

Probability & Computing

Probability Amplification

www.kit.edu

Probability Amplification

Correct Answer

false neg

true pos

true

false

Output

Algo

Definition: A **Monte Carlo Algorithm** is a randomized algorithm with bounded running time that, for each input, answers correctly with probability at least $p \in (0, 1)$.

- In decision problems p is the probability of giving the correct answer
 - One-sided error: either false-biased or true-biased
 - Two-sided error: no bias
- In optimization problems p is the probability of finding the optimum

Definition: **Probability amplification** is the process of increasing the success probability of a Monte Carlo algorithm by using multiple runs.

Probability Amplification for true-biased algorithms

- Execute independently t times.
 - If \checkmark at least once: Return \checkmark . (surely correct)
 - Otherwise: Return X. $\Pr["correct"] \ge 1 (1 p)^t \ge 1 e^{-pt}$

Exercise: For two-sided error.

$$x + x \leq e^x$$
 for $x \in \mathbb{R}$

Probability Amplification

Definition: A **Monte Carlo Algorithm** is a randomized algorithm with bounded running time that, for each input, answers correctly with probability at least $p \in (0, 1)$.

- In decision problems p is the probability of giving the correct answer
 - One-sided error: either false-biased or true-biased
 - Two-sided error: no bias
- In optimization problems p is the probability of finding the optimum

Definition: **Probability amplification** is the process of increasing the success probability of a Monte Carlo algorithm by using multiple runs.

Probability Amplification for optimization algorithms

- Execute independently t times.
 - output best result

$$\mathsf{Pr}[extsf{``optimal''}] \geq 1 - \left(1 - p
ight)^t \ \geq 1 - e^{-
ho t}$$

The Segmentation Problem

Input

• Set P of points in a feature space (e.g., \mathbb{R}^d)

• Similarity measure $\sigma \colon P \times P \mapsto \mathbb{R}_+$

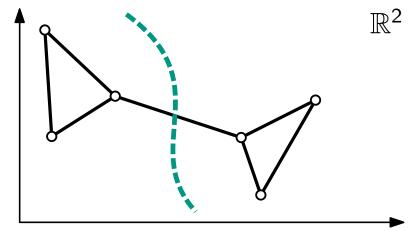
Output: P_1, \ldots, P_k such that

- Points within a P_i have high similarity
- Points in distinct P_i , P_j have low similarity

Applications: Compression, medical diagnosis, etc.

Approach: Model as graph

- Each point is a node
- Edges between all node pairs, with the weight given by the similarity of the two nodes
- Find cut-set (edges to remove) of minimal weight such that the graph decomposes into k components.



Example

- six points in \mathbb{R}^2
- σ is the inversed Euclidean distance
- segment into two sets

Today

$$k=2 ext{ and } \sigma \colon P imes P\mapsto \{0,1\}$$

Computing Min Cuts

 $V_1 \cap V_2 = \emptyset$ and $V_1 \cup V_2 = V$.

Cuts

• Cut-set: set of edges with an endpoints in V_1 and V_2

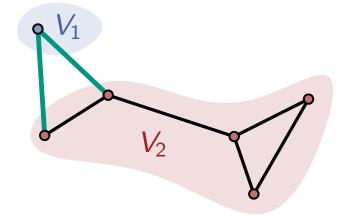
 $\blacksquare G = (V, E)$ an unweighted, undirected, connected graph

• Cut: partition of V into non-empty parts V_1 , V_2 such that

• Weight of a cut: size of the cut-set (or sum of weights in a weighted graph)

Today Goal: Compute a Min-Cut

- i.e. a cut of minimum weight or cut-set of minimum size the weight of the min-cut is known as the edge-connectivity of G
- Known deterministic strategies have worst case running time $\Omega(n^3)$.
- We'll see randomised algorithm with running time $O(n^2 \cdot \log^3(n))$.



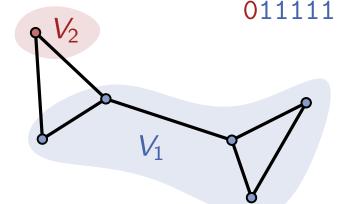
A Trivial Algorithm: Random Cut

Observation: There are $2^{n-1} - 1$ cuts in a graph with *n* nodes.

- Number of possible assignments of n nodes to 2 parts¹
- Partitions with empty parts that do not represent cuts –
- Swapping parts does not yield a new partition -

Algorithm: Random Cut

- Return a uniformly random cut.
- Minor challenge: How to uniformly sample cuts?
 - Represent cut using bit-string
 - Have to uniformly sample bit-string while avoiding 11...1 and 00...0?
 - intution: sample from $\mathcal{U}(\{0,1\}^n)$ and use rejection sampling
 - actually for bounded running time: declare failure rather than sampling again
 - samples each cut with probability $1/2^{n-1}$



 $(2^{n}-2)/2$

Random Cut: Analysis

Running time: O(n) much better than the $\Omega(n^3)$ in the deterministic setting, but... **Success probability**: $\geq 1/2^{n-1}$ "=" if there is only one min-cut.

 \rightarrow exponentially small!

Amplification

Repeat the algorithm to obtain *t* independent random cuts, return the smallest $\Pr[\text{"min cut found"}] \ge 1 - (1 - 1/2^{n-1})^t \ge 1 - e^{-t/2^{n-1}}$ $\boxed{1 + x \le e^{-t/2^{n-1}}}$

• For $t = 2^{n-1}$ min cut found with constant probability $1 - 1/e \approx 0.63$

• For $t = 2^{n-1} \cdot \ln(n)$ min cut found with high probability 1 - 1/n

 $1+x\leq e^x$ for $x\in\mathbb{R}$

this is terrible so far...

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

non-essential

Karger's Algorithm

Edge Contraction

- Merge two adjacent nodes in a multigraph without self-loops
- A (multi) graph with two nodes has a unique cut-set
- Contraction Algorithm
 Motivation: distinguish non-essential as well as essential edges part of a min-cut & hope there are few essential ones

Karger($G_0 = (V_0, E_0)$) for i = 1 to n - 2 do // O(n)

- $e := \mathcal{U}(E_{i-1})$ // O(1)
- $G_i = G_{i-1}$.contract(e) // O(n)

return unique cut-set in G_{n-2}

- Running time in $O(n^2)$
- Can be implemented to run in O(m)

UV X **Success Probability** essential **Observation**: A cut-set in G_i is a cut-set in G_0 . • Consider min-cut in G_0 with cut-set C and |C| = k**Observation**: min-degree > k• $\mathcal{E}_i = \mathcal{C} \text{ in } G_i$ " $\Pr[\mathcal{E}_1] = 1 - rac{k}{m}$ (holds for all G_i due to 1st observation) $\oint m = \frac{1}{2} \sum_{v \in V} \deg(v) \ge \frac{1}{2} \sum_{v \in V} k \ge \frac{1}{2} nk$ $\geq 1 - rac{k}{nk/2}$ $= 1 - \frac{2}{n}$

Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

Karger's Algorithm Edge Contraction

- Merge two adjacent nodes in a multigraph without self-loops
- A (multi) graph with two nodes has a unique cut-set
- Contraction Algorithm not part of a min-cut
 Motivation: distinguish non-essential as well as essential edges part of a min-cut
 & hope there are few essential ones

Karger($G_0 = (V_0, E_0)$) for i = 1 to n - 2 do // O(n)

 $e := \mathcal{U}(E_{i-1}) // O(1)$

 $G_i = G_{i-1}$.contract(*e*) // *O*(*n*) return unique cut-set in G_{n-2}

- Running time in $O(n^2)$
- Can be implemented to run in O(m)

UV X **Success Probability** essential **Observation**: A cut-set in G_i is a cut-set in G_0 . • Consider min-cut in G_0 with cut-set C and |C| = k• $\mathcal{E}_i = \mathcal{C}$ in G_i " **Observation**: min-degree $\geq k$ $\Pr[\mathcal{E}_1] \ge 1 - \frac{2}{n}$ (holds for all G_i due to 1st observation) $\Pr[\mathcal{E}_2 \mid \mathcal{E}_1] \ge 1 - \frac{2}{n-1} \longrightarrow \Pr[\mathcal{E}_i \mid \mathcal{E}_1 \cap \ldots \cap \mathcal{E}_{i-1}] \ge 1 - \frac{2}{n-i+1}$ $\Pr[\mathcal{E}_{n-2}] = \Pr[\mathcal{E}_1] \cdot \Pr[\mathcal{E}_2 \mid \mathcal{E}_1] \cdot \ldots \cdot \Pr[\mathcal{E}_{n-2} \mid \mathcal{E}_1 \cap \ldots \cap \mathcal{E}_{n-3}]$ $\geq \left(\frac{n-2}{n}\right)\left(\frac{n-3}{n-1}\right)\left(\frac{n-4}{n-2}\right)\cdots\left(\frac{2}{4}\right)\left(\frac{1}{3}\right)$ $=\frac{2}{n(n-1)} \geq \frac{2}{n^2}$

non-essential

Karlsruhe Institute of Technology

Karger's Algorithm Amplified

Theorem: On a graph with *n* nodes, Karger's algorithm runs in $O(n^2)$ time and returns a minimum cut with probability at least $\frac{2}{n^2}$.

$$\Pr[\text{``min-cut found''}] \ge 1 - \exp(-\frac{2}{n^2} \cdot t) = 1 - \frac{1}{n}$$

Success probability $\ge p$
Number of repetitions t
Amplified prob. $\ge 1 - e^{-pt}$

Corollary: On a graph with *n* nodes, $O(n^2 \log(n))$ Karger repetitions run in $O(n^4 \log(n))$ total time and return a min-cut with high probability. Much better than exp. time of Randomized Cut!

Sidenote: Number of minimum cuts

• Let C_1, \ldots, C_{ℓ} be all the min-cuts in G and \mathcal{E}_{n-2}^i for $i \in [\ell]$ be the event that C_i is returned by Karger's algorithm

Observation: $\ell \leq \frac{n^2}{2}$.

■ Just seen: $\Pr[\mathcal{E}_{n-2}^i] \ge \frac{2}{n^2}$ $1 \ge \Pr\left[\bigcup_{i \in [\ell]} \mathcal{E}_{n-2}^i\right] = \sum_{i \in [\ell]} \Pr[\mathcal{E}_{n-2}^i] \ge \frac{2 \cdot \ell}{n^2}$

8

More Amplification: Karger-Stein

Motivation

Probability that a min-cut survives i contractions

$$\Pr[\mathcal{E}_i] = \Pr[\mathcal{E}_1] \cdot \Pr[\mathcal{E}_2 \mid \mathcal{E}_1] \cdot \ldots \cdot \Pr[\mathcal{E}_i \mid \mathcal{E}_1 \cap \ldots \cap \mathcal{E}_{i-1}]$$

$$\geq \left(1 - \frac{2}{n}\right) \left(1 - \frac{2}{n-1}\right) \left(1 - \frac{2}{n-2}\right) \cdots \left(1 - \frac{2}{n-i+2}\right) \left(1 - \frac{2}{n-i+1}\right)$$

$$= \left(\frac{n-2}{n}\right) \left(\frac{n-3}{n-1}\right) \left(\frac{n-4}{n-2}\right) \cdots \left(\frac{n-i}{n-i+2}\right) \left(\frac{n-i-1}{n-i+1}\right)$$

$$= \frac{(n-i)(n-i-1)}{n(n-1)} \geq \frac{(n-i-1)(n-i-1)}{n \cdot n} = \left(1 - \frac{i+1}{n}\right)^2.$$

Probability becomes very small only towards the very end.

Idea: stop when a min-cut is still likely to exist and recurse

• After $s = n - n/\sqrt{2} - 1$ steps we have

$$\Pr[\mathcal{E}_s] \ge \left(1 - \frac{n - n/\sqrt{2}}{n}\right) = \left(1 - (1 - 1/\sqrt{2})\right)^2 = (1/\sqrt{2})^2 = \frac{1}{2}$$

Karlsruhe Institute of Technology

KargerStein($G_0 = (V_0, E_0)$) if $|V_0| = 2$ then return unique cut-set for i = 1 to $s = |V_0| - \frac{|V_0|}{\sqrt{2}} - 1$ do $e := \mathcal{U}(E_{i-1})$ $G_i = G_{i-1}.$ contract(e) $C_1 := KargerStein(G_s)$ // inde- $C_2 := KargerStein(G_s)$ // runs return smaller of C_1, C_2

Karger-Stein: Running Time

Recursion

• After $t = n - n/\sqrt{2} - 1$ steps the number of nodes is $n/\sqrt{2} + 1$

$$T(n) = 2T\left(\frac{n}{\sqrt{2}} + 1\right) + O(n^2)$$

Solution (essentially by Master Theorem)

 $T(n) = O(n^2 \log n)$

KargerStein($G_0 = (V_0, E_0)$)// O(1)if $|V_0| = 2$ then return unique cut-set// O(n)for i = 1 to $s = |V_0| - \frac{|V_0|}{\sqrt{2}} - 1$ do// O(1) $e := \mathcal{U}(E_{i-1})$ // O(n) $G_i = G_{i-1}$.contract(e) $C_1 := KargerStein(G_s)$ // inde- $C_2 := KargerStein(G_s)$ // runsreturn smaller of C_1, C_2

Karger-Stein: Success Probability

Know: Each call to Karger-Stein breaks the min-cut with probability at most $\frac{1}{2}$.

Auxiliary Problem

Given complete binary tree of height *d* where each node is randomly coloured red or green (with probability $\frac{1}{2}$ each). What is the probability p_d that a green root-to-leaf path exists?

Corollary: Karger-Stein succeeds with probability at least $p_{\log_{\sqrt{2}}(n)} = \frac{1}{O(\log n)}$.

Karger-Stein Amplified

Theorem: On a graph with *n* nodes, Karger-Stein runs in $O(n^2 \log(n))$ time and returns a minimum cut with probability at least $1/O(\log(n))$.

Amplification

$$\Pr[\text{"min-cut found"}] \ge 1 - \exp\left(-\frac{t}{O(\log(n))}\right) = 1 - O\left(\frac{1}{n}\right)$$

for $t = \log^2(n)$

Success probability $\geq p$ Number of repetitions tAmplified prob. $\geq 1 - e^{-pt}$

Corollary: On a graph with *n* nodes, $O(\log^2(n))$ repetitions of Karger-Stein run in $O(n^2 \log^3(n))$ total time and return a minimum cut with high probability.

• Compared to $O(n^4 \log(n))$ for Karger

• Compared to $\Omega(n^3)$ for deterministic approaches

Conclusion

Minimum Cut

- Fundamental graph problem
- Many deterministic flow-based algorithms ...
- ... with worst-case running times in $\Omega(n^3)$

Randomized Algorithms

Karger's edge-contraction algorithm

Probability Amplification

- Monte Carlo algorithms with and without biases
- Repetitions amplify success probability
- Karger-Stein: Amplify before failure probability gets large

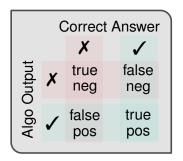
Outlook

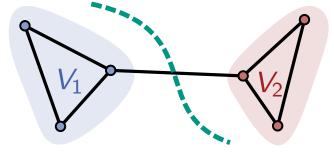
"Minimum cuts in near-linear time", Karger, J.Acm. '00

Success w.h.p. in time $O(m \log^3(n))$

"Faster algorithms for edge connectivity via random 2-out contractions", Ghaffari & Nowicki & Thorup, SODA'20

Success w.h.p. in time $O(m \log(n))$ and $O(m + n \log^3(n))$





Mögliche Prüfungsfragen

- Was ist ein Monte-Carlo-Algorithmus?
 - Welche Varianten gibt es?
- Was versteht man unter Probability Amplification?
- Wie funktioniert Probability Amplification...
 - ... bei einseitigem Fehler?
 - ... bei zweiseitigem Fehler?
 - ... bei Optimierungsproblemen?
 - Wie hängt die Fehlerwahrscheinlichkeit mit der Anzahl Wiederholungen zusammen?
- Was ist das Minimum Cut Problem?
 - Was leisten die besten bekannten deterministischen Algorithmen?
 - Was sind Erfolgswahrscheinlichkeit und Laufzeit des trivialen Random Cut Algorithmus?
 - Wie funktioniert der Algorithmus von Karger?
 - Was bedeutet $Pr[\mathcal{E}_t]$ und wie haben wir diese Wahrscheinlichkeit abgeschätzt?
 - Was ergibt sich f
 ür die Laufzeit und die Erfolgswahrscheinlichkeit?
 - Wie ergibt sich der Algorithmus von Karger und Stein aus dem Algorithmus von Karger?
 - Wie haben wir die Erfolgswahrscheinlichkeit und Laufzeit abgeschätzt?
 - Wie erreiche ich eine Erfolgswahrscheinlichkeit von $1 \frac{1}{n}$?