

Probability and Computing – Probabilistic Method

Stefan Walzer | WS 2024/2025

www.kit.edu

The Probabilistic Method (pioneered by Paul Erdős)

Show that something exists by proving that it has a positive probability of arising from a random process.

- Used to proved statements that don't involve randomness at all.
- Probabilistic arguments replace combinatorial arguments.

Definition: Ramsey Number

 $R(k,k) := \min\{n \in \mathbb{N} \mid \text{any red-blue colouring of the edges of } K_n \text{ contains a monochromatic } k \text{-clique}\}.^a$

^aThe general definition of R(r, b) asks for red *r*-clique or blue *b*-clique.

Definition: Ramsey Number

 $R(k,k) := \min\{n \in \mathbb{N} \mid \text{any red-blue colouring of the edges of } K_n \text{ contains a monochromatic } k \text{-clique}\}.$

^aThe general definition of R(r, b) asks for red *r*-clique or blue *b*-clique.

Hence: R(3,3) = 6.

Karlsruhe Institute of Technology

Definition: Ramsey Number

 $R(k,k) := \min\{n \in \mathbb{N} \mid \text{any red-blue colouring of the edges of } K_n \text{ contains a monochromatic } k\text{-clique}\}.$

Theorem: $R(k,k) > 2^{k/2}$ for $k \ge 6$. // actually $k \ge 3$ suffices

Definition: Ramsey Number

 $R(k,k) := \min\{n \in \mathbb{N} \mid \text{any red-blue colouring of the edges of } K_n \text{ contains a monochromatic } k\text{-clique}\}.$

Theorem: $R(k,k) > 2^{k/2}$ for $k \ge 6$. // actually $k \ge 3$ suffices

Definition: Ramsey Number

 $R(k,k) := \min\{n \in \mathbb{N} \mid \text{any red-blue colouring of the edges of } K_n \text{ contains a monochromatic } k\text{-clique}\}.$

Theorem: $R(k,k) > 2^{k/2}$ for $k \ge 6$. // actually $k \ge 3$ suffices

- To show: Edges of K_n with $n \le 2^{k/2}$ can be coloured while avoiding a monochromatic k-clique.
- Plan: Show that uniformly random colouring avoids monochromatic k-clique with positive probability.

Karlsruhe Institute of Technolog

Definition: Ramsey Number

 $R(k,k) := \min\{n \in \mathbb{N} \mid \text{any red-blue colouring of the edges of } K_n \text{ contains a monochromatic } k\text{-clique}\}.$

Theorem: $R(k,k) > 2^{k/2}$ for $k \ge 6$. // actually $k \ge 3$ suffices

- To show: Edges of K_n with $n \le 2^{k/2}$ can be coloured while avoiding a monochromatic k-clique.
- Plan: Show that uniformly random colouring avoids monochromatic k-clique with positive probability.
- There are $\binom{n}{k}$ k-cliques. Each is monochromatic with probability $2^{-\binom{k}{2}+1}$.

Definition: Ramsey Number

 $R(k,k) := \min\{n \in \mathbb{N} \mid \text{any red-blue colouring of the edges of } K_n \text{ contains a monochromatic } k\text{-clique}\}.$

Theorem: $R(k,k) > 2^{k/2}$ for $k \ge 6$. // actually $k \ge 3$ suffices

- To show: Edges of K_n with $n \le 2^{k/2}$ can be coloured while avoiding a monochromatic k-clique.
- Plan: Show that uniformly random colouring avoids monochromatic k-clique with positive probability.
- There are $\binom{n}{k}$ k-cliques. Each is monochromatic with probability $2^{-\binom{k}{2}+1}$.
- The number *M* of monochromatic *k*-cliques satisfies:

$$\mathbb{E}[M] = \binom{n}{k} \cdot 2^{-\binom{k}{2}+1} \le \frac{n^k}{k!} \cdot 2^{-k^2/2+k/2+1} \le \frac{(2^{k/2})^k}{(k/2)^{k/2}} \cdot 2^{-k^2/2} 2^{k/2} 2 = 2\left(\frac{4}{k}\right)^{k/2} < 1.$$

Definition: Ramsey Number

 $R(k,k) := \min\{n \in \mathbb{N} \mid \text{any red-blue colouring of the edges of } K_n \text{ contains a monochromatic } k\text{-clique}\}.$

Theorem: $R(k, k) > 2^{k/2}$ for $k \ge 6$. // actually $k \ge 3$ suffices

Proof.

- To show: Edges of K_n with $n \le 2^{k/2}$ can be coloured while avoiding a monochromatic k-clique.
- Plan: Show that uniformly random colouring avoids monochromatic k-clique with positive probability.
- There are $\binom{n}{k}$ k-cliques. Each is monochromatic with probability $2^{-\binom{k}{2}+1}$.
- The number *M* of monochromatic *k*-cliques satisfies:

$$\mathbb{E}[M] = \binom{n}{k} \cdot 2^{-\binom{k}{2}+1} \le \frac{n^k}{k!} \cdot 2^{-k^2/2+k/2+1} \le \frac{(2^{k/2})^k}{(k/2)^{k/2}} \cdot 2^{-k^2/2} 2^{k/2} 2 = 2\left(\frac{4}{k}\right)^{k/2} < 1.$$

Since $\mathbb{E}[M] < 1$ it is possible that M = 0. In particular a colouring with no monochromatic k-cliques exists.

Expectation Argument

We have implicitly used:

 $\Pr[X \leq \mathbb{E}[X]] > 0$ and $\Pr[X \geq \mathbb{E}[X]] > 0$.

Probabilistic Method with Expectation Argument

Show that an object x with $f(x) \ge b$ exists by proving that a random object X satisfies $\mathbb{E}[f(X)] \ge b$.

Expectation Argument

We have implicitly used:

 $\Pr[X \leq \mathbb{E}[X]] > 0$ and $\Pr[X \geq \mathbb{E}[X]] > 0$.

Probabilistic Method with Expectation Argument

Show that an object x with $f(x) \ge b$ exists by proving that a random object X satisfies $\mathbb{E}[f(X)] \ge b$.

Simple Use Case

Any graph G = (V, E) admits a cut of weight at least |E|/2.

Expectation Argument

We have implicitly used:

 $\Pr[X \leq \mathbb{E}[X]] > 0$ and $\Pr[X \geq \mathbb{E}[X]] > 0$.

Probabilistic Method with Expectation Argument

Show that an object x with $f(x) \ge b$ exists by proving that a random object X satisfies $\mathbb{E}[f(X)] \ge b$.

Simple Use Case

Any graph G = (V, E) admits a cut of weight at least |E|/2.

- Assign each $v \in V$ to V_1 or V_2 uniformly at random.
- Each edge crosses the cut (V_1, V_2) with probability 1/2.

•
$$\mathbb{E}[\text{weight of } (V_1, V_2)] = \mathbb{E}\Big[\sum_{e \in E} [e \text{ crosses } (V_1, V_2)]\Big] = \sum_{e \in E} \Pr[e \text{ crosses } (V_1, V_2)] = |E| \cdot \frac{1}{2}.$$

Example: Independent Sets

Theorem

Let G = (V, E) with n = |V|, m = |E| and $m \ge \frac{n}{2}$. Then there exists an independent set of size $\frac{n^2}{4m}$. // $\Theta(\frac{n}{\text{average degree}})$

Example: Independent Sets

Theorem

Let G = (V, E) with n = |V|, m = |E| and $m \ge \frac{n}{2}$. Then there exists an independent set of size $\frac{n^2}{4m}$. // $\Theta(\frac{n}{\text{average degree}})$ Algorithm sampleAndReject: $V^+ \leftarrow \emptyset$ for $v \in V$ do with probability $\frac{n}{2m}$ do $| V^+ \leftarrow V^+ \cup \{\overline{v}\}$ $V^- \leftarrow \emptyset$ for $\{u, v\} \in E$ do if $u \in V^+$ and $v \in V^+$ then with probability $\frac{1}{2}$ do $V^- \leftarrow V^- \cup \{u\}$ otherwise $| V^- \leftarrow V^- \cup \{v\}$ return $V^+ \setminus V^-$

Example: Independent Sets

Theorem

Let G = (V, E) with n = |V|, m = |E| and $m \ge \frac{n}{2}$. Then there exists an independent set of size $\frac{n^2}{4m}$. // $\Theta(\frac{n}{\text{average degree}})$

Proof.

• sampleAndReject computes an independent set $V^+ \setminus V^-$.

•
$$\mathbb{E}[|V^+|] = n \cdot \frac{n}{2m} = \frac{n^2}{2m}.$$

• $\mathbb{E}[|V^-|] \le \sum_{\{u,v\} \in E} \Pr[u \in V^+, v \in V^+] = \sum_{\{u,v\} \in E} \left(\frac{n}{2m}\right)^2 = \frac{n^2}{4m}.$
• $\mathbb{E}[|V^+ \setminus V^-|] = \mathbb{E}[|V^+|] - \mathbb{E}[|V^-|] \ge \frac{n^2}{2m} - \frac{n^2}{4m} = \frac{n^2}{4m}.$

Algorithm sampleAndReject: $V^+ \leftarrow \emptyset$ for $v \in V$ do with probability $\frac{n}{2m}$ do $| V^+ \leftarrow V^+ \cup \{\overline{v}\}$ $V^- \leftarrow \emptyset$ for $\{u, v\} \in E$ do if $u \in V^+$ and $v \in V^+$ then with probability $\frac{1}{2}$ do $V^- \leftarrow V^- \cup \{u\}$ otherwise $| V^- \leftarrow V^- \cup \{v\}$ return $V^+ \setminus V^-$

Remark: sampleAndReject seems suitable for a parallel / distributed setting.

Context

Given: Family $\mathcal{E} = \{E_1, \dots, E_n\}$ of "bad" events with $\Pr[E_i] \le p < 1$. Want: Show $\Pr[\overline{E}_1 \cap \dots \cap \overline{E}_n] = \Pr[\text{none of } \mathcal{E}] > 0$.

Context

Given: Family $\mathcal{E} = \{E_1, \dots, E_n\}$ of "bad" events with $\Pr[E_i] \le p < 1$. Want: Show $\Pr[\overline{E}_1 \cap \dots \cap \overline{E}_n] = \Pr[\text{none of } \mathcal{E}] > 0$.

Observation: Easy if \mathcal{E} is independent

If \mathcal{E} is an independent family then $\Pr[\text{none of } \mathcal{E}] = \prod_{i=1}^{n} \Pr[\overline{E}_i] \ge (1-p)^{|\mathcal{E}|} > 0$.

Context

Given: Family $\mathcal{E} = \{E_1, \dots, E_n\}$ of "bad" events with $\Pr[E_i] \le p < 1$. Want: Show $\Pr[\overline{E}_1 \cap \dots \cap \overline{E}_n] = \Pr[\text{none of } \mathcal{E}] > 0$.

Observation: Easy if \mathcal{E} is independent

If \mathcal{E} is an independent family then $\Pr[\text{none of } \mathcal{E}] = \prod_{i=1}^{n} \Pr[\overline{E}_i] \ge (1-p)^{|\mathcal{E}|} > 0$.

Observation: Expectation arguments only gets us so far

If np < 1 then $\mathbb{E}[\#$ events from \mathcal{E} occuring] $\leq np < 1$, hence $\Pr[$ none of $\mathcal{E}] > 0$. If np = 1 then $\Pr[$ none of $\mathcal{E}] = 0$ is possible, e.g. $X \sim \mathcal{U}([n])$ and $E_i := \{X = i\}$.

Context

Given: Family $\mathcal{E} = \{E_1, \dots, E_n\}$ of "bad" events with $\Pr[E_i] \le p < 1$. Want: Show $\Pr[\overline{E}_1 \cap \dots \cap \overline{E}_n] = \Pr[\text{none of } \mathcal{E}] > 0$.

Observation: Easy if \mathcal{E} is independent

If \mathcal{E} is an independent family then $\Pr[\text{none of } \mathcal{E}] = \prod_{i=1}^{n} \Pr[\overline{E}_i] \ge (1-p)^{|\mathcal{E}|} > 0$.

Observation: Expectation arguments only gets us so far

If np < 1 then $\mathbb{E}[\#$ events from \mathcal{E} occuring] $\leq np < 1$, hence $\Pr[$ none of $\mathcal{E}] > 0$. If np = 1 then $\Pr[$ none of $\mathcal{E}] = 0$ is possible, e.g. $X \sim \mathcal{U}([n])$ and $E_i := \{X = i\}$.

Lovász Local Lemma (László Lovász and Paul Erdős, 1973)

If each $E \in \mathcal{E}$ has $\Pr[E] < p$ and depends on at most d events^{*a*} from \mathcal{E} and $4pd \leq 1$ then $\Pr[\text{none of } \mathcal{E}] > 0$.

^{*a*}Little challenge: State what this means formally.

Lovász Local Lemma (László Lovász and Paul Erdős, 1973)

 $\text{If each } E \in \mathcal{E} \text{ has } \Pr[E] 0.$

Setting

Consider a necklace of ck beads with k beads of each of c colours. An *independent rainbow* is a set of beads

- containing one bead of each colour // rainbow
- and not containing a pair of adjacent beads. // independent

Lovász Local Lemma (László Lovász and Paul Erdős, 1973)

 $\text{If each } E \in \mathcal{E} \text{ has } \Pr[E] 0.$

Setting

Consider a necklace of ck beads with k beads of each of c colours. An *independent rainbow* is a set of beads

- containing one bead of each colour // rainbow
- and not containing a pair of adjacent beads. // independent

Lovász Local Lemma (László Lovász and Paul Erdős, 1973)

 $\text{If each } E \in \mathcal{E} \text{ has } \Pr[E] 0.$

Setting

Consider a necklace of ck beads with k beads of each of c colours. An *independent rainbow* is a set of beads

- containing one bead of each colour // rainbow
- and not containing a pair of adjacent beads. // independent

Lovász Local Lemma (László Lovász and Paul Erdős, 1973)

 $\text{If each } E \in \mathcal{E} \text{ has } \Pr[E] 0.$

Setting

Consider a necklace of ck beads with k beads of each of c colours. An *independent rainbow* is a set of beads

- containing one bead of each colour // rainbow
- and not containing a pair of adjacent beads. // independent

Claim: If $k \ge 16$ then an independent rainbow always exists. // $k \ge 11$ also suffices

Consider any necklace. Let *R* contain a random bead

of each color. // Goal: Pr[R independent] > 0.

Lovász Local Lemma (László Lovász and Paul Erdős, 1973)

If each $E \in \mathcal{E}$ has $\Pr[E] < p$ and depends on at most d events from \mathcal{E} and $4pd \le 1$ then $\Pr[\text{none of } \mathcal{E}] > 0$.

Setting

Consider a necklace of ck beads with k beads of each of c colours. An *independent rainbow* is a set of beads

- containing one bead of each colour // rainbow
- and not containing a pair of adjacent beads. // independent

Claim: If $k \ge 16$ then an independent rainbow always exists. // $k \ge 11$ also suffices

Consider any necklace. Let *R* contain a random bead of each color. // Goal: Pr[R independent] > 0. One bad event per pair of adjacent beads:

$$E_{\{u,v\}} := \{u \in R \land v \in R\}, \quad \Pr[E] \le \frac{1}{k^2} =: p.$$

Lovász Local Lemma (László Lovász and Paul Erdős, 1973)

If each $E \in \mathcal{E}$ has $\Pr[E] < p$ and depends on at most d events from \mathcal{E} and $4pd \le 1$ then $\Pr[\text{none of } \mathcal{E}] > 0$.

Setting

Consider a necklace of ck beads with k beads of each of c colours. An *independent rainbow* is a set of beads

- containing one bead of each colour // rainbow
- and not containing a pair of adjacent beads. // independent

Claim: If $k \ge 16$ then an independent rainbow always exists. // $k \ge 11$ also suffices

Consider any necklace. Let *R* contain a random bead of each color. // Goal: Pr[R independent] > 0. One bad event per pair of adjacent beads: $E_{\{u,v\}}$ depends on $E_{\{u',v'\}}$ only if u' or v' share the colour of u or v.

$$E_{\{u,v\}} := \{u \in R \land v \in R\}, \quad \Pr[E] \le \frac{1}{k^2} =: p.$$

Lovász Local Lemma (László Lovász and Paul Erdős, 1973)

If each $E \in \mathcal{E}$ has $\Pr[E] < p$ and depends on at most d events from \mathcal{E} and $4pd \leq 1$ then $\Pr[\text{none of } \mathcal{E}] > 0$.

Setting

Consider a necklace of ck beads with k beads of each of c colours. An *independent rainbow* is a set of beads

- containing one bead of each colour // rainbow
- and not containing a pair of adjacent beads. // independent

Claim: If $k \ge 16$ then an independent rainbow always exists. // $k \ge 11$ also suffices

Consider any necklace. Let *R* contain a random bead of each color. // Goal: Pr[R independent] > 0. One bad event per pair of adjacent beads:

$$E_{\{u,v\}} := \{u \in R \land v \in R\}, \quad \Pr[E] \le \frac{1}{k^2} =: p.$$

 $\begin{array}{l} E_{\{u,v\}} \text{ depends on } E_{\{u',v'\}} \text{ only if } u' \text{ or } v' \text{ share the colour of } u \text{ or } v. \\ 2k \text{ relevant beads, hence } 4k - 2 \text{ relevant pairs.} \\ \Rightarrow d = 4k - 2, \qquad 4pd \leq 4\frac{1}{k^2}(4k - 2) < \frac{16}{k} \leq 1. \end{array}$

 $\Pr[R \text{ independent}] = \Pr[\text{none of } (E_{\{u,v\}})_{u,v}] \stackrel{\text{LLL}}{>} 0.$

Lovász Local Lemma (László Lovász and Paul Erdős, 1973)

If each $E \in \mathcal{E}$ has $\Pr[E] < p$ and depends on at most d events from \mathcal{E} and $4pd \leq 1$ then $\Pr[\text{none of } \mathcal{E}] > 0$.

Claim: $\forall S \subseteq \mathcal{E} : \forall E^* \in \mathcal{E} \setminus S : \Pr[E^* \mid \text{none of } S] \leq 2p.$

Lovász Local Lemma (László Lovász and Paul Erdős, 1973)

If each $E \in \mathcal{E}$ has $\Pr[E] < p$ and depends on at most d events from \mathcal{E} and $4pd \leq 1$ then $\Pr[\text{none of } \mathcal{E}] > 0$.

Claim: $\forall S \subseteq \mathcal{E} : \forall E^* \in \mathcal{E} \setminus S : \Pr[E^* \mid \text{none of } S] \leq 2p.$

Proof of LLL using the Claim.

$$\Pr[\text{none of } \mathcal{E}] = \prod_{i=1}^{n} \Pr[\bar{E}_i \mid \text{none of } \{E_1, \dots, E_{i-1}\}] \ge (1 - 2p)^n \stackrel{4pd \leq 1}{>} 2^{-n} > 0.$$

Lovász Local Lemma (László Lovász and Paul Erdős, 1973)

If each $E \in \mathcal{E}$ has $\Pr[E] < p$ and depends on at most d events from \mathcal{E} and $4pd \leq 1$ then $\Pr[\text{none of } \mathcal{E}] > 0$.

Claim: $\forall S \subseteq \mathcal{E} : \forall E^* \in \mathcal{E} \setminus S : \Pr[E^* \mid \text{none of } S] \leq 2p.$

Proof of the Claim by Induction on |S|.

• Base case: If |S| = 0 then $\Pr[E^* \mid \text{none of } \varnothing] = \Pr[E^*] \le p \le 2p$. \checkmark Let now |S| > 0.

Lovász Local Lemma (László Lovász and Paul Erdős, 1973)

If each $E \in \mathcal{E}$ has $\Pr[E] < p$ and depends on at most d events from \mathcal{E} and $4pd \leq 1$ then $\Pr[\text{none of } \mathcal{E}] > 0$.

Claim: $\forall S \subseteq \mathcal{E} : \forall E^* \in \mathcal{E} \setminus S : \Pr[E^* \mid \text{none of } S] \leq 2p.$

- Base case: If |S| = 0 then $\Pr[E^* \mid \text{none of } \varnothing] = \Pr[E^*] \le p \le 2p$. \checkmark Let now |S| > 0.
- Partition $S = I \cup D$ such that E^* is independent of I and $1 \le |D| \le d$. $|| \le d$ possible by assumption, > 0 is our choice.

Lovász Local Lemma (László Lovász and Paul Erdős, 1973)

If each $E \in \mathcal{E}$ has $\Pr[E] < p$ and depends on at most d events from \mathcal{E} and $4pd \leq 1$ then $\Pr[\text{none of } \mathcal{E}] > 0$.

Claim: $\forall S \subseteq \mathcal{E} : \forall E^* \in \mathcal{E} \setminus S : \Pr[E^* \mid \text{none of } S] \leq 2p.$

- Base case: If |S| = 0 then $\Pr[E^* \mid \text{none of } \varnothing] = \Pr[E^*] \le p \le 2p$. \checkmark Let now |S| > 0.
- Partition $S = I \cup D$ such that E^* is independent of I and $1 \le |D| \le d$. $|| \le d$ possible by assumption, > 0 is our choice.

$$\begin{aligned} \Pr[E^* \mid \text{none of } S] &= \frac{\Pr[E^* \land \text{none of } S]}{\Pr[\text{none of } S]} \leq \frac{\Pr[E^* \land \text{none of } I]}{\Pr[\text{none of } D \mid \text{none of } I] \Pr[\text{none of } I]} \\ &= \frac{\Pr[E^*] \Pr[\text{none of } I]}{\Pr[\text{none of } I] \mid \text{none of } I]} = \frac{p}{\Pr[\text{none of } D \mid \text{none of } I]} \end{aligned}$$

Lovász Local Lemma (László Lovász and Paul Erdős, 1973)

If each $E \in \mathcal{E}$ has $\Pr[E] < p$ and depends on at most d events from \mathcal{E} and $4pd \leq 1$ then $\Pr[\text{none of } \mathcal{E}] > 0$.

Claim: $\forall S \subseteq \mathcal{E} : \forall E^* \in \mathcal{E} \setminus S : \Pr[E^* \mid \text{none of } S] \leq 2p.$

- Base case: If |S| = 0 then $\Pr[E^* \mid \text{none of } \varnothing] = \Pr[E^*] \le p \le 2p$. \checkmark Let now |S| > 0.
- Partition $S = I \cup D$ such that E^* is independent of I and $1 \le |D| \le d$. $|| \le d$ possible by assumption, > 0 is our choice.

•
$$\Pr[\text{none of } D \mid \text{none of } I] = 1 - \Pr[\bigcup_{E \in D} E \mid \text{none of } I] \stackrel{UB}{\geq} 1 - \sum_{E \in D} \underbrace{\Pr[E \mid \text{none of } I]}_{\leq 2\rho \text{ (Induction, using } |I| < |S|)} \geq 1 - 2dp \stackrel{4\rho d \leq 1}{\geq} \frac{1}{2}.$$
 (\$\phi\$).

$$\begin{aligned} \Pr[E^* \mid \text{none of } S] &= \frac{\Pr[E^* \land \text{none of } S]}{\Pr[\text{none of } S]} \leq \frac{\Pr[E^* \land \text{none of } I]}{\Pr[\text{none of } D \mid \text{none of } I] \Pr[\text{none of } I]} \\ &= \frac{\Pr[E^*] \Pr[\text{none of } I]}{\Pr[\text{none of } I] \mid \text{none of } I]} = \frac{p}{\Pr[\text{none of } I]} \\ \end{aligned}$$

Lovász Local Lemma (László Lovász and Paul Erdős, 1973)

If each $E \in \mathcal{E}$ has $\Pr[E] < p$ and depends on at most d events from \mathcal{E} and $4pd \leq 1$ then $\Pr[\text{none of } \mathcal{E}] > 0$.

Claim: $\forall S \subseteq \mathcal{E} : \forall E^* \in \mathcal{E} \setminus S : \Pr[E^* \mid \text{none of } S] \leq 2p.$

- Base case: If |S| = 0 then $\Pr[E^* \mid \text{none of } \varnothing] = \Pr[E^*] \le p \le 2p$. \checkmark Let now |S| > 0.
- Partition $S = I \cup D$ such that E^* is independent of I and $1 \le |D| \le d$. $|| \le d$ possible by assumption, > 0 is our choice.

•
$$\Pr[\text{none of } D \mid \text{none of } I] = 1 - \Pr[\bigcup_{E \in D} E \mid \text{none of } I] \stackrel{UB}{\geq} 1 - \sum_{E \in D} \underbrace{\Pr[E \mid \text{none of } I]}_{\leq 2p \text{ (Induction, using } |I| < |S|)} \geq 1 - 2dp \stackrel{4pd \leq 1}{\geq} \frac{1}{2}.$$
 (\$\phi\$).

$$\begin{aligned} \Pr[E^* \mid \text{none of } S] &= \frac{\Pr[E^* \land \text{none of } S]}{\Pr[\text{none of } S]} \leq \frac{\Pr[E^* \land \text{none of } I]}{\Pr[\text{none of } D \mid \text{none of } I] \Pr[\text{none of } I]} \\ &= \frac{\Pr[E^*] \Pr[\text{none of } I]}{\Pr[\text{none of } I \mid \text{none of } I]} = \frac{p}{\Pr[\text{none of } D \mid \text{none of } I]} \stackrel{\text{($\widehat{\Delta}^\circ]}}{=} \frac{p}{1/2} = 2p. \end{aligned}$$

Summary

What the Probabilistic Method is all About

- Goal: Prove the existence of objects with certain properties.
- Use probabilistic language as a tool.

Vanilla Variant:

Goal: Show that $P \subseteq \Omega$ is not empty.

- **1** Define a random object $X \in \Omega$.
- **2** Show: $\Pr[X \in P] > 0$.
- **3** Conclude: $\exists x \in \Omega : x \in P$.

Variant with Lovász Local Lemma

Goal: Show that $P \subseteq \Omega$ is not empty.

Define random object *X*.
 Define family *E* of bad events such that ∩_{E∈E} *Ē* ⇒ *X* ∈ *P*.

Variant with Expectation Argument

Goal: Show that $f : \Omega \to \mathbb{R}$ has maximum at least q.

- **1** Define a random object $X \in \Omega$.
- **2** Show: $\mathbb{E}[f(X)] \ge q$.
- **3** Conclude: $\exists x \in \Omega : f(x) \ge q$.

- 4 Show that $E \in \mathcal{E}$ satisfies $\Pr[E] \leq p$.
- **5** Show $E \in \mathcal{E}$ depends on at most *d* other events from \mathcal{E} .
- **6** Show $4dp \leq 1$.
- **7** Conclude with LLL: $\exists x : x \in P$.

Anhang: Mögliche Prüfungsfragen I

- Was ist das Ziel der probabilistischen Methode?
- Bezüglich der grundlegenden Methode:
 - Welche "Kreativleistung" muss man erbringen und was muss man dann ausrechnen?
 - Verdeutliche die Methode an einem Beispiel.
- Bezüglich der Variante mit Erwartungswertargument:
 - Welche "Kreativleistung" muss man erbringen und was muss man dann ausrechnen?
 - Verdeutliche die Methode an einem Beispiel.
 - Wir haben gezeigt, dass jeder Graph einen Schnitt von Gewicht |E|/2 besitzt. Wie?
 - Wir haben gezeigt, dass jeder Graph eine unabhängige Menge der Größe $\frac{n^2}{4m}$ besitzt. Wie?
- Bezüglich Lovász Local Lemma:
 - Formuliere die Aussage des Lemmas.
 - Was ist der Bezug zur probabilistischen Methode?
 - Wir haben gezeigt, dass gefärbte Graphen unabhängige Regenbogenmengen gewisser Größe besitzen. Wie sind wir vorgegangen?