
Probability and Computing – Perfect Hashing

Hans-Peter Lehmann | WS 2024/2025

KIT – The Research University in the Helmholtz Association www.kit.edu

https://www.kit.edu

1. (Minimal-) Perfect Hashing
Introduction
Construction Using Trial and Error
Construction Using Cuckoo Hashing and Retrieval
Construction Using Bucket Placement
Construction Using Recursive Splitting
Practical Comparison
Variants

2. Conclusion

2/23 WS 2024/2025 Hans-Peter Lehmann: Perfect Hashing ITI, Algorithm Engineering

Content

Perfect hashing data type (for universe D, ε ≥ 0)

construct(S):
input: S ⊆ D of size n = |S|

output: data structure P.
evalP(x):

input: x ∈ D
output: a number in [m] where m = (1 + ε)n

requirement: x 7→ evalP(x) is injective on S

Remarks
details about S are lost.

note: P is “perfect hash function” but need not be
random

1 2 3 4 5

John Dave Mary Anna

6 7

n

m

Perfect Hash
Function

Lisa

Goals
ε is small // ε = 0: Minimal perfect hashing

space requirement of P is O(n) bits

ideally: running time of evalP is O(1)

ideally: running time of construct is O(n)

3/23 WS 2024/2025 Hans-Peter Lehmann: Perfect Hashing ITI, Algorithm Engineering

The Perfect Hashing Problem

Short IDs
Replace keys with short unique identifies

evalP(“CreativeUserName”) = 10241. 1 2 3 4 5

John Dave Mary Anna

6 7

n

m

Perfect Hash
Function

Lisa

Updatable Retrieval: A hash table without keys

assume we have MPHF P for S

can store additional data
f (x) ∈ [k] on x ∈ S in array of
length m in position evalP(x).
↪→ array takes m⌈log2(k)⌉ bits

! Weaker than a normal hash table:

S is static (values updateable)

trying to access f (x) for x /∈ S gives undefined result

trying to update f (x) for x /∈ S destroys information

4/23 WS 2024/2025 Hans-Peter Lehmann: Perfect Hashing ITI, Algorithm Engineering

Motivation for (Minimal-) Perfect Hashing

Ingredients

a =
(|D|

n

)
possible input sets

Each function can cover at most b =
(

|D|
n

)n
different inputs

Need to differentiate between at least a/b different behaviors

log2

 (|D|
n

)(
|D|
n

)n

 Stirling
≈ log2

(

|D|e
n

)n

(
|D|
n

)n

= log2 (e

n) = n log2 e ≈ 1.44n

In contrast, storing S might need Ω(n log(|D|)) bits

1

2

3

4

5

Universe D f

f−1(5)

Possible input set
for which f is an
MPHF

5/23 WS 2024/2025 Hans-Peter Lehmann: Perfect Hashing ITI, Algorithm Engineering

Minimal Perfect Hashing: Lower Space Bound

1. (Minimal-) Perfect Hashing
Introduction
Construction Using Trial and Error
Construction Using Cuckoo Hashing and Retrieval
Construction Using Bucket Placement
Construction Using Recursive Splitting
Practical Comparison
Variants

2. Conclusion

6/23 WS 2024/2025 Hans-Peter Lehmann: Perfect Hashing ITI, Algorithm Engineering

Content

Exercise: What if we played the lottery until we win?
Let us try random hash functions until one is minimal perfect (n = m) on S.

What are the expected construction time and space consumption?

Hint: Stirling’s approximation: n! ≈
√

2πn
(

n
e

)n

Solution:

There are nn different random hash functions.

n! of those are minimal perfect on S.

Success after trying nn

n! ≈ en/
√

2πn random hash functions in expectation.

Need to store seed of log2

(
nn

n!

)
≈ log2(e

n) = n log2 e ≈ 1.44n bits.

Problems?

7/23 WS 2024/2025 Hans-Peter Lehmann: Perfect Hashing ITI, Algorithm Engineering

Construction Using Trial and Error

1. (Minimal-) Perfect Hashing
Introduction
Construction Using Trial and Error
Construction Using Cuckoo Hashing and Retrieval
Construction Using Bucket Placement
Construction Using Recursive Splitting
Practical Comparison
Variants

2. Conclusion

8/23 WS 2024/2025 Hans-Peter Lehmann: Perfect Hashing ITI, Algorithm Engineering

Content

Cuckoo Hashing (abstract reminder)
Let S ⊆ D of size n = |S| and
h1, . . . , hk ∼ U([m]D) where n

m < c∗
k for some

threshold c∗
k . With high probability there exists

σ(x) ∈ [k] for each x ∈ S such that x 7→ hσ(x)(x)
is injective on S.

Perfect Hash Function from Retrieval
Store σ : S → [k] in retrieval data structure R

(non-minimal) PHF P = (R, h1, . . . , hk) with

evalP(x) := hevalR(x)(x).

Dave 0

1-bit retrieval:

Mary 1

PHF(Mary) = h1(Mary) = 3

Dave Mary

1 2 3 4 5

h0 h1 h1 h0

9/23 WS 2024/2025 Hans-Peter Lehmann: Perfect Hashing ITI, Algorithm Engineering

Construction Using Cuckoo Hashing and Retrieval

Example with k = 4
need n

m < c∗
4 ≈ 0.9768⇝ ε ≈ 0.0238

space needed for P is the space for R:
≈ n⌈log2(k)⌉ = 2n bits using Bumped Ribbon Retrieval
(see previous lecture)

“Repairing” a PHF to get MPHF
Remap values > n into holes left by previous keys
(using Elias-Fano coding, not here)

For ε ≈ 0.0238, this needs 0.17n bits

n input keys

m

PHF

1 10 0

n

Remap

1 1 0 1

10/23 WS 2024/2025 Hans-Peter Lehmann: Perfect Hashing ITI, Algorithm Engineering

Construction Using Cuckoo Hashing and Retrieval
Space Consumption

Exercise: What could go wrong?
Let’s just avoid having to repair by using m = n (ε = 0) and use 2 hash functions to save space.

Solution: n
m = 1 ≫ c∗

2 = 1
2 , so there likely is no placement.

ShockHash Idea
Retry different seeds until it
is orientable

Need to try ≈ (e/2)n seeds,
space close to optimal

≈ 2n times faster than
brute-force

Dave 0
...

1-bit retrieval:

≈ n log2(e/2) bits

≈ n bits

John Dave Mary Anna

1 2 3 4 5

Lisa

seed = 3

11/23 WS 2024/2025 Hans-Peter Lehmann: Perfect Hashing ITI, Algorithm Engineering

ShockHash

John Dave

1 2 3

Lisa
1

2 3
John

Li
sa

D
ave

12/23 WS 2024/2025 Hans-Peter Lehmann: Perfect Hashing ITI, Algorithm Engineering

ShockHash
Interpretations of the cuckoo graph

1
2

3

4

5

n2n

= n!
nn · 2n−1

n

nn−2 2n−1(n − 1)! n2

Labeled trees
(Cayley’s formula)

Table rows can be
in any order

Hash values can
be in any order

Last edge can
be anything

Brute force

An
na

x h0(x) h1(x)

John

Lisa

Dave

Mary

Anna

P ≥

? ?

Lisa

Mary

D
ave

John

3 4

2 1

2 3

5 3

Almost 2n times higher
probability

13/23 WS 2024/2025 Hans-Peter Lehmann: Perfect Hashing ITI, Algorithm Engineering

ShockHash
Proof: Probability that we can orient the ShockHash graph

1

2

3

4

seedℓ seedr

John

Dave

Mary

Lisa

Partition output values

Store two seeds and retrieval data structure

14/23 WS 2024/2025 Hans-Peter Lehmann: Perfect Hashing ITI, Algorithm Engineering

Bipartite ShockHash

%

?

??

?

Build pool of
√
(e/2)n ≈ 1.165n seeds

Filter seeds before combining, accuracy 0.836n/2 (not here)

Only
(√

(e/2)n · 0.836n/2
)

2 ≈ 1.136n combinations to test
⇒ lower order term

Heads up
It is hard to show that reusing seeds
from the pool does not hurt the
success probability too much.

15/23 WS 2024/2025 Hans-Peter Lehmann: Perfect Hashing ITI, Algorithm Engineering

Bipartite ShockHash

1. (Minimal-) Perfect Hashing
Introduction
Construction Using Trial and Error
Construction Using Cuckoo Hashing and Retrieval
Construction Using Bucket Placement
Construction Using Recursive Splitting
Practical Comparison
Variants

2. Conclusion

16/23 WS 2024/2025 Hans-Peter Lehmann: Perfect Hashing ITI, Algorithm Engineering

Content

Perfect Hash Function
P = (k , h, (gi)i∈N, (s1, . . . , sk))

k is a number of buckets

h ∼ U([k]D) assigns random bucket to each key

gs ∼ U([m]D) for each seed s ∈ N
si is the seed used by keys in bucket i

evalP(x) := gsh(x)(x)

s1, . . . , sk are found using trial and error

huge design space

Anna Mary Dave Lisa John Tom

1

Bucket 1 Bucket 2 Bucket 3

Seed s1 Seed s2 Seed s3

2 3 4 5 5 7 8

Data structure

PHF output

17/23 WS 2024/2025 Hans-Peter Lehmann: Perfect Hashing ITI, Algorithm Engineering

Construction Using Bucket Placement

Problem: First buckets are easier to place into almost
empty output domain. Last buckets take a long time.

Improvement 1
Sort buckets by their actual size and place largest
buckets first.

Improvement 2
Bias bucket assignment function h such that it makes
early buckets larger.

0 0.5 1
0

1

2

3

4

Bucket (normalized)

R
el

at
iv

e
E

xp
ec

te
d

S
iz

e

Uniform (CHD)
Skewed (PTHash, FCH)
Optimized (PHOBIC)

18/23 WS 2024/2025 Hans-Peter Lehmann: Perfect Hashing ITI, Algorithm Engineering

Construction Using Bucket Placement
Design Space: Finding Seeds

1. (Minimal-) Perfect Hashing
Introduction
Construction Using Trial and Error
Construction Using Cuckoo Hashing and Retrieval
Construction Using Bucket Placement
Construction Using Recursive Splitting
Practical Comparison
Variants

2. Conclusion

19/23 WS 2024/2025 Hans-Peter Lehmann: Perfect Hashing ITI, Algorithm Engineering

Content

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Simple brute-force from earlier
(interpreted as a splitting)

Splitting

18

12 keys

6 keys 6 keys

18 keys

6 keys

20/23 WS 2024/2025 Hans-Peter Lehmann: Perfect Hashing ITI, Algorithm Engineering

Recursive Splitting
Recursively reduce input set size by searching for
hash function seeds that split the set

Tree structure implicit by predetermining node size

Storage
Variable-length coded seeds in DFS order

Each split only loses a constant number of bits

Construction Using Recursive Splitting

0.1 1

105

106

107

10.50.20.10.05

Better

Overhead over space lower bound (Bits/Key)

C
on

st
ru

ct
io

n
th

ro
ug

hp
ut

(K
ey

s/
s)

Bucket Placement Recursive Splitting
CHD RecSplit
PTHash SIMDRecSplit
PHOBIC

More Approaches
Retrieval BBHash
SicHash BPZ
ShockHash-RS FMPH
Bip. ShockH-Flat FMPHGO
Bip. ShockH-RS FiPS

100M keys, single-threaded

21/23 WS 2024/2025 Hans-Peter Lehmann: Perfect Hashing ITI, Algorithm Engineering

Practical Comparison

k -Perfect Hashing
Up to k collisions on each output value are allowed

Application: Find external memory page

Monotone Minimal Perfect Hashing
Keep natural order of input keys (Rank data structure)

Application: Databases

22/23 WS 2024/2025 Hans-Peter Lehmann: Perfect Hashing ITI, Algorithm Engineering

Perfect Hashing Variants

Definition
(M)PHF for S ⊆ U realises injective function on S, without storing S.

Perfect Hashing Through Trial and Error
Test seeds until one gives an MPHF.

Perfect Hashing Through Retrieval
Store one of multiple choices for each key.
Cuckoo Hashing + Retrieval → Perfect Hashing
→ Updatable Retrieval (“hash table without keys”)

Perfect Hashing Through Bucket Placement
Hash keys to buckets. Greedily store seed for each
bucket such that its keys do not collide with earlier keys.

Perfect Hashing Through Recursive Splitting
Recursively split set of keys until the set is small
enough for trial and error.

23/23 WS 2024/2025 Hans-Peter Lehmann: Perfect Hashing ITI, Algorithm Engineering

Conclusion

Was zeichnet eine gute Perfekte Hashfunktion aus?

Was sind upper und lower bounds an den Platzverbrauch?

Wir haben Hashtabellen ohne Schlüssel kennengelernt. Was hat es damit auf sich?

Wie kann man perfekte Hashfunktionen mit (Trial und Error | Retrieval | Bucket placement | Recursive
splitting) konstruieren?

24/23 WS 2024/2025 Hans-Peter Lehmann: Perfect Hashing ITI, Algorithm Engineering

Anhang: Mögliche Prüfungsfragen I

	(Minimal-) Perfect Hashing
	Introduction
	Construction Using Trial and Error
	Construction Using Cuckoo Hashing and Retrieval
	Construction Using Bucket Placement
	Construction Using Recursive Splitting
	Practical Comparison
	Variants

	Conclusion

