
1

Probability & Computing

Probability Amplification

www.kit.eduKIT – The Research University in the Helmholtz Association

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms2

Probability Amplification

Definition: A Monte Carlo Algorithm is a randomized algorithm with bounded running
time that, for each input, answers correctly with probability at least p ∈ (0; 1).

In decision problems p is the probability of giving the correct answer
One-sided error: either false-biased or true-biased
Two-sided error: no bias

In optimization problems p is the probability of finding the optimum

Definition: Probability amplification is the process of increasing the success probability
of a Monte Carlo algorithm by using multiple runs.

Pr[“correct”] ≥ 1− (1− p)t ≥ 1− e−pt

A
lg

o
O

ut
pu

t

Correct Answer

false
pos

true
pos

false
neg

true
neg

✗ ✓

✗

✓

Probability Amplification for true-biased algorithms
Execute independently t times.

If Xat least once: Return X. (surely correct)
Otherwise: Return ✗. 1 + x ≤ ex for x ∈ R

Exercise: For two-sided error.

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms2

Probability Amplification

Definition: A Monte Carlo Algorithm is a randomized algorithm with bounded running
time that, for each input, answers correctly with probability at least p ∈ (0; 1).

In decision problems p is the probability of giving the correct answer
One-sided error: either false-biased or true-biased
Two-sided error: no bias

In optimization problems p is the probability of finding the optimum

Definition: Probability amplification is the process of increasing the success probability
of a Monte Carlo algorithm by using multiple runs.

A
lg

o
O

ut
pu

t

Correct Answer

false
pos

true
pos

false
neg

true
neg

✗ ✓

✗

✓

Pr[“optimal”] ≥ 1− (1− p)t ≥ 1− e−pt

Probability Amplification for optimization algorithms
Execute independently t times.

output best result

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms3

The Segmentation Problem

Input
Set P of points in a feature space (e.g., Rd)
Similarity measure ff : P × P 7→ R+

Output: P1; : : : ; Pk such that
Points within a Pi have high similarity
Points in distinct Pi , Pj have low similarity

R2

Example
six points in R2

ff is the inversed Euclidean
distance
segment into two sets

Approach: Model as graph
Each point is a node
Edges between all node pairs, with the weight given by
the similarity of the two nodes
Find cut-set (edges to remove) of minimal weight such
that the graph decomposes into k components.

Applications: Compression, medical diagnosis, etc.

Today
k = 2 and ff : P × P 7→ {0; 1}

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms4

Computing Min Cuts

Cuts
G = (V; E) an unweighted, undirected, connected graph
Cut : partition of V into non-empty parts V1, V2 such that
V1 ∩ V2 = ∅ and V1 ∪ V2 = V .

V1

V2Cut-set : set of edges with an endpoints in V1 and V2
Weight of a cut : size of the cut-set (or sum of weights in a weighted graph)

Known deterministic strategies have worst case running time Ω(n3).

Today Goal: Compute a Min-Cut

We’ll see randomised algorithm with running time O(n2 · log3(n)).

i.e. a cut of minimum weight or cut-set of minimum size
the weight of the min-cut is known as the edge-connectivity of G

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms5

A Trivial Algorithm: Random Cut

Observation: There are 2n−1 − 1 cuts in a graph with n nodes.

Number of possible assignments of n nodes to 2 parts
Partitions with empty parts that do not represent cuts

−22n

Swapping parts does not yield a new partition

=2()

011111
V2

V1

Algorithm: Random Cut
Return a uniformly random cut.
Minor challenge: How to uniformly sample cuts?

Represent cut using bit-string
Have to uniformly sample bit-string while avoiding 11...1 and 00...0?

intution: sample from U({0; 1}n) and use rejection sampling
actually for bounded running time: declare failure rather than sampling again
samples each cut with probability 1=2n−1

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms6

Random Cut: Analysis

Amplification

Running time: O(n)
Success probability: ≥ 1=2n−1

Repeat the algorithm to obtain t independent random cuts, return the smallest
Pr[“min cut found”] ≥ 1−

`
1− 1=2n−1

´t ≥ 1− e−t=2n−1
1 + x ≤ ex for x ∈ R

For t = 2n−1 min cut found with constant probability 1− 1=e ≈ 0:63

For t = 2n−1 · ln(n) min cut found with high probability 1− 1=n

much better than the Ω(n3) in the deterministic setting , but...

this is terrible
so far...

“=” if there is only one min-cut.

→ exponentially small!

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

Karger’s Algorithm

Edge Contraction
Merge two adjacent nodes in a multigraph without self-loops uv

Karger(G0 = (V0; E0))

for i = 1 to n − 2 do
e := U(Ei−1)

Gi = Gi−1:contract(e)
return unique cut-set in Gn−2

xw
A (multi) graph with two nodes has a unique cut-set

// O(1)
// O(n)

// O(n)

Running time in O(n2)

Contraction Algorithm
Motivation: distinguish non-essential
as well as essential edges
& hope there are few essential ones

part of a min-cut

not part of a min-cut

Can be implemented to run in O(m)

Success Probability

Consider min-cut in G0 with cut-set C and |C| = k

m =
1

2

X
v∈V

deg(v) ≥ 1

2

X
v∈V

k ≥ 1

2
nk

Ei = “C in Gi ”
Pr[E1] = 1− k

m

≥ 1− k
nk=2

= 1− 2
n

Observation: min-degree ≥ k

(holds for all Gi due to 1st observation)

non-essential

essential

Observation: A cut-set in Gi is a cut-set in G0.

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms7

Karger’s Algorithm

Edge Contraction
Merge two adjacent nodes in a multigraph without self-loops uv

Karger(G0 = (V0; E0))

for i = 1 to n − 2 do
e := U(Ei−1)

Gi = Gi−1:contract(e)
return unique cut-set in Gn−2

xw
A (multi) graph with two nodes has a unique cut-set

// O(1)
// O(n)

// O(n)

Running time in O(n2)

Contraction Algorithm
Motivation: distinguish non-essential
as well as essential edges
& hope there are few essential ones

part of a min-cut

not part of a min-cut

Can be implemented to run in O(m)

Success Probability

Consider min-cut in G0 with cut-set C and |C| = k

Observation: min-degree ≥ kEi = “C in Gi ”
(holds for all Gi due to 1st observation)

non-essential

essential

Pr[E2 | E1] ≥ 1− 2
n−1

Pr[Ei | E1 ∩ : : : ∩ Ei−1] ≥ 1− 2
n−i+1

Pr[En−2] = Pr[E1] · Pr[E2 | E1] · : : : · Pr[En−2 | E1 ∩ : : : ∩ En−3]

Pr[E1] ≥ 1− 2
n

≥ n 2 2n−3 n−4 1
„ «− „ «„ «

· · ·
„ «„ «

n n−1 n−2 4 3

= 2
n (n−1)

Observation: A cut-set in Gi is a cut-set in G0.

≥ 2
n2

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms8

Karger’s Algorithm Amplified

Theorem: On a graph with n nodes, Karger’s algorithm runs in O(n2) time and returns a
minimum cut with probability at least 2

n2 .

Success probability ≥ p

Number of repetitions t

Amplified prob. ≥ 1− e−pt

Pr[“min-cut found”] ≥ 1− exp(− 2
n2 · t) = 1− 1

n

for t = n2

2 ln(n)

Corollary: On a graph with n nodes, O(n2 log(n)) Karger repetitions run in O(n4 log(n))
total time and return a min-cut with high probability.

Sidenote: Number of minimum cuts
Let C1; : : : ; C‘ be all the min-cuts in G and E i

n−2 for i ∈ [‘] be the event that Ci is returned
by Karger’s algorithm
Just seen: Pr[E i

n−2] ≥ 2
n2

disjoint, since the algorithm returns only one cut

Pr
hS

i∈[‘] E
i
n−2

i
=
P

i∈[‘] Pr[E
i
n−2] ≥ 2·‘

n2
1 ≥

Much better than exp. time of Randomized Cut!

Observation: ‘ ≤ n2

2 .

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms9

More Amplification: Karger-Stein

Probability that a min-cut survives i contractions
Motivation

Pr[Ei] = Pr[E1] · Pr[E2 | E1] · : : : · Pr[Ei | E1 ∩ : : : ∩ Ei−1]

≥ 1 2
n

2
n−1

2
n−2

2
n−i+2

„ «
−

„ «
−

„ «
− · · ·

„ «
−1 1 1

= n 2 n−3 n−4
„ «− „ «„ «

· · ·
„ «

n n−1 n−2 n−i+2

2
n−i+1

„ «
−1„ «

n−i+1
n−i n−i−1

=
(n − i)(n − i − 1)

n(n − 1)
≥

(n − i − 1)(n − i − 1)

n · n
=

“
1−

i + 1

n

”2
:

Probability becomes very small only towards the
very end.
Idea: stop when a min-cut is still likely to exist and recurse

KargerStein(G0 = (V0; E0))

Gi = Gi−1:contract(e)

return smaller of C1, C2

for i = 1 to s = |V0| − |V0|√
2
− 1 do

After s = n − n=
√
2− 1 steps we have“

1− n − n=
√
2

n

”
=
“
1− (1− 1=

√
2)
”2

= (1=
√
2)2 =

1

2
Pr[Es] ≥

C1 := KargerStein(Gs)

C2 := KargerStein(Gs)
// pendent
// runs

// inde-

e := U(Ei−1)

if |V0| = 2 then return unique cut-set

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms10

Karger-Stein: Running Time

// O(1)

// O(n)
// O(1)

Recursion

T (n) = 2T

„
n√
2
+ 1

«
+O(n2)

After t = n−n=
√
2−1 steps the number

of nodes is n=
√
2 + 1

// O(n)

KargerStein(G0 = (V0; E0))

if |V0| = 2 then return unique cut-set

e := U(Ei−1)

Gi = Gi−1:contract(e)

return smaller of C1, C2

for i = 1 to s = |V0| − |V0|√
2
− 1 do

C1 := KargerStein(Gs)

C2 := KargerStein(Gs)
// pendent
// runs

// inde-Solution (essentially by Master Theorem)

T (n) = O(n2 log n)

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms11

Karger-Stein: Success Probability

Know: Each call to Karger-Stein breaks the min-cut with probability at most 1
2 .

Auxiliary Problem
Given complete binary tree of height d where each node is ran-
domly coloured red or green (with probability 1

2 each).
What is the probability pd that a green root-to-leaf path exists?

p0 = 1=2 // root green pd = 1
2 (1− (1− pd−1)

2) // root green, not no path in both left and right subtree

Claim: pd ≥ 1
d+2 . Proof by induction.

p0 =
1
2
= 1

0+2
X

pd = 1
2

`
1− (1− pd−1)

2´ ≥ 1
2

`
1− (1− 1

d+1
)2
´
= 1

2

`
2

d+1
− 1

(d+1)2
)

= 1
2
· 2d+2−1

(d+1)2
= 1

2
· 2d+1
d2+2d+1

≥ 1
2
· 2d
d2+2d

= 1
d+2

Corollary: Karger-Stein succeeds with probability at least plog√2(n)
= 1

O(log n) .

before calling itself recursively

// for 1 ≤ a ≤ b we have a
b
≥ a−1

b−1

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms12

Karger-Stein Amplified

Theorem: On a graph with n nodes, Karger-Stein runs in O(n2 log(n)) time and returns a
minimum cut with probability at least 1=O(log(n)).

Success probability ≥ p

Number of repetitions t

Amplified prob. ≥ 1− e−pt

Pr[“min-cut found”] ≥ 1−exp

„
− t

O(log(n))

«
= 1−O

„
1

n

«
for t = log2(n)

Corollary: On a graph with n nodes, O(log2(n)) repetitions of Karger-Stein run in
O(n2 log3(n)) total time and return a minimum cut with high probability.

Compared to O(n4 log(n)) for Karger

Compared to Ω(n3) for deterministic approaches

Amplification

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms13

Conclusion

V1 V2

Minimum Cut
Fundamental graph problem
Many deterministic flow-based algorithms ...
. . . with worst-case running times in Ω(n3)

Randomized Algorithms
Karger’s edge-contraction algorithm

Probability Amplification
Monte Carlo algorithms with and without biases

A
lg

o
O

ut
pu

t

Correct Answer

false
pos

true
pos

false
neg

Repetitions amplify success probability
Karger-Stein: Amplify before failure probability gets large

Outlook
“Minimum cuts in near-linear time”, Karger, J.Acm. ’00

Success w.h.p. in time O(m log3(n))

“Faster algorithms for edge connectivity via random 2-out contractions”, Ghaffari & Nowicki & Thorup, SODA’20

Success w.h.p. in time O(m log(n)) and O(m + n log3(n))

✗ ✓

✗

✓

true
neg

Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms14

Mögliche Prüfungsfragen

Was ist ein Monte-Carlo-Algorithmus?

Was versteht man unter Probability Amplification?
Wie funktioniert Probability Amplification...

Was ist das Minimum Cut Problem?

Welche Varianten gibt es?

... bei einseitigem Fehler?

... bei zweiseitigem Fehler?

... bei Optimierungsproblemen?
Wie hängt die Fehlerwahrscheinlichkeit mit der Anzahl Wiederholungen zusammen?

Was leisten die besten bekannten deterministischen Algorithmen?
Was sind Erfolgswahrscheinlichkeit und Laufzeit des trivialen Random Cut Algorithmus?
Wie funktioniert der Algorithmus von Karger?

Wie ergibt sich der Algorithmus von Karger und Stein aus dem Algorithmus von Karger?

Wie erreiche ich eine Erfolgswahrscheinlichkeit von 1− 1
n

?

Was bedeutet Pr[Et] und wie haben wir diese Wahrscheinlichkeit abgeschätzt?

Was ergibt sich für die Laufzeit und die Erfolgswahrscheinlichkeit?

Wie haben wir die Erfolgswahrscheinlichkeit und Laufzeit abgeschätzt?

