

Probability and Computing – Perfect Hashing

Hans-Peter Lehmann | WS 2024/2025

Content

1. (Minimal-) Perfect Hashing

- Introduction
- Construction Using Trial and Error
- Construction Using Cuckoo Hashing and Retrieval
- Construction Using Bucket Placement
- Construction Using Recursive Splitting
- Practical Comparison
- Variants

2. Conclusion

2/23

Perfect hashing data type (for universe $D, \varepsilon \ge 0$)

construct(S):

input: $S \subseteq D$ of size n = |S|

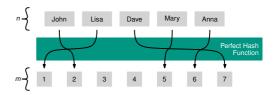
output: data structure P.

 $eval_P(x)$:

input: $x \in D$

output: a number in [m] where $m = (1 + \varepsilon)n$

requirement: $x \mapsto \mathbf{eval}_P(x)$ is injective on S



Perfect hashing data type (for universe $D, \varepsilon \ge 0$)

construct(S):

input: $S \subseteq D$ of size n = |S|

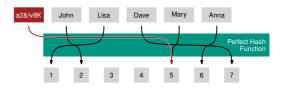
output: data structure P.

 $eval_P(x)$:

input: $x \in D$

output: a number in [m] where $m = (1 + \varepsilon)n$

requirement: $x \mapsto \mathbf{eval}_P(x)$ is injective on S



Perfect hashing data type (for universe $D, \varepsilon \ge 0$)

construct(S):

input: $S \subseteq D$ of size n = |S|

output: data structure P.

 $eval_P(x)$:

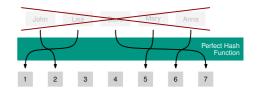
input: $x \in D$

output: a number in [m] where $m = (1 + \varepsilon)n$

requirement: $x \mapsto \mathbf{eval}_P(x)$ is injective on S

Remarks

- details about S are lost.
- note: P is "perfect hash function" but need not be random



Perfect hashing data type (for universe $D, \varepsilon \ge 0$)

construct(S):

input: $S \subseteq D$ of size n = |S|

output: data structure P.

 $eval_P(x)$:

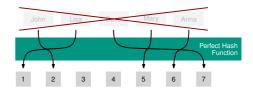
input: $x \in D$

output: a number in [m] where $m = (1 + \varepsilon)n$

requirement: $x \mapsto \mathbf{eval}_P(x)$ is injective on S

Remarks

- details about S are lost.
- note: P is "perfect hash function" but need not be random



Goals

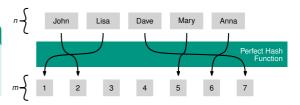
- ullet ε is small // $\varepsilon=$ 0: *Minimal* perfect hashing
- space requirement of P is $\mathcal{O}(n)$ bits
- ideally: running time of **eval**_P is $\mathcal{O}(1)$
- ideally: running time of **construct** is $\mathcal{O}(n)$

Motivation for (Minimal-) Perfect Hashing

Short IDs

Replace keys with short unique identifies

 $eval_P$ ("CreativeUserName") = 10241.



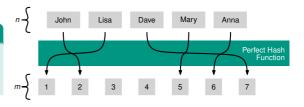
WS 2024/2025

Motivation for (Minimal-) Perfect Hashing

Short IDs

Replace keys with short unique identifies

 $eval_P$ ("CreativeUserName") = 10241.



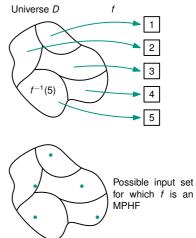
Updatable Retrieval: A hash table without keys

- assume we have MPHF P for S
- can store additional data
 f(x) ∈ [k] on x ∈ S in array of length m in position eval_P(x).
 ⇒ array takes m[log₂(k)] bits

S is static (values updateable)

- trying to access f(x) for $x \notin S$ gives undefined result
- trying to update f(x) for $x \notin S$ destroys information

Minimal Perfect Hashing: Lower Space Bound



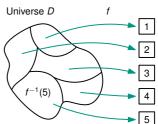
Minimal Perfect Hashing: Lower Space Bound

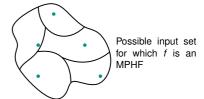
Ingredients

- $a = \binom{|D|}{n}$ possible input sets
- Each function can cover at most $b = \left(\frac{|D|}{n}\right)^n$ different inputs
- Need to differentiate between at least a/b different behaviors

$$\log_{2} \left(\frac{\binom{|D|}{n}}{\binom{|D|}{n}^{n}} \right) \overset{\text{Stirling}}{\approx} \log_{2} \left(\frac{\left(\frac{|D|e}{n} \right)^{n}}{\left(\frac{|D|}{n} \right)^{n}} \right)$$
$$= \log_{2} \left(e^{n} \right) = n \log_{2} e \approx 1.44n$$

• In contrast, storing S might need $\Omega(n \log(|D|))$ bits





Content

1. (Minimal-) Perfect Hashing

- Introduction
- Construction Using Trial and Error
- Construction Using Cuckoo Hashing and Retrieval
- Construction Using Bucket Placement
- Construction Using Recursive Splitting
- Practical Comparison
- Variants

2. Conclusion

Construction Using Trial and Error

Exercise: What if we played the lottery until we win?

Let us try random hash functions until one is *minimal perfect* (n = m) on S.

- What are the expected construction time and space consumption?
- Hint: Stirling's approximation: $n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$

WS 2024/2025

Construction Using Trial and Error

Exercise: What if we played the lottery until we win?

Let us try random hash functions until one is *minimal perfect* (n = m) on S.

- What are the expected construction time and space consumption?
- Hint: Stirling's approximation: $n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$

Solution:

- There are n^n different random hash functions.
- n! of those are minimal perfect on S.
- Success after trying $\frac{n^n}{n!} \approx e^n/\sqrt{2\pi n}$ random hash functions in expectation.
- Need to store seed of $\log_2\left(\frac{n^n}{n!}\right) \approx \log_2(e^n) = n \log_2 e \approx 1.44 n$ bits.

Construction Using Trial and Error

Exercise: What if we played the lottery until we win?

Let us try random hash functions until one is *minimal perfect* (n = m) on S.

- What are the expected construction time and space consumption?
- Hint: Stirling's approximation: $n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$

Solution:

- There are n^n different random hash functions.
- n! of those are minimal perfect on S.
- Success after trying $\frac{n^n}{n!} \approx e^n/\sqrt{2\pi n}$ random hash functions in expectation.
- Need to store seed of $\log_2\left(\frac{n^n}{n!}\right) \approx \log_2(e^n) = n\log_2 e \approx 1.44n$ bits.
- Problems?

Content

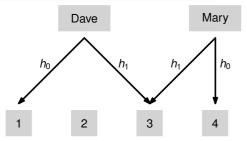
1. (Minimal-) Perfect Hashing

- Introduction
- Construction Using Trial and Error
- Construction Using Cuckoo Hashing and Retrieval
- Construction Using Bucket Placement
- Construction Using Recursive Splitting
- Practical Comparison
- Variants

2. Conclusion

Cuckoo Hashing (abstract reminder)

Let $S \subseteq D$ of size n = |S| and $h_1, \ldots, h_k \sim \mathcal{U}([m]^D)$ where $\frac{n}{m} < c_k^*$ for some threshold c_k^* . With high probability there exists $\sigma(x) \in [k]$ for each $x \in S$ such that $x \mapsto h_{\sigma(x)}(x)$ is injective on S.



5

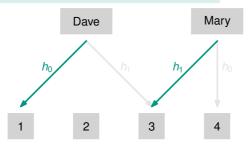
Cuckoo Hashing (abstract reminder)

Let $S \subseteq D$ of size n = |S| and $h_1, \ldots, h_k \sim \mathcal{U}([m]^D)$ where $\frac{n}{m} < c_k^*$ for some threshold c_k^* . With high probability there exists $\sigma(x) \in [k]$ for each $x \in S$ such that $x \mapsto h_{\sigma(x)}(x)$ is injective on S.

Perfect Hash Function from Retrieval

- Store $\sigma: S \to [k]$ in retrieval data structure R
- (non-minimal) PHF $P = (R, h_1, \dots, h_k)$ with

$$eval_P(x) := h_{eval_R(x)}(x).$$



5

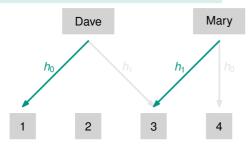
Cuckoo Hashing (abstract reminder)

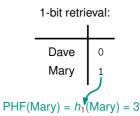
Let $S \subseteq D$ of size n = |S| and $h_1, \ldots, h_k \sim \mathcal{U}([m]^D)$ where $\frac{n}{m} < c_k^*$ for some threshold c_k^* . With high probability there exists $\sigma(x) \in [k]$ for each $x \in S$ such that $x \mapsto h_{\sigma(x)}(x)$ is injective on S.

Perfect Hash Function from Retrieval

- Store $\sigma: S \to [k]$ in retrieval data structure R
- (non-minimal) PHF $P = (R, h_1, \dots, h_k)$ with

$$eval_P(x) := h_{eval_R(x)}(x).$$





Example with k=4

Space Consumption

- need $\frac{n}{m} < c_4^* \approx 0.9768 \rightsquigarrow \varepsilon \approx 0.0238$
- space needed for P is the space for R:
 ≈ n [log₂(k)] = 2n bits using Bumped Ribbon Retrieval (see previous lecture)

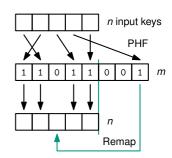
Space Consumption

Example with k = 4

- need $\frac{n}{m} < c_4^* \approx 0.9768 \rightsquigarrow \varepsilon \approx 0.0238$
- space needed for P is the space for R: $\approx n\lceil \log_2(k) \rceil = 2n$ bits using Bumped Ribbon Retrieval (see previous lecture)

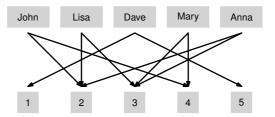
"Repairing" a PHF to get MPHF

- Remap values > n into holes left by previous keys (using Elias-Fano coding, not here)
- For $\varepsilon \approx 0.0238$, this needs 0.17n bits



Exercise: What could go wrong?

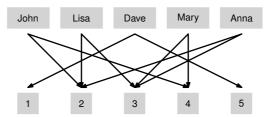
Let's just avoid having to repair by using m = n ($\varepsilon = 0$) and use 2 hash functions to save space.



Exercise: What could go wrong?

Let's just avoid having to repair by using m = n ($\varepsilon = 0$) and use 2 hash functions to save space.

Solution: $\frac{n}{m} = 1 \gg c_2^* = \frac{1}{2}$, so there likely is no placement.



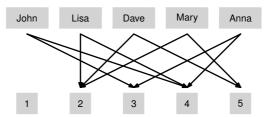
Exercise: What could go wrong?

Let's just avoid having to repair by using m = n ($\varepsilon = 0$) and use 2 hash functions to save space.

Solution: $\frac{n}{m} = 1 \gg c_2^* = \frac{1}{2}$, so there likely is no placement.

ShockHash Idea

 Retry different seeds until it is orientable



seed = 2

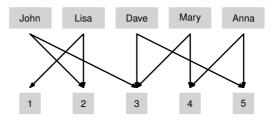
Exercise: What could go wrong?

Let's just avoid having to repair by using m = n ($\varepsilon = 0$) and use 2 hash functions to save space.

Solution: $\frac{n}{m} = 1 \gg c_2^* = \frac{1}{2}$, so there likely is no placement.

ShockHash Idea

 Retry different seeds until it is orientable



seed = 3

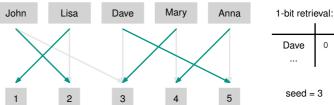
Exercise: What could go wrong?

Let's just avoid having to repair by using m = n ($\varepsilon = 0$) and use 2 hash functions to save space.

Solution: $\frac{n}{m} = 1 \gg c_2^* = \frac{1}{2}$, so there likely is no placement.

ShockHash Idea

Retry different seeds until it is orientable



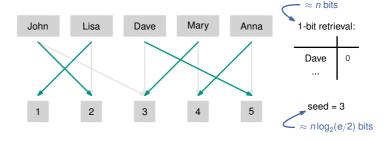
Exercise: What could go wrong?

Let's just avoid having to repair by using m = n ($\varepsilon = 0$) and use 2 hash functions to save space.

Solution: $\frac{n}{m} = 1 \gg c_2^* = \frac{1}{2}$, so there likely is no placement.

ShockHash Idea

- Retry different seeds until it is orientable
- Need to try $\approx (e/2)^n$ seeds, space close to optimal



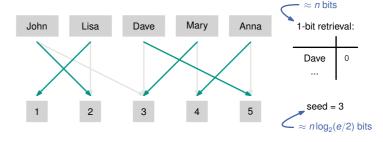
Exercise: What could go wrong?

Let's just avoid having to repair by using m = n ($\varepsilon = 0$) and use 2 hash functions to save space.

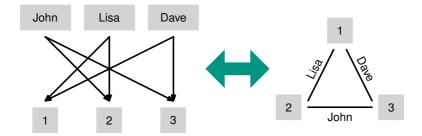
Solution: $\frac{n}{m} = 1 \gg c_2^* = \frac{1}{2}$, so there likely is no placement.

ShockHash Idea

- Retry different seeds until it is orientable
- Need to try $\approx (e/2)^n$ seeds, space close to optimal
- $lpha \approx 2^n$ times faster than brute-force



Interpretations of the cuckoo graph

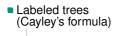


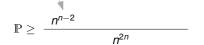
$$\mathbb{P} \geq \frac{1}{n^{2n}}$$

Χ	$h_0(x)$	$h_1(x)$
John	?	?
Lisa	?	?
Dave	?	?
Mary	?	?
Anna	?	?

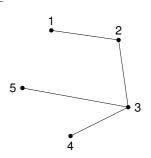
$$\mathbb{P} \geq \frac{1}{n^{2n}}$$

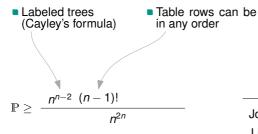
Χ	$h_0(x)$	$h_1(x)$
John	?	?
Lisa	?	?
Dave	?	?
Mary	?	?
Anna	?	?

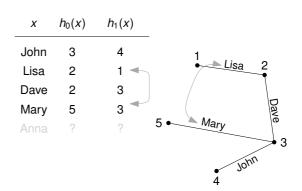


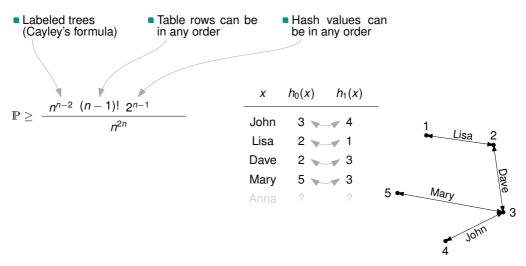


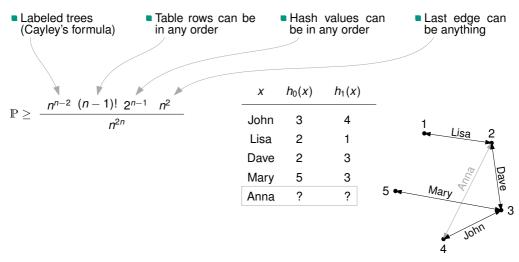
Χ	$h_0(x)$	$h_1(x)$
John	3	4
Lisa	2	1
Dave	2	3
Mary	5	3
Anna	?	?



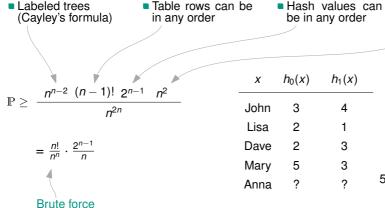




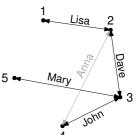




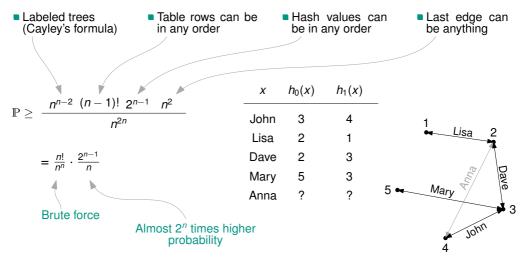
Proof: Probability that we can orient the ShockHash graph

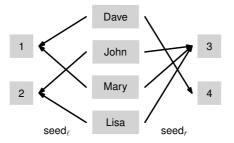


X	$h_0(x)$	$h_1(x)$	
John	3	4	
Lisa	2	1	
Dave	2	3	
Mary	5	3	
Anna	?	?	

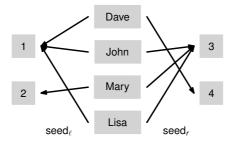


Last edge can be anything

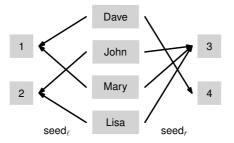




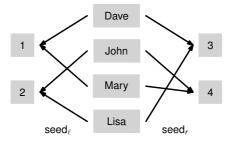
- Partition output values
- Store two seeds and retrieval data structure



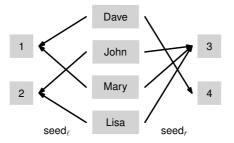
- Partition output values
- Store two seeds and retrieval data structure



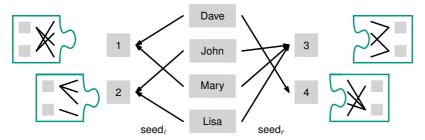
- Partition output values
- Store two seeds and retrieval data structure



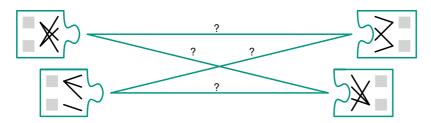
- Partition output values
- Store two seeds and retrieval data structure



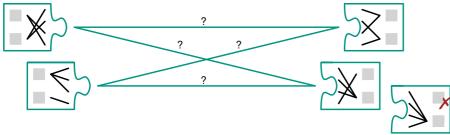
- Partition output values
- Store two seeds and retrieval data structure



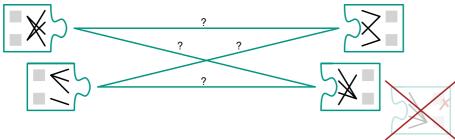
■ Build pool of $\sqrt{(e/2)^n} \approx 1.165^n$ seeds



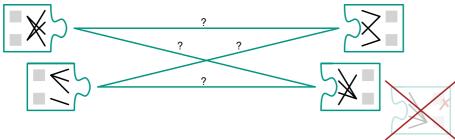
■ Build pool of $\sqrt{(e/2)^n} \approx 1.165^n$ seeds



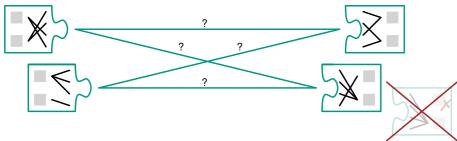
■ Build pool of $\sqrt{(e/2)^n} \approx 1.165^n$ seeds



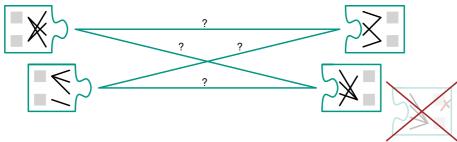
- Build pool of $\sqrt{(e/2)^n} \approx 1.165^n$ seeds
- Filter seeds before combining, accuracy 0.836^{n/2} (not here)



- Build pool of $\sqrt{(e/2)^n} \approx 1.165^n$ seeds
- Filter seeds before combining, accuracy 0.836^{n/2} (not here)
- Only $\sqrt{(e/2)^n} \cdot 0.836^{n/2}$ combinations to test



- Build pool of $\sqrt{(e/2)^n} \approx 1.165^n$ seeds
- Filter seeds before combining, accuracy 0.836^{n/2} (not here)
- Only $\left(\sqrt{(e/2)^n}\cdot 0.836^{n/2}\right)^2\approx 1.136^n$ combinations to test \Rightarrow lower order term



- Build pool of $\sqrt{(e/2)^n} \approx 1.165^n$ seeds
- Filter seeds before combining, accuracy $0.836^{n/2}$ (not here)
- lacktriangle Only $\left(\sqrt{(e/2)^n}\cdot 0.836^{n/2}
 ight)^2pprox 1.136^n$ combinations to test ⇒ lower order term

Heads up

It is hard to show that reusing seeds from the pool does not hurt the success probability too much.

Content

1. (Minimal-) Perfect Hashing

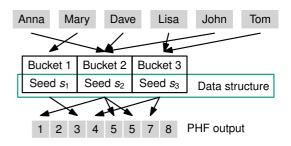
- Introduction
- Construction Using Trial and Error
- Construction Using Cuckoo Hashing and Retrieval
- Construction Using Bucket Placement
- Construction Using Recursive Splitting
- Practical Comparison
- Variants

2. Conclusion

Construction Using Bucket Placement

Perfect Hash Function $P = (k, h, (g_i)_{i \in \mathbb{N}}, (s_1, \dots, s_k))$

- k is a number of buckets
- $h \sim \mathcal{U}([k]^D)$ assigns random bucket to each key
- $lacksquare g_s \sim \mathcal{U}([m]^D)$ for each $seed \ s \in \mathbb{N}$
- \bullet s_i is the seed used by keys in bucket i
- lacksquare eval $_P(x):=g_{s_{h(x)}}(x)$
- s_1, \ldots, s_k are found using trial and error
- huge design space



Construction Using Bucket Placement

Design Space: Finding Seeds

Problem: First buckets are easier to place into almost empty output domain. Last buckets take a long time.

Improvement 1

Sort buckets by their actual size and place largest buckets first.

Construction Using Bucket Placement

Design Space: Finding Seeds

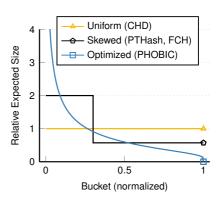
Problem: First buckets are easier to place into almost empty output domain. Last buckets take a long time.

Improvement 1

Sort buckets by their actual size and place largest buckets first.

Improvement 2

Bias bucket assignment function *h* such that it makes early buckets larger.



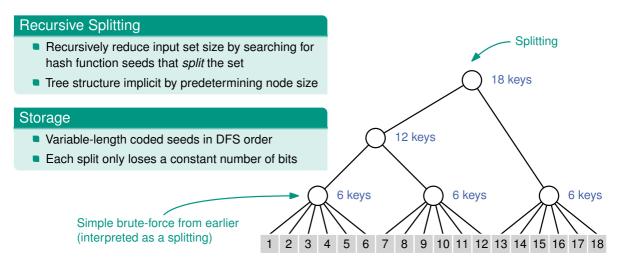
Content

1. (Minimal-) Perfect Hashing

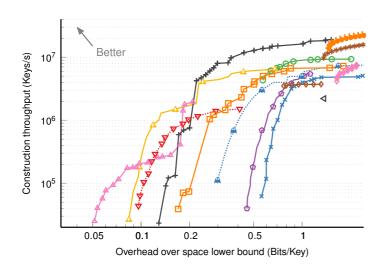
- Introduction
- Construction Using Trial and Error
- Construction Using Cuckoo Hashing and Retrieval
- Construction Using Bucket Placement
- Construction Using Recursive Splitting
- Practical Comparison
- Variants

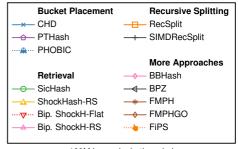
2. Conclusion

Construction Using Recursive Splitting



Practical Comparison





100M keys, single-threaded

Perfect Hashing Variants

k-Perfect Hashing

- Up to k collisions on each output value are allowed
- Application: Find external memory page

Monotone Minimal Perfect Hashing

- Keep natural order of input keys (Rank data structure)
- Application: Databases

Conclusion

Definition

(M)PHF for $S \subseteq U$ realises injective function on S, without storing S.

Perfect Hashing Through Trial and Error

Test seeds until one gives an MPHF.

Perfect Hashing Through Retrieval

Store one of multiple choices for each key. Cuckoo Hashing + Retrieval \rightarrow Perfect Hashing \rightarrow Updatable Retrieval ("hash table without keys")

Perfect Hashing Through Bucket Placement

Hash keys to buckets. Greedily store seed for each bucket such that its keys do not collide with earlier keys.

Perfect Hashing Through Recursive Splitting

Recursively split set of keys until the set is small enough for trial and error.

Anhang: Mögliche Prüfungsfragen I

- Was zeichnet eine gute Perfekte Hashfunktion aus?
- Was sind upper und lower bounds an den Platzverbrauch?
- Wir haben Hashtabellen ohne Schlüssel kennengelernt. Was hat es damit auf sich?
- Wie kann man perfekte Hashfunktionen mit (Trial und Error | Retrieval | Bucket placement | Recursive splitting) konstruieren?