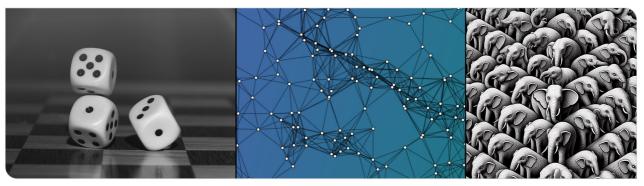


Probability and Computing – Perfect Hashing

Hans-Peter Lehmann | WS 2024/2025



www.kit.edu

1. (Minimal-) Perfect Hashing

Practical Comparison

Construction Using Trial and Error

Construction Using Bucket PlacementConstruction Using Recursive Splitting

Construction Using Cuckoo Hashing and Retrieval

ITI, Algorithm Engineering

Variants

2. Conclusion

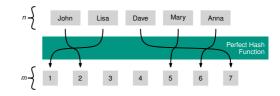
Introduction

The Perfect Hashing Problem

Perfect hashing data type (for universe D, $\varepsilon \ge 0$)	
construct(S):	
input:	$S \subseteq D$ of size $n = S $
output:	data structure <i>P</i> .
$eval_P(x)$:	
input:	$x \in D$
output:	a number in [<i>m</i>] where $m = (1 + \varepsilon)n$
requirement:	$x \mapsto \mathbf{eval}_{P}(x)$ is injective on S

Remarks

- details about S are lost.
- note: P is "perfect hash function" but need not be random



Goals

- ε is small // ε = 0: *Minimal* perfect hashing
- space requirement of *P* is $\mathcal{O}(n)$ bits
- ideally: running time of $eval_P$ is $\mathcal{O}(1)$
- ideally: running time of **construct** is $\mathcal{O}(n)$

Motivation for (Minimal-) Perfect Hashing

Updatable Retrieval: A hash table without keys

- assume we have MPHF P for S
- can store additional data
 f(x) ∈ [k] on x ∈ S in array of length m in position eval_P(x).
 → array takes m[log₂(k)] bits

 \triangle Weaker than a normal hash table:

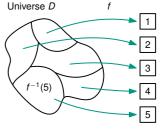
- S is static (values updateable)
- trying to access f(x) for $x \notin S$ gives undefined result
- trying to update f(x) for $x \notin S$ destroys information

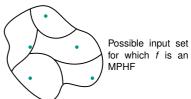
Minimal Perfect Hashing: Lower Space Bound

Ingredients

- $a = \binom{|D|}{n}$ possible input sets
- Each function can cover at most $b = \left(\frac{|D|}{n}\right)^n$ different inputs
- Need to differentiate between at least a/b different behaviors

$$\log_{2}\left(\frac{\binom{|D|}{n}}{\binom{|D|}{n}^{n}}\right) \stackrel{\text{Stirling}}{\approx} \log_{2}\left(\frac{\binom{|D|e}{n}^{n}}{\binom{|D|}{n}^{n}}\right) \\ = \log_{2}\left(e^{n}\right) = n\log_{2}e \approx 1.44n$$





• In contrast, storing *S* might need $\Omega(n \log(|D|))$ bits

Content

1. (Minimal-) Perfect Hashing

Introduction

Construction Using Trial and Error

- Construction Using Cuckoo Hashing and Retrieval
- Construction Using Bucket Placement
- Construction Using Recursive Splitting
- Practical Comparison
- Variants

2. Conclusion

Construction Using Trial and Error

Exercise: What if we played the lottery until we win?

Let us try random hash functions until one is *minimal perfect* (n = m) on S.

- What are the expected construction time and space consumption?
- Hint: Stirling's approximation: $n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$

Solution:

- There are *nⁿ* different random hash functions.
- n! of those are minimal perfect on S.
- Success after trying $\frac{n^{n}}{n!} \approx e^{n}/\sqrt{2\pi n}$ random hash functions in expectation.
- Need to store seed of $\log_2\left(\frac{n^n}{n!}\right) \approx \log_2(e^n) = n \log_2 e \approx 1.44n$ bits.

Problems?

Content

1. (Minimal-) Perfect Hashing

- Introduction
- Construction Using Trial and Error

Construction Using Cuckoo Hashing and Retrieval

- Construction Using Bucket Placement
- Construction Using Recursive Splitting
- Practical Comparison
- Variants

2. Conclusion

Construction Using Cuckoo Hashing and Retrieval

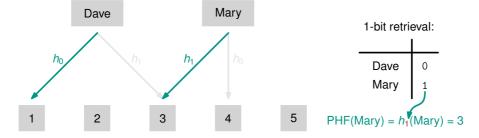
Cuckoo Hashing (abstract reminder)

Let $S \subseteq D$ of size n = |S| and $h_1, \ldots, h_k \sim \mathcal{U}([m]^D)$ where $\frac{n}{m} < c_k^*$ for some threshold c_k^* . With high probability there exists $\sigma(x) \in [k]$ for each $x \in S$ such that $x \mapsto h_{\sigma(x)}(x)$ is injective on S.

Perfect Hash Function from Retrieval

- Store $\sigma: S \rightarrow [k]$ in retrieval data structure R
- (non-minimal) PHF $P = (R, h_1, \dots, h_k)$ with

 $eval_P(x) := h_{eval_R(x)}(x).$



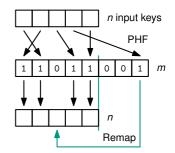
Construction Using Cuckoo Hashing and Retrieval Space Consumption

Example with k = 4

- need $\frac{n}{m} < c_4^* \approx 0.9768 \rightsquigarrow \varepsilon \approx 0.0238$
- space needed for *P* is the space for *R*:
 ≈ n ⌈log₂(k)⌉ = 2n bits using Bumped Ribbon Retrieval (see previous lecture)

"Repairing" a PHF to get MPHF

- Remap values > n into holes left by previous keys (using Elias-Fano coding, not here)
- For $\varepsilon \approx$ 0.0238, this needs 0.17*n* bits



ShockHash

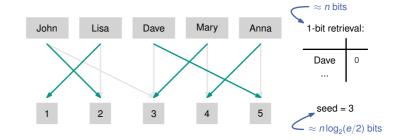
Exercise: What could go wrong?

Let's just avoid having to repair by using m = n ($\varepsilon = 0$) and use 2 hash functions to save space.

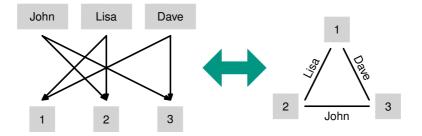
Solution: $\frac{n}{m} = 1 \gg c_2^* = \frac{1}{2}$, so there likely is no placement.

ShockHash Idea

- Retry different seeds until it is orientable
- Need to try ≈ (e/2)ⁿ seeds, space close to optimal
- ≈ 2ⁿ times faster than brute-force

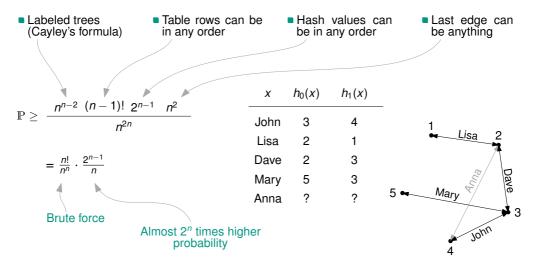


ShockHash Interpretations of the cuckoo graph

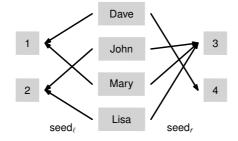


ShockHash

Proof: Probability that we can orient the ShockHash graph



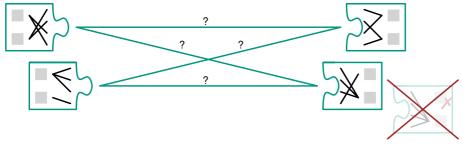
Bipartite ShockHash



Partition output values

Store two seeds and retrieval data structure

Bipartite ShockHash



- Build pool of $\sqrt{(e/2)^n} \approx 1.165^n$ seeds
- Filter seeds before combining, accuracy 0.836^{*n*/2} (not here)
- Only $\left(\sqrt{(e/2)^n} \cdot 0.836^{n/2}\right)^2 \approx 1.136^n$ combinations to test \Rightarrow lower order term

Heads up

It is hard to show that reusing seeds from the pool does not hurt the success probability too much.

1. (Minimal-) Perfect Hashing

- Introduction
- Construction Using Trial and Error
- Construction Using Cuckoo Hashing and Retrieval

Construction Using Bucket Placement

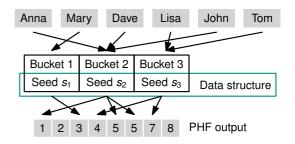
- Construction Using Recursive Splitting
- Practical Comparison
- Variants

2. Conclusion

Construction Using Bucket Placement

Perfect Hash Function $P = (k, h, (g_i)_{i \in \mathbb{N}}, (s_1, \dots, s_k))$

- k is a number of buckets
- $h \sim \mathcal{U}([k]^D)$ assigns random bucket to each key
- $g_s \sim \mathcal{U}([m]^D)$ for each $seed \ s \in \mathbb{N}$
- *s_i* is the seed used by keys in bucket *i*
- eval_P(x) := $g_{s_{h(x)}}(x)$
- s_1, \ldots, s_k are found using trial and error
- huge design space



Construction Using Bucket Placement

Design Space: Finding Seeds

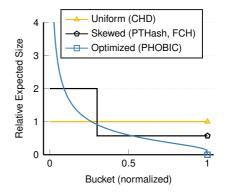
Problem: First buckets are easier to place into almost empty output domain. Last buckets take a long time.

Improvement 1

Sort buckets by their actual size and place largest buckets first.

Improvement 2

Bias bucket assignment function *h* such that it makes early buckets larger.



Content

1. (Minimal-) Perfect Hashing

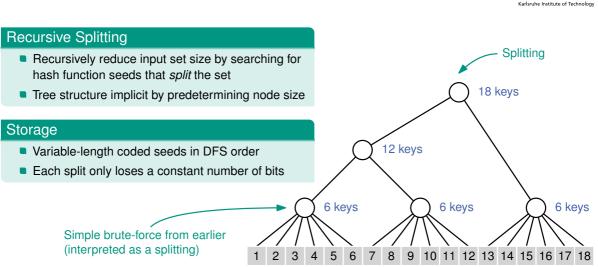
Introduction

- Construction Using Trial and Error
- Construction Using Cuckoo Hashing and Retrieval
- Construction Using Bucket Placement

Construction Using Recursive Splitting

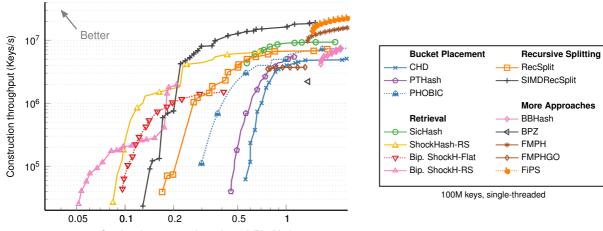
- Practical Comparison
- Variants

2. Conclusion



Construction Using Recursive Splitting

Practical Comparison



Overhead over space lower bound (Bits/Key)

Perfect Hashing Variants

k-Perfect Hashing

- Up to k collisions on each output value are allowed
- Application: Find external memory page

Monotone Minimal Perfect Hashing

- Keep natural order of input keys (Rank data structure)
- Application: Databases

Conclusion

Definition

(M)PHF for $S \subseteq U$ realises injective function on S, without storing S.

Perfect Hashing Through Trial and Error

Test seeds until one gives an MPHF.

Perfect Hashing Through Retrieval

Store one of multiple choices for each key. Cuckoo Hashing + Retrieval \rightarrow Perfect Hashing \rightarrow Updatable Retrieval ("hash table without keys")

Perfect Hashing Through Bucket Placement

Hash keys to buckets. Greedily store seed for each bucket such that its keys do not collide with earlier keys.

Perfect Hashing Through Recursive Splitting

Recursively split set of keys until the set is small enough for trial and error.

Anhang: Mögliche Prüfungsfragen I

- Was zeichnet eine gute Perfekte Hashfunktion aus?
- Was sind upper und lower bounds an den Platzverbrauch?
- Wir haben Hashtabellen ohne Schlüssel kennengelernt. Was hat es damit auf sich?
- Wie kann man perfekte Hashfunktionen mit (Trial und Error | Retrieval | Bucket placement | Recursive splitting) konstruieren?