

Probability and Computing – The Peeling Algorithm

Stefan Walzer | WS 2024/2025

KIT – The Research University in the Helmholtz Association **www.kit.edu**

1. [Cuckoo hashing with more than two hash functions](#page-2-0)

- **2. [The Peeling Algorithm](#page-10-0)**
- **3. [The Peeling Theorem](#page-21-0)**

4. [Conclusion](#page-62-0)

1. [Cuckoo hashing with more than two hash functions](#page-2-0)

2. [The Peeling Algorithm](#page-10-0)

3. [The Peeling Theorem](#page-21-0)

4. [Conclusion](#page-62-0)

 $n \in \mathbb{N}$ keys
m ∈ N table table size $\alpha = \frac{n}{m}$ load factor *h*₁, . . . , *h_k* ∼ $U([m]^D)$ hash functions

 \hookrightarrow Could also use a separate table per hash function.

randomWalkInsert(*x*)

while $x \neq \perp$ **do** // TODO: limit sample $i \sim \mathcal{U}([k])$ swap(x , $T[h_i(x)]$)

(some improvements possible)

 $n \in \mathbb{N}$ keys
m ∈ N table size $m \in \mathbb{N}$ table size $\alpha = \frac{n}{m}$ load factor *h*₁, . . . , *h_k* ∼ $U([m]^D)$ hash functions

 \hookrightarrow Could also use a separate table per hash function.

 $n \in \mathbb{N}$ keys
m ∈ N table table size $\alpha = \frac{n}{m}$ load factor *h*₁, . . . , *h_k* ∼ $U([m]^D)$ hash functions \hookrightarrow Could also use a separate table per hash function.

randomWalkInsert(*x*)

while $x \neq \perp$ **do** // TODO: limit sample $i \sim \mathcal{U}([k])$ $\left| \quad \text{swap}(x, \mathcal{T}[h_i(x)]) \right.$

(some improvements possible)

Theorem (without proof)

For each $k \in \mathbb{N}$ there is a **threshold** c_k^* such that:

- if $\alpha < c^*_k$ all keys can be placed with probability $1 \mathcal{O}(\frac{1}{m})$.
- *m* $\alpha > c_k^*$ **not** all keys can be placed with probability $1 \mathcal{O}(\frac{1}{m})$.

 $c_2^* = \frac{1}{2}, \quad c_3^* \approx 0.92, \quad c_4^* \approx 0.98, \ldots$

randomWalkInsert(*x*)

while $x \neq \perp$ **do** // TODO: limit sample *i* $\sim \mathcal{U}([k])$ $|\text{swap}(x, T[h_i(x)])|$

(some improvements possible)

Theorem (without proof)

For each $k \in \mathbb{N}$ there is a **threshold** c_k^* such that:

- if $\alpha < c^*_k$ all keys can be placed with probability $1 \mathcal{O}(\frac{1}{m})$.
- *m* $\alpha > c_k^*$ **not** all keys can be placed with probability $1 \mathcal{O}(\frac{1}{m})$.

 $c_2^* = \frac{1}{2}, \quad c_3^* \approx 0.92, \quad c_4^* \approx 0.98, \ldots$

Theorem (Bell, Frieze, 2024)

If $k \geq 4$ and $\alpha < c_k^*$ then, conditioned on a high probability event^a, the expected insertion time is $\mathcal{O}(1)$.

*^a*Without this conditioning, randomWalkInsert might be trapped in an infinite loop.

Static Hash Tables

Static Hash Table

construct(*S*): builds table *T* with key set *S* lookup (x) : checks if x is in T or not \hookrightarrow no insertions or deletions after construction!

Static Hash Tables

Static Hash Table

construct(*S*): builds table *T* with key set *S* lookup(*x*): checks if *x* is in *T* or not \hookrightarrow no insertions or deletions after construction!

Constructing cuckoo hash tables:

- solved by Khosla 2013: "Balls into Bins Made Faster"
- **n** matching algorithm resembling preflow push
- **expected running time** $\mathcal{O}(n)$ **, finds placement whenever one exists**
- not in this lecture

Static Hash Tables

Static Hash Table

construct(*S*): builds table *T* with key set *S* lookup(*x*): checks if *x* is in *T* or not \hookrightarrow no insertions or deletions after construction!

Constructing cuckoo hash tables:

- solved by Khosla 2013: "Balls into Bins Made Faster"
- matching algorithm resembling preflow push
- expected running time $\mathcal{O}(n)$, finds placement whenever one exists
- not in this lecture

Greedily constructing cuckoo hash tables

- \blacksquare Peeling: simple algorithm but sophisticated analysis
- interesting applications beyond hash tables (see "retrieval" in next lecture)

1. [Cuckoo hashing with more than two hash functions](#page-2-0)

2. [The Peeling Algorithm](#page-10-0)

3. [The Peeling Theorem](#page-21-0)

4. [Conclusion](#page-62-0)

$\text{constructByPeeling}(S \subseteq D, h_1, h_2, h_3 \in [m]^D)$

```
\mathcal{T} \leftarrow [\perp, \ldots, \perp] // empty table of size m
while \exists i \in [m]: \exists exactly one x \in S : i \in \{h_1(x), h_2(x), h_3(x)\}\ do
    // x is only unplaced key that may be placed in i
    T[i] \leftarrow xS \leftarrow S \setminus \{x\}if S = \emptyset then
 return T
else
 return NOT-PEELABLE
                                                         a b c d e f
```


$\text{constructByPeeling}(S \subseteq D, h_1, h_2, h_3 \in [m]^D)$

```
\mathcal{T} \leftarrow [\perp, \ldots, \perp] // empty table of size m
while \exists i \in [m]: \exists exactly one x \in S : i \in \{h_1(x), h_2(x), h_3(x)\}\ do
    // x is only unplaced key that may be placed in i
    T[i] \leftarrow xS \leftarrow S \setminus \{x\}if S = \emptyset then
 return T
else
 return NOT-PEELABLE
                                                         a b c d e f
```


$\text{constructByPeeling}(S \subseteq D, h_1, h_2, h_3 \in [m]^D)$

```
\mathcal{T} \leftarrow [\perp, \ldots, \perp] // empty table of size m
while \exists i \in [m]: \exists exactly one x \in S : i \in \{h_1(x), h_2(x), h_3(x)\}\ do
    // x is only unplaced key that may be placed in i
    T[i] \leftarrow xS \leftarrow S \setminus \{x\}if S = \emptyset then
 return T
else
 return NOT-PEELABLE
                                                                         c
                                                         a b d e f
```
[Cuckoo hashing with more than two hash functions](#page-2-0) [The Peeling Algorithm](#page-10-0) [The Peeling Theorem](#page-21-0) [Conclusion](#page-62-0)

 C

$\text{constructByPeeling}(S \subseteq D, h_1, h_2, h_3 \in [m]^D)$

```
\mathcal{T} \leftarrow [\perp, \ldots, \perp] // empty table of size m
while \exists i \in [m]: \exists exactly one x \in S : i \in \{h_1(x), h_2(x), h_3(x)\}\ do
    // x is only unplaced key that may be placed in i
    T[i] \leftarrow xS \leftarrow S \setminus \{x\}if S = \emptyset then
 return T
else
 return NOT-PEELABLE
                                                                         c
                                                               b
                                                         a b c d e f
```
[Cuckoo hashing with more than two hash functions](#page-2-0) [The Peeling Algorithm](#page-10-0) [The Peeling Theorem](#page-21-0) [Conclusion](#page-62-0)

d

d

$\text{constructByPeeling}(S \subseteq D, h_1, h_2, h_3 \in [m]^D)$

```
\mathcal{T} \leftarrow [\perp, \ldots, \perp] // empty table of size m
while \exists i \in [m]: \exists exactly one x \in S : i \in \{h_1(x), h_2(x), h_3(x)\}\ do
    // x is only unplaced key that may be placed in i
    T[i] \leftarrow xS \leftarrow S \setminus \{x\}if S = \emptyset then
 return T
else
 return NOT-PEELABLE
                                                                       c
                                                               b
                                                                a
```
d d b a \mathbb{D} o \mathbb{d} \mathbb{e} f

$\text{constructByPeeling}(S \subseteq D, h_1, h_2, h_3 \in [m]^D)$

```
\mathcal{T} \leftarrow [\perp, \ldots, \perp] // empty table of size m
while \exists i \in [m]: \exists exactly one x \in S : i \in \{h_1(x), h_2(x), h_3(x)\}\ do
    // x is only unplaced key that may be placed in i
    T[i] \leftarrow xS \leftarrow S \setminus \{x\}if S = \emptyset then
 return T
else
 return NOT-PEELABLE contained c
                                                                         c
                                                                                 d
                                                               b
                                                                 b
                                                                   a
                                                         a
```
[Cuckoo hashing with more than two hash functions](#page-2-0) [The Peeling Algorithm](#page-10-0) [The Peeling Theorem](#page-21-0) [Conclusion](#page-62-0)

d

 e f

e

$\text{constructByPeeling}(S \subseteq D, h_1, h_2, h_3 \in [m]^D)$

```
\mathcal{T} \leftarrow [\perp, \ldots, \perp] // empty table of size m
while \exists i \in [m]: \exists exactly one x \in S : i \in \{h_1(x), h_2(x), h_3(x)\}\ do
    // x is only unplaced key that may be placed in i
    T[i] \leftarrow xS \leftarrow S \setminus \{x\}if S = \emptyset then
 return T
else
 return NOT-PEELABLE c if ibial c
                                                                         c
                                                                                 d
                                                               b
                                                                 b
                                                                   a
                                                         a
                                                           f
```
[Cuckoo hashing with more than two hash functions](#page-2-0) [The Peeling Algorithm](#page-10-0) [The Peeling Theorem](#page-21-0) [Conclusion](#page-62-0)

d

e

f

e

$\text{constructByPeeling}(S \subseteq D, h_1, h_2, h_3 \in [m]^D)$

```
\mathcal{T} \leftarrow [\perp, \ldots, \perp] // empty table of size m
while \exists i \in [m]: \exists exactly one x \in S : i \in \{h_1(x), h_2(x), h_3(x)\}\ do
      // x is only unplaced key that may be placed in i
       T[i] \leftarrow xS \leftarrow S \setminus \{x\}if S = \emptyset then
  return T
else
  return NOT-PEELABLE contains the film of the contact 
                                                                                                                  c
                                                                                                  b
                                                                                                     b
                                                                                                        a
                                                                                         a
                                                                                             f
```
d d e e f

Exercise

- **Success of constructByPeeling does not depend on choices for** *i* **made by while.**
- constructByPeeling can be implemented in linear time.

Peelability and the Cuckoo Graph

Cuckoo Graph and Peelability

The Cuckoo Graph is the bipartite graph

 $G_{S,h_1,h_2,h_3} = (S, [m], \{(x, h_i(x)) \mid x \in S, i \in [3]\})$

- Call G_{S,h_1,h_2,h_3} **peelable** if constructByPeeling(*S*, h_1 , h_2 , h_3) succeeds.
- If *h*₁, *h*₂, *h*₃ ∼ U([*m*]^D) then the distribution of G_{S,h_1,h_2,h_3} does not depend on *S*. We then simply write $G_{m,\alpha m}$.
	- \blacksquare *m* \square -nodes and $\lceil \alpha m \rceil$ - \square -nodes
	- **think:** α is constant and $m \rightarrow \infty$.

Peelability and the Cuckoo Graph

Cuckoo Graph and Peelability

The Cuckoo Graph is the bipartite graph

 $G_{S,h_1,h_2,h_3} = (S, [m], \{(x, h_i(x)) \mid x \in S, i \in [3]\})$

- Call G_{S,h_1,h_2,h_3} **peelable** if constructByPeeling(S, h_1, h_2, h_3) succeeds.
- If *h*₁, *h*₂, *h*₃ ∼ U([*m*]^D) then the distribution of G_{S,h_1,h_2,h_3} does not depend on *S*. We then simply write $G_{m,\alpha m}$.
	- \blacksquare *m* \square -nodes and $\lceil \alpha m \rceil$ - \square -nodes
	- **think:** α is constant and $m \rightarrow \infty$.

Peeling simplified (not computing placement)

while ∃ *-node of degree* 1 **do** \vert remove it and its incident \bigcap

[Cuckoo hashing with more than two hash functions](#page-2-0) The **Peeling Algorithm** [The Peeling Theorem](#page-21-0) Theorem [Conclusion](#page-62-0)
OOO The Peeling The Peeling The Peeling The Peeling The Peeling Theorem Conclusion

G is peelable if and only if this algorithm removes all \bigcap -nodes.

1. [Cuckoo hashing with more than two hash functions](#page-2-0)

2. [The Peeling Algorithm](#page-10-0)

3. [The Peeling Theorem](#page-21-0)

4. [Conclusion](#page-62-0)

Peeling Theorem

Peeling Threshold

Let $c_3^{\Delta} = \min_{y \in [0,1]} \frac{y}{3(1-e^{-y})^2} \approx 0.81$.

Theorem (today's goal)

Let $\alpha < c_3^{\Delta}$. Then $\mathsf{Pr}[G_{m,\alpha m}]$ is peelable $]=1-o(1).$

[Cuckoo hashing with more than two hash functions](#page-2-0) [The Peeling Algorithm](#page-10-0) The **Peeling Theorem The Peeling The The Peeling The Peeling The The Peeling The The Peeling The The Peeling The Peeling The Peeling The Peeling The P**

Peeling Theorem

Peeling Threshold

Let
$$
c_3^{\Delta} = \min_{y \in [0,1]} \frac{y}{3(1-e^{-y})^2} \approx 0.81.
$$

Theorem (today's goal)

Let $\alpha < c_3^{\Delta}$. Then $\mathsf{Pr}[G_{m,\alpha m}]$ is peelable $]=1-o(1).$

Remark: More is known.

- For " $\alpha < c_3^{\Delta}$ " we get "peelable" with probability 1 $\mathcal{O}(1/m)$.
- For " $\alpha > c_3^{\Delta}$ " we get "not peelable" with probability 1 $\mathcal{O}(1/m)$.
- Corresponding thresholds c_k^{Δ} for $k \geq 3$ hash functions are also known.

Peeling Theorem

Peeling Threshold

Let
$$
c_3^{\Delta} = \min_{y \in [0,1]} \frac{y}{3(1-e^{-y})^2} \approx 0.81.
$$

Theorem (today's goal)

Let $\alpha < c_3^{\Delta}$. Then $\mathsf{Pr}[G_{m,\alpha m}]$ is peelable $]=1-o(1).$

Remark: More is known.

- For " $\alpha < c_3^{\Delta}$ " we get "peelable" with probability 1 $\mathcal{O}(1/m)$.
- For " $\alpha > c_3^{\Delta}$ " we get "not peelable" with probability 1 $\mathcal{O}(1/m)$.
- Corresponding thresholds c_k^{Δ} for $k \geq 3$ hash functions are also known.

Exercise: What about $k = 2$?

Peeling does not reliably work for $k = 2$ for any $\alpha > 0$.

Peeling Theorem: Proof outline

Theorem (today's goal)

Let $\alpha < c_3^{\Delta}$. Then Pr $[G_{m,\alpha m}]$ is peelable] = 1 – $o(1)$.

Proof Idea

The random (possibly) infinite tree \mathcal{T}_α can be peeled for $\alpha< c_3^\Delta$ and \mathcal{T}_α is locally like $G_{m,\alpha m}.$

Peeling Theorem: Proof outline

Let $\alpha < c_3^{\Delta}$. Then Pr $[G_{m,\alpha m}]$ is peelable] = 1 – $o(1)$.

Proof Idea

The random (possibly) infinite tree \mathcal{T}_α can be peeled for $\alpha< c_3^\Delta$ and \mathcal{T}_α is locally like $G_{m,\alpha m}.$

Steps

- **II** What is T_{α} ?
- What does peeling mean in this setting?
- III What role does *c* ∆ ³ play?
- What does it mean for T_{α} to be locally like $G_{m \alpha m}$?
- What is the probability that a fixed key of $G_{m,\alpha m}$ is peeled?
- What is the probability that *all* keys of $G_{m,\alpha m}$ are peeled?

[Cuckoo hashing with more than two hash functions](#page-2-0) [The Peeling Algorithm](#page-10-0) The **Peeling Theorem The Peeling The The Pee**
CoO [Conclusion](#page-62-0) Conclusion

Observations for the finite Graph $G_{m \alpha m}$

- **each** \bigcirc **has 3** \Box **as neighbours** (rare exception: $h_1(x)$, $h_2(x)$, $h_3(x)$ not distinct)
- each \Box has random number *X* of \bigcirc as neighbours with
	- $X \sim Bin(3n, \frac{1}{m}) = Bin(3 \lfloor \alpha m \rfloor, \frac{1}{m})$. In an exercise you'll show

$$
\Pr[X = i] \stackrel{m \to \infty}{\longrightarrow} \Pr_{Y \sim \text{Pois}(3\alpha)}[Y = i].
$$

Observations for the finite Graph $G_{m \alpha m}$

- **each** \bigcap **has 3** \bigcap **as neighbours** (rare exception: $h_1(x)$, $h_2(x)$, $h_3(x)$ not distinct)
- each \Box has random number *X* of \bigcirc as neighbours with
	- $X \sim Bin(3n, \frac{1}{m}) = Bin(3 \lfloor \alpha m \rfloor, \frac{1}{m})$. In an exercise you'll show

$$
\Pr[X = i] \stackrel{m \to \infty}{\longrightarrow} \Pr_{Y \sim \text{Pois}(3\alpha)}[Y = i].
$$

Definition of the (possibly) infinite random tree T_α

- \blacksquare root is \bigcirc and has three \square as children
- each \Box has random number of \bigcirc children, sampled Pois(3 α) (independently for each \Box).
- each non-root \bigcap has two \bigcap as children.

Remark: T_α is finite with positive probability > 0 , e.g. when the first three Pois(3 α) random variables come out as 0. But T_{α} is also infinite with positive probability.

[Cuckoo hashing with more than two hash functions](#page-2-0) [The Peeling Algorithm](#page-10-0) The **Peeling Theorem The Peeling The The Peeling The Peeling The The Peeling The The Peeling The The Peeling The The Peeling Ool oo conclusion
OOO con**

Peeling Algorithm

while ∃ *-node of degree* 1 **do** | remove it and its incident \bigcirc

 \hookrightarrow not well defined outcome on $T_{\alpha}!$

Peeling Algorithm

while ∃ *-node of degree* 1 **do** \vert remove it and its incident \bigcirc

 \hookrightarrow not well defined outcome on $T_{\alpha}!$

Peel only the first $R \in \mathbb{N}$ layers

- Let T^R_α be the first 2*R* + 1 levels of T_α .
- \blacksquare *R layers* of \square -nodes, labeled bottom to top.
- Run peeling on T_α^R (later $R \to \infty$).

 \hookrightarrow Why not consider the first 2*R* levels? (without $+1$)

Peeling Algorithm

while ∃ *-node of degree* 1 **do** \vert remove it and its incident \bigcirc

 \hookrightarrow not well defined outcome on $T_{\alpha}!$ \hookrightarrow but well defined on \mathcal{T}_{α}^R !

Peel only the first $R \in \mathbb{N}$ layers

- Let T^R_α be the first 2*R* + 1 levels of T_α .
- *R layers* of \Box -nodes, labeled bottom to top.
- Run peeling on T_α^R (later $R \to \infty$).

 \hookrightarrow Why not consider the first 2*R* levels? (without $+1$)

Peeling Algorithm

while ∃ *-node of degree* 1 **do** \Box remove it and its incident \bigcirc

,→ not well defined outcome on *T*α! \hookrightarrow but well defined on \mathcal{T}_{α}^R !

Peel only the first $R \in \mathbb{N}$ layers

- Let T^R_α be the first 2*R* + 1 levels of T_α .
- \blacksquare *R layers* of \square -nodes, labeled bottom to top.
- Run peeling on T_α^R (later $R \to \infty$).

 \hookrightarrow Why not consider the first 2*R* levels? (without $+1$)

Only care whether root is removed (root represents arbitrary node in $G_{m,\alpha m}$)

We may then simplify the peeling algorithm.

- replace " \Box -node of degree 1" condition with stronger "childless \Box -node".
	- \blacksquare prevents peeling of \square -nodes with one child and no parent
	- no matter: such nodes are disconnected from the root anyway
- whether node is peeled only depends on subtree
	- \hookrightarrow one bottom up pass suffices for peeling

Peeling Algorithm

while \exists *childless* \Box -node **do** \Box remove it and its incident \bigcirc

,→ not well defined outcome on *T*α! \hookrightarrow but well defined on \mathcal{T}_{α}^R !

Peel only the first $R \in \mathbb{N}$ layers

- Let T^R_α be the first 2*R* + 1 levels of T_α .
- \blacksquare *R layers* of \square -nodes, labeled bottom to top.
- Run peeling on T_α^R (later $R \to \infty$).

 \hookrightarrow Why not consider the first 2*R* levels? (without $+1$)

Only care whether root is removed (root represents arbitrary node in $G_{m,\alpha m}$)

We may then simplify the peeling algorithm.

- replace " \Box -node of degree 1" condition with stronger "childless \Box -node".
	- \blacksquare prevents peeling of \square -nodes with one child and no parent
	- no matter: such nodes are disconnected from the root anyway
- whether node is peeled only depends on subtree
	- \hookrightarrow one bottom up pass suffices for peeling

Peeling Algorithm

while \exists *childless* \Box -node **do** \Box remove it and its incident \bigcirc

,→ not well defined outcome on *T*α! \hookrightarrow but well defined on \mathcal{T}_{α}^R !

Peel only the first $R \in \mathbb{N}$ layers

- Let T^R_α be the first 2*R* + 1 levels of T_α .
- \blacksquare *R layers* of \square -nodes, labeled bottom to top.
- Run peeling on T_α^R (later $R \to \infty$).

 \hookrightarrow Why not consider the first 2*R* levels? (without $+1$)

Only care whether root is removed (root represents arbitrary node in $G_{m,\alpha m}$)

We may then simplify the peeling algorithm.

- replace " \Box -node of degree 1" condition with stronger "childless \Box -node".
	- \blacksquare prevents peeling of \square -nodes with one child and no parent
	- no matter: such nodes are disconnected from the root anyway
- whether node is peeled only depends on subtree
	- \hookrightarrow one bottom up pass suffices for peeling

Peeling Algorithm

while \exists *childless* \Box -node **do** \Box remove it and its incident \bigcirc

,→ not well defined outcome on *T*α! \hookrightarrow but well defined on \mathcal{T}_{α}^R !

Peel only the first $R \in \mathbb{N}$ layers

- Let T^R_α be the first 2*R* + 1 levels of T_α .
- \blacksquare *R layers* of \square -nodes, labeled bottom to top.
- Run peeling on T_α^R (later $R \to \infty$).

 \hookrightarrow Why not consider the first 2*R* levels? (without $+1$)

Only care whether root is removed (root represents arbitrary node in $G_{m,\alpha m}$)

We may then simplify the peeling algorithm.

- replace " \Box -node of degree 1" condition with stronger "childless \Box -node".
	- \blacksquare prevents peeling of \square -nodes with one child and no parent
	- no matter: such nodes are disconnected from the root anyway
- whether node is peeled only depends on subtree
	- \hookrightarrow one bottom up pass suffices for peeling

Peeling Algorithm

while \exists *childless* \Box -node **do** \Box remove it and its incident \bigcirc

,→ not well defined outcome on *T*α! \hookrightarrow but well defined on \mathcal{T}_{α}^R !

Peel only the first $R \in \mathbb{N}$ layers

- Let T^R_α be the first 2*R* + 1 levels of T_α .
- \blacksquare *R layers* of \square -nodes, labeled bottom to top.
- Run peeling on T_α^R (later $R \to \infty$).

 \hookrightarrow Why not consider the first 2*R* levels? (without $+1$)

Only care whether root is removed (root represents arbitrary node in $G_{m,\alpha m}$)

We may then simplify the peeling algorithm.

- replace " \Box -node of degree 1" condition with stronger "childless \Box -node".
	- \blacksquare prevents peeling of \square -nodes with one child and no parent
	- no matter: such nodes are disconnected from the root anyway
- whether node is peeled only depends on subtree
	- \hookrightarrow one bottom up pass suffices for peeling

Peeling Algorithm

while \exists *childless* \Box -node **do** \Box remove it and its incident \bigcirc

,→ not well defined outcome on *T*α! \hookrightarrow but well defined on \mathcal{T}_{α}^R !

Peel only the first $R \in \mathbb{N}$ layers

- Let T^R_α be the first 2*R* + 1 levels of T_α .
- \blacksquare *R layers* of \square -nodes, labeled bottom to top.
- Run peeling on T_α^R (later $R \to \infty$).

 \hookrightarrow Why not consider the first 2*R* levels? (without $+1$)

Only care whether root is removed (root represents arbitrary node in $G_{m,\alpha m}$)

We may then simplify the peeling algorithm.

- replace " \Box -node of degree 1" condition with stronger "childless \Box -node".
	- \blacksquare prevents peeling of \square -nodes with one child and no parent
	- no matter: such nodes are disconnected from the root anyway
- whether node is peeled only depends on subtree
	- \hookrightarrow one bottom up pass suffices for peeling

Peeling Algorithm

while \exists *childless* \Box -node **do** \Box remove it and its incident \bigcirc

,→ not well defined outcome on *T*α! \hookrightarrow but well defined on \mathcal{T}_{α}^R !

Peel only the first $R \in \mathbb{N}$ layers

- Let T^R_α be the first 2*R* + 1 levels of T_α .
- \blacksquare *R layers* of \square -nodes, labeled bottom to top.
- Run peeling on T_α^R (later $R \to \infty$).

 \hookrightarrow Why not consider the first 2*R* levels? (without $+1$)

Only care whether root is removed (root represents arbitrary node in $G_{m,\alpha m}$)

We may then simplify the peeling algorithm.

- replace " \Box -node of degree 1" condition with stronger "childless \Box -node".
	- \blacksquare prevents peeling of \square -nodes with one child and no parent
	- no matter: such nodes are disconnected from the root anyway
- whether node is peeled only depends on subtree
	- \hookrightarrow one bottom up pass suffices for peeling

Observation

Let $q_R = Pr$ [root survives when peeling T_{α}^R]. The values q_B are decreasing in R .

Peeling Algorithm

while ∃ *childless -node* **do** \vert remove it and its incident \bigcap

[Cuckoo hashing with more than two hash functions](#page-2-0) [The Peeling Algorithm](#page-10-0) The **Peeling Theorem The Peeling The The Pee**
Conclusion The Peeling The Peeling The Peeling The Peeling [The Peeling Theorem](#page-21-0) [Conclusion](#page-62-0) Conclusion Conc

Observation

Let $q_R = Pr$ [root survives when peeling T_{α}^R]. The values q_R are decreasing in R .

Peeling Algorithm

while ∃ *childless -node* **do** \vert remove it and its incident \bigcap

Proof.

Assume when peeling \mathcal{T}^R_α the sequence $\vec{x} = (x_1, \dots, x_k)$ is a valid sequence of \Box -node choices. Then \vec{x} is also valid when peeling $\mathcal{T}^{R+1}_\alpha.$

peeling \mathcal{T}^R_{α} removes the root $\;\Rightarrow\;$ peeling $\mathcal{T}^{R+1}_{\alpha}$ removes the root root survives when peeling $\mathcal{T}^{R+1}_\alpha \Rightarrow$ peeling \mathcal{T}^R_α removes the root $q_{R+1} < q_R$

[Cuckoo hashing with more than two hash functions](#page-2-0) [The Peeling Algorithm](#page-10-0) The **Peeling Theorem The Peeling The The Pee**
[Conclusion](#page-62-0) The Peeling The Peeling The Peeling Algorithm The Peeling **[The Peeling Theorem](#page-21-0) Conclusion** Ope

15/25 WS 2024/2025 Stefan Walzer: Peeling Inc. and Inc. and Inc. and Inc. and ITI, Algorithm Engineering ITI, Algorithm Engineering

Peeling T^R_α bottom up **for** $i = 1$ **to** R **do** $\text{/}\!\!/$ \Box -layers bottom to top **for** *each -node v in layer i* **do if** *v has no children* **then** remove *v* and its parent

layer 1 뮤 白

Survival probabilities $p_i := Pr[$ -node in layer *i* is *not* peeled]

$$
p_1 = Pr[\Box \text{node has } \ge 1 \text{ child}]
$$

= Pr_{Y~Pois(3\alpha)}[Y > 0] = 1 - e^{-3\alpha}.

$$
p_i = Pr[\text{layer } i \Box \text{node } v \text{ has } \ge 1 \text{ surviving child}]
$$

 \Box -survival probabilities. With $p_0 := 1$ we have

$$
p_i = \begin{cases} 1 & \text{if } i = 0 \\ 1 - e^{-3\alpha p_{i-1}^2} & \text{if } i = 1, 2, \dots \end{cases}
$$

Moreover:
$$
q_B := Pr[root survives] = p_B^3
$$

layer $2 = R$

Karlsruhe Institute of Technolog

pⁱ = (1 if *i* = 0 1 − *e* −3α*p* 2 *ⁱ*−¹ if *i* = 1, 2, . . . ,→ consider *^f*(*x*) = ¹ − *^e* −3α*x* 2 Case 1: ∃*^x* > ⁰ : *^f*(*x*) = *^x*. 0 1 0 0.2 0.4 0.6 0.8 1 y = x 1 − e [−]3αx² ⇒ lim *i*→∞ *pⁱ* = *x* [∗] = max{*^x* ∈ [0, ¹] | *^f*(*x*) = *^x*}. Case 2: ∀*^x* ∈ (0, ¹] : *^f*(*x*) < *^x* 0 1 0 0.2 0.4 0.6 0.8 1 y = x 1 − e [−]3αx² . . .p4p³ p² p¹ ⇒ lim *i*→∞ *pⁱ* = 0. [Cuckoo hashing with more than two hash functions](#page-2-0) [The Peeling Algorithm](#page-10-0) [The Peeling Theorem](#page-21-0) [Conclusion](#page-62-0)

NKIT

$^{\text{\tiny{\textsf{III}}}}$ What role does $c_3^\Delta\approx 0.81$ play?

$$
p_i = \begin{cases} 1 & \text{if } i = 0 \\ 1 - e^{-3\alpha p_{i-1}^2} & \text{if } i = 1, 2, \dots \\ -\text{consider } f(x) = 1 - e^{-3\alpha x^2} \end{cases}
$$

Case 1: $\exists x > 0 : f(x) = x$.

iii Interim Conclusion: What we learned about peeling T_α

Lemma

For $\alpha < c_3^{\Delta} \approx 0.81$ we have

 \blacksquare $\lim_{i\to\infty}$ $p_i = 0$.

$$
\lim_{R\to\infty}q_R=\lim_{R\to\infty}p_R^3=0.
$$

"Root rarely survives for large *R*."

[Cuckoo hashing with more than two hash functions](#page-2-0) [The Peeling Algorithm](#page-10-0) [The Peeling Theorem](#page-21-0) [Conclusion](#page-62-0)

17/25 WS 2024/2025 Stefan Walzer: Peeling ITI, Algorithm Engineering ITI, Algorithm Engineering

liv What does it mean for T_{α} to be locally like $G_{m,\alpha m}$?

Neighbourhoods in T_α and G

Let $R \in \mathbb{N}$. We consider

- T^R_α as before and
- for any fixed $x \in S$ the subgraph $G^{x,R}_{m,\alpha m}$ of $G_{m,\alpha m}$ induced by all nodes with distance at most 2*R* from *x*.

[Cuckoo hashing with more than two hash functions](#page-2-0) [The Peeling Algorithm](#page-10-0) Th**e Peeling Theorem The Peeling The Peeli**

liv What does it mean for T_{α} to be locally like $G_{m,\alpha m}$?

Neighbourhoods in T_α and G

Let $R \in \mathbb{N}$. We consider

- T^R_α as before and
- for any fixed $x \in S$ the subgraph $G^{x,R}_{m,\alpha m}$ of $G_{m,\alpha m}$ induced by all nodes with distance at most 2*R* from *x*.

Lemma

For any $R \in \mathbb{N}$, the **distribution** of $G_{m,\alpha m}^{x,R}$ converges the distribution of \mathcal{T}_{α}^R , i.e.

$$
\forall T: \lim_{m\to\infty} \Pr[G^{x,R}_{m,\alpha m} = T] = \Pr[T^{R}_{\alpha} = T].
$$

 $G_{m,\alpha m}$: 1 2 3 4 5 6 7 8 9 10 a) (b) $\frac{x}{c}$ (c $G^{x,R}_{m,\alpha m}$: \widehat{x} 3 \widetilde{a} 1 7 b $\boxed{2}$ $\boxed{9}$ 5 8 \widehat{c} 10 $\tau^{\text{\tiny R}}_{\alpha}$:

[Cuckoo hashing with more than two hash functions](#page-2-0) [The Peeling Algorithm](#page-10-0) Th**e Peeling Theorem The Peeling The Pool**

$\frac{1}{\sqrt{N}}$ Distribution of $\,_{\alpha}^{R}$ α

e.g. for
$$
y = (2, 0, 1, 4, 2, 1, 0, 3, 2)
$$
:

Lemma

Let $T_\textit{y}$ be a possible outcome of T^R_α given by a finite $\textit{sequence } y = (y_1, \ldots, y_k) \in \mathbb{N}_0^k$ specifying the number *of children of -nodes in level order. Then*

$$
Pr[T_{\alpha}^{R} = T_{y}] = \prod_{i=1}^{k} Pr_{\text{Pois}(3\alpha)}[Y = y_{i}].
$$

[Cuckoo hashing with more than two hash functions](#page-2-0) [The Peeling Algorithm](#page-10-0) [The Peeling Theorem](#page-21-0) [Conclusion](#page-62-0)

$\overline{\mathbf{w}}$ No cycles in $G_{m,\alpha}^{\chi,R}$ *m*,α*m*

Karlsruhe Institute of Technology

Lemma

Assume R = $\mathcal{O}(1)$ *. The probability that* $G_{m,\alpha m}^{\chi,R}$ *contains a cycle is* $\mathcal{O}(1/m)$ *<i>.*

$\overline{\mathbf{w}}$ No cycles in $G_{m,\alpha}^{\chi,R}$ *m*,α*m*

Lemma

Assume R = $\mathcal{O}(1)$ *. The probability that* $G_{m,\alpha m}^{\chi,R}$ *contains a cycle is* $\mathcal{O}(1/m)$ *<i>.*

Proof.

If $G^{x,R}_{m,\alpha m}$ contains a cycle then we have

- a sequence $(v_1 = x, v_2, \ldots, v_k, v_{k+1} = v_a)$ of nodes with $a \in [k]$
- of length $k < 4R$ (consider BFS tree for *x* and additional edge in it)
- **■** for each $i \in \{1, ..., k\}$ an index $j_i \in \{1, 2, 3\}$ of the hash function connecting v_i and v_{i+1} . (If $a = k - 1$ then $j_k \neq j_{k-1}$.)

[Cuckoo hashing with more than two hash functions](#page-2-0) [The Peeling Algorithm](#page-10-0) The **Peeling The Peeling The Peeling The Pee**
[Conclusion](#page-62-0) The Peeling The Peeling The Peeling Algorithm The P**eeling The Peeling The Peeling The Peeling**

$\overline{\mathbf{w}}$ No cycles in $G_{m,\alpha}^{\chi,R}$ *m*,α*m*

Lemma

Assume R = $\mathcal{O}(1)$ *. The probability that* $G_{m,\alpha m}^{\chi,R}$ *contains a cycle is* $\mathcal{O}(1/m)$ *<i>.*

Proof.

If $G^{x,R}_{m,\alpha m}$ contains a cycle then we have

- a sequence $(v_1 = x, v_2, \ldots, v_k, v_{k+1} = v_a)$ of nodes with $a \in [k]$
- of length $k < 4R$ (consider BFS tree for *x* and additional edge in it)
- **■** for each $i \in \{1, \ldots, k\}$ an index $j_i \in \{1, 2, 3\}$ of the hash function connecting v_i and v_{i+1} . (If $a = k - 1$ then $j_k \neq j_{k-1}$.)

 $\mathsf{Pr}[\exists$ cycle in $G^{x,R}_{m,\alpha m}]\leq \mathsf{Pr}[\exists 2\leq k\leq 4R:\exists \nu_2,\ldots,\nu_k:\exists a\in[k]:\exists j_1,\ldots,j_k\in[3]:\forall i\in[k]:\,h_{j_i}$ connects ν_i to $\nu_{i+1}]$

$$
\leq \sum_{k=2}^{4R} \sum_{\nu_2, ..., \nu_k} \sum_{a=1}^k \sum_{j_1, ..., j_k} \prod_{i=1}^k \Pr[h_{j_i} \text{ connects } \nu_i \text{ to } \nu_{i+1}] \leq \sum_{k=2}^{4R} (\max\{m, n\})^{k-1} \cdot k \cdot 3^k \left(\frac{1}{m}\right)^k = \frac{1}{m} \sum_{k=2}^{4R} k \cdot 3^k = \mathcal{O}(1/m). \quad \Box
$$

Lemma

Let T_y *be a possible outcome of* T_α^R *as before. Then*

$$
\mathrm{Pr}_{h_1,h_2,h_3\sim\mathcal{U}([m]^D)}[\mathcal{G}_{m,\alpha m}^{X,R}=\mathcal{T}_y] \stackrel{m\rightarrow\infty}{\longrightarrow} \prod_{i=1}^k \mathrm{Pr}_{Y\sim\mathrm{Pois}(3\alpha)}[Y=y_i].
$$

Lemma

Let T_y *be a possible outcome of* T_α^R *as before. Then*

$$
\mathsf{Pr}_{h_1,h_2,h_3\sim\mathcal{U}([m]^D)}[G^{x,R}_{m,\alpha m} = T_y] \stackrel{m\rightarrow\infty}{\longrightarrow} \prod_{i=1}^k \mathsf{Pr}_{Y\sim\mathsf{Pois}(3\alpha)}[Y=y_i].
$$

"Proof by example", using T_v shown on the right.

The following things have to "go right" for $G_{m,\alpha m}^{\chi,R} = T_{\chi}.$

a $h_1(x)$, $h_2(x)$, $h_3(x)$ pairwise distinct: probability $\stackrel{m\to\infty}{\longrightarrow} 1$ \hookrightarrow non-distinct would give cycle of length 2. Unlikely by lemma.

Note: 3⌊α*m*⌋ − 3 remaining hash values ∼ U([*m*]).

Lemma

Let T_y *be a possible outcome of* T_α^R *as before. Then*

$$
\mathsf{Pr}_{h_1,h_2,h_3\sim\mathcal{U}([m]^D)}[G^{x,R}_{m,\alpha m} = T_y] \stackrel{m\rightarrow\infty}{\longrightarrow} \prod_{i=1}^k \mathsf{Pr}_{Y\sim\mathsf{Pois}(3\alpha)}[Y=y_i].
$$

"Proof by example", using T_v shown on the right.

b Exactly $y_1 = 2$ of the remaining hash values are *u*.

$$
\hookrightarrow \text{Pr}_{Y \sim \textit{Bin}(3 \lfloor \alpha m \rfloor - 3, \frac{1}{m})}[Y = 2] \stackrel{m \rightarrow \infty}{\longrightarrow} \text{Pr}_{Y \sim \text{Pois}(3\alpha)}[Y = 2]. \rightarrow \text{exercise}
$$

Moreover: The two hash values must belong to 2 distinct keys. Probability $\stackrel{m\rightarrow\infty}{\longrightarrow} 1$. \hookrightarrow non-distinct would give cycle of length 2.

Note: The 3 $|αm|$ – 5 remaining hash values are $∼ \mathcal{U}([m] \setminus \{u\})$. → exercise

Lemma

. . .

Let T_y *be a possible outcome of* T_α^R *as before. Then*

$$
\mathsf{Pr}_{h_1,h_2,h_3\sim\mathcal{U}([m]^D)}[G^{x,R}_{m,\alpha m} = T_y] \stackrel{m\rightarrow\infty}{\longrightarrow} \prod_{i=1}^k \mathsf{Pr}_{Y\sim\mathsf{Pois}(3\alpha)}[Y=y_i].
$$

"Proof by example", using T_v shown on the right.

^c None of the remaining hash values are *v*.

$$
\hookrightarrow \mathrm{Pr}_{Y \sim Bin(3 \lfloor \alpha m \rfloor - 5, \frac{1}{m-1})}[Y = 0] \stackrel{m \to \infty}{\longrightarrow} \mathrm{Pr}_{Y \sim \mathrm{Pois}(3\alpha)}[Y = 0].
$$

Note: The 3 $\vert \alpha m \vert$ − 5 remaining hash values are $\sim \mathcal{U}([m] \setminus \{u, v\})$.

^d One of the remaining hash values is *w*.

$$
\hookrightarrow \mathrm{Pr}_{Y \sim Bin(3\lfloor \alpha m \rfloor - 5, \frac{1}{m-2})}[Y = 1] \stackrel{m \to \infty}{\longrightarrow} \mathrm{Pr}_{Y \sim \mathrm{Pois}(3\alpha)}[Y = 1].
$$

Lemma

Let T_y *be a possible outcome of* T_α^R *as before. Then*

$$
\mathsf{Pr}_{h_1,h_2,h_3\sim\mathcal{U}([m]^D)}[G^{x,R}_{m,\alpha m} = T_y] \stackrel{m\rightarrow\infty}{\longrightarrow} \prod_{i=1}^k \mathsf{Pr}_{Y\sim\mathsf{Pois}(3\alpha)}[Y=y_i].
$$

Proof sketch in general (some details ommitted)

General case at *i*-th \Box -node. Want: probability that $G^{x,R}_{m,\alpha m}$ continues to match \mathcal{T}_y . Note: T_v is fixed, so *i* and the number c_i of previously revealed hash values is bounded.

$$
\mathsf{Pr}_{Y \sim Bin(3\lfloor \alpha m \rfloor - c_i, \frac{1}{m-i+1})}[Y = y_i] \stackrel{m \rightarrow \infty}{\longrightarrow} \mathsf{Pr}_{Y \sim \mathsf{Pois}(3\alpha)}[Y = y_i].
$$

Moreover, those *y_i* hash values must belong to distinct fresh keys. Probability ^{*m*→∞} 1 \hookrightarrow otherwise we'd have a cycle.

■ General case for O-node. The two children must be fresh: probability $\stackrel{m\rightarrow\infty}{\longrightarrow} 1$ \hookrightarrow otherwise there would be a cycle.

v **Probability that a specific key survives peeling**

Lemma

Let α < *c* ∆ 3 *. Let x be any -node in Gm*,α*^m as before (chosen before sampling the hash functions). Let*

 $\mu_m := \mathsf{Pr}_{h_1,h_2,h_3\sim\mathcal{U}([m]^D)}[x]$ is removed when peeling $G_{m,\alpha m}].$

Then $\lim_{m \to \infty} \mu_m = 1$.

$\mu_{\sf m}:=\mathsf{Pr}[{\mathsf x}$$ is removed when peeling $G_{m,\alpha m}]\stackrel{m\to\infty}{\longrightarrow} {\mathsf 1}$

Let $\delta > 0$ be arbitrary. We will show $\lim_{m \to \infty} \mu_m > 1 - 2\delta$. Let $R \in \mathbb{N}$ be such that $q_R < \delta$. possible because $\lim_{R \to \infty} q_R = 0$ $\bm{\mathcal{Y}}^{\mathcal{H}} := \{\text{all possibilities for } \mathcal{T}^{\mathcal{H}}_{\alpha}\}$ $\mathcal{Y}^{R}_{\mathsf{peel}} := \{ \mathcal{T} \in \mathcal{Y}^{R} \mid \text{ peeling } \mathcal{T} \text{ removes the root} \}$ note: Pr[*T* Let $\mathcal{Y}_{\textsf{fin}}^R \subseteq \mathcal{Y}^R$ be a *finite* set such that $\mathsf{Pr}[\,T^R_{\alpha} \notin \mathcal{Y}^R_{\textsf{fir}}\,]$

 $P^R_\alpha \notin \mathcal{Y}_{\mathsf{peel}}^R$ = $q_R \leq \delta$. $\mathcal{F}_{\text{fin}}^{\mathcal{B}}] \leq \delta$ uses that $\mathcal{Y}^{\mathcal{B}}$ is countable and \sum *T*∈Y*R* $Pr[T_{\alpha}^{R} = T] = 1.$

$\mu_{\sf m}:=\mathsf{Pr}[{\mathsf x}$$ is removed when peeling $G_{m,\alpha m}]\stackrel{m\to\infty}{\longrightarrow} {\mathsf 1}$

Let $\delta > 0$ be arbitrary. We will show $\lim_{m \to \infty} \mu_m > 1 - 2\delta$. Let $R \in \mathbb{N}$ be such that $q_R < \delta$. possible because $\lim_{R \to \infty} q_R = 0$ $\bm{\mathcal{Y}}^{\mathcal{H}} := \{\text{all possibilities for } \mathcal{T}^{\mathcal{H}}_{\alpha}\}$ $\mathcal{Y}^{R}_{\mathsf{peel}} := \{ \mathcal{T} \in \mathcal{Y}^{R} \mid \text{ peeling } \mathcal{T} \text{ removes the root} \}$ note: Pr[*T* Let $\mathcal{Y}_{\textsf{fin}}^R \subseteq \mathcal{Y}^R$ be a *finite* set such that $\mathsf{Pr}[\,T^R_{\alpha} \notin \mathcal{Y}^R_{\textsf{fir}}\,]$ $\lim_{m\to\infty}\mu_m\geq \lim_{m\to\infty}\Pr[G^{x,R}_{m,\alpha m}\in\mathcal{Y}^R_{\text{per}}]$ $\geq \lim_{m\to\infty} \Pr[G^{x,R}_{m,\alpha m} \in \mathcal{Y}_{\text{peel}}^R \cap \mathcal{Y}_{\text{fin}}^R]$ $=\lim_{m\to\infty}\sum_{\tau\in\mathcal{Y}_{\mathsf{peel}}^B\cap\mathcal{Y}_{\mathsf{fin}}^R}\mathsf{Pr}[G_{m,\alpha m}^{\mathsf{x},R}=\mathcal{T}]$ $=\sum_{\mathcal{T}\in\mathcal{Y}^R_{\mathsf{peel}}\cap\mathcal{Y}^R_{\mathsf{fin}}}\mathsf{lim}_{m\to\infty}\mathsf{Pr}[\bm{G}^{\chi,R}_{m,c}]$ $=\sum_{\mathcal{T}\in\mathcal{Y}^R_\mathsf{peel}\cap\mathcal{Y}^R_\mathsf{fin}}\mathsf{Pr}[\mathcal{T}^R_\alpha]$ $\mathsf{P} = \mathsf{Pr}[\hspace{0.5mm} [\mathsf{T}_{\alpha}^{\mathsf{R}} \in \mathcal{Y}_{\mathsf{peel}}^{\mathsf{R}} \cap \mathcal{Y}_{\mathsf{fin}}^{\mathsf{R}}] = 1 - \mathsf{Pr}[\hspace{0.5mm} [\mathsf{T}_{\alpha}^{\mathsf{R}} \notin \mathcal{Y}_{\mathsf{peel}}^{\mathsf{R}} \cap \mathcal{Y}_{\mathsf{fin}}^{\mathsf{R}}]]$ $\mathcal{L} = 1 - \mathsf{Pr}[\,T_\alpha^\mathsf{R} \notin \mathcal{Y}_{\mathsf{peel}}^\mathsf{R} \lor \,T_\alpha^\mathsf{R} \notin \mathcal{Y}_{\mathsf{fir}}^\mathsf{R}$ \geq 1 $-$ Pr $[T_\alpha^R \notin \mathcal{Y}_{\mathsf{peel}}^R]-$ Pr $[T_\alpha^R \notin \mathcal{Y}_{\mathsf{fir}}^R]$

 $P^R_\alpha \notin \mathcal{Y}_{\mathsf{peel}}^R$ = $q_R \leq \delta$. f_{fin}^R] $\leq \delta$ uses that \mathcal{Y}^R is countable and $\sum Pr[T_\alpha^R = T] = 1$. *R*

peeling only in *R*-neighbourhood of *x* is "weaker"

finite sums commute with limit

previous lemmas

De Morgan's laws: $\overline{A \cap B} = \overline{A} \cup \overline{B}$

fin] ≥ 1 − 2δ. union bound: Pr[*E*¹ ∨ *E*2] ≤ Pr[*E*1] + Pr[*E*2]

24/25 WS 2024/2025 Stefan Walzer: Peeling ITI, Algorithm Engineering ITI, Algorithm Engineering

vi **Proof of the Peeling Theorem**

Theorem

Proof

Let $\alpha < c_3^{\Delta}$. Then

 $Pr[G_{m \alpha m}]$ is peelable] = 1 – *o*(1).

Let $n = |\alpha m|$ and $0 \leq s \leq n$ the number of \bigcap nodes surviving peeling. last lemma: each \bigcirc survives with probability $o(1)$. linearity of expectation $\mathbb{E}[s] = n \cdot o(1) = o(n)$.
Exercise: $\Pr[s \in \{1, ..., \delta n\}] = 0$ $Pr[s \in \{1, ..., \delta n\}] = \mathcal{O}(1/m)$ if $\delta > 0$ is a small enough constant. Markov: $\Pr[s > \delta n] \leq \frac{\mathbb{E}[s]}{\delta n} = \frac{o(n)}{\delta n} = o(1).$ finally: $Pr[s > 0] = Pr[s \in \{1, ..., \delta n\}] + Pr[s > \delta n] = O(1/m) + o(1) = o(1).$

[Cuckoo hashing with more than two hash functions](#page-2-0) [The Peeling Algorithm](#page-10-0) The **Peeling Theorem The Peeling The The Pee**
[Conclusion](#page-62-0) The Peeling The Peeling The Peeling Algorithm The **Peeling The Peeling The Peeling The Peelin**

Conclusion

Peeling Process

- \blacksquare greedy algorithm for placing keys in cuckoo table
- works up to a load factor of $c_3^{\Delta} \approx 0.81$

We saw glimpses of important techniques

- *Local interactions in large graphs.* Also used in statistical physics.
- *Galton-Watson Processes / Trees.* Random processes related to T_{α} .
- **L** Local weak convergence. How the finite graph G_m _{α} is locally like T_α .

But wait, there's more!

- **Further applications of peeling**
	- \blacksquare retrieval data structures (next lecture)
	- perfect hash functions (next lecture)
- set sketches
- linear error correcting codes

Anhang: Mögliche Prüfungsfragen I

Cuckoo Hashing und der Schälalgorithmus

- (Wie) kann man Cuckoo Hashing mit mehr als 2 Hashfunktionen aufziehen?
- Welcher Vorteil ergibt sich im Vergleich zu 2 Hashfunktionen?
- Wie funktioniert der Schälalgorithmus zur Platzierung von Schlüsseln in einer Cuckoo Hashtabelle?
- Schälen lässt sich als einfacher Prozess auf Graphen auffassen. Wie?
- Was besagt das Hauptresultat, das wir zum Schälprozess bewiesen haben?
- Beweis des Schälsatzes. *Mir ist klar, dass der Beweis äußerst kompliziert ist.*
	- Im Beweis haben zwei Graphen eine Rolle gespielt ein endlicher und ein (potentiell) unendlicher. Wie waren diese Graphen definiert?
	- Welcher Zusammenhang besteht zwischen der Verteilung der Knotengrade in *T*_α und *G*_{*m*,α*m*?}