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Perfect hashing data type (for universe D, ε ≥ 0)

construct(S):
input: S ⊆ D of size n = |S|

output: data structure P.
evalP(x):

input: x ∈ D
output: a number in [m] where m = (1 + ε)n

requirement: x 7→ evalP(x) is injective on S

Remarks
details about S are lost.

note: P is “perfect hash function” but need not be
random
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Goals
ε is small // ε = 0: Minimal perfect hashing

space requirement of P is O(n) bits

ideally: running time of evalP is O(1)

ideally: running time of construct is O(n)
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Short IDs
Replace keys with short unique identifies

evalP(“CreativeUserName”) = 10241. 1 2 3 4 5

John Dave Mary Anna

6 7

n

m

Perfect Hash
Function

Lisa

Updatable Retrieval: A hash table without keys

assume we have MPHF P for S

can store additional data
f (x) ∈ [k ] on x ∈ S in array of
length m in position evalP(x).
↪→ array takes m⌈log2(k)⌉ bits

! Weaker than a normal hash table:

S is static (values updateable)

trying to access f (x) for x /∈ S gives undefined result

trying to update f (x) for x /∈ S destroys information
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Ingredients

a =
(|D|

n

)
possible input sets

Each function can cover at most b =
(

|D|
n

)n
different inputs

Need to differentiate between at least a/b different behaviors

log2

 (|D|
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)(
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)n

 Stirling
≈ log2
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n

)n
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
= log2 (e

n) = n log2 e ≈ 1.44n

In contrast, storing S might need Ω(n log(|D|)) bits
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Universe D f

f−1(5)

Possible input set
for which f is an
MPHF
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Exercise: What if we played the lottery until we win?
Let us try random hash functions until one is minimal perfect (n = m) on S.

What are the expected construction time and space consumption?

Hint: Stirling’s approximation: n! ≈
√

2πn
(

n
e

)n

Solution:

There are nn different random hash functions.

n! of those are minimal perfect on S.

Success after trying nn

n! ≈ en/
√

2πn random hash functions in expectation.

Need to store seed of log2

(
nn

n!

)
≈ log2(e

n) = n log2 e ≈ 1.44n bits.

Problems?
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Cuckoo Hashing (abstract reminder)
Let S ⊆ D of size n = |S| and
h1, . . . , hk ∼ U([m]D) where n

m < c∗
k for some

threshold c∗
k . With high probability there exists

σ(x) ∈ [k ] for each x ∈ S such that x 7→ hσ(x)(x)
is injective on S.

Perfect Hash Function from Retrieval
Store σ : S → [k ] in retrieval data structure R

(non-minimal) PHF P = (R, h1, . . . , hk) with

evalP(x) := hevalR(x)(x).

h0

Dave Mary

1 2 3 4 5

h1 h1 h0
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Example with k = 4
need n

m < c∗
4 ≈ 0.9768⇝ ε ≈ 0.0238

space needed for P is the space for R:
≈ n⌈log2(k)⌉ = 2n bits using Bumped Ribbon Retrieval
(see previous lecture)

“Repairing” a PHF to get MPHF
Remap values > n into holes left by previous keys
(using Elias-Fano coding, not here)

For ε ≈ 0.0238, this needs 0.17n bits

10/23 WS 2024/2025 Hans-Peter Lehmann: Perfect Hashing ITI, Algorithm Engineering

Construction Using Cuckoo Hashing and Retrieval
Space Consumption



Example with k = 4
need n

m < c∗
4 ≈ 0.9768⇝ ε ≈ 0.0238

space needed for P is the space for R:
≈ n⌈log2(k)⌉ = 2n bits using Bumped Ribbon Retrieval
(see previous lecture)

“Repairing” a PHF to get MPHF
Remap values > n into holes left by previous keys
(using Elias-Fano coding, not here)

For ε ≈ 0.0238, this needs 0.17n bits

n input keys

m

PHF

1 10 0

n

Remap

1 1 0 1

10/23 WS 2024/2025 Hans-Peter Lehmann: Perfect Hashing ITI, Algorithm Engineering

Construction Using Cuckoo Hashing and Retrieval
Space Consumption



Exercise: What could go wrong?
Let’s just avoid having to repair by using m = n (ε = 0) and use 2 hash functions to save space.

Solution: n
m = 1 ≫ c∗

2 = 1
2 , so there likely is no placement.

ShockHash Idea
Retry different seeds until it
is orientable

Need to try ≈ (e/2)n seeds,
space close to optimal

≈ 2n times faster than
brute-force

John Dave Mary Anna

1 2 3 4 5

Lisa
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seedℓ seedr

John
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Lisa

Build pool of
√
(e/2)n ≈ 1.165n seeds

Filter seeds before combining, accuracy 0.836n/2 (not here)

Only

(

√
(e/2)n · 0.836n/2

)
2 ≈ 1.136n

combinations to test

⇒ lower order term

Heads up
It is hard to show that reusing seeds
from the pool does not hurt the
success probability too much.
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It is hard to show that reusing seeds
from the pool does not hurt the
success probability too much.
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Perfect Hash Function
P = (k , h, (gi)i∈N, (s1, . . . , sk))

k is a number of buckets

h ∼ U([k ]D) assigns random bucket to each key

gs ∼ U([m]D) for each seed s ∈ N
si is the seed used by keys in bucket i

evalP(x) := gsh(x)(x)

s1, . . . , sk are found using trial and error

huge design space
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Data structure

PHF output
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Construction Using Bucket Placement



Problem: First buckets are easier to place into almost
empty output domain. Last buckets take a long time.

Improvement 1
Sort buckets by their actual size and place largest
buckets first.

Improvement 2
Bias bucket assignment function h such that it makes
early buckets larger.
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Simple brute-force from earlier
(interpreted as a splitting)

Splitting
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Recursive Splitting
Recursively reduce input set size by searching for
hash function seeds that split the set

Tree structure implicit by predetermining node size

Storage
Variable-length coded seeds in DFS order

Each split only loses a constant number of bits

Construction Using Recursive Splitting
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Bucket Placement Recursive Splitting
CHD RecSplit
PTHash SIMDRecSplit
PHOBIC

More Approaches
Retrieval BBHash
SicHash BPZ
ShockHash-RS FMPH
Bip. ShockH-Flat FMPHGO
Bip. ShockH-RS FiPS

100M keys, single-threaded
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Practical Comparison



k -Perfect Hashing
Up to k collisions on each output value are allowed

Application: Find external memory page

Monotone Minimal Perfect Hashing
Keep natural order of input keys (Rank data structure)

Application: Databases
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Perfect Hashing Variants



Definition
(M)PHF for S ⊆ U realises injective function on S, without storing S.

Perfect Hashing Through Trial and Error
Test seeds until one gives an MPHF.

Perfect Hashing Through Retrieval
Store one of multiple choices for each key.
Cuckoo Hashing + Retrieval → Perfect Hashing
→ Updatable Retrieval (“hash table without keys”)

Perfect Hashing Through Bucket Placement
Hash keys to buckets. Greedily store seed for each
bucket such that its keys do not collide with earlier keys.

Perfect Hashing Through Recursive Splitting
Recursively split set of keys until the set is small
enough for trial and error.
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Was zeichnet eine gute Perfekte Hashfunktion aus?

Was sind upper und lower bounds an den Platzverbrauch?

Wir haben Hashtabellen ohne Schlüssel kennengelernt. Was hat es damit auf sich?

Wie kann man perfekte Hashfunktionen mit (Trial und Error | Retrieval | Bucket placement | Recursive
splitting) konstruieren?
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Anhang: Mögliche Prüfungsfragen I
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