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Lecturer (this year + last year)

Dr. Stefan Walzer
likes randomised data structures

Lecturer (last year)

Dr. Max Katzmann
likes random geometric graphs

lectures every Thursday, 11:30

exercises every second Tuesday, 9:45

Website: https://ae.iti.kit.edu/4782.php

Discord Server

https://discord.gg/ZQXUrQ7EPW

discuss exercises
ask questions
find study groups
report typos / mistakes

oral exam
literature:

Probability and Computing (Mitzenmacher +
Upfal)
Randomised Algorithms (Motwani +
Raghavan)
Modern Discrete Probability (Roch)
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Organisation
one sheet published with each lecture

one exercises session every two weeks
⇒ two sheets per exercises session

solutions provided after the exercise session

optional, no hand-in, no grading. But:
content of sheets relevant for exam

you may be asked to reproduce/rediscover
solutions in the exam

Recommendation
You should, prior to the exercise session

think about the exerices or
discuss them in your study group.

You should do at least one of the following
solve the exercises
attend the exercise sessions and follow along
work through the provided solutions

I hope that some of you will
present your own solutions during sessions
share/discuss ideas on discord
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it depends on what you mean by “worst case”. . .

Worst Input & Worst Luck
Any random decision is the worst decision.
↪→ randomness is useless.

Finding Hay According to This View

Worst Input & Average Luck
Randomness can help. See next slide.

↑ this is what we
mean in the fol-
lowing

In other words:
1 We fix a randomised algorithm.

2 Adversary fixes an input.

3 Random choices made independently.
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Task
Input: array A[1..n] where n/2 slots are empty
Output: i ∈ [n] with A[i] = EMPTY

Observation
For any deterministic algorithm D there exists an input
A such that D inspects ≥ n/2 entries of A.

Observation
The randomised algorithm R that inspects slots of A at
random finds an empty slot after X attempts where

E[X ]
TSF
=

∑
i∈N0

Pr[X > i] =
∑
i∈N0

2−i = 2.

x
1

z
2 3 4

y
5 6

w
7 8

A =

Note
the analysis of R holds for any input

“E” relates to choices of R (not to input)

input is fixed before random choices
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Exercise: Verifying Polynomial Identities
Let f and g be two polynomial functions over a field F. For instance:

f (x) = (x + 1)(x − 2)(x + 3)(x − 4)(x + 5)(x − 6) and g(x) = x6 − 7x3 + 25.

Check whether f ≡ g with a randomised algorithm!1

Exercise: Verifying Matrix Identities (Freivalds’ Algorithm)

Let A,B,C ∈ Fn×n be matrices over the field F. Check whether A · B = C with a randomised algorithm!1

1The algorithm may occasionally accept incorrect identities. Precise statements on the exercise sheet.
Organisation The Power of Randomness Semester Outline
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Three Types of Game States
value(S) = W // active player has winning strategy

value(S) = L // inactive player has winning strategy

value(S) = D // draw in optimal play

Task: Evaluating a Game
Input: (Implicit representation of) a game.
Output: value of start state.

Observation
A state S is winning if and only if some successor state is losing.

value(S) =
∧

S′ successor of S

value(S′).

Tic Tac Toe
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Observation
May not have to inspect entire tree to derive
value at root.
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Three Types of Game States
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L L L L L L L L L L L L L L

L LLLL WW WW WW W WW W W W

W WW W W WLL LLL

L W W W WL

W W

L

Observation
May not have to inspect entire tree to derive
value at root.
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value(S) = 1 = W // active player has winning strategy

value(S) = 0 = L // inactive player has winning strategy

value(S) = D // draw in optimal play

Task: Evaluating a Game
Input: (Implicit representation of) a game.
Output: value of start state.

Observation
A state S is winning if and only if some successor state is losing.

value(S) =
∧

S′ successor of S

value(S′).

Game of Sprouts (see wikipedia)

L L L L L L L L L L L L L L

L LLLL WW WW WW W WW W W W

W WW W W WLL LLL

L W W W WL

W W

L

Observation
May not have to inspect entire tree to derive
value at root.

Organisation The Power of Randomness Semester Outline

11/24 WS 2024/2025 Stefan Walzer: Introduction – The Power of Randomness ITI, Algorithm Engineering

Example 4: Evaluating Games without Draws



Three Types of Game States
value(S) = 1 = W // active player has winning strategy

value(S) = 0 = L // inactive player has winning strategy

value(S) = D // draw in optimal play

Task: Evaluating a Game
Input: (Implicit representation of) a game.
Output: value of start state.

Observation
A state S is winning if and only if some successor state is losing.

value(S) =
∧

S′ successor of S

value(S′).

Game of Sprouts (see wikipedia)

L L L L L L L L L L L L L L

L LLLL WW WW WW W WW W W W

W WW W W WLL LLL

L W W W WL

W W

L

Observation
May not have to inspect entire tree to derive
value at root.

Organisation The Power of Randomness Semester Outline

11/24 WS 2024/2025 Stefan Walzer: Introduction – The Power of Randomness ITI, Algorithm Engineering

Example 4: Evaluating Games without Draws



Problem
Input: I ∈ {0, 1}n for n = 2d .

Output: Value of complete binary ∧-tree with leaf values from I.
Cost Model: Number of inspected entries of I.

∧

∧

∧

∧

0 0

∧

1 1

∧

∧

0 1

∧

1 1

∧

∧

∧

1 1

∧

0 1

∧

∧

0 0

∧

1 1

Exercise
For any deterministic algorithm A there exists an input
IA ∈ {0, 1}n such that A inspects all n entries of I.

Our Goal
Randomised algorithm that, for any input, inspects only
X entries with

E[X ] = O(n0.793).
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Algorithm randEval(T ):
if T = Leaf(b) then

return b

(T0,T1)← T
// coin flip:

sample r ∼ U({0, 1})
br ← randEval(Tr )
if br = 0 then

return 1

return 1− randEval(T1−r )

Lemma
Assume randEval is excecuted for a tree T of depth d ≥ 2. Let X be the
number of resulting calls with subtrees of depth d − 2. Then E[X ] ≤ 3.

Proof.
Let T = (T0,T1) = ((T00,T01), (T10,T11)).

Case 1: value(T ) = 1.

Then value(T0) = 0 or value(T1) = 0.

Assume (wlog) value(T0) = 0.

With probability 1/2 we select r = 0 and
T1 need not be evaluated.

⇒ E[X ] ≤ 1
2 · 2 + 1

2 · 4 = 3.

∧
T0 T1

1

0 ?
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∧

∧
T00 T01

∧
T10 T11

0

1 1

0 ? 0 ?

Organisation The Power of Randomness Semester Outline

13/24 WS 2024/2025 Stefan Walzer: Introduction – The Power of Randomness ITI, Algorithm Engineering

Example 4 Simplified: Evaluating ∧-Trees



Algorithm randEval(T ):
if T = Leaf(b) then

return b

(T0,T1)← T
// coin flip:

sample r ∼ U({0, 1})
br ← randEval(Tr )
if br = 0 then

return 1

return 1− randEval(T1−r )

Lemma
Assume randEval is excecuted for a tree T of depth d ≥ 2. Let X be the
number of resulting calls with subtrees of depth d − 2. Then E[X ] ≤ 3.

Proof.
Let T = (T0,T1) = ((T00,T01), (T10,T11)).

Case 2: value(T ) = 0.

Then value(T0) = value(T1) = 1.

Like before: T01 and T11 only evaluated
with probability 1/2 each.

⇒ E[X ] ≤ 2 + 1
2 · 1 + 1

2 · 1 = 3.

∧

∧
T00 T01

∧
T10 T11

0

1 1

0 ? 0 ?

Organisation The Power of Randomness Semester Outline

13/24 WS 2024/2025 Stefan Walzer: Introduction – The Power of Randomness ITI, Algorithm Engineering

Example 4 Simplified: Evaluating ∧-Trees



Algorithm randEval(T ):
if T = Leaf(b) then

return b

(T0,T1)← T
// coin flip:

sample r ∼ U({0, 1})
br ← randEval(Tr )
if br = 0 then

return 1

return 1− randEval(T1−r )

Lemma
Assume randEval is excecuted for a tree T of depth d ≥ 2. Let X be the
number of resulting calls with subtrees of depth d − 2. Then E[X ] ≤ 3.

Corollary
Let T be a tree of depth d ∈ {0, 2, 4, . . . }, i.e. n = 2d .
The number L of leafs visited by randEval(T ) satisfies

E[L] ≤ 3d/2︸ ︷︷ ︸
proof on blackboard

= 4log4(3
d/2) = 4d/2 log4(3) = 2d log4(3) = nlog4(3).
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Theory-Practice Gap

SAT is NP-complete ???←→ modern SAT-solvers handle relevant
instances with millions of clauses

Similar observations for NP-hard graph problems on relevant graph
classes, e.g. social networks.

Bridging the Gap
1 Define a distribution I on inputs.

I should be realistic, i.e. model real world instances
I should have simple mathematical structure

2 Show that time to solve I ∼ I is small in expectation.

Goals
model real world instances

identify useful properties of
these instances

build algorithms exploiting
these properties
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Goals
model real world instances

identify useful properties of
these instances

build algorithms exploiting
these properties
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Average Case Analysis



Setting
Inserted 1, . . . , n into search tree in some order.
Consider: Depth of Element y ∈ {1, . . . , n}.

Worst Case
Sorted order: depth(y) = y .

5

4

2

1 3

8

6

7

9

1

2

3

4
...

depth(6) = 3

Possible Observation
Alice sees good
performance in her setting.

Can we explain why that
might be?

Average Case Analysis
1 Model: Elements of {1, . . . , n} are inserted in random order.

↪→ Note: May or may not reflect Alice’s setting...

2 Goal: Show that y ∈ {1, . . . , n} has expected depth O(log n).
↪→ Proved on next slide!
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Lemma
For any x , y ∈ [n] : Pr[Exy ] =

1
|y−x|+1 .

Context
Elements {1, . . . , n} inserted into
search tree in uniformly random order.

Definition
Event Exy = {x is ancestor of y}
// x counts as ancestor of x
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Lemma
For any x , y ∈ [n] : Pr[Exy ] =

1
|y−x|+1 .

Proof.
Assume wlog x < y .

Let v be the element of {x , . . . , y} inserted first.
Note: All elements of {x , . . . , y} are descendents of v .

Case 1: v = x . Then x is ancestor of y .

Case 2: v = y . Then y is ancestor of x .

Case 3: v /∈ {x , y}. Then x is in left subtree of v
and y in right subtree of v .

Hence Exy occurs⇔ x = v ⇔ Case 1.
Therefore: Pr[Exy ] = Pr[Case 1] = 1

|{x,...,y}| =
1

y−x+1 .

Context
Elements {1, . . . , n} inserted into
search tree in uniformly random order.

Definition
Event Exy = {x is ancestor of y}
// x counts as ancestor of x
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Lemma
For any x , y ∈ [n] : Pr[Exy ] =

1
|y−x|+1 .

Theorem
Let y ∈ [n] and ℓy the depth y . Then E[ℓy ] ≤ 2 ln(n) + 2.

Proof.
We have ℓy =

∑
x∈[n] 1Exy . Hence:

E[ℓy ]
lin.
=

∑
x∈[n]

E[1Exy ] =
∑
x∈[n]

Pr[Exy ] =
∑
x∈[n]

1
|y − x |+ 1

≤ 2
n∑

i=1

1
i = 2 · Hn ≤ 2(ln(n) + 1).

Context
Elements {1, . . . , n} inserted into
search tree in uniformly random order.

Definition
Event Exy = {x is ancestor of y}
// x counts as ancestor of x
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1. Organisation

2. The Power of Randomness
Improve (Worst-Case) Running Time
Model Performance in the Real-World – Average Case Analysis
Achieve Load Balancing with Pseudorandomness
Approximate in Sublinear Time using Random Sampling

3. Semester Outline
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Hashing with Chaining:

⊥ ⊥

♢ △

♣

♠ ♡

⋆

†

♢ △
♠

♡
†

♣ ⋆

m buckets

linked lists

set S of
n keys

Stay Tuned!
Linear Probing

Cuckoo Hashing

Bloom Filters

Retrieval

Perfect Hashing
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1. Organisation

2. The Power of Randomness
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More × or more ◦?
×◦×◦×××◦×××××××◦××××◦××××◦◦◦◦×××××◦×◦×◦××◦×◦×◦×××××××
××◦◦◦××××◦×◦××××◦××◦◦×××××◦◦◦◦◦×◦×××◦××◦◦×××××××◦×◦××
×◦◦××◦××◦×◦×◦◦◦×◦×◦××◦◦◦◦×××◦××◦××××◦◦×◦◦◦◦◦◦×××◦××××
×◦××××◦××◦◦◦◦×◦◦×××××◦◦◦×××××◦◦×◦×××××××◦×◦◦◦××××××××
×◦◦××××◦××◦×◦◦◦×××××××××◦×××◦×◦×◦×◦××××××◦◦××××××◦◦××◦◦×◦×◦×××◦◦×××××◦×◦◦◦◦×◦◦×◦××◦×◦◦××◦××◦×◦××××◦×◦××◦××
××◦×××××××××××◦××◦×◦×◦××××××◦×××◦××××××◦×◦××××◦××××××
××××××◦×◦××◦◦×◦◦××◦××××××◦×××◦××◦×◦◦××××◦◦×◦◦××××××××◦××◦×◦×××××××◦×××◦×××◦×××××××××××××◦×◦×◦×◦×××◦◦×◦×◦◦×◦×××◦×××◦××××××◦◦×××◦×◦◦×××××◦×××◦×◦×◦××××◦××××◦××××◦◦×◦××◦×◦×◦×◦◦××◦××◦◦×××◦×◦◦×××◦××◦◦×◦×◦×◦××××◦××◦××◦×
××××◦××◦××◦××××◦×◦×××××××◦◦××××◦××××◦×◦××◦×××××××××◦◦◦◦×◦××××××××××◦◦◦◦◦◦××××××◦×××××◦××◦×××◦×◦◦××◦×××◦◦◦×
××××◦◦××◦◦×◦×××◦×◦××◦××××◦◦×◦◦◦××◦◦××××◦◦××◦◦×◦××◦×××

Stay Tuned!
Approximation algorithms can
estimate quantities by random
sampling.
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Tools from Probability Theory
Concentration Bounds
Random Coupling
Yao’s Principle
Method of Bounded Differences

Random Graph Models
Erdős-Renyi Random Graphs
Branching Processes
Random Geometric Graphs

Other Stuff
Randomised Complexity Classes
Probabilistic Method

Algorithm Design
Random Sampling
Approximation Algorithms
Streaming Algorithms
Probability Amplification

Randomised Data Structures
Classic Hash Tables
Cuckoo Hashing
Bloom Filters
Retrieval Data Structures
Perfect Hash Functions
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Avoiding the Worst Case with Randomness – Example: ∧-Tree Evaluation

Deterministic Algorithms:

∀Algo : ∃Input : Algo slow on Input.

every algorithm is vulnerable to adversarial inputs

Our Randomised Algorithm:

On any input: fast in expectation.
on any input: slow if unlucky.

not vulnerable to adversarial inputs

Average Case Analysis
Model real world using probability distribution over inputs.
In many cases random instances . . .

. . . are easier to solve than worst-case instances
↪→ NP-hard problems may be easy on average
. . . admit simpler algorithms and data structures
↪→ e.g. search trees with random insertion order need no load balancing
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Können wir mithilfe von Zufall Laufzeiten im Worst-Case verbessern?
In welchem Sinne?
Was ist ein Beispiel?

Wie kann man mit einem randomisierten Algorithmus eine Polynomgleichung überprüfen?

Wie kann man mit einem randomisierten Algorithmus ein Matrixmultiplikation überprüfen?
In Bezug auf die Auswertung von ∧-Bäumen:

Was war unser Optimierungsziel?
Was lässt sich mit deterministischen Algorithmen erreichen?
Wie funktioniert unser randomisierter Ansatz?
Welche Laufzeit hat er und warum?

Was ist und was soll Average Case Analyse?
Wie verhalten sich Suchbäume bei Einfügungen in zufälliger Reihenfolge?

Was gilt für die erwartete Tiefe eines Knotens und warum?
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Anhang: Mögliche Prüfungsfragen I
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