

Probability and Computing – The Power of Randomness

Stefan Walzer | WS 2024/2025

KIT - The Research University in the Helmholtz Association

www.kit.edu

Semester Outline

ITI, Algorithm Engineering

Content

1. Organisation

2. The Power of Randomness

- Improve (Worst-Case) Running Time
- Model Performance in the Real-World Average Case Analysis
- Achieve Load Balancing with Pseudorandomness
- Approximate in Sublinear Time using Random Sampling

3. Semester Outline

Organisation

The Power of Randomness

3/24 WS 2024/2025 Stefan Walzer: Introduction - The Power of Randomness

The Power of Randomness

Content

1. Organisation

- Improve (Worst-Case) Running Time
- Model Performance in the Real-World Average Case Analysis
- Achieve Load Balancing with Pseudorandomness
- Approximate in Sublinear Time using Random Sampling

Organisation

....

Organisation

Lecturer (this year + last year)

Dr. Stefan Walzer

likes randomised data structures

- Iectures every Thursday, 11:30
- exercises every second Tuesday, 9:45
- Website: https://ae.iti.kit.edu/4782.php
- Discord Server
 - discuss exercises
 - ask questions
 - find study groups
 - report typos / mistakes

https://discord.gg/ZQXUrQ7EPW

Organisation

The Power of Randomness

Lecturer (last year)

Dr. Max Katzmann

likes random geometric graphs

- oral exam
- literature:
 - Probability and Computing (Mitzenmacher + Upfal)
 - Randomised Algorithms (Motwani + Raghavan)
 - Modern Discrete Probability (Roch)

Exercises

Organisation

- one sheet published with each lecture
- one exercises session every two weeks ⇒ two sheets per exercises session
- solutions provided after the exercise session
- optional, no hand-in, no grading. But:
- content of sheets relevant for exam
 - you may be asked to reproduce/rediscover solutions in the exam

Recommendation

- You should, prior to the exercise session
 - think about the exerices or
 - discuss them in your study group.
- You should do at least one of the following
 - solve the exercises
 - attend the exercise sessions and follow along
 - work through the provided solutions
- I hope that some of you will
 - present your own solutions during sessions
 - share/discuss ideas on discord

The Power of Randomness

Content

1. Organisation

2. The Power of Randomness

- Improve (Worst-Case) Running Time
- Model Performance in the Real-World Average Case Analysis
- Achieve Load Balancing with Pseudorandomness
- Approximate in Sublinear Time using Random Sampling

3. Semester Outline

Organisation 000 The Power of Randomness

Semester Outline

7/24 WS 2024/2025 Stefan Walzer: Introduction – The Power of Randomness

Content

1. Organisation

2. The Power of Randomness

Improve (Worst-Case) Running Time

Model Performance in the Real-World – Average Case Analysis

The Power of Bandomness

- Achieve Load Balancing with Pseudorandomness
- Approximate in Sublinear Time using Random Sampling

3. Semester Outline

Organisation 000 Karlsruhe Institute of Technology

ITI, Algorithm Engineering

it depends on what you mean by "worst case"...

Worst Input & Worst Luck

Any random decision is the worst decision.

 \hookrightarrow randomness is useless.

Organisation 000 The Power of Randomness

it depends on what you mean by "worst case"...

Worst Input & Worst Luck

Any random decision is the worst decision.

 $\hookrightarrow \text{randomness is useless.}$

Finding Hay According to This View

Organisation 000 The Power of Randomness

it depends on what you mean by "worst case"...

Worst Input & Worst Luck

Any random decision is the worst decision.

 \hookrightarrow randomness is useless.

Finding Hay According to This View

Worst Input & Average Luck

Randomness can help. See next slide.

Organisation 000 The Power of Randomness

it depends on what you mean by "worst case"...

Worst Input & Worst Luck

Any random decision is the worst decision. \hookrightarrow randomness is useless.

Finding Hay According to This View

Worst Input & Average Luck

Randomness can help. See next slide.

this is what we mean in the following

In other words:

- 1 We fix a randomised algorithm.
- 2 Adversary fixes an input.
- 3 Random choices made independently.

Organisation 000 The Power of Randomness

Example 1: Finding an Empty Slot

Task

Input: array A[1..n] where n/2 slots are empty **Output:** $i \in [n]$ with A[i] = EMPTY

Organisation 000 The Power of Randomness

9/24 WS 2024/2025 Stefan Walzer: Introduction – The Power of Randomness

The Power of Bandomness

ITI, Algorithm Engineering

Semester Outline

Example 1: Finding an Empty Slot

Task

Input: array A[1..n] where n/2 slots are empty **Output:** $i \in [n]$ with A[i] = EMPTY

Observation

For any *deterministic* algorithm *D* there exists an input *A* such that *D* inspects $\ge n/2$ entries of *A*.

Organisation 000 $\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ \hline \mathbf{X} & \mathbf{Z} & & \mathbf{y} & & \mathbf{w} \end{bmatrix}$

Input: array A[1..n] where n/2 slots are empty

Output: $i \in [n]$ with A[i] = EMPTY

Observation

For any *deterministic* algorithm *D* there exists an input *A* such that *D* inspects $\ge n/2$ entries of *A*.

Observation

The randomised algorithm R that inspects slots of A at random finds an empty slot after X attempts where

$$\mathbb{E}[X] \stackrel{\mathsf{TSF}}{=} \sum_{i \in \mathbb{N}_0} \Pr[X > i] = \sum_{i \in \mathbb{N}_0} 2^{-i} = 2$$

Organisation 000 The Power of Randomness

Example 1: Finding an Empty Slot

Task

 $\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ \hline \mathbf{X} & \mathbf{Z} & & & \mathbf{y} & & \mathbf{w} \end{bmatrix}$

9/24 WS 2024/2025 Stefan Walzer: Introduction – The Power of Randomness

ITI, Algorithm Engineering

Semester Outline

Example 1: Finding an Empty Slot

Task

Input: array A[1..n] where n/2 slots are empty **Output:** $i \in [n]$ with A[i] = EMPTY

Observation

For any *deterministic* algorithm *D* there exists an input *A* such that *D* inspects $\ge n/2$ entries of *A*.

Observation

The randomised algorithm R that inspects slots of A at random finds an empty slot after X attempts where

$$\mathbb{E}[X] \stackrel{\mathsf{TSF}}{=} \sum_{i \in \mathbb{N}_0} \Pr[X > i] = \sum_{i \in \mathbb{N}_0} 2^{-i} = 2$$

Organisation 000 The Power of Randomness

Note

- the analysis of R holds for any input
- "E" relates to choices of *R* (not to input)
- input is fixed before random choices

Exercise: Verifying Polynomial Identities

Let *f* and *g* be two polynomial functions over a field \mathbb{F} . For instance:

$$f(x) = (x + 1)(x - 2)(x + 3)(x - 4)(x + 5)(x - 6)$$
 and $g(x) = x^{6} - 7x^{3} + 25$.

Check whether $f \equiv g$ with a randomised algorithm!¹

¹The algorithm may occasionally accept incorrect identities. Precise statements on the exercise sheet.

Organisation 000 The Power of Randomness

Exercise: Verifying Polynomial Identities

Let *f* and *g* be two polynomial functions over a field \mathbb{F} . For instance:

$$f(x) = (x + 1)(x - 2)(x + 3)(x - 4)(x + 5)(x - 6)$$
 and $g(x) = x^{6} - 7x^{3} + 25$.

Check whether $f \equiv g$ with a randomised algorithm!¹

Exercise: Verifying Matrix Identities (Freivalds' Algorithm)

Let $A, B, C \in \mathbb{F}^{n \times n}$ be matrices over the field \mathbb{F} . Check whether $A \cdot B = C$ with a randomised algorithm!¹

¹The algorithm may occasionally accept incorrect identities. Precise statements on the exercise sheet.

Organisation 000 The Power of Randomness

Example 4: Evaluating Games

Three Types of Game States

value(S) = W // active player has winning strategy value(S) = L // inactive player has winning strategy value(S) = D // draw in optimal play

Tic Tac Toe

Organisation 000 The Power of Randomness

Semester Outline

Example 4: Evaluating Games

Three Types of Game States

value(S) = W // active player has winning strategyvalue(S) = L // inactive player has winning strategy value(S) = D // draw in optimal play

Task: Evaluating a Game

Input: (Implicit representation of) a game. Output: value of start state.

Tic Tac Toe

Organisation

The Power of Bandomness

Three Types of Game States

value(S) = W // active player has winning strategy value(S) = L // inactive player has winning strategy value(S) = D // draw in optimal play

Task: Evaluating a Game

Input: (Implicit representation of) a game. **Output:** value of start state.

Game of Sprouts (see wikipedia)

Organisation

The Power of Randomness

Three Types of Game States

value(S) = W // active player has winning strategy value(S) = L // inactive player has winning strategy value(S) = D // draw in optimal play

Task: Evaluating a Game

Input: (Implicit representation of) a game. **Output:** value of start state.

Karlsruhe Institute of Technology

Game of Sprouts (see wikipedia)

Organisation 000 The Power of Randomness

Three Types of Game States

value(S) = 1 = W // active player has winning strategy value(S) = 0 = L // inactive player has winning strategy value(S) = D // draw in optimal play

Task: Evaluating a Game

Input: (Implicit representation of) a game. **Output:** value of start state.

Observation

A state *S* is winning if and only if some successor state is losing.

$$\mathsf{value}(S) = \bigwedge_{S' ext{ successor of } S} \mathsf{value}(S').$$

The Power of Bandomness

Organisation 000 Game of Sprouts (see wikipedia)

Three Types of Game States

value(S) = 1 = W // active player has winning strategy value(S) = 0 = L // inactive player has winning strategy value(S) = D // draw in optimal play

Task: Evaluating a Game

Input: (Implicit representation of) a game. **Output:** value of start state.

Observation

A state S is winning if and only if some successor state is losing.

$$value(S) = \overline{\bigwedge} value(S').$$

S' successor of S

The Power of Bandomness

Organisation 000 Karlsruhe Institute of Technolog

Game of Sprouts (see wikipedia)

Observation

May not have to inspect entire tree to derive value at root.

Problem

Input: $I \in \{0, 1\}^n$ for $n = 2^d$.Output:Value of complete binary $\overline{\wedge}$ -tree with leaf values from *I*.Cost Model:Number of inspected entries of *I*.

Organisation 000 The Power of Randomness

Problem

Input: $I \in \{0, 1\}^n$ for $n = 2^d$.Output:Value of complete binary $\overline{\wedge}$ -tree with leaf values from *I*.Cost Model:Number of inspected entries of *I*.

Exercise

For any deterministic algorithm *A* there exists an input $I_A \in \{0, 1\}^n$ such that *A* inspects all *n* entries of *I*.

Organisation 000 The Power of Randomness

Problem

Input: $I \in \{0, 1\}^n$ for $n = 2^d$.Output:Value of complete binary $\overline{\wedge}$ -tree with leaf values from *I*.Cost Model:Number of inspected entries of *I*.

Exercise

For any deterministic algorithm *A* there exists an input $I_A \in \{0, 1\}^n$ such that *A* inspects all *n* entries of *I*.

Our Goal

Randomised algorithm that, for any input, inspects only X entries with

$$\mathbb{E}[X] = \mathcal{O}(n^{0.793}).$$

Semester Outline

Organisation 000 The Power of Randomness

Example 4 Simplified: Evaluating A-Trees


```
Algorithm randEval(T):

if T = \text{Leaf}(b) then

\lfloor \text{ return } b

(T_0, T_1) \leftarrow T

// coin flip:

sample r \sim \mathcal{U}(\{0, 1\})

b_r \leftarrow \text{ randEval}(T_r)

if b_r = 0 then

\lfloor \text{ return } 1

\text{ return } 1 - \text{ randEval}(T_{1-r})
```

Organisation 000 The Power of Randomness

Lemma

Assume randEval is excecuted for a tree T of depth $d \ge 2$. Let X be the number of resulting calls with subtrees of depth d - 2. Then $\mathbb{E}[X] \le 3$.

```
Algorithm randEval(T):
```

```
if T = \text{Leaf}(b) then

\lfloor \text{ return } b

(T_0, T_1) \leftarrow T

// \text{ coin flip:}

sample r \sim \mathcal{U}(\{0, 1\})

b_r \leftarrow \text{ randEval}(T_r)

if b_r = 0 then

\lfloor \text{ return } 1

\text{ return } 1 - \text{ randEval}(T_{1-r})
```

Organisation 000 The Power of Randomness

Lemma

Assume randEval is excecuted for a tree T of depth $d \ge 2$. Let X be the number of resulting calls with subtrees of depth d - 2. Then $\mathbb{E}[X] \le 3$.

Proof.

Let
$$T = (T_0, T_1) = ((T_{00}, T_{01}), (T_{10}, T_{11})).$$

- **Case 1:** value(T) = 1.
 - Then value(T_0) = 0 or value(T_1) = 0.
 - Assume (wlog) value(T_0) = 0.
 - With probability 1/2 we select r = 0 and T_1 need not be evaluated.

$$\Rightarrow \mathbb{E}[X] \leq \frac{1}{2} \cdot 2 + \frac{1}{2} \cdot 4 = 3.$$

Organisation 000 The Power of Randomness

Lemma

Assume randEval is excecuted for a tree *T* of depth $d \ge 2$. Let *X* be the number of resulting calls with subtrees of depth d - 2. Then $\mathbb{E}[X] \le 3$.

Proof.

Let
$$T = (T_0, T_1) = ((T_{00}, T_{01}), (T_{10}, T_{11})).$$

Case 1: value(T) = 1.

- Then value(T_0) = 0 or value(T_1) = 0.
- Assume (wlog) value(T_0) = 0.
- With probability 1/2 we select r = 0 and T_1 need not be evaluated.

$$\Rightarrow \mathbb{E}[X] \leq \frac{1}{2} \cdot 2 + \frac{1}{2} \cdot 4 = 3$$

 T_0

Organisation 000 The Power of Randomness

ITI, Algorithm Engineering

 T_1

Lemma

Assume randEval is excecuted for a tree T of depth $d \ge 2$. Let X be the number of resulting calls with subtrees of depth d - 2. Then $\mathbb{E}[X] \le 3$.

Proof.

Let
$$T = (T_0, T_1) = ((T_{00}, T_{01}), (T_{10}, T_{11})).$$

Case 2: value(T) = 0.

The Power of Bandomness

- Then value(T_0) = value(T_1) = 1.
- Like before: T₀₁ and T₁₁ only evaluated with probability 1/2 each.

 $\Rightarrow \mathbb{E}[X] \leq 2 + \frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 1 = 3.$

Organisation

13/24

WS 2024/2025 Stefan Walzer: Introduction – The Power of Randomness

ITI, Algorithm Engineering

Lemma

Assume randEval is excecuted for a tree *T* of depth $d \ge 2$. Let *X* be the number of resulting calls with subtrees of depth d - 2. Then $\mathbb{E}[X] \le 3$.

Proof.

Let
$$T = (T_0, T_1) = ((T_{00}, T_{01}), (T_{10}, T_{11})).$$

- **Case 2:** value(T) = 0.
 - Then value(T_0) = value(T_1) = 1.
 - Like before: T_{01} and T_{11} only evaluated with probability 1/2 each.

$$\Rightarrow \mathbb{E}[X] \leq 2 + \frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 1 = 3.$$

Organisation

The Power of Randomness

Example 4 Simplified: Evaluating A-Trees

Karlsruhe Institute of

Lemma

Assume randEval is excecuted for a tree T of depth $d \ge 2$. Let X be the number of resulting calls with subtrees of depth d-2. Then $\mathbb{E}[X] \leq 3$.

Corollary

Let *T* be a tree of depth $d \in \{0, 2, 4, ...\}$, i.e. $n = 2^{d}$. The number L of leafs visited by randEval(T) satisfies

$$\underbrace{\mathbb{E}[L] \leq 3^{d/2}}_{\text{proof on blackboard}} = 4^{\log_4(3^{d/2})} = 4^{d/2 \log_4(3)} = 2^{d \log_4(3)} = n^{\log_4(3)}.$$

Organisation

return b

 $b_r \leftarrow \text{randEval}(T_r)$ if $b_r = 0$ then return 1

return 1 – randEval (T_{1-r})

 $(T_0, T_1) \leftarrow T$

// coin flip:

The Power of Bandomness

14/24 WS 2024/2025 Stefan Walzer: Introduction – The Power of Randomness

ITI, Algorithm Engineering

Content

1. Organisation

2. The Power of Randomness

- Improve (Worst-Case) Running Time
- Model Performance in the Real-World Average Case Analysis
- Achieve Load Balancing with Pseudorandomness
- Approximate in Sublinear Time using Random Sampling

3. Semester Outline

Organisation 000 The Power of Randomness

Theory-Practice Gap

SAT is NP-complete $\stackrel{???}{\longleftrightarrow}$ modern SAT-solvers handle relevant instances with millions of clauses

Similar observations for NP-hard graph problems on relevant graph classes, e.g. social networks.

Organisation 000 The Power of Randomness

Theory-Practice Gap

SAT is NP-complete $\stackrel{???}{\longleftrightarrow}$ modern SAT-solvers handle relevant instances with millions of clauses

Similar observations for NP-hard graph problems on relevant graph classes, e.g. social networks.

Organisation 000 The Power of Randomness

Theory-Practice Gap

SAT is NP-complete $\stackrel{???}{\longleftrightarrow}$ modern SAT-solvers handle relevant instances with millions of clauses

Similar observations for NP-hard graph problems on relevant graph classes, e.g. social networks.

Bridging the Gap

- **1** Define a distribution \mathcal{I} on inputs.
 - $\blacksquare \ \mathcal{I}$ should be realistic, i.e. model real world instances
 - \mathcal{I} should have simple mathematical structure
- **2** Show that time to solve $I \sim \mathcal{I}$ is small *in expectation*.

Organisation 000 The Power of Randomness

Theory-Practice Gap

SAT is NP-complete $\stackrel{???}{\longleftrightarrow}$ modern SAT-solvers handle relevant instances with millions of clauses

Similar observations for NP-hard graph problems on relevant graph classes, e.g. social networks.

Bridging the Gap

- **1** Define a distribution \mathcal{I} on inputs.
 - $\blacksquare \ \mathcal{I}$ should be realistic, i.e. model real world instances
 - \mathcal{I} should have simple mathematical structure
- **2** Show that time to solve $I \sim \mathcal{I}$ is small *in expectation*.

Goals

- model real world instances
- identify useful properties of these instances
- build algorithms exploiting these properties

Semester Outline

Organisation 000 The Power of Randomness

Toy Example: Unbalanced Search Trees

Setting

Inserted 1,..., *n* into search tree *in some order*. Consider: Depth of Element $y \in \{1, ..., n\}$.

Organisation 000 The Power of Randomness

Organisation 000 The Power of Randomness

Semester Outline

Setting Inserted 1, ..., *n* into search tree *in some order*. Consider: Depth of Element $y \in \{1, ..., n\}$. Worst Case Sorted order: depth(y) = y. depth(6) = 3Possible Observation Alice sees good performance in her setting. Can we explain why that

Toy Example: Unbalanced Search Trees

2

8

(9)

Organisation

might be?

The Power of Randomness

Toy Example: Unbalanced Search Trees

Semester Outline

Lemma

For any $x, y \in [n]$: $\Pr[E_{xy}] = \frac{1}{|y-x|+1}$.

Context

Elements $\{1, \ldots, n\}$ inserted into search tree in uniformly random order.

Definition

Event $E_{xy} = \{x \text{ is ancestor of } y\}$

// x counts as ancestor of x

Organisation 000 The Power of Randomness

Semester Outline

Lemma

For any
$$x, y \in [n]$$
 : $\Pr[E_{xy}] = \frac{1}{|y-x|+1|}$

Proof.

Assume wlog x < y.

Context

Elements $\{1, \ldots, n\}$ inserted into search tree in uniformly random order.

Definition

Event $E_{xy} = \{x \text{ is ancestor of } y\}$

// x counts as ancestor of x

Organisation 000 The Power of Randomness

Semester Outline

Lemma

For any
$$x, y \in [n]$$
 : $\Pr[E_{xy}] = \frac{1}{|y-x|+1|}$

Proof.

Assume wlog x < y. Let v be the element of $\{x, \ldots, y\}$ inserted first. Note: All elements of $\{x, \ldots, y\}$ are descendents of v.

Context

Elements $\{1, \ldots, n\}$ inserted into search tree in uniformly random order.

Definition

Event $E_{xy} = \{x \text{ is ancestor of } y\}$

// x counts as ancestor of x

Organisation 000 The Power of Randomness

Lemma

For any
$$x, y \in [n]$$
 : $\Pr[E_{xy}] = \frac{1}{|y-x|+1|}$

Proof.

Assume wlog x < y.

Let *v* be the element of $\{x, \ldots, y\}$ inserted first.

Note: All elements of $\{x, \ldots, y\}$ are descendents of v.

Case 1: v = x. Then x is ancestor of y.

Case 2: v = y. Then y is ancestor of x.

Case 3: $v \notin \{x, y\}$. Then x is in left subtree of v and y in right subtree of v.

Context

Elements $\{1, \ldots, n\}$ inserted into search tree in uniformly random order.

Definition

Event $E_{xy} = \{x \text{ is ancestor of } y\}$

// x counts as ancestor of x

Organisation

The Power of Randomness

Lemma

For any
$$x, y \in [n]$$
 : $\Pr[E_{xy}] = \frac{1}{|y-x|+1|}$

Proof.

Assume wlog x < y.

Let v be the element of $\{x, \ldots, y\}$ inserted first.

Note: All elements of $\{x, \ldots, y\}$ are descendents of v.

Case 1: v = x. Then x is ancestor of y.

Case 2: v = y. Then y is ancestor of x.

Case 3: $v \notin \{x, y\}$. Then x is in left subtree of v and y in right subtree of v.

Hence E_{xy} occurs $\Leftrightarrow x = v \Leftrightarrow \text{Case 1}$. Therefore: $\Pr[E_{xy}] = \Pr[\text{Case 1}] = \frac{1}{|\{x,...,y\}|} = \frac{1}{y-x+1}$.

Context

Elements $\{1, \ldots, n\}$ inserted into search tree in uniformly random order.

Definition

Event $E_{xy} = \{x \text{ is ancestor of } y\}$

// x counts as ancestor of x

Lemma

For any $x, y \in [n]$: $\Pr[E_{xy}] = \frac{1}{|y-x|+1}$.

Theorem

Let $y \in [n]$ and ℓ_y the depth y. Then $\mathbb{E}[\ell_y] \leq 2 \ln(n) + 2$.

Context

Elements $\{1, \ldots, n\}$ inserted into search tree in uniformly random order.

Definition

Event $E_{xy} = \{x \text{ is ancestor of } y\}$

// x counts as ancestor of x

Organisation 000 The Power of Randomness

Lemma

For any
$$x, y \in [n]$$
 : $\Pr[E_{xy}] = \frac{1}{|y-x|+1|}$

Theorem

Let
$$y \in [n]$$
 and ℓ_y the depth y. Then $\mathbb{E}[\ell_y] \leq 2 \ln(n) + 2$.

Proof.

We have
$$\ell_y = \sum_{x \in [n]} \mathbb{1}_{E_{xy}}$$
. Hence:

$$\mathbb{E}[\ell_y] \stackrel{\text{lin.}}{=} \sum_{x \in [n]} \mathbb{E}[\mathbb{1}_{E_{xy}}] = \sum_{x \in [n]} \Pr[E_{xy}] = \sum_{x \in [n]} \frac{1}{|y - x| + 1}$$

$$\leq 2 \sum_{i=1}^n \frac{1}{i} = 2 \cdot H_n \leq 2(\ln(n) + 1).$$
The Power of Randomness processes

Context

Elements $\{1, \ldots, n\}$ inserted into search tree in uniformly random order.

Definition

Event $E_{xy} = \{x \text{ is ancestor of } y\}$

// x counts as ancestor of x

18/24 WS 2024/2025 Stefan Walzer: Introduction – The Power of Randomness

ITI, Algorithm Engineering

Content

1. Organisation

2. The Power of Randomness

- Improve (Worst-Case) Running Time
- Model Performance in the Real-World Average Case Analysis

Achieve Load Balancing with Pseudorandomness

Approximate in Sublinear Time using Random Sampling

3. Semester Outline

Organisation 000 The Power of Randomness

Achieve Load Balancing with Pseudorandomness

Stay Tuned!

- Linear Probing
- Cuckoo Hashing
- Bloom Filters
- Retrieval
- Perfect Hashing

Organisation 000 The Power of Randomness

Semester Outline

20/24 WS 2024/2025 Stefan Walzer: Introduction – The Power of Randomness

Karlsruhe Institute of Technolog

1. Organisation

Content

2. The Power of Randomness

- Improve (Worst-Case) Running Time
- Model Performance in the Real-World Average Case Analysis

The Power of Randomness

- Achieve Load Balancing with Pseudorandomness
- Approximate in Sublinear Time using Random Sampling

3. Semester Outline

Organisation 000 Semester Outline

Approximate in Sublinear Time using Random Sampling

More \times or more \circ ?

Stay Tuned!

Approximation algorithms can estimate quantities by random sampling.

Organisation 000 The Power of Randomness

22/24 WS 2024/2025 Stefan Walzer: Introduction – The Power of Randomness

Semester Outline

.000

Content

1. Organisation

2. The Power of Randomness

- Improve (Worst-Case) Running Time
- Model Performance in the Real-World Average Case Analysis
- Achieve Load Balancing with Pseudorandomness
- Approximate in Sublinear Time using Random Sampling

3. Semester Outline

Organisation 000 The Power of Randomness

Semester Outline

Tools from Probability Theory

- Concentration Bounds
- Random Coupling
- Yao's Principle
- Method of Bounded Differences

Random Graph Models

- Erdős-Renyi Random Graphs
- Branching Processes
- Random Geometric Graphs

Other Stuff

- Randomised Complexity Classes
- Probabilistic Method

Algorithm Design

- Random Sampling
- Approximation Algorithms
- Streaming Algorithms
- Probability Amplification

Randomised Data Structures

- Classic Hash Tables
- Cuckoo Hashing
- Bloom Filters
- Retrieval Data Structures
- Perfect Hash Functions

Organisation 000 The Power of Randomness

Conclusion

Avoiding the Worst Case with Randomness – Example: ⊼-Tree Evaluation

Deterministic Algorithms:

- ∀Algo : ∃Input : Algo slow on Input.
- every algorithm is vulnerable to adversarial inputs

Our Randomised Algorithm:

- On any input: fast in expectation. on any input: slow if unlucky.
- not vulnerable to adversarial inputs

Average Case Analysis

- Model real world using probability distribution over inputs.
- In many cases random instances ...
 - ... are easier to solve than worst-case instances
 - \hookrightarrow NP-hard problems may be easy on average
 - ... admit simpler algorithms and data structures
 - \hookrightarrow e.g. search trees with random insertion order need no load balancing

Organisation 000 The Power of Randomness

Anhang: Mögliche Prüfungsfragen I

- Können wir mithilfe von Zufall Laufzeiten im Worst-Case verbessern?
 - In welchem Sinne?
 - Was ist ein Beispiel?
- Wie kann man mit einem randomisierten Algorithmus eine Polynomgleichung überprüfen?
- Wie kann man mit einem randomisierten Algorithmus ein Matrixmultiplikation überprüfen?
- In Bezug auf die Auswertung von —Bäumen:
 - Was war unser Optimierungsziel?
 - Was lässt sich mit deterministischen Algorithmen erreichen?
 - Wie funktioniert unser randomisierter Ansatz?
 - Welche Laufzeit hat er und warum?
- Was ist und was soll Average Case Analyse?
- Wie verhalten sich Suchbäume bei Einfügungen in zufälliger Reihenfolge?
 - Was gilt f
 ür die erwartete Tiefe eines Knotens und warum?

Organisation

The Power of Randomness