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Probability Amplification A“(IT

Definition: A Monte Carlo Algorithm is a randomized algorithm with bounded running )
time that, for each input, answers correctly with probability at least p € (0, 1).

® In decision problems p is the probability of giving the correct answer Co;ectAnsyer\
= One-sided error: either false-biased or true-biased § g e s
= Two-sided error: no bias S, fise e

= |n optimization problems p is the probability of finding the optimum < MRS

\

Definition: Probability amplification is the process of increasing the success probability\
of a Monte Carlo algorithm by using multiple runs.

Probability Amplification for true-biased algorithms
m Execute independently t times.

= |f vat least once: Return v'.
= Otherwise: Return X.  Pr[“correct”] > 1 — (1 —p)" >1— e [1+x<eforxeRr)

|Exercise: For two-sided error.|
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Probability Amplification A“(IT

Definition: A Monte Carlo Algorithm is a randomized algorithm with bounded running )
time that, for each input, answers correctly with probability at least p € (0, 1).

® In decision problems p is the probability of giving the correct answer Co;ectAnsyer\
= One-sided error: either false-biased or true-biased § g e s
= Two-sided error: no bias S, fise e

= |n optimization problems p is the probability of finding the optimum < MRS

\

Definition: Probability amplification is the process of increasing the success probability\
of a Monte Carlo algorithm by using multiple runs.

Probability Amplification for optimization algorithms
m Execute independently t times.
® output best result

Pr[“optimal’] >1— (1 —p)" >1—e "
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The Segmentation Problem A“(IT

Input A R2
m Set P of points in a feature space (e.g., RY)
® Similarity measure o: P x P — R
Output: Py, ..., P such that
m Points within a P; have high similarity
>

® Points in distinct P;, P; have low similarity
Applications: Compression, medical diagnosis, etc. a six points in R?

Approach: Model as graph m o is the inversed Euclidean
® Each point is a node distance

m Edges between all node pairs, with the weight given by ® segment into two sets
the similarity of the two nodes

m Find cut-set (edges to remove) of minimal weight such
that the graph decomposes into kK components.

Example

Today
k=2ando: Px P+—{0,1}
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Computing Min Cuts

Cuts V4
® G = (V, E) an unweighted, undirected, connected graph

® Cut: partition of V into non-empty parts V4, V5 such that
VinVe=0and\V; UV, =V. Vs
m Cut-set: set of edges with an endpoints in \; and \,

O Welght Ofa CUt: Size Of the Cut—Set (or sum of weights in a weighted graph)

i.e. a cut of minimum weight or cut-set of minimum size
the weight of the min-cut is known as the edge-connectivity of G

Today Goal: Compute a Min-Cut

= Known deterministic strategies have worst case running time Q(n?).
= We'll see randomised algorithm with running time O(n? - log>(n)).
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A Trivial Algorithm: Random Cut

LObservation: There are 2"~! — 1 cuts in a graph with n nodes.w

(2-2) /2
® Number of possible assignments of n nodes to 2 partsJ‘ |
m Partitions with empty parts that do not represent cuts
® Swapping parts does not yield a new partition

Algorithm: Random Cut

® Return a uniformly random cut.
® Minor challenge: How to uniformly sample cuts?
= Represent cut using bit-string

Karlsruhe Institute of Technology

011111
%)

= Have to uniformly sample bit-string while avoiding 11...1 and 00...07

= intution: sample from U({0, 1}") and use rejection sampling

= gctually for bounded running time: declare failure rather than sampling again

= samples each cut with probability 1/2"~1

Maximilian Katzmann, Stefan Walzer — Probability & Computing
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Random Cut: Analysis

Running time: O(n)  much better than the Q(n®) in the deterministic setting , but...
Success probability: > 1/2"-1 “="if there is only one min-cut.
— exponentially small!

Amplification
m Repeat the algorithm to obtain t independent random cuts, return the smallest

Pr[“min cut found”] > 1 — (1—1/2""1)" >1—e /2" [1+x<eforxeR)
® For t = 2"~ min cut found with constant probability 1 — 1/e ~ 0.63 this is terrible
m For t = 271 - In(n) min cut found with high probability 1 — 1/n so far...
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Karger’s Algorithm

Edge Contraction non-essential

m Merge two adjacent nodes in a multigraph without self-loops ' uv N
® A (multi) graph with two nodes has a unique cut-set

Contraction Algorithm Success Probability essential

® Motivation: distinguish non-essential

as well as essential edges
& hope there are few essential ones  m Consider min-cut in Gy with cut-set C and |C| = k

Karger(Go = (W, Eop)) g ="“CinG;” LObservation: min-degree > k]

w

LObservation: A cut-set in G; is a cut-set In GO.W

fori=1ton—2do // O(n) Pri&i] =1 — % l (holds for all G; due to 1st observation)
e :=U(Ei-1) i10(1) > 1 m:%Zdeg(v)Z%ZkZ%nk
G; = G;_1.contract(e) / O(n) =12 vev vev

return unique cut-set in G,_»
® Running time in O(n?)
® Can be implemented to run in O(m)
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Karger’s Algorithm

Edge Contraction non-essential
m Merge two adjacent nodes in a multigraph without self-loops ' uv N
® A (multi) graph with two nodes has a unique cut-set

Contraction Algorithm Success Probability essential

® Motivation: distinguish non-essential T - ;
as well as essential edges LObservatlon. A cut-set in G; is a cut-set in GO}

& hope there are few essential ones  m Consider min-cut in Gy with cut-set C and |C| = k
Karger(Go = (W, Eop)) g ="“CinG;” LObservation: min-degree > k]

w

fori=1ton—2do // O(n) Pri&1] > 1 — % (holds for all G; due to 1st observation)
€ = Z/[(E,'_l) // O(].) Pr:Sg |51]21—%—>Pr[5,-|5lﬂ...ﬂ5,-_1]21— n_2,.+1
G; = G,_i.contract(e) // O(n) Pri€n_] = Pr[&] - Prl& | 1] - ... PrlEn—a | E1 ... N En_s]
return unique cut-set in G,_» S (=2 _n—=3 =\ [ 2 1
= Running time in O(n?) ( i ) 2”_1 J—=—) G5
® Can be implemented to run in O(m) BRI G
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Karger’s Algorithm Amplified

Theorem: On a graph with n nodes, Karger’s algorithm runs in O(n?) time and returns a)
minimum cut with probability at least .

. 1 Success probability > p\
T _ ” > . _l _ — - -
Pr[ min-cut founa ] > 1 exp( n t) 1 n Number of repetitions t
for + — n; In(n) \Amplified prob. > 1 — e F*

Corollary: On a graph with n nodes, O(n? log(n)) Karger repetitions run in O(n* Iog(n))\
tOtaI t|me and return a mln-CUt Wlth hlgh prObablllty Much better than exp. time of Randomized Cut!

Sidenote: Number of minimum cuts
mletCy,...,C,be all the min-cuts in G and &! , for i € [£] be the event that C; is returned
by Karger’s algorithm ——

= Just seen: Pr[€]_,] > 2

1> Pr [Uie[l] ;'1—2} — Z,’e[z] Pr[gll’.l—2] > i_2£

disjoint, since the algorithm returns only one cut

Observation: £ < ”72 }
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Motivation K i — (V. E
® Probability that a min-cut survives i contractions :argerSteln(Go Vo, O).)
if [Vo| = 2 then return unique cut-set

Pr[€i] = Pr[&1] - Pr[& | &) ... - Prl& | &1 N Eiq]
fori=1t0s=|V| - —1do

More Amplification: Karger-Stein

> (1—%)(1— ,il)( 32)( e ,+2>( - +1> e :=U(Ei_1)
- (=2) )22 - () (=) G; — Gi_y.contract(e)
_(n=i(n—i=1) _ (n—i=1)(n—i-1) (1_,+1)2_ C, = KargerStein(G,) // inde-
n(n—1) - n-n n // pendent
= Probability becomes very small only towards the €2 = KargerStein(Gs) s runs
very end. return smaller of C¢, G

m |dea: stop when a min-cut is still likely to exist and recurse
m After s = n — n/+/2 — 1 steps we have

Pr[&] > (1 L Z/ﬁ) - (1 —(1- 1/\6))2 = (1/v2)* ==
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Karger-Stein: Running Time A

Recursion KargerStein(Go = (Vp, Ep))

. A:ter t=n-— ”\/}@— Lstepsthe number 51y i |vy| = 2 then return unique cut-set
of nodes is n/+/2 + 1 //0(n) fori=1tos=|V|— |\/o| _1do
T(n) = 2T (i + 1) +0(n?) FO(1) e =U(Ei_)

V2 /I O(n) G; = G;_i.contract(e)

Solution (essentially by Master Theorem) €, = KargerStein(G,) | nce,

C, = KargerStein(G;) // runs
T(n) = O(n” log n) return smaller of Cy, G,
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Karger-Stein: Success Probability

Know: Each call to Karger-Stein breaks the min-cut with probability at most 1

L before calling itself recursively

Auxiliary Problem

Given complete binary tree of height d where each node is ran-
domly coloured red or green (with probability  each).

What is the probability py that a green root-to-leaf path exists?

po = 1/2 //rootgreen  pg = l(1 — (1 — pg—_1)?) // root green, not no path in both left and right subtree

Claim: p, > d+2 Proof by mductlon

11
Pp=5=g53 Y l
_ 1 2 2\ __1( 2 1
pa = 5(1 = (1~ pa—1)°) > (1_(1_d+1 )—§(d+1_(d+1)2)
1 2d42-1 _ 1 2d+1 1 2d 1 2 < a1
2 (di1? T 2 di2diil = 2 daod — agp //forl<a<bwehave § > i=

Corollary: Karger-Stein succeeds with probability at least piog_,(n) = m.
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Karger-Stein Amplified A“(IT

Theorem: On a graph with n nodes, Karger-Stein runs in O(n? log(n)) time and returns a
minimum cut with probability at least 1/0(log(n)).

Amplification " )
_ # 1 Success probability > p
Pr[“min-cut found”] > 1—exp (— ) =1-0 (—) Number of repetitions ¢
Ollog(n)) t " 5 Amplified prob. > 1 — e™?*
for t = log®(n) N -
Corollary: On a graph with n nodes, O(log®(n)) repetitions of Karger-Stein run in
O(n? log>(n)) total time and return a minimum cut with high probability.

= Compared to O(n* log(n)) for Karger
» Compared to Q(n?) for deterministic approaches
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Conclusion A“(IT

Karlsruhe Institute of Technology

Minimum Cut B

® Fundamental graph problem \i

® Many deterministic flow-based algorithms ... \‘
‘Q

® ... with worst-case running times in Q(n?)

Randomized Algorithms
m Karger’s edge-contraction algorithm

~N

Probability Amplification Gorect pnaver
= Monte Carlo algorithms with and without biases x e false

® Repetitions amplify success probability
m Karger-Stein: Amplify before failure probability gets large
Outlook

L“Minimum cuts in near-linear time”, Karger, J.Acm. ’001 L“Faster algorithms for edge connectivity via random 2-out contractions”, Ghaffari & Nowicki & Thorup, SODA’ZO]

false true
v pos pos

Algo Output

Vs

Success w.h.p. in time O(m Iog3(n)) Success w.h.p. in time O(mlog(n)) and O(m + n Iog3(n))
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Mogliche Prufungsfragen

® Was ist ein Monte-Carlo-Algorithmus?

® Welche Varianten gibt es?
® Was versteht man unter Probability Amplification?
® Wie funktioniert Probability Amplification...

® ... bei einseitigem Fehler?

® ... bei zweiseitigem Fehler?

® ... bei Optimierungsproblemen?
® Wie hangt die Fehlerwahrscheinlichkeit mit der Anzahl Wiederholungen zusammen?

® Was ist das Minimum Cut Problem?
® Was leisten die besten bekannten deterministischen Algorithmen?
® Was sind Erfolgswahrscheinlichkeit und Laufzeit des trivialen Random Cut Algorithmus?

® Wie funktioniert der Algorithmus von Karger?
® Was bedeutet Pr[€;] und wie haben wir diese Wahrscheinlichkeit abgeschatzt?

® Was erqibt sich fir die Laufzeit und die Erfolgswahrscheinlichkeit?

m Wie ergibt sich der Algorithmus von Karger und Stein aus dem Algorithmus von Karger?
® Wie haben wir die Erfolgswahrscheinlichkeit und Laufzeit abgeschéatzt?

® Wie erreiche ich eine Erfolgswahrscheinlichkeit von 1 — %?
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