm

while ∃ -node of degree 1 do
remove it and its incident

↪→ not well defined outcome on Tα!
↪→ but well defined on T R

α !

layer 2 = R

layer 1

Peel only the first R ∈ N layers

Let T R
α be the first 2R + 1 levels of Tα.

R layers of -nodes, labeled bottom to top.
Run peeling on T R

α (later R → ∞).

↪→ Why not consider the first 2R levels? (without +1)

Only care whether root is removed (root represents arbitrary node in Gm,αm)

We may then simplify the peeling algorithm.

replace “ -node of degree 1” condition with
stronger “childless -node”.

prevents peeling of -nodes with one child and no parent
no matter: such nodes are disconnected from the root anyway

whether node is peeled only depends on subtree
↪→ one bottom up pass suffices for peeling

Cuckoo hashing with more than two hash functions The Peeling Algorithm The Peeling Theorem Conclusion

13/25 WS 2024/2025 Stefan Walzer: Peeling ITI, Algorithm Engineering

ii What does peeling mean in this setting?

Peeling Algorithm

while ∃ -node of degree 1 do
remove it and its incident

↪→ not well defined outcome on Tα!
↪→ but well defined on T R

α !

layer 2 = R

layer 1

Peel only the first R ∈ N layers

Let T R
α be the first 2R + 1 levels of Tα.

R layers of -nodes, labeled bottom to top.
Run peeling on T R

α (later R → ∞).

↪→ Why not consider the first 2R levels? (without +1)

Only care whether root is removed (root represents arbitrary node in Gm,αm)

We may then simplify the peeling algorithm.

replace “ -node of degree 1” condition with
stronger “childless -node”.

prevents peeling of -nodes with one child and no parent
no matter: such nodes are disconnected from the root anyway

whether node is peeled only depends on subtree
↪→ one bottom up pass suffices for peeling

Cuckoo hashing with more than two hash functions The Peeling Algorithm The Peeling Theorem Conclusion

13/25 WS 2024/2025 Stefan Walzer: Peeling ITI, Algorithm Engineering

ii What does peeling mean in this setting?

Peeling Algorithm

while ∃ childless -node do
remove it and its incident

↪→ not well defined outcome on Tα!
↪→ but well defined on T R

α !

layer 2 = R

layer 1

Peel only the first R ∈ N layers

Let T R
α be the first 2R + 1 levels of Tα.

R layers of -nodes, labeled bottom to top.
Run peeling on T R

α (later R → ∞).

↪→ Why not consider the first 2R levels? (without +1)

Only care whether root is removed (root represents arbitrary node in Gm,αm)

We may then simplify the peeling algorithm.

replace “ -node of degree 1” condition with
stronger “childless -node”.

prevents peeling of -nodes with one child and no parent
no matter: such nodes are disconnected from the root anyway

whether node is peeled only depends on subtree
↪→ one bottom up pass suffices for peeling

Cuckoo hashing with more than two hash functions The Peeling Algorithm The Peeling Theorem Conclusion

13/25 WS 2024/2025 Stefan Walzer: Peeling ITI, Algorithm Engineering

ii What does peeling mean in this setting?

Peeling Algorithm

while ∃ childless -node do
remove it and its incident

↪→ not well defined outcome on Tα!
↪→ but well defined on T R

α !

layer 2 = R

layer 1

Peel only the first R ∈ N layers

Let T R
α be the first 2R + 1 levels of Tα.

R layers of -nodes, labeled bottom to top.
Run peeling on T R

α (later R → ∞).

↪→ Why not consider the first 2R levels? (without +1)

Only care whether root is removed (root represents arbitrary node in Gm,αm)

We may then simplify the peeling algorithm.

replace “ -node of degree 1” condition with
stronger “childless -node”.

prevents peeling of -nodes with one child and no parent
no matter: such nodes are disconnected from the root anyway

whether node is peeled only depends on subtree
↪→ one bottom up pass suffices for peeling

Cuckoo hashing with more than two hash functions The Peeling Algorithm The Peeling Theorem Conclusion

13/25 WS 2024/2025 Stefan Walzer: Peeling ITI, Algorithm Engineering

ii What does peeling mean in this setting?

Peeling Algorithm

while ∃ childless -node do
remove it and its incident

↪→ not well defined outcome on Tα!
↪→ but well defined on T R

α !

layer 2 = R

layer 1

Peel only the first R ∈ N layers

Let T R
α be the first 2R + 1 levels of Tα.

R layers of -nodes, labeled bottom to top.
Run peeling on T R

α (later R → ∞).

↪→ Why not consider the first 2R levels? (without +1)

Only care whether root is removed (root represents arbitrary node in Gm,αm)

We may then simplify the peeling algorithm.

replace “ -node of degree 1” condition with
stronger “childless -node”.

prevents peeling of -nodes with one child and no parent
no matter: such nodes are disconnected from the root anyway

whether node is peeled only depends on subtree
↪→ one bottom up pass suffices for peeling

Cuckoo hashing with more than two hash functions The Peeling Algorithm The Peeling Theorem Conclusion

13/25 WS 2024/2025 Stefan Walzer: Peeling ITI, Algorithm Engineering

ii What does peeling mean in this setting?

Peeling Algorithm

while ∃ childless -node do
remove it and its incident

↪→ not well defined outcome on Tα!
↪→ but well defined on T R

α !

layer 2 = R

layer 1

Peel only the first R ∈ N layers

Let T R
α be the first 2R + 1 levels of Tα.

R layers of -nodes, labeled bottom to top.
Run peeling on T R

α (later R → ∞).

↪→ Why not consider the first 2R levels? (without +1)

Only care whether root is removed (root represents arbitrary node in Gm,αm)

We may then simplify the peeling algorithm.

replace “ -node of degree 1” condition with
stronger “childless -node”.

prevents peeling of -nodes with one child and no parent
no matter: such nodes are disconnected from the root anyway

whether node is peeled only depends on subtree
↪→ one bottom up pass suffices for peeling

Cuckoo hashing with more than two hash functions The Peeling Algorithm The Peeling Theorem Conclusion

13/25 WS 2024/2025 Stefan Walzer: Peeling ITI, Algorithm Engineering

ii What does peeling mean in this setting?

Peeling Algorithm

while ∃ childless -node do
remove it and its incident

↪→ not well defined outcome on Tα!
↪→ but well defined on T R

α !

layer 2 = R

layer 1

Peel only the first R ∈ N layers

Let T R
α be the first 2R + 1 levels of Tα.

R layers of -nodes, labeled bottom to top.
Run peeling on T R

α (later R → ∞).

↪→ Why not consider the first 2R levels? (without +1)

Only care whether root is removed (root represents arbitrary node in Gm,αm)

We may then simplify the peeling algorithm.

replace “ -node of degree 1” condition with
stronger “childless -node”.

prevents peeling of -nodes with one child and no parent
no matter: such nodes are disconnected from the root anyway

whether node is peeled only depends on subtree
↪→ one bottom up pass suffices for peeling

Cuckoo hashing with more than two hash functions The Peeling Algorithm The Peeling Theorem Conclusion

13/25 WS 2024/2025 Stefan Walzer: Peeling ITI, Algorithm Engineering

ii What does peeling mean in this setting?

Peeling Algorithm

while ∃ childless -node do
remove it and its incident

↪→ not well defined outcome on Tα!
↪→ but well defined on T R

α !

layer 2 = R

layer 1

Peel only the first R ∈ N layers

Let T R
α be the first 2R + 1 levels of Tα.

R layers of -nodes, labeled bottom to top.
Run peeling on T R

α (later R → ∞).

↪→ Why not consider the first 2R levels? (without +1)

Only care whether root is removed (root represents arbitrary node in Gm,αm)

We may then simplify the peeling algorithm.

replace “ -node of degree 1” condition with
stronger “childless -node”.

prevents peeling of -nodes with one child and no parent
no matter: such nodes are disconnected from the root anyway

whether node is peeled only depends on subtree
↪→ one bottom up pass suffices for peeling

Cuckoo hashing with more than two hash functions The Peeling Algorithm The Peeling Theorem Conclusion

13/25 WS 2024/2025 Stefan Walzer: Peeling ITI, Algorithm Engineering

ii What does peeling mean in this setting?

Observation
Let qR = Pr[root survives when peeling T R

α].
The values qR are decreasing in R.

Peeling Algorithm

while ∃ childless -node do
remove it and its incident

Proof.
Assume when peeling T R

α the sequence x⃗ = (x1, . . . , xk) is a valid sequence
of -node choices. Then x⃗ is also valid when peeling T R+1

α .

peeling T R
α removes the root ⇒ peeling T R+1

α removes the root

root survives when peeling T R+1
α ⇒ peeling T R

α removes the root

qR+1 ≤ qR

layer 2 = R

layer 1

Cuckoo hashing with more than two hash functions The Peeling Algorithm The Peeling Theorem Conclusion

14/25 WS 2024/2025 Stefan Walzer: Peeling ITI, Algorithm Engineering

ii What does peeling mean in this setting? (2)

Observation
Let qR = Pr[root survives when peeling T R

α].
The values qR are decreasing in R.

Peeling Algorithm

while ∃ childless -node do
remove it and its incident

Proof.
Assume when peeling T R

α the sequence x⃗ = (x1, . . . , xk) is a valid sequence
of -node choices. Then x⃗ is also valid when peeling T R+1

α .

peeling T R
α removes the root ⇒ peeling T R+1

α removes the root

root survives when peeling T R+1
α ⇒ peeling T R

α removes the root

qR+1 ≤ qR

layer 2 = R

layer 1

Cuckoo hashing with more than two hash functions The Peeling Algorithm The Peeling Theorem Conclusion

14/25 WS 2024/2025 Stefan Walzer: Peeling ITI, Algorithm Engineering

ii What does peeling mean in this setting? (2)

Peeling T R
α bottom up

for i = 1 to R do // -layers bottom to top

for each -node v in layer i do
if v has no children then

remove v and its parent

layer 2 = R

layer 1

Survival probabilities pi := Pr[-node in layer i is not peeled]

p1 = Pr[-node has ≥ 1 child]

= PrY∼Pois(3α)[Y > 0] = 1− e−3α.

pi = Pr[layer i -node v has ≥ 1 surviving child]

= PrX∼Pois(3αp2
i−1)

[X > 0] = 1− e−3αp2
i−1 .

Cuckoo hashing with more than two hash functions The Peeling Algorithm The Peeling Theorem Conclusion

15/25 WS 2024/2025 Stefan Walzer: Peeling ITI, Algorithm Engineering

ii What does peeling mean in this setting? (3)

Peeling T R
α bottom up

for i = 1 to R do // -layers bottom to top

for each -node v in layer i do
if v has no children then

remove v and its parent

layer 2 = R

layer 1

Survival probabilities pi := Pr[-node in layer i is not peeled]

p1 = Pr[-node has ≥ 1 child]

= PrY∼Pois(3α)[Y > 0] = 1− e−3α.

pi = Pr[layer i -node v has ≥ 1 surviving child]

= PrX∼Pois(3αp2
i−1)

[X > 0] = 1− e−3αp2
i−1 .

Y := number of (initial) children of v
X := number of surviving children of v
each child -node survives if both its -children from
layer i − 1 survive⇝ probability p2

i−1.
⇒ Y ∼ Pois(3α) and X ∼ Bin(Y , p2

i−1).
⇒ X ∼ Pois(3αp2

i−1). ⇝ exercise!

Cuckoo hashing with more than two hash functions The Peeling Algorithm The Peeling Theorem Conclusion

15/25 WS 2024/2025 Stefan Walzer: Peeling ITI, Algorithm Engineering

ii What does peeling mean in this setting? (3)

Peeling T R
α bottom up

for i = 1 to R do // -layers bottom to top

for each -node v in layer i do
if v has no children then

remove v and its parent

layer 2 = R

layer 1

Survival probabilities pi := Pr[-node in layer i is not peeled]

p1 = Pr[-node has ≥ 1 child]

= PrY∼Pois(3α)[Y > 0] = 1− e−3α.

pi = Pr[layer i -node v has ≥ 1 surviving child]

= PrX∼Pois(3αp2
i−1)

[X > 0] = 1− e−3αp2
i−1 .

-survival probabilities. With p0 := 1 we have

pi =

{
1 if i = 0

1− e−3αp2
i−1 if i = 1, 2, . . .

Moreover: qR := Pr[root survives] = p3
R.

Cuckoo hashing with more than two hash functions The Peeling Algorithm The Peeling Theorem Conclusion

15/25 WS 2024/2025 Stefan Walzer: Peeling ITI, Algorithm Engineering

ii What does peeling mean in this setting? (3)

pi =

{
1 if i = 0

1− e−3αp2
i−1 if i = 1, 2, . . .

↪→ consider f (x) = 1− e−3αx2

Case 1: ∃x > 0 : f (x) = x .

0 1
0

0.2

0.4

0.6

0.8

1
y = x

1− e−3αx2

p1p2p3p4. . .

⇒ lim
i→∞

pi = x∗ = max{x ∈ [0, 1] | f (x) = x}.

Case 2: ∀x ∈ (0, 1] : f (x) < x

0 1
0

0.2

0.4

0.6

0.8

1
y = x

1− e−3αx2

p1p2p3p4. . .

⇒ lim
i→∞

pi = 0.

Cuckoo hashing with more than two hash functions The Peeling Algorithm The Peeling Theorem Conclusion

16/25 WS 2024/2025 Stefan Walzer: Peeling ITI, Algorithm Engineering

iii What role does c∆
3 ≈ 0.81 play?

pi =

{
1 if i = 0

1− e−3αp2
i−1 if i = 1, 2, . . .

↪→ consider f (x) = 1− e−3αx2

Case 1: ∃x > 0 : f (x) = x .

0 1
0

0.2

0.4

0.6

0.8

1
y = x

1− e−3αx2

p1p2p3p4. . .

⇒ lim
i→∞

pi = x∗ = max{x ∈ [0, 1] | f (x) = x}.

Case 1⇔ ∃x > 0 : x = 1− e−3αx2

⇔ ∃x > 0 : x2 = (1− e−3αx2

)2

⇔ ∃z > 0 :
z

3α
= (1− e−z)2// z = 3αx2

⇔ ∃z > 0 : α =
z

3(1− e−z)2

⇔ α ≥ min
z>0

z
3(1− e−z)2 =: c∆

3 ≈ 0.81

0 1 2 3 4 5
0

2

4

z

3(1− e−z)2
0.81 ≈

Cuckoo hashing with more than two hash functions The Peeling Algorithm The Peeling Theorem Conclusion

16/25 WS 2024/2025 Stefan Walzer: Peeling ITI, Algorithm Engineering

iii What role does c∆
3 ≈ 0.81 play?

Lemma
For α < c∆

3 ≈ 0.81 we have

lim
i→∞

pi = 0.

lim
R→∞

qR = lim
R→∞

p3
R = 0.

“Root rarely survives for large R.”

layer 2 = R

layer 1

Cuckoo hashing with more than two hash functions The Peeling Algorithm The Peeling Theorem Conclusion

17/25 WS 2024/2025 Stefan Walzer: Peeling ITI, Algorithm Engineering

iii Interim Conclusion: What we learned about peeling Tα

Neighbourhoods in Tα and G
Let R ∈ N. We consider

T R
α as before and

for any fixed x ∈ S the subgraph
Gx,R

m,αm of Gm,αm induced by all nodes
with distance at most 2R from x .

Lemma

For any R ∈ N, the distribution of Gx,R
m,αm

converges the distribution of T R
α , i.e.

∀T : lim
m→∞

Pr[Gx,R
m,αm = T] = Pr[T R

α = T].

Gm,αm :

1 2 3 4 5 6 7 8 9 10

xa b c

Gx,R
m,αm :

x

3

a

1 7

b

2 9

5 8

c

10

T R
α :

Cuckoo hashing with more than two hash functions The Peeling Algorithm The Peeling Theorem Conclusion

18/25 WS 2024/2025 Stefan Walzer: Peeling ITI, Algorithm Engineering

iv What does it mean for Tα to be locally like Gm,αm?

Neighbourhoods in Tα and G
Let R ∈ N. We consider

T R
α as before and

for any fixed x ∈ S the subgraph
Gx,R

m,αm of Gm,αm induced by all nodes
with distance at most 2R from x .

Lemma

For any R ∈ N, the distribution of Gx,R
m,αm

converges the distribution of T R
α , i.e.

∀T : lim
m→∞

Pr[Gx,R
m,αm = T] = Pr[T R

α = T].

Gm,αm :

1 2 3 4 5 6 7 8 9 10

xa b c

Gx,R
m,αm :

x

3

a

1 7

b

2 9

5 8

c

10

T R
α :

Cuckoo hashing with more than two hash functions The Peeling Algorithm The Peeling Theorem Conclusion

18/25 WS 2024/2025 Stefan Walzer: Peeling ITI, Algorithm Engineering

iv What does it mean for Tα to be locally like Gm,αm?

Lemma
Let Ty be a possible outcome of T R

α given by a finite
sequence y = (y1, . . . , yk) ∈ Nk

0 specifying the number
of children of -nodes in level order. Then

Pr[T R
α = Ty] =

k∏
i=1

Pr
Y∼Pois(3α)

[Y = yi].

e.g. for y = (2, 0, 1, 4, 2, 1, 0, 3, 2):

Ty =

Cuckoo hashing with more than two hash functions The Peeling Algorithm The Peeling Theorem Conclusion

19/25 WS 2024/2025 Stefan Walzer: Peeling ITI, Algorithm Engineering

iv Distribution of T R
α

Lemma

Assume R = O(1). The probability that Gx,R
m,αm contains a cycle is O(1/m).

Proof.

If Gx,R
m,αm contains a cycle then we have

a sequence (v1 = x , v2, . . . , vk , vk+1 = va) of nodes with a ∈ [k]

of length k ≤ 4R (consider BFS tree for x and additional edge in it)

for each i ∈ {1, . . . , k} an index ji ∈ {1, 2, 3} of the hash function
connecting vi and vi+1. (If a = k − 1 then jk ̸= jk−1.)

v2 v3 va... vkv1

vk+1

=

x

=

Pr[∃cycle in Gx,R
m,αm] ≤ Pr[∃2 ≤ k ≤ 4R : ∃v2, . . . , vk : ∃a ∈ [k] : ∃j1, . . . , jk ∈ [3] : ∀i ∈ [k] : hji connects vi to vi+1]

≤
4R∑

k=2

∑
v2,...,vk

k∑
a=1

∑
j1,...,jk

k∏
i=1

Pr[hji connects vi to vi+1] ≤
4R∑

k=2

(max{m, n})k−1 · k · 3k(1
m

)k
= 1

m

4R∑
k=2

k · 3k = O(1/m).

Cuckoo hashing with more than two hash functions The Peeling Algorithm The Peeling Theorem Conclusion

20/25 WS 2024/2025 Stefan Walzer: Peeling ITI, Algorithm Engineering

iv No cycles in Gx ,R
m,αm

Lemma

Assume R = O(1). The probability that Gx,R
m,αm contains a cycle is O(1/m).

Proof.

If Gx,R
m,αm contains a cycle then we have

a sequence (v1 = x , v2, . . . , vk , vk+1 = va) of nodes with a ∈ [k]

of length k ≤ 4R (consider BFS tree for x and additional edge in it)

for each i ∈ {1, . . . , k} an index ji ∈ {1, 2, 3} of the hash function
connecting vi and vi+1. (If a = k − 1 then jk ̸= jk−1.)

v2 v3 va... vkv1

vk+1

=

x

=

Pr[∃cycle in Gx,R
m,αm] ≤ Pr[∃2 ≤ k ≤ 4R : ∃v2, . . . , vk : ∃a ∈ [k] : ∃j1, . . . , jk ∈ [3] : ∀i ∈ [k] : hji connects vi to vi+1]

≤
4R∑

k=2

∑
v2,...,vk

k∑
a=1

∑
j1,...,jk

k∏
i=1

Pr[hji connects vi to vi+1] ≤
4R∑

k=2

(max{m, n})k−1 · k · 3k(1
m

)k
= 1

m

4R∑
k=2

k · 3k = O(1/m).

Cuckoo hashing with more than two hash functions The Peeling Algorithm The Peeling Theorem Conclusion

20/25 WS 2024/2025 Stefan Walzer: Peeling ITI, Algorithm Engineering

iv No cycles in Gx ,R
m,αm

Lemma

Assume R = O(1). The probability that Gx,R
m,αm contains a cycle is O(1/m).

Proof.

If Gx,R
m,αm contains a cycle then we have

a sequence (v1 = x , v2, . . . , vk , vk+1 = va) of nodes with a ∈ [k]

of length k ≤ 4R (consider BFS tree for x and additional edge in it)

for each i ∈ {1, . . . , k} an index ji ∈ {1, 2, 3} of the hash function
connecting vi and vi+1. (If a = k − 1 then jk ̸= jk−1.)

v2 v3 va... vkv1

vk+1

=

x

=

Pr[∃cycle in Gx,R
m,αm] ≤ Pr[∃2 ≤ k ≤ 4R : ∃v2, . . . , vk : ∃a ∈ [k] : ∃j1, . . . , jk ∈ [3] : ∀i ∈ [k] : hji connects vi to vi+1]

≤
4R∑

k=2

∑
v2,...,vk

k∑
a=1

∑
j1,...,jk

k∏
i=1

Pr[hji connects vi to vi+1] ≤
4R∑

k=2

(max{m, n})k−1 · k · 3k(1
m

)k
= 1

m

4R∑
k=2

k · 3k = O(1/m).

Cuckoo hashing with more than two hash functions The Peeling Algorithm The Peeling Theorem Conclusion

20/25 WS 2024/2025 Stefan Walzer: Peeling ITI, Algorithm Engineering

iv No cycles in Gx ,R
m,αm

Lemma

Let Ty be a possible outcome of T R
α as before. Then

Prh1,h2,h3∼U([m]D)[G
x,R
m,αm = Ty]

m→∞−→
k∏

i=1

PrY∼Pois(3α)[Y = yi].

x

u v w

Ty :
(a)

(b) (c) (d)

(e) …

u v w

Cuckoo hashing with more than two hash functions The Peeling Algorithm The Peeling Theorem Conclusion

21/25 WS 2024/2025 Stefan Walzer: Peeling ITI, Algorithm Engineering

iv Distribution of Gx,R
m,αm

Lemma

Let Ty be a possible outcome of T R
α as before. Then

Prh1,h2,h3∼U([m]D)[G
x,R
m,αm = Ty]

m→∞−→
k∏

i=1

PrY∼Pois(3α)[Y = yi].

“Proof by example”, using Ty shown on the right.

The following things have to “go right” for Gx,R
m,αm = Ty .

a h1(x), h2(x), h3(x) pairwise distinct: probability
m→∞−→ 1

↪→ non-distinct would give cycle of length 2. Unlikely by lemma.

Note: 3⌊αm⌋ − 3 remaining hash values ∼ U([m]).

x

u v w

Ty :
(a)

(b) (c) (d)

(e) …

u v w

Cuckoo hashing with more than two hash functions The Peeling Algorithm The Peeling Theorem Conclusion

21/25 WS 2024/2025 Stefan Walzer: Peeling ITI, Algorithm Engineering

iv Distribution of Gx,R
m,αm

Lemma

Let Ty be a possible outcome of T R
α as before. Then

Prh1,h2,h3∼U([m]D)[G
x,R
m,αm = Ty]

m→∞−→
k∏

i=1

PrY∼Pois(3α)[Y = yi].

“Proof by example”, using Ty shown on the right.

b Exactly y1 = 2 of the remaining hash values are u.
↪→ PrY∼Bin(3⌊αm⌋−3, 1

m)[Y = 2]
m→∞−→ PrY∼Pois(3α)[Y = 2]. → exercise

Moreover: The two hash values must belong to 2 distinct keys. Probability
m→∞−→ 1.

↪→ non-distinct would give cycle of length 2.

Note: The 3⌊αm⌋ − 5 remaining hash values are ∼ U([m] \ {u}). → exercise

x

u v w

Ty :
(a)

(b) (c) (d)

(e) …

u v w

Cuckoo hashing with more than two hash functions The Peeling Algorithm The Peeling Theorem Conclusion

21/25 WS 2024/2025 Stefan Walzer: Peeling ITI, Algorithm Engineering

iv Distribution of Gx,R
m,αm

Lemma

Let Ty be a possible outcome of T R
α as before. Then

Prh1,h2,h3∼U([m]D)[G
x,R
m,αm = Ty]

m→∞−→
k∏

i=1

PrY∼Pois(3α)[Y = yi].

“Proof by example”, using Ty shown on the right.

c None of the remaining hash values are v .
↪→ PrY∼Bin(3⌊αm⌋−5, 1

m−1)
[Y = 0]

m→∞−→ PrY∼Pois(3α)[Y = 0].

Note: The 3⌊αm⌋ − 5 remaining hash values are ∼ U([m] \ {u, v}).

d One of the remaining hash values is w .
↪→ PrY∼Bin(3⌊αm⌋−5, 1

m−2)
[Y = 1]

m→∞−→ PrY∼Pois(3α)[Y = 1].

. . .

x

u v w

Ty :
(a)

(b) (c) (d)

(e) …

u v w

Cuckoo hashing with more than two hash functions The Peeling Algorithm The Peeling Theorem Conclusion

21/25 WS 2024/2025 Stefan Walzer: Peeling ITI, Algorithm Engineering

iv Distribution of Gx,R
m,αm

Lemma

Let Ty be a possible outcome of T R
α as before. Then

Prh1,h2,h3∼U([m]D)[G
x,R
m,αm = Ty]

m→∞−→
k∏

i=1

PrY∼Pois(3α)[Y = yi].

Proof sketch in general (some details ommitted)

General case at i-th -node. Want: probability that Gx,R
m,αm continues to match Ty . Note:

Ty is fixed, so i and the number ci of previously revealed hash values is bounded.

PrY∼Bin(3⌊αm⌋−ci ,
1

m−i+1)
[Y = yi]

m→∞−→ PrY∼Pois(3α)[Y = yi].

Moreover, those yi hash values must belong to distinct fresh keys. Probability
m→∞−→ 1

↪→ otherwise we’d have a cycle.

General case for -node. The two children must be fresh: probability
m→∞−→ 1

↪→ otherwise there would be a cycle.

x

u v w

Ty :
(a)

(b) (c) (d)

(e) …

u v w

Cuckoo hashing with more than two hash functions The Peeling Algorithm The Peeling Theorem Conclusion

21/25 WS 2024/2025 Stefan Walzer: Peeling ITI, Algorithm Engineering

iv Distribution of Gx,R
m,αm

Lemma
Let α < c∆

3 . Let x be any -node in Gm,αm as before (chosen
before sampling the hash functions). Let

µm := Prh1,h2,h3∼U([m]D)[x is removed when peeling Gm,αm].

Then lim
m→∞

µm = 1.

Cuckoo hashing with more than two hash functions The Peeling Algorithm The Peeling Theorem Conclusion

22/25 WS 2024/2025 Stefan Walzer: Peeling ITI, Algorithm Engineering

v Probability that a specific key survives peeling

Let δ > 0 be arbitrary. We will show limm→∞ µm ≥ 1 − 2δ.
Let R ∈ N be such that qR < δ. possible because limR→∞ qR = 0
YR := {all possibilities for T R

α}
YR

peel := {T ∈ YR | peeling T removes the root} note: Pr[T R
α /∈ YR

peel] = qR ≤ δ.
Let YR

fin ⊆ YR be a finite set such that Pr[T R
α /∈ YR

fin] ≤ δ uses that YR is countable and
∑

T∈YR
Pr[T R

α = T] = 1.

lim
m→∞

µm ≥ lim
m→∞

Pr[Gx,R
m,αm ∈ YR

peel] peeling only in R-neighbourhood of x is “weaker”

≥ lim
m→∞

Pr[Gx,R
m,αm ∈ YR

peel ∩ YR
fin]

= lim
m→∞

∑
T∈YR

peel∩YR
fin
Pr[Gx,R

m,αm = T]

=
∑

T∈YR
peel∩YR

fin
limm→∞ Pr[Gx,R

m,αm = T] finite sums commute with limit

=
∑

T∈YR
peel∩YR

fin
Pr[T R

α = T] previous lemmas

= Pr[T R
α ∈ YR

peel ∩ YR
fin] = 1 − Pr[T R

α /∈ YR
peel ∩ YR

fin]

= 1 − Pr[T R
α /∈ YR

peel ∨ T R
α /∈ YR

fin] De Morgan’s laws: A ∩ B = A ∪ B

≥ 1 − Pr[T R
α /∈ YR

peel]− Pr[T R
α /∈ YR

fin] ≥ 1 − 2δ. union bound:Pr[E1 ∨ E2] ≤ Pr[E1] + Pr[E2]

Cuckoo hashing with more than two hash functions The Peeling Algorithm The Peeling Theorem Conclusion

23/25 WS 2024/2025 Stefan Walzer: Peeling ITI, Algorithm Engineering

v µm := Pr[x is removed when peeling Gm,αm]
m→∞−→ 1

Let δ > 0 be arbitrary. We will show limm→∞ µm ≥ 1 − 2δ.
Let R ∈ N be such that qR < δ. possible because limR→∞ qR = 0
YR := {all possibilities for T R

α}
YR

peel := {T ∈ YR | peeling T removes the root} note: Pr[T R
α /∈ YR

peel] = qR ≤ δ.
Let YR

fin ⊆ YR be a finite set such that Pr[T R
α /∈ YR

fin] ≤ δ uses that YR is countable and
∑

T∈YR
Pr[T R

α = T] = 1.

lim
m→∞

µm ≥ lim
m→∞

Pr[Gx,R
m,αm ∈ YR

peel] peeling only in R-neighbourhood of x is “weaker”

≥ lim
m→∞

Pr[Gx,R
m,αm ∈ YR

peel ∩ YR
fin]

= lim
m→∞

∑
T∈YR

peel∩YR
fin
Pr[Gx,R

m,αm = T]

=
∑

T∈YR
peel∩YR

fin
limm→∞ Pr[Gx,R

m,αm = T] finite sums commute with limit

=
∑

T∈YR
peel∩YR

fin
Pr[T R

α = T] previous lemmas

= Pr[T R
α ∈ YR

peel ∩ YR
fin] = 1 − Pr[T R

α /∈ YR
peel ∩ YR

fin]

= 1 − Pr[T R
α /∈ YR

peel ∨ T R
α /∈ YR

fin] De Morgan’s laws: A ∩ B = A ∪ B

≥ 1 − Pr[T R
α /∈ YR

peel]− Pr[T R
α /∈ YR

fin] ≥ 1 − 2δ. union bound:Pr[E1 ∨ E2] ≤ Pr[E1] + Pr[E2]

Cuckoo hashing with more than two hash functions The Peeling Algorithm The Peeling Theorem Conclusion

23/25 WS 2024/2025 Stefan Walzer: Peeling ITI, Algorithm Engineering

v µm := Pr[x is removed when peeling Gm,αm]
m→∞−→ 1

Theorem
Let α < c∆

3 . Then

Pr[Gm,αm is peelable] = 1− o(1).

Proof
Let n = ⌊αm⌋ and 0 ≤ s ≤ n the number of nodes surviving peeling.

last lemma: each survives with probability o(1).
linearity of expectation E[s] = n · o(1) = o(n).

Exercise: Pr[s ∈ {1, . . . , δn}] = O(1/m) if δ > 0 is a small enough constant.
Markov: Pr[s > δn] ≤ E[s]

δn = o(n)
δn = o(1).

finally: Pr[s > 0] = Pr[s ∈ {1, . . . , δn}] + Pr[s > δn] = O(1/m) + o(1) = o(1).

Cuckoo hashing with more than two hash functions The Peeling Algorithm The Peeling Theorem Conclusion

24/25 WS 2024/2025 Stefan Walzer: Peeling ITI, Algorithm Engineering

vi Proof of the Peeling Theorem

Peeling Process
greedy algorithm for placing keys in cuckoo table

works up to a load factor of c∆
3 ≈ 0.81

We saw glimpses of important techniques
Local interactions in large graphs. Also used in statistical physics.

Galton-Watson Processes / Trees. Random processes related to Tα.

Local weak convergence. How the finite graph Gm,αm is locally like Tα.

But wait, there’s more!
Further applications of peeling

retrieval data structures (next lecture)

perfect hash functions (next lecture)

set sketches

linear error correcting codes

Cuckoo hashing with more than two hash functions The Peeling Algorithm The Peeling Theorem Conclusion

25/25 WS 2024/2025 Stefan Walzer: Peeling ITI, Algorithm Engineering

Conclusion

Cuckoo Hashing und der Schälalgorithmus
(Wie) kann man Cuckoo Hashing mit mehr als 2 Hashfunktionen aufziehen?
Welcher Vorteil ergibt sich im Vergleich zu 2 Hashfunktionen?
Wie funktioniert der Schälalgorithmus zur Platzierung von Schlüsseln in einer Cuckoo Hashtabelle?
Schälen lässt sich als einfacher Prozess auf Graphen auffassen. Wie?
Was besagt das Hauptresultat, das wir zum Schälprozess bewiesen haben?

Beweis des Schälsatzes. Mir ist klar, dass der Beweis äußerst kompliziert ist.

Im Beweis haben zwei Graphen eine Rolle gespielt ein endlicher und ein (potentiell) unendlicher. Wie waren
diese Graphen definiert?
Welcher Zusammenhang besteht zwischen der Verteilung der Knotengrade in Tα und Gm,αm?

Cuckoo hashing with more than two hash functions The Peeling Algorithm The Peeling Theorem Conclusion

26/25 WS 2024/2025 Stefan Walzer: Peeling ITI, Algorithm Engineering

Anhang: Mögliche Prüfungsfragen I

	Cuckoo hashing with more than two hash functions
	The Peeling Algorithm
	The Peeling Theorem
	Conclusion

