



# **Probability and Computing – The Peeling Algorithm**

Stefan Walzer | WS 2024/2025



## www.kit.edu



1. Cuckoo hashing with more than two hash functions

- 2. The Peeling Algorithm
- 3. The Peeling Theorem

#### 4. Conclusion

Cuckoo hashing with more than two hash functions  $_{\rm OOO}$ 

The Peeling Algorithm

The Peeling Theorem

Conclusion 00



#### 1. Cuckoo hashing with more than two hash functions

2. The Peeling Algorithm

3. The Peeling Theorem

4. Conclusion

Cuckoo hashing with more than two hash functions  $_{\odot \odot \odot}$ 

The Peeling Algorithm

The Peeling Theorem

Conclusion





 $n \in \mathbb{N}$ keys table size  $m \in \mathbb{N}$  $\alpha = \frac{n}{m}$  load factor  $h_1,\ldots,h_k\sim\mathcal{U}([m]^{D})$ hash functions  $\hookrightarrow$  Could also use a separate table per hash function.

Conclusion

Cuckoo hashing with more than two hash functions  $\circ \bullet \circ$ 

The Peeling Algorithm

The Peeling Theorem

4/25 WS 2024/2025 Stefan Walzer: Peeling





### randomWalkInsert(x)

(some improvements possible)

 $n \in \mathbb{N}$  keys  $m \in \mathbb{N}$  table size  $\alpha = \frac{n}{m}$  load factor  $h_1, \dots, h_k \sim \mathcal{U}([m]^D)$  hash functions

 $\hookrightarrow$  Could also use a separate table per hash function.

Cuckoo hashing with more than two hash functions  $_{\bigcirc \bigcirc \bigcirc }$ 

The Peeling Algorithm

The Peeling Theorem







#### randomWalkInsert(x)

(some improvements possible)

#### Theorem (without proof)

For each  $k \in \mathbb{N}$  there is a **threshold**  $c_k^*$  such that:

- if  $\alpha < c_k^*$  all keys can be placed with probability  $1 O(\frac{1}{m})$ .
- if  $\alpha > c_k^*$  not all keys can be placed with probability  $1 \mathcal{O}(\frac{1}{m})$ .

 $c_2^* = rac{1}{2}, \quad c_3^* pprox 0.92, \quad c_4^* pprox 0.98, \dots$ 

Cuckoo hashing with more than two hash functions  $_{O \bullet O}$ 

The Peeling Algorithm

The Peeling Theorem







randomWalkInsert(x)

(some improvements possible)

#### Theorem (without proof)

For each  $k \in \mathbb{N}$  there is a **threshold**  $c_k^*$  such that:

- if  $\alpha < c_k^*$  all keys can be placed with probability  $1 O(\frac{1}{m})$ .
- if  $\alpha > c_k^*$  not all keys can be placed with probability  $1 \mathcal{O}(\frac{1}{m})$ .

 $c_2^* = rac{1}{2}, \quad c_3^* pprox 0.92, \quad c_4^* pprox 0.98, \ldots$ 

## Theorem (Bell, Frieze, 2024)

If  $k \ge 4$  and  $\alpha < c_k^*$  then, conditioned on a high probability event<sup>*a*</sup>, the expected insertion time is  $\mathcal{O}(1)$ .

<sup>a</sup>Without this conditioning, randomWalkInsert might be trapped in an infinite loop.

Cuckoo hashing with more than two hash functions  $\circ \bullet \circ$ 

The Peeling Algorithm

The Peeling Theorem

## **Static Hash Tables**



## Static Hash Table

construct(S): builds table T with key set S lookup(x): checks if x is in T or not  $\hookrightarrow$  no insertions or deletions after construction!

Cuckoo hashing with more than two hash functions  $\circ \circ \bullet$ 

The Peeling Algorithm

The Peeling Theorem

# **Static Hash Tables**

# Karlsruhe Institute of Technology

## Static Hash Table

### Constructing cuckoo hash tables:

- solved by Khosla 2013: "Balls into Bins Made Faster"
- matching algorithm resembling preflow push
- expected running time  $\mathcal{O}(n)$ , finds placement whenever one exists
- not in this lecture

# **Static Hash Tables**

# Karlsruhe Institute of Technology

## Static Hash Table

### Constructing cuckoo hash tables:

- solved by Khosla 2013: "Balls into Bins Made Faster"
- matching algorithm resembling preflow push
- expected running time  $\mathcal{O}(n)$ , finds placement whenever one exists
- not in this lecture

## Greedily constructing cuckoo hash tables

- Peeling: simple algorithm but sophisticated analysis
- interesting applications beyond hash tables (see "retrieval" in next lecture)

Cuckoo hashing with more than two hash functions  $\circ \circ \bullet$ 

The Peeling Algorithm

The Peeling Theorem

Conclusion





1. Cuckoo hashing with more than two hash functions

#### 2. The Peeling Algorithm

3. The Peeling Theorem

4. Conclusion

Cuckoo hashing with more than two hash functions  $_{\rm OOO}$ 

The Peeling Algorithm ●○○ The Peeling Theorem



## constructByPeeling( $S \subseteq D, h_1, h_2, h_3 \in [m]^D$ )

 $T \leftarrow [\bot, \ldots, \bot]$  // empty table of size m while  $\exists i \in [m]$ :  $\exists$  exactly one  $x \in S$ :  $i \in \{h_1(x), h_2(x), h_3(x)\}$  do // x is only unplaced key that may be placed in *i*  $T[i] \leftarrow x$  $S \leftarrow S \setminus \{x\}$ if  $S = \emptyset$  then b return T else return NOT-PEELABLE

e

Cuckoo hashing with more than two hash functions

The Peeling Algorithm 0.00

The Peeling Theorem

Conclusion



## constructByPeeling( $S \subseteq D, h_1, h_2, h_3 \in [m]^D$ )

 $T \leftarrow [\bot, \ldots, \bot]$  // empty table of size m while  $\exists i \in [m]$ :  $\exists$  exactly one  $x \in S$ :  $i \in \{h_1(x), h_2(x), h_3(x)\}$  do // x is only unplaced key that may be placed in *i*  $T[i] \leftarrow x$  $S \leftarrow S \setminus \{x\}$ if  $S = \emptyset$  then b return T else return NOT-PEELABLE с



Cuckoo hashing with more than two hash functions

The Peeling Algorithm 0.00

The Peeling Theorem

Conclusion



## constructByPeeling( $S \subseteq D, h_1, h_2, h_3 \in [m]^D$ )

```
T \leftarrow [\bot, \dots, \bot] // \text{ empty table of size } m
while \exists i \in [m] : \exists \text{ exactly one } x \in S : i \in \{h_1(x), h_2(x), h_3(x)\} \text{ do}
// x \text{ is only unplaced key that may be placed in } i
T[i] \leftarrow x
S \leftarrow S \setminus \{x\}
if S = \emptyset then
| \text{ return } T
else
| \text{ return NOT-PEELABLE}
```

Cuckoo hashing with more than two hash functions  $_{\rm OOO}$ 

The Peeling Algorithm

The Peeling Theorem

e

Conclusion



## constructByPeeling( $S \subseteq D, h_1, h_2, h_3 \in [m]^D$ )

```
T \leftarrow [\bot, \ldots, \bot] // empty table of size m
while \exists i \in [m]: \exists exactly one x \in S: i \in \{h_1(x), h_2(x), h_3(x)\} do
    // x is only unplaced key that may be placed in i
     T[i] \leftarrow x
    S \leftarrow S \setminus \{x\}
if S = \emptyset then
     return T
else
     return NOT-PEELABLE
                                                                                 С
                                                                    b
```



Cuckoo hashing with more than two hash functions

The Peeling Algorithm 0.00

The Peeling Theorem

Conclusion



## constructByPeeling( $S \subseteq D, h_1, h_2, h_3 \in [m]^D$ )

```
T \leftarrow [\bot, \dots, \bot] // \text{ empty table of size } m
while \exists i \in [m] : \exists \text{ exactly one } x \in S : i \in \{h_1(x), h_2(x), h_3(x)\} \text{ do}
// x is only unplaced key that may be placed in i
T[i] \leftarrow x
S \leftarrow S \setminus \{x\}
if S = \emptyset then
\mathsf{return } T
else
\mathsf{return NOT-PEELABLE}
```

Cuckoo hashing with more than two hash functions  $_{\rm OOO}$ 

The Peeling Algorithm

The Peeling Theorem

e

Conclusion 00



## constructByPeeling( $S \subseteq D, h_1, h_2, h_3 \in [m]^D$ )

 $T \leftarrow [\bot, \ldots, \bot]$  // empty table of size m while  $\exists i \in [m]$ :  $\exists$  exactly one  $x \in S$ :  $i \in \{h_1(x), h_2(x), h_3(x)\}$  do // x is only unplaced key that may be placed in *i*  $T[i] \leftarrow x$  $S \leftarrow S \setminus \{x\}$ if  $S = \emptyset$  then return T else return NOT-PEELABLE а с b

 $\mathbf{e}$ d

Cuckoo hashing with more than two hash functions

The Peeling Algorithm 0.00

The Peeling Theorem

Conclusion



## constructByPeeling( $S \subseteq D, h_1, h_2, h_3 \in [m]^D$ )

```
T \leftarrow [\bot, \dots, \bot] // \text{ empty table of size } m
while \exists i \in [m] : \exists \text{ exactly one } x \in S : i \in \{h_1(x), h_2(x), h_3(x)\} \text{ do}
// x \text{ is only unplaced key that may be placed in } i
T[i] \leftarrow x
S \leftarrow S \setminus \{x\}
if S = \emptyset then
| \text{ return } T
else
| \text{ return NOT-PEELABLE}
a = 0
f = b = c = e
```

Cuckoo hashing with more than two hash functions  $_{\rm OOO}$ 

The Peeling Algorithm

ed

The Peeling Theorem

Conclusion 00



## constructByPeeling( $S \subseteq D, h_1, h_2, h_3 \in [m]^D$ )



#### Exercise

- Success of constructByPeeling does not depend on choices for *i* made by while.
- constructByPeeling can be implemented in linear time.

Cuckoo hashing with more than two hash functions

The Peeling Algorithm

d

The Peeling Theorem

Conclusion

# Peelability and the Cuckoo Graph

## Cuckoo Graph and Peelability

• The Cuckoo Graph is the bipartite graph

 $G_{S,h_1,h_2,h_3} = (S,[m],\{(x,h_i(x)) \mid x \in S, i \in [3]\})$ 

- Call  $G_{S,h_1,h_2,h_3}$  peelable if constructByPeeling $(S, h_1, h_2, h_3)$  succeeds.
- If h<sub>1</sub>, h<sub>2</sub>, h<sub>3</sub> ~ U([m]<sup>D</sup>) then the distribution of G<sub>S,h1,h2,h3</sub> does not depend on S. We then simply write G<sub>m,αm</sub>.
  - $m \square$ -nodes and  $\lfloor \alpha m \rfloor$ -O-nodes
  - think:  $\alpha$  is constant and  $m \to \infty$ .





# Peelability and the Cuckoo Graph

## Cuckoo Graph and Peelability

• The Cuckoo Graph is the bipartite graph

 $G_{S,h_1,h_2,h_3} = (S,[m],\{(x,h_i(x)) \mid x \in S, i \in [3]\})$ 

- Call *G*<sub>*S*,*h*<sub>1</sub>,*h*<sub>2</sub>,*h*<sub>3</sub> **peelable** if constructByPeeling(*S*, *h*<sub>1</sub>, *h*<sub>2</sub>, *h*<sub>3</sub>) succeeds.</sub>
- If h<sub>1</sub>, h<sub>2</sub>, h<sub>3</sub> ~ U([m]<sup>D</sup>) then the distribution of G<sub>S,h1,h2,h3</sub> does not depend on S. We then simply write G<sub>m,αm</sub>.
  - $m \square$ -nodes and  $\lfloor \alpha m \rfloor$ -O-nodes
  - think:  $\alpha$  is constant and  $m \to \infty$ .

## Peeling simplified (not computing placement)

## while $\exists \Box$ -node of degree 1 do $\lfloor$ remove it and its incident $\bigcirc$

Cuckoo hashing with more than two hash functions

WS 2024/2025

8/25

The Peeling Algorithm

G is peelable if and only if

this algorithm removes all O-nodes.

#### Stefan Walzer: Peeling

Karlsruhe Institute of Technology







1. Cuckoo hashing with more than two hash functions

2. The Peeling Algorithm

#### 3. The Peeling Theorem

4. Conclusion

Cuckoo hashing with more than two hash functions  $_{\rm OOO}$ 

The Peeling Algorithm

The Peeling Theorem

Conclusion 00

# **Peeling Theorem**

## Peeling Threshold

Let  $c_3^{\Delta} = \min_{y \in [0,1]} \frac{y}{3(1-e^{-y})^2} \approx 0.81.$ 

## Theorem (today's goal)

Let  $\alpha < c_3^{\Delta}$ . Then  $\Pr[G_{m,\alpha m} \text{ is peelable}] = 1 - o(1)$ .

Cuckoo hashing with more than two hash functions  $_{\rm OOO}$ 

The Peeling Algorithm

The Peeling Theorem



# **Peeling Theorem**

## **Peeling Threshold**

Let  $c_3^{\Delta} = \min_{y \in [0,1]} \frac{y}{3(1-e^{-y})^2} \approx 0.81.$ 

## Theorem (today's goal)

Let  $\alpha < c_3^{\Delta}$ . Then  $\Pr[G_{m,\alpha m} \text{ is peelable}] = 1 - o(1)$ .

## Remark: More is known.

- For " $\alpha < c_3^{\Delta}$ " we get "peelable" with probability 1 O(1/m).
- For " $\alpha > c_3^{\Delta}$ " we get "not peelable" with probability 1 O(1/m).
- Corresponding thresholds  $c_k^{\Delta}$  for  $k \ge 3$  hash functions are also known.

Cuckoo hashing with more than two hash functions  $_{\rm OOO}$ 

The Peeling Algorithm

The Peeling Theorem



# **Peeling Theorem**

## **Peeling Threshold**

Let  $c_3^{\Delta} = \min_{y \in [0,1]} \frac{y}{3(1-e^{-y})^2} \approx 0.81.$ 

## Theorem (today's goal)

Let  $\alpha < c_3^{\Delta}$ . Then  $\Pr[G_{m,\alpha m} \text{ is peelable}] = 1 - o(1)$ .

## Remark: More is known.

- For " $\alpha < c_3^{\Delta}$ " we get "peelable" with probability 1 O(1/m).
- For " $\alpha > c_3^{\Delta}$ " we get "not peelable" with probability 1 O(1/m).
- Corresponding thresholds  $c_k^{\Delta}$  for  $k \ge 3$  hash functions are also known.

## Exercise: What about k = 2?

Peeling does not reliably work for k = 2 for any  $\alpha > 0$ .

Cuckoo hashing with more than two hash functions The Peeling Algorithm OOO The Peeling Algorithm



# Peeling Theorem: Proof outline



## Theorem (today's goal)

Let  $\alpha < c_3^{\Delta}$ . Then  $\Pr[G_{m,\alpha m} \text{ is peelable}] = 1 - o(1)$ .

#### Proof Idea

The random (possibly) infinite tree  $T_{\alpha}$  can be peeled for  $\alpha < c_3^{\Delta}$  and  $T_{\alpha}$  is locally like  $G_{m,\alpha m}$ .

Cuckoo hashing with more than two hash functions  $_{\rm OOO}$ 

The Peeling Algorithm

The Peeling Theorem

# Peeling Theorem: Proof outline



## Theorem (today's goal)

Let  $\alpha < c_3^{\Delta}$ . Then  $\Pr[G_{m,\alpha m} \text{ is peelable}] = 1 - o(1)$ .

## Proof Idea

The random (possibly) infinite tree  $T_{\alpha}$  can be peeled for  $\alpha < c_3^{\Delta}$  and  $T_{\alpha}$  is locally like  $G_{m,\alpha m}$ .

## Steps

- What is  $T_{\alpha}$ ?
- What does peeling mean in this setting?
- **What role does**  $c_3^{\Delta}$  play?
- **W** What does it mean for  $T_{\alpha}$  to be locally like  $G_{m,\alpha m}$ ?
- V What is the probability that a fixed key of  $G_{m,\alpha m}$  is peeled?
- **W** What is the probability that *all* keys of  $G_{m,\alpha m}$  are peeled?



Cuckoo hashing with more than two hash functions

The Peeling Algorithm

The Peeling Theorem







## Observations for the finite Graph $G_{m,\alpha m}$

- each  $\bigcirc$  has 3  $\square$  as neighbours (rare exception:  $h_1(x), h_2(x), h_3(x)$  not distinct)
- each  $\Box$  has random number X of  $\bigcirc$  as neighbours with

 $X \sim \text{Bin}(3n, \frac{1}{m}) = \text{Bin}(3\lfloor \alpha m \rfloor, \frac{1}{m})$ . In an exercise you'll show

$$\Pr[X=i] \stackrel{m \to \infty}{\longrightarrow} \Pr_{\substack{Y \sim \operatorname{Pois}(3\alpha)}}[Y=i].$$

Cuckoo hashing with more than two hash functions  $_{\rm OOO}$ 

The Peeling Algorithm

The Peeling Theorem









## Observations for the finite Graph $G_{m,\alpha m}$

- each  $\bigcirc$  has 3  $\square$  as neighbours (rare exception:  $h_1(x), h_2(x), h_3(x)$  not distinct)
- each  $\Box$  has random number X of  $\bigcirc$  as neighbours with

 $X \sim Bin(3n, \frac{1}{m}) = Bin(3\lfloor \alpha m \rfloor, \frac{1}{m})$ . In an exercise you'll show

$$\Pr[X=i] \stackrel{m \to \infty}{\longrightarrow} \Pr_{Y \sim \operatorname{Pois}(3\alpha)}[Y=i].$$

## **Definition** of the (possibly) infinite random tree $T_{\alpha}$

- root is O and has three I as children
- each 
   has random number of 
   children, sampled Pois(3α) (independently for each 
   ...).
- each non-root has two □ as children.

Remark:  $T_{\alpha}$  is finite with positive probability > 0, e.g. when the first three Pois( $3\alpha$ ) random variables come out as 0. But  $T_{\alpha}$  is also infinite with positive probability.

Cuckoo hashing with more than two hash functions  $_{\rm OOO}$ 

The Peeling Algorithm

The Peeling Theorem



#### **Peeling Algorithm**

while  $\exists \square$ -node of degree 1 do  $\lfloor$  remove it and its incident  $\bigcirc$ 

 $\hookrightarrow$  not well defined outcome on  $T_{\alpha}$ !



Cuckoo hashing with more than two hash functions  $_{\rm OOO}$ 

The Peeling Algorithm

The Peeling Theorem



#### Peeling Algorithm

 $\hookrightarrow$  not well defined outcome on  $T_{\alpha}$ !

## Peel only the first $R \in \mathbb{N}$ layers

- Let  $T_{\alpha}^{R}$  be the first 2R + 1 levels of  $T_{\alpha}$ .
- *R layers* of \_\_-nodes, labeled bottom to top.
- Run peeling on  $T_{\alpha}^{R}$  (later  $R \to \infty$ ).

 $\hookrightarrow$  Why not consider the first 2*R* levels? (without +1)



Cuckoo hashing with more than two hash functions  $_{\rm OOO}$ 

The Peeling Algorithm

The Peeling Theorem



#### Peeling Algorithm

 $\label{eq:constraint} \stackrel{\mbox{ }\hookrightarrow \mbox{ }}{ \mbox{ } } \mbox{ } \mbox{$ 



## Peel only the first $R \in \mathbb{N}$ layers

- Let  $T_{\alpha}^{R}$  be the first 2R + 1 levels of  $T_{\alpha}$ .
- R layers of -nodes, labeled bottom to top.
- Run peeling on  $T_{\alpha}^{R}$  (later  $R \to \infty$ ).

 $\hookrightarrow$  Why not consider the first 2*R* levels? (without +1)

Cuckoo hashing with more than two hash functions  $_{\rm OOO}$ 

The Peeling Algorithm

The Peeling Theorem



#### **Peeling Algorithm**

 $\label{eq:constraint} \stackrel{\mbox{ }\hookrightarrow \mbox{ }}{ \mbox{ } } \mbox{ } \mbox{$ 



## Peel only the first $R \in \mathbb{N}$ layers

- Let  $T_{\alpha}^{R}$  be the first 2R + 1 levels of  $T_{\alpha}$ .
- *R layers* of \_\_-nodes, labeled bottom to top.
- Run peeling on  $T_{\alpha}^{R}$  (later  $R \to \infty$ ).

 $\hookrightarrow$  Why not consider the first 2R levels? (without +1)

#### Only care whether root is removed (root represents arbitrary node in $G_{m,\alpha m}$ )

We may then simplify the peeling algorithm.

- replace "-node of degree 1" condition with stronger "childless -node".
  - prevents peeling of -nodes with one child and no parent
  - no matter: such nodes are disconnected from the root anyway
- whether node is peeled only depends on subtree
  - $\hookrightarrow$  one bottom up pass suffices for peeling

Cuckoo hashing with more than two hash functions  $_{\rm OOO}$ 

The Peeling Algorithm

The Peeling Theorem

Conclusion



#### **Peeling Algorithm**

#### 

 $\stackrel{\hookrightarrow}{\longrightarrow} \text{not well defined outcome on } T_{\alpha}! \\ \stackrel{\bigoplus}{\longrightarrow} \text{but well defined on } T_{\alpha}^{R}!$ 



## Peel only the first $R \in \mathbb{N}$ layers

- Let  $T_{\alpha}^{R}$  be the first 2R + 1 levels of  $T_{\alpha}$ .
- *R layers* of \_\_-nodes, labeled bottom to top.
- Run peeling on  $T_{\alpha}^{R}$  (later  $R \to \infty$ ).

 $\hookrightarrow$  Why not consider the first 2*R* levels? (without +1)

#### Only care whether root is removed (root represents arbitrary node in $G_{m,\alpha m}$ )

We may then simplify the peeling algorithm.

- replace "-node of degree 1" condition with stronger "childless -node".
  - prevents peeling of -nodes with one child and no parent
  - no matter: such nodes are disconnected from the root anyway
- whether node is peeled only depends on subtree
  - $\hookrightarrow$  one bottom up pass suffices for peeling

Cuckoo hashing with more than two hash functions  $_{\rm OOO}$ 

The Peeling Algorithm

The Peeling Theorem

Conclusion



#### **Peeling Algorithm**

#### 

 $\stackrel{\hookrightarrow}{\longrightarrow} \text{not well defined outcome on } T_{\alpha}! \\ \stackrel{\bigoplus}{\longrightarrow} \text{but well defined on } T_{\alpha}^{R}!$ 



## Peel only the first $R \in \mathbb{N}$ layers

- Let  $T_{\alpha}^{R}$  be the first 2R + 1 levels of  $T_{\alpha}$ .
- *R layers* of \_\_-nodes, labeled bottom to top.
- Run peeling on  $T_{\alpha}^{R}$  (later  $R \to \infty$ ).

 $\hookrightarrow$  Why not consider the first 2R levels? (without +1)

#### Only care whether root is removed (root represents arbitrary node in $G_{m,\alpha m}$ )

We may then simplify the peeling algorithm.

- replace "-node of degree 1" condition with stronger "childless -node".
  - prevents peeling of -nodes with one child and no parent
  - no matter: such nodes are disconnected from the root anyway
- whether node is peeled only depends on subtree
  - $\hookrightarrow$  one bottom up pass suffices for peeling

Cuckoo hashing with more than two hash functions  $_{\rm OOO}$ 

The Peeling Algorithm

The Peeling Theorem

Conclusion



#### **Peeling Algorithm**

#### 

 $\stackrel{\hookrightarrow}{\longrightarrow} \text{not well defined outcome on } T_{\alpha}! \\ \stackrel{\bigoplus}{\longrightarrow} \text{but well defined on } T_{\alpha}^{R}!$ 



## Peel only the first $R \in \mathbb{N}$ layers

- Let  $T_{\alpha}^{R}$  be the first 2R + 1 levels of  $T_{\alpha}$ .
- *R layers* of \_\_-nodes, labeled bottom to top.
- Run peeling on  $T_{\alpha}^{R}$  (later  $R \to \infty$ ).

 $\hookrightarrow$  Why not consider the first 2*R* levels? (without +1)

#### Only care whether root is removed (root represents arbitrary node in $G_{m,\alpha m}$ )

We may then simplify the peeling algorithm.

- replace "-node of degree 1" condition with stronger "childless -node".
  - prevents peeling of -nodes with one child and no parent
  - no matter: such nodes are disconnected from the root anyway
- whether node is peeled only depends on subtree
  - $\hookrightarrow$  one bottom up pass suffices for peeling

Cuckoo hashing with more than two hash functions  $_{\rm OOO}$ 

The Peeling Algorithm

The Peeling Theorem

Conclusion

### What does peeling mean in this setting?



#### **Peeling Algorithm**

#### 

 $\stackrel{\hookrightarrow}{\longrightarrow} \text{not well defined outcome on } T_{\alpha}! \\ \stackrel{\bigoplus}{\longrightarrow} \text{but well defined on } T_{\alpha}^{R}!$ 



#### Peel only the first $R \in \mathbb{N}$ layers

- Let  $T_{\alpha}^{R}$  be the first 2R + 1 levels of  $T_{\alpha}$ .
- *R layers* of \_\_-nodes, labeled bottom to top.
- Run peeling on  $T_{\alpha}^{R}$  (later  $R \to \infty$ ).

 $\hookrightarrow$  Why not consider the first 2R levels? (without +1)

#### Only care whether root is removed (root represents arbitrary node in $G_{m,\alpha m}$ )

We may then simplify the peeling algorithm.

- replace "-node of degree 1" condition with stronger "childless -node".
  - prevents peeling of -nodes with one child and no parent
  - no matter: such nodes are disconnected from the root anyway
- whether node is peeled only depends on subtree
  - $\hookrightarrow$  one bottom up pass suffices for peeling

Cuckoo hashing with more than two hash functions  $_{\rm OOO}$ 

The Peeling Algorithm

The Peeling Theorem

Conclusion

### What does peeling mean in this setting?



#### **Peeling Algorithm**

#### 

 $\stackrel{\hookrightarrow}{\longrightarrow} \text{not well defined outcome on } T_{\alpha}! \\ \stackrel{\bigoplus}{\longrightarrow} \text{but well defined on } T_{\alpha}^{R}!$ 



#### Peel only the first $R \in \mathbb{N}$ layers

- Let  $T_{\alpha}^{R}$  be the first 2R + 1 levels of  $T_{\alpha}$ .
- *R layers* of \_\_-nodes, labeled bottom to top.
- Run peeling on  $T_{\alpha}^{R}$  (later  $R \to \infty$ ).

 $\hookrightarrow$  Why not consider the first 2R levels? (without +1)

#### Only care whether root is removed (root represents arbitrary node in $G_{m,\alpha m}$ )

We may then simplify the peeling algorithm.

- replace "-node of degree 1" condition with stronger "childless -node".
  - prevents peeling of -nodes with one child and no parent
  - no matter: such nodes are disconnected from the root anyway
- whether node is peeled only depends on subtree
  - $\hookrightarrow$  one bottom up pass suffices for peeling

Cuckoo hashing with more than two hash functions  $_{\rm OOO}$ 

The Peeling Algorithm

The Peeling Theorem

Conclusion

### What does peeling mean in this setting?



#### **Peeling Algorithm**

#### 

 $\stackrel{\hookrightarrow}{\longrightarrow} \text{not well defined outcome on } T_{\alpha}! \\ \stackrel{\bigoplus}{\longrightarrow} \text{but well defined on } T_{\alpha}^{R}!$ 



#### Peel only the first $R \in \mathbb{N}$ layers

- Let  $T_{\alpha}^{R}$  be the first 2R + 1 levels of  $T_{\alpha}$ .
- *R layers* of \_\_-nodes, labeled bottom to top.
- Run peeling on  $T_{\alpha}^{R}$  (later  $R \to \infty$ ).

 $\hookrightarrow$  Why not consider the first 2R levels? (without +1)

#### Only care whether root is removed (root represents arbitrary node in $G_{m,\alpha m}$ )

We may then simplify the peeling algorithm.

- replace "-node of degree 1" condition with stronger "childless -node".
  - prevents peeling of -nodes with one child and no parent
  - no matter: such nodes are disconnected from the root anyway
- whether node is peeled only depends on subtree
  - $\hookrightarrow$  one bottom up pass suffices for peeling

Cuckoo hashing with more than two hash functions  $_{\rm OOO}$ 

The Peeling Algorithm

The Peeling Theorem

Conclusion

## What does peeling mean in this setting? (2)



#### Observation

Let  $q_R = \Pr[\text{root survives when peeling } T_{\alpha}^R]$ . The values  $q_R$  are decreasing in R.

#### Peeling Algorithm

while  $\exists$  childless  $\Box$ -node do  $\lfloor$  remove it and its incident  $\bigcirc$ 

Cuckoo hashing with more than two hash functions  $_{\rm OOO}$ 

The Peeling Algorithm

The Peeling Theorem

## What does peeling mean in this setting? (2)



#### Observation

Let  $q_R = \Pr[\text{root survives when peeling } T_{\alpha}^R]$ . The values  $q_R$  are decreasing in R.

#### Peeling Algorithm

while ∃ *childless* □-*node* do └ remove it and its incident ○

#### Proof.

Assume when peeling  $T_{\alpha}^{R}$  the sequence  $\vec{x} = (x_1, \dots, x_k)$  is a valid sequence of  $\Box$ -node choices. Then  $\vec{x}$  is also valid when peeling  $T_{\alpha}^{R+1}$ .

peeling  $T_{\alpha}^{R}$  removes the root  $\Rightarrow$  peeling  $T_{\alpha}^{R+1}$  removes the root root survives when peeling  $T_{\alpha}^{R+1} \Rightarrow$  peeling  $T_{\alpha}^{R}$  removes the root  $q_{R+1} \leq q_{R}$ 



Cuckoo hashing with more than two hash functions  $_{\rm OOO}$ 

The Peeling Algorithm

The Peeling Theorem



What does peeling mean in this setting? (3)

Cuckoo hashing with more than two hash functions  $_{\rm OOO}$ 

The Peeling Algorithm

The Peeling Theorem



Cuckoo hashing with more than two hash functions  $_{\rm OOO}$ 

The Peeling Algorithm

The Peeling Theorem

Conclusion

#### ITI, Algorithm Engineering

### What does peeling mean in this setting? (3)





Peeling  $T_{\alpha}^{R}$  bottom up

for i = 1 to R do //  $\Box$ -layers bottom to top for each -node v in layer i do if v has no children then

 $p_1 = \Pr[\square$ -node has  $\geq 1$  child]

remove v and its parent  $\bigcirc$ 

 $= \Pr_{Y \sim \operatorname{Pois}(3\alpha)}[Y > 0] = 1 - e^{-3\alpha}.$ 

 $p_i = \Pr[\text{layer } i \square \text{-node } v \text{ has } \ge 1 \text{ surviving child}]$ 

# $= \Pr_{X \sim \operatorname{Pois}(3\alpha p_{i-1}^2)}[X > 0] = 1 - e^{-3\alpha p_{i-1}^2}$

 $\Box$ -survival probabilities. With  $p_0 := 1$  we have

$$p_i = \begin{cases} 1 & \text{if } i = 0\\ 1 - e^{-3\alpha p_{i-1}^2} & \text{if } i = 1, 2, \dots \end{cases}$$

Moreover:  $q_B := \Pr[\text{root survives}] = p_B^3$ .

$$\int 1 \qquad \text{if } i = 0$$

## What does peeling mean in this setting? (3)

Survival probabilities  $p_i := \Pr[-node in layer i is not peeled]$ 



laver 2 = R



## **What role does** $c_3^{\Delta} \approx 0.81$ play?





# III What role does $c_3^\Delta pprox$ 0.81 play?

$$p_i = \begin{cases} 1 & \text{if } i = 0\\ 1 - e^{-3\alpha p_{i-1}^2} & \text{if } i = 1, 2, \dots \end{cases}$$
$$\hookrightarrow \text{ consider } f(x) = 1 - e^{-3\alpha x^2}$$

Case 1:  $\exists x > 0 : f(x) = x$ .



The Peeling Algorithm





Cuckoo hashing with more than two hash functions

## iii Interim Conclusion: What we learned about peeling $T_{lpha}$



#### Lemma

For  $\alpha < c_3^{\Delta} \approx 0.81$  we have

 $\square \lim_{i\to\infty} p_i = 0.$ 

$$\lim_{R\to\infty}q_R=\lim_{R\to\infty}p_R^3=0.$$

"Root rarely survives for large *R*."



Cuckoo hashing with more than two hash functions  $_{\rm OOO}$ 

The Peeling Algorithm

The Peeling Theorem

Conclusion

### What does it mean for $T_{\alpha}$ to be locally like $G_{m,\alpha m}$ ?



#### Neighbourhoods in $T_{\alpha}$ and G

Let  $R \in \mathbb{N}$ . We consider

- $T_{\alpha}^{R}$  as before and
- for any fixed  $x \in S$  the subgraph  $G_{m,\alpha m}^{x,R}$  of  $G_{m,\alpha m}$  induced by all nodes with distance at most 2R from x.



Cuckoo hashing with more than two hash functions  $_{\rm OOO}$ 

The Peeling Algorithm

The Peeling Theorem

### **What does it mean for** $T_{\alpha}$ to be locally like $G_{m,\alpha m}$ ?



#### Neighbourhoods in $T_{\alpha}$ and G

Let  $R \in \mathbb{N}$ . We consider

- $T_{\alpha}^{R}$  as before and
- for any fixed  $x \in S$  the subgraph  $G_{m,\alpha m}^{x,R}$  of  $G_{m,\alpha m}$  induced by all nodes with distance at most 2R from x.

#### Lemma

For any  $R \in \mathbb{N}$ , the **distribution** of  $G_{m,\alpha m}^{x,R}$  converges the distribution of  $\mathcal{T}_{\alpha}^{R}$ , i.e.

$$\forall T: \lim_{m \to \infty} \Pr[G^{x,R}_{m,\alpha m} = T] = \Pr[T^R_{\alpha} = T].$$

Cuckoo hashing with more than two hash functions

The Peeling Algorithm



The Peeling Theorem

Conclusion 00

# **iv** Distribution of $T_{\alpha}^{R}$



e.g. for 
$$y = (2, 0, 1, 4, 2, 1, 0, 3, 2)$$
:

#### Lemma

Let  $T_y$  be a possible outcome of  $T_{\alpha}^R$  given by a finite sequence  $y = (y_1, \ldots, y_k) \in \mathbb{N}_0^k$  specifying the number of children of  $\Box$ -nodes in level order. Then

$$\Pr[T_{\alpha}^{R} = T_{y}] = \prod_{i=1}^{k} \Pr_{Y \sim \mathsf{Pois}(3\alpha)}[Y = y_{i}].$$



Cuckoo hashing with more than two hash functions  $_{\rm OOO}$ 

The Peeling Algorithm

The Peeling Theorem

Conclusion 00

# **iv** No cycles in $G_{m,\alpha m}^{x,R}$

# Karlsruhe Institute of Technology

#### Lemma

Assume  $R = \mathcal{O}(1)$ . The probability that  $G_{m,\alpha m}^{x,R}$  contains a cycle is  $\mathcal{O}(1/m)$ .

Cuckoo hashing with more than two hash functions  $_{\rm OOO}$ 

The Peeling Algorithm

The Peeling Theorem

# **iv** No cycles in $G_{m,\alpha m}^{x,R}$

#### Lemma



Assume R = O(1). The probability that  $G_{m,\alpha m}^{x,R}$  contains a cycle is O(1/m).

#### Proof.

#### If $G_{m,\alpha m}^{x,R}$ contains a cycle then we have

- a sequence  $(v_1 = x, v_2, \dots, v_k, v_{k+1} = v_a)$  of nodes with  $a \in [k]$
- of length  $k \leq 4R$  (consider BFS tree for x and additional edge in it)
- for each  $i \in \{1, ..., k\}$  an index  $j_i \in \{1, 2, 3\}$  of the hash function connecting  $v_i$  and  $v_{i+1}$ . (If a = k 1 then  $j_k \neq j_{k-1}$ .)



Cuckoo hashing with more than two hash functions  $_{\rm OOO}$ 

The Peeling Algorithm

The Peeling Theorem

# **iv** No cycles in $G_{m,\alpha m}^{x,R}$

# Karlsruhe Institute of Technology

#### Lemma

### Assume $R = \mathcal{O}(1)$ . The probability that $G_{m,\alpha m}^{x,R}$ contains a cycle is $\mathcal{O}(1/m)$ .

#### Proof.

#### If $G_{m,\alpha m}^{x,R}$ contains a cycle then we have

• a sequence 
$$(v_1 = x, v_2, \dots, v_k, v_{k+1} = v_a)$$
 of nodes with  $a \in [k]$ 

- of length  $k \leq 4R$  (consider BFS tree for x and additional edge in it)
- for each *i* ∈ {1,..., *k*} an index *j<sub>i</sub>* ∈ {1,2,3} of the hash function connecting *v<sub>i</sub>* and *v<sub>i+1</sub>*. (If *a* = *k* − 1 then *j<sub>k</sub>* ≠ *j<sub>k−1</sub>*.)



 $\Pr[\exists \text{cycle in } G_{m,\alpha m}^{x,R}] \leq \Pr[\exists 2 \leq k \leq 4R : \exists v_2, \dots, v_k : \exists a \in [k] : \exists j_1, \dots, j_k \in [3] : \forall i \in [k] : h_{j_i} \text{ connects } v_i \text{ to } v_{i+1}]$ 

$$\leq \sum_{k=2}^{4R} \sum_{v_2, \dots, v_k} \sum_{a=1}^{k} \sum_{j_1, \dots, j_k} \prod_{i=1}^{k} \Pr[h_{j_i} \text{ connects } v_i \text{ to } v_{i+1}] \leq \sum_{k=2}^{4R} (\max\{m, n\})^{k-1} \cdot k \cdot 3^k (\frac{1}{m})^k = \frac{1}{m} \sum_{k=2}^{4R} k \cdot 3^k = \mathcal{O}(1/m).$$

Cuckoo hashing with more than two hash functions  $_{\rm OOO}$ 

The Peeling Algorithm

The Peeling Theorem

Conclusion 00

#### Lemma

Let  $T_y$  be a possible outcome of  $T_{\alpha}^R$  as before. Then

$$\mathsf{Pr}_{h_1,h_2,h_3\sim\mathcal{U}([m]^D)}[G^{x,R}_{m,\alpha m}=T_y] \xrightarrow{m\to\infty} \prod_{i=1}^n \mathsf{Pr}_{Y\sim\mathsf{Pois}(3\alpha)}[Y=y_i].$$





Cuckoo hashing with more than two hash functions  $_{\rm OOO}$ 

The Peeling Algorithm

The Peeling Theorem

#### Lemma

Let  $T_y$  be a possible outcome of  $T_{\alpha}^R$  as before. Then

$$\mathsf{Pr}_{h_1,h_2,h_3\sim\mathcal{U}([m]^D)}[G^{\mathsf{x},R}_{m,\alpha m}=T_y] \xrightarrow{m\to\infty} \prod_{i=1}^{\kappa} \mathsf{Pr}_{\mathsf{Y}\sim\mathsf{Pois}(3\alpha)}[\mathsf{Y}=y_i].$$

"Proof by example", using  $T_y$  shown on the right.

The following things have to "go right" for  $G_{m,\alpha m}^{x,R} = T_y$ .

a  $h_1(x), h_2(x), h_3(x)$  pairwise distinct: probability  $\xrightarrow{m \to \infty} 1$  $\hookrightarrow$  non-distinct would give cycle of length 2. Unlikely by lemma.

Note:  $3\lfloor \alpha m \rfloor - 3$  remaining hash values  $\sim \mathcal{U}([m])$ .





Cuckoo hashing with more than two hash functions  $_{\rm OOO}$ 

The Peeling Algorithm

The Peeling Theorem

#### Lemma

Let  $T_y$  be a possible outcome of  $T_{\alpha}^R$  as before. Then

$$\mathsf{Pr}_{h_1,h_2,h_3\sim\mathcal{U}([m]^D)}[G^{x,R}_{m,\alpha m}=T_y] \xrightarrow{m\to\infty} \prod_{i=1}^{\kappa} \mathsf{Pr}_{Y\sim\mathsf{Pois}(3\alpha)}[Y=y_i].$$

#### "Proof by example", using $T_y$ shown on the right.

**b** Exactly  $y_1 = 2$  of the remaining hash values are *u*.

$$\rightarrow \mathsf{Pr}_{\mathsf{Y} \sim \mathit{Bin}(3\lfloor \alpha m \rfloor - 3, \frac{1}{m})}[\mathsf{Y} = 2] \stackrel{m \rightarrow \infty}{\longrightarrow} \mathsf{Pr}_{\mathsf{Y} \sim \mathsf{Pois}(3\alpha)}[\mathsf{Y} = 2]. \rightarrow \mathsf{exercise}$$

Moreover: The two hash values must belong to 2 distinct keys. Probability  $\xrightarrow{m\to\infty}$  1.  $\hookrightarrow$  non-distinct would give cycle of length 2.

Note: The  $3\lfloor \alpha m \rfloor - 5$  remaining hash values are  $\sim \mathcal{U}([m] \setminus \{u\})$ .  $\rightarrow$  exercise





Cuckoo hashing with more than two hash functions

The Peeling Algorithm

The Peeling Theorem

Conclusion 00

#### Lemma

. . .

Let  $T_y$  be a possible outcome of  $T_{\alpha}^R$  as before. Then

$$\mathsf{Pr}_{h_1,h_2,h_3\sim\mathcal{U}([m]^D)}[G^{x,R}_{m,\alpha m}=T_y] \xrightarrow{m\to\infty} \prod_{i=1}^{\kappa} \mathsf{Pr}_{\mathsf{Y}\sim\mathsf{Pois}(3\alpha)}[Y=y_i].$$

#### "Proof by example", using $T_{y}$ shown on the right.

**c** None of the remaining hash values are *v*.

$$\hookrightarrow \mathsf{Pr}_{Y \sim \mathit{Bin}(3\lfloor \alpha m \rfloor - 5, \frac{1}{m-1})}[Y = 0] \stackrel{m \to \infty}{\longrightarrow} \mathsf{Pr}_{Y \sim \mathsf{Pois}(3\alpha)}[Y = 0].$$

Note: The  $3\lfloor \alpha m \rfloor - 5$  remaining hash values are  $\sim \mathcal{U}([m] \setminus \{u, v\})$ .







Cuckoo hashing with more than two hash functions

The Peeling Algorithm

The Peeling Theorem

Conclusion

#### Lemma

Let  $T_{\gamma}$  be a possible outcome of  $T_{\alpha}^{R}$  as before. Then

$$\mathsf{Pr}_{h_1,h_2,h_3\sim\mathcal{U}([m]^D)}[G^{x,R}_{m,\alpha m}=T_y] \xrightarrow{m\to\infty} \prod_{i=1}^{\kappa} \mathsf{Pr}_{\mathsf{Y}\sim\mathsf{Pois}(3\alpha)}[Y=y_i].$$

#### Proof sketch in general (some details ommitted)

• General case at *i*-th  $\square$ -node. Want: probability that  $G_{m,\alpha m}^{x,R}$  continues to match  $T_{y}$ . Note:  $T_{v}$  is fixed, so *i* and the number  $c_{i}$  of previously revealed hash values is bounded.

$$\mathsf{Pr}_{\mathsf{Y}\sim \textit{Bin}(3\lfloor \alpha m\rfloor - c_i, \frac{1}{m-i+1})}[\mathsf{Y} = y_i] \xrightarrow{m \to \infty} \mathsf{Pr}_{\mathsf{Y}\sim \mathsf{Pois}(3\alpha)}[\mathsf{Y} = y_i].$$

Moreover, those  $y_i$  hash values must belong to distinct fresh keys. Probability  $\stackrel{m\to\infty}{\longrightarrow} 1$  $\hookrightarrow$  otherwise we'd have a cycle.

• General case for  $\bigcirc$ -node. The two children must be fresh: probability  $\stackrel{m \to \infty}{\longrightarrow} 1$  $\hookrightarrow$  otherwise there would be a cycle.

Cuckoo hashing with more than two hash functions

The Peeling Algorithm



Conclusion





ITI. Algorithm Engineering

21/25 Stefan Walzer: Peeling WS 2024/2025

# Probability that a specific key survives peeling



#### Lemma

Let  $\alpha < c_3^{\Delta}$ . Let *x* be any  $\bigcirc$ -node in  $G_{m,\alpha m}$  as before (chosen before sampling the hash functions). Let

 $\mu_m := \mathsf{Pr}_{h_1,h_2,h_3 \sim \mathcal{U}([m]^D)}[x \text{ is removed when peeling } G_{m,\alpha m}].$ 

Then  $\lim_{m\to\infty}\mu_m = 1$ .

Cuckoo hashing with more than two hash functions  $_{\rm OOO}$ 

The Peeling Algorithm

The Peeling Theorem

# $\mathbf{v} \ \mu_{m} := \Pr[x \text{ is removed when peeling } G_{m,\alpha m}] \stackrel{m \to \infty}{\longrightarrow} 1$



Let  $\delta > 0$  be arbitrary. We will show  $\lim_{m \to \infty} \mu_m \ge 1 - 2\delta$ . Let  $R \in \mathbb{N}$  be such that  $q_R < \delta$ .  $\mathcal{Y}^R := \{ \text{all possibilities for } T^R_\alpha \}$  $\mathcal{Y}^R_{\text{peel}} := \{ T \in \mathcal{Y}^R \mid \text{ peeling } T \text{ removes the root} \}$ Let  $\mathcal{Y}^R_n \subseteq \mathcal{Y}^R$  be a *finite* set such that  $\Pr[T^R_\alpha \notin \mathcal{Y}^R_{\text{fin}}] \le \delta$ 

possible because  $\lim_{R\to\infty} q_R = 0$ 

note:  $\Pr[T_{\alpha}^{R} \notin \mathcal{Y}_{\text{peel}}^{R}] = q_{R} \leq \delta$ . uses that  $\mathcal{Y}^{R}$  is countable and  $\sum_{T \in \mathcal{Y}^{R}} \Pr[T_{\alpha}^{R} = T] = 1$ .

Cuckoo hashing with more than two hash functions  $_{\rm OOO}$ 

The Peeling Algorithm

The Peeling Theorem

# $\mathbf{v} \ \mu_m := \Pr[x \text{ is removed when peeling } G_{m,\alpha m}] \stackrel{m o \infty}{\longrightarrow} 1$



Cuckoo hashing with more than two hash functions  $_{\rm OOO}$ 

The Peeling Algorithm

possible because  $\lim_{R\to\infty} q_R = 0$ 

note:  $\Pr[T_{\alpha}^{R} \notin \mathcal{Y}_{peel}^{R}] = q_{R} \leq \delta$ . uses that  $\mathcal{Y}^{R}$  is countable and  $\sum_{T \in \mathcal{Y}^{R}} \Pr[T_{\alpha}^{R} = T] = 1$ . peeling only in *R*-neighbourhood of *x* is "weaker"

finite sums commute with limit

previous lemmas

De Morgan's laws:  $\overline{A \cap B} = \overline{A} \cup \overline{B}$ 

union bound:  $\Pr[E_1 \lor E_2] \leq \Pr[E_1] + \Pr[E_2]$ 

| Conclusion |
|------------|
| 00         |
|            |



#### 24/25 WS 2024/2025 Stefan Walzer: Peeling

#### ITI, Algorithm Engineering

# Proof of the Peeling Theorem

#### Theorem

Let  $\alpha < c_3^{\Delta}$ . Then

 $\Pr[G_{m,\alpha m} \text{ is peelable}] = 1 - o(1).$ 

# Proof

Let  $n = \lfloor \alpha m \rfloor$  and  $0 \le s \le n$  the number of  $\bigcirc$  nodes surviving peeling. last lemma: each  $\bigcirc$  survives with probability o(1). linearity of expectation  $\mathbb{E}[s] = n \cdot o(1) = o(n)$ . Exercise:  $\Pr[s \in \{1, \dots, \delta n\}] = \mathcal{O}(1/m)$  if  $\delta > 0$  is a small enough constant. Markov:  $\Pr[s > \delta n] \le \frac{\mathbb{E}[s]}{\delta n} = \frac{o(n)}{\delta n} = o(1)$ . finally:  $\Pr[s > 0] = \Pr[s \in \{1, \dots, \delta n\}] + \Pr[s > \delta n] = \mathcal{O}(1/m) + o(1) = o(1)$ .  $\Box$ 

Cuckoo hashing with more than two hash functions  $_{\rm OOO}$ 

The Peeling Algorithm

The Peeling Theorem





### Conclusion



#### **Peeling Process**

- greedy algorithm for placing keys in cuckoo table
- works up to a load factor of  $c_3^{\Delta} \approx 0.81$

#### We saw glimpses of important techniques

- Local interactions in large graphs. Also used in statistical physics.
- Galton-Watson Processes / Trees. Random processes related to  $T_{\alpha}$ .
- Local weak convergence. How the finite graph  $G_{m,\alpha m}$  is locally like  $T_{\alpha}$ .

#### But wait, there's more!

- Further applications of peeling
  - retrieval data structures (next lecture)
  - perfect hash functions (next lecture)

- set sketches
- linear error correcting codes

Cuckoo hashing with more than two hash functions

The Peeling Algorithm

The Peeling Theorem

### Anhang: Mögliche Prüfungsfragen I



#### Cuckoo Hashing und der Schälalgorithmus

- (Wie) kann man Cuckoo Hashing mit mehr als 2 Hashfunktionen aufziehen?
- Welcher Vorteil ergibt sich im Vergleich zu 2 Hashfunktionen?
- Wie funktioniert der Schälalgorithmus zur Platzierung von Schlüsseln in einer Cuckoo Hashtabelle?
- Schälen lässt sich als einfacher Prozess auf Graphen auffassen. Wie?
- Was besagt das Hauptresultat, das wir zum Schälprozess bewiesen haben?
- Beweis des Schälsatzes. Mir ist klar, dass der Beweis äußerst kompliziert ist.
  - Im Beweis haben zwei Graphen eine Rolle gespielt ein endlicher und ein (potentiell) unendlicher. Wie waren diese Graphen definiert?
  - Welcher Zusammenhang besteht zwischen der Verteilung der Knotengrade in  $T_{\alpha}$  und  $G_{m,\alpha m}$ ?