

Probability & Computing

Probability Amplification

22 Maximilian Katzmann, Stefan Walzer – Probability a Computing Institute of Theoretical Information Maximilian Katzmann, Stefan Walzer – Probability a computing $\frac{1}{2}$ **

2** Maximilian Katzmann, Stefan Walzer – Probab **Definition**: A **Monte Carlo Algorithm** is a randomized algorithm with bounded running time that, for each input, answers correctly with probability at least $p \in (0,1)$.

22 Maximilian Katzmann, Stefan Walzer – Probability actomputing and Theoretical Information Algorithms institute of Theoretical Information Computing a Direct Amplification problems p **is the probability of giving the c Definition**: A **Monte Carlo Algorithm** is a randomized algorithm with bounded running time that, for each input, answers correctly with probability at least $p \in (0, 1)$.

In decision problems *p* is the probability of giving the correct answer
 One-sided error: either *false-biased* or *true-biased*
 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$

22 Maximilian Katzmann, Stefan Walzer – Probability at omputing $\frac{1}{2}$ Maximilian Katzmann, Stefan Walzer – Probability of Theoretical Information Algorithms **Probability** of Theoretical Information **Probability Pr Definition**: A **Monte Carlo Algorithm** is a randomized algorithm with bounded running time that, for each input, answers correctly with probability at least $p \in (0, 1)$.

In decision problems *p* is the probability of giving the correct answer **Correct Answer Correct** Answer **Correct** Answer **Correct Correct Correct Correct Correct Correct Correct Correct Correct Correct**

 $\begin{array}{c|c|c|c|c|c} \hline \text{X} & \text{as } \text{X} \text{ is a positive number of vertices.} \ \hline \text{X} & \text{as } \text{X} \text{ is a positive number of vertices.} \ \hline \text{X} & \text{as } \text{X} \text{ is a positive number of vertices.} \ \hline \text{X} & \text{as } \text{X} \text{ is a positive number of vertices.} \ \hline \text{X} & \text{as } \text{X} \text{ is a positive number of vertices.} \ \hline \text{X} & \text{S} & \text{S} \ \hline \text{X} & \text{S} & \text{S} \ \hline \text{$ ✓ answers may be incorrect

22 Maximilian Katzmann, Stefan Walzer – Probability accomputing and Theoretical Information Algorithms **Probability of Theoretical Information Computing amplification**
 2 Direction Probability of Theoretical Inform Definition: A **Monte Carlo Algorithm** is a randomized algorithm with bounded running time that, for each input, answers correctly with probability at least $p \in (0, 1)$.

In decision problems *p* is the probability of giving the correct answer
 One-sided error: either *false-biased* or *true-biased*
 X answers are always correct
 X answers may be incorrect
 X answers may be incorre

version of the correct version of the correct version of the set of the version of the **x** answers may be incorrect

22 Maximilian Katzmann, Stefan Walzer – Probability at computing a computing Institute of Theoretical Information Computing **ample of Theoretical Information Computing a Computing a computing a computing institute of Definition**: A **Monte Carlo Algorithm** is a randomized algorithm with bounded running time that, for each input, answers correctly with probability at least $p \in (0, 1)$.

- In decision problems *p* is the probability of giving the correct answer
 Correct Answer Two-sided error: *ino bias* Algo Output Correct Answer and the correct Answer and the section of the correct answer and the secti
	- **One-sided error**: either *false-biased* or *true-biased*
	-

x answers may be incorrect ✓ answers may be incorrect

22 Maximilian Katzmann, Stefan Walzer – Probability accomputing $\frac{1}{2}$ Maximilian Katzmann, Stefan Walzer – Probability of Theoretical Information Computing **Probability of Theoretical Information** Probability **Prope Definition**: A **Monte Carlo Algorithm** is a randomized algorithm with bounded running time that, for each input, answers correctly with probability at least $p \in (0, 1)$.

- In decision problems *p* is the probability of giving the correct answer
 One-sided error: either *false-biased* or *true-biased*

In optimization problems *p* is the probability of finding the optimum
 $\frac{a}{2} \times \frac{a}{2$
	- **One-sided error**: either *false-biased* or *true-biased*
	- **Two-sided error**: *no bias*
-

false pos

true X
true fals
neg neg

✗

✓

true pos

false neg

Definition: A **Monte Carlo Algorithm** is a randomized algorithm with bounded running time that, for each input, answers correctly with probability at least $p \in (0,1)$.

- In decision problems p is the probability of giving the correct answer
	- **One-sided error**: either *false-biased* or *true-biased*
	- **Two-sided error**: *no bias*
- In optimization problems p is the probability of finding the optimum

22 Maximilian Katzmann, Stefan Walzer – Probability at computing a computing inter that is the probability of giving the correct answer
 2 Computing Information Probability of Theoretical Information Probability of T Definition: **Probability amplification** is the process of increasing the success probability **I** In decision problems *p* is the probability of giving the correct answer
 One-sided error: either *false-biased* or *true-biased*
 I No-sided error: *no bias*
 I In optimization problems *p* is the probability

22 Maximilian Katzmann, Stefan Walzer – Probability at computing a computing inter that is the probability of giving the correct answer
 2 Computing Information Probability of Theoretical Information Probability of T Definition: A **Monte Carlo Algorithm** is a randomized algorithm with bounded running time that, for each input, answers correctly with probability at least $p \in (0,1)$.

- In decision problems p is the probability of giving the correct answer
	- **One-sided error**: either *false-biased* or *true-biased*
	- **Two-sided error**: *no bias*
- In optimization problems p is the probability of finding the optimum

Definition: **Probability amplification** is the process of increasing the success probability **I** In decision problems *p* is the probability of giving the correct answer
 One-sided error: either *false-biased* or *true-biased*
 I No-sided error: *no bias*
 I In optimization problems *p* is the probability

Definition: A **Monte Carlo Algorithm** is a randomized algorithm with bounded running time that, for each input, answers correctly with probability at least $p \in (0,1)$.

- In decision problems p is the probability of giving the correct answer
	- **One-sided error**: either *false-biased* or *true-biased*
	- **Two-sided error**: *no bias*
- In optimization problems p is the probability of finding the optimum √ answers are always corre
★ answers may be incorrect

Correct Answer
 $\frac{x}{\frac{1}{2}}$
 $\frac{x}{\frac{1}{2}}$
 $\frac{1}{2}$
 $\frac{x}{\frac{1}{2}}$
 $\frac{1}{2}$
 $\frac{1}{2$ false pos true pos false neg true $\begin{array}{c|c}\n \hline\n \text{true}-\text{DIASEO} & \text{true} \\
 \hline\n \text{X} & \text{answer} & \text{are always correct} \\
 \hline\n \text{X} & \text{answer} & \text{may be incorrect} \\
 \hline\n \text{X} & \text{answer} & \text{may be incorrect} \\
 \hline\n \end{array}$ ✗ ✓ ✗ ✓

Probability Amplification
 22 Maximilian Katzmann Stefan Walzer – Probability of Theoretical Information Computing Institute of Theoretical Information Computing and Computing Information Probability of Theoretical I **Definition**: **Probability amplification** is the process of increasing the success probability of a Monte Carlo algorithm by using multiple runs.

Probability Amplification for true-biased algorithms

Execute independently t times.

- If √at least once: Return √. (surely correct)
- Otherwise: Return X . Pr["correct"] $\geq 1-(1-p)^t$ $\geq 1-e^{-pt}$

 $1 + x \le e^x$ for $x \in \mathbb{R}$

Correct Answer
 $\begin{array}{ccc}\nX & \swarrow \\
\frac{1}{2} & \swarrow \\
\frac{1}{2} & \searrow \\
\frac{1}{2} & \searrow \\
\frac{1}{2} & \searrow\n\end{array}$ true

true

true

false true

pos pos

true X
true fals
neg neg

✗

✓

false pos

true pos

false neg

Definition: A **Monte Carlo Algorithm** is a randomized algorithm with bounded running time that, for each input, answers correctly with probability at least $p \in (0,1)$.

- In decision problems p is the probability of giving the correct answer
	- **One-sided error**: either *false-biased* or *true-biased*
	- **Two-sided error**: *no bias*
- In optimization problems p is the probability of finding the optimum

22 Maximilian Katzmann, Stefan Walzer-Probability at Computing Algorithm is a randomized algorithm with bounded running
 20 Maximilian Katzmann Path Batzmann Path Batzmann Path Batzmann Path Batzmann Path Batzmann Pat **Definition**: **Probability amplification** is the process of increasing the success probability of a Monte Carlo algorithm by using multiple runs.

Probability Amplification for true-biased algorithms

Execute independently t times.

- If √at least once: Return √. (surely correct)
- Otherwise: Return X . Pr["correct"] $\geq 1-(1-p)^t$ $\geq 1-e^{-pt}$

Exercise: For two-sided error.

$$
\boxed{1+x\leq \mathsf{e}^{\mathsf{x}} \text{ for } \mathsf{x}\in \mathbb{R}}
$$

22 Maximilian Katzmann, Stefan Walzer – Probability accomputing accomputing Theoretical Information Computing interesting of Theoretical Information Computing **Probability** of The probability of thrue-biased
 2 Compu Definition: A **Monte Carlo Algorithm** is a randomized algorithm with bounded running time that, for each input, answers correctly with probability at least $p \in (0,1)$.

- In decision problems p is the probability of giving the correct answer
	- **One-sided error**: either *false-biased* or *true-biased*
	- **Two-sided error**: *no bias*
- In optimization problems p is the probability of finding the optimum

false pos true pos false neg true X
true fals
neg neg ✗ ✓

Definition: **Probability amplification** is the process of increasing the success probability **I** In decision problems *p* is the probability of giving the correct answer
 One-sided error: either *false-biased* or *true-biased*
 I No-sided error: *no bias*
 I In optimization problems *p* is the probability

Probability Amplification for optimization algorithms
■ Execute independently *t* times.
■ output best result

- -

$$
\mathsf{Pr}[\text{``optimal''}] \ge 1 - \left(1 - p\right)^t \ \ge 1 - e^{-pt}
$$

- The Segmentation Problem

Input

Set P of points in a feature space (e.g., \mathbb{R}^d)

Similarity measure $\sigma: P \times P \to \mathbb{R}_+$
 \blacksquare

Similarity according to the problem of the set of the set of the set of the set of the *d*)
	- Similarity measure σ : $P \times P \mapsto \mathbb{R}_+$

- *d*)
- Similarity measure σ : $P \times P \mapsto \mathbb{R}_+$

- six points in \mathbb{R}^2
- \bullet σ is the inversed Euclidean distance

- *d*)
- **Similarity measure** σ **:** $P \times P \mapsto \mathbb{R}_+$
- **Output**: P_1, \ldots, P_k such that
- Points within a *Pⁱ* have high similarity
- Points in distinct *Pⁱ* , *P^j*

- six points in \mathbb{R}^2
- \bullet *σ* is the inversed Euclidean distance
- **segment into two sets**

- *d*)
- **Similarity measure** σ **:** $P \times P \mapsto \mathbb{R}_+$
- **Output**: P_1, \ldots, P_k such that
- Points within a *Pⁱ* have high similarity
- Points in distinct *Pⁱ* , *P^j*

- six points in \mathbb{R}^2
- \bullet *σ* is the inversed Euclidean distance
-

• Similarity measure σ : $P \times P \mapsto \mathbb{R}_+$

Output: P_1, \ldots, P_k such that

- Points within a *Pⁱ* have high similarity
- Points in distinct *Pⁱ* , *P^j*

- six points in \mathbb{R}^2
- \bullet σ is the inversed Euclidean distance
-

• Similarity measure σ : $P \times P \mapsto \mathbb{R}_+$

Output: P_1, \ldots, P_k such that

- Points within a *Pⁱ* have high similarity
- Points in distinct *Pⁱ* , *P^j*

-
- **Approach**: Model as graph **Each point is a node**
 Each point is a node
 Edges between all node pairs, with the weight given by esegment into two sets

- six points in \mathbb{R}^2
- **•** σ is the inversed Euclidean distance
-

• Similarity measure σ : $P \times P \mapsto \mathbb{R}_+$

Output: P_1, \ldots, P_k such that

- Points within a *Pⁱ* have high similarity
- Points in distinct *Pⁱ* , *P^j*

-
- **Approach**: Model as graph **Each point is a node**
 Each point is a node
 Edges between all node pairs, with the weight given by esegment into two sets the similarity of the two nodes
- **Find** *cut-set* (edges to remove) of minimal weight such that the graph decomposes into *k* components.

- six points in \mathbb{R}^2
- **•** σ is the inversed Euclidean distance
-

• Similarity measure σ : $P \times P \mapsto \mathbb{R}_+$

Output: P_1, \ldots, P_k such that

- Points within a *Pⁱ* have high similarity
- Points in distinct *Pⁱ* , *P^j*

-
- **Approach**: Model as graph **Each point is a node**
 Each point is a node
 Edges between all node pairs, with the weight given by esegment into two sets the similarity of the two nodes **Applications**: Compression, medical diagnosis, etc.
 Approach: Model as graph **a** *k* **c** is the inversed Euclidear distance

■ Edges between all node pairs, with the weight given by ■ segment into two sets

the simi
- Find *cut-set* (edges to remove) of minimal weight such that the graph decomposes into *k* components.

- six points in \mathbb{R}^2
- **•** σ is the inversed Euclidean distance
-

$$
k=2 \text{ and } \sigma \colon P \times P \mapsto \{0,1\}
$$

-
- *Cut*: partition of *V* into non-empty parts V_1 , V_2 such that $V_1 \cap V_2 = \emptyset$ and $V_1 \cup V_2 = V$.

-
- *Cut*: partition of *V* into non-empty parts V_1 , V_2 such that $V_1 \cap V_2 = \emptyset$ and $V_1 \cup V_2 = V$.

-
- *Cut*: partition of *V* into non-empty parts V_1 , V_2 such that $V_1 \cap V_2 = \emptyset$ and $V_1 \cup V_2 = V$.

-
- *Cut*: partition of *V* into non-empty parts V_1 , V_2 such that $V_1 \cap V_2 = \emptyset$ and $V_1 \cup V_2 = V$.
- *Cut-set*: set of edges with an endpoints in V_1 and V_2

-
- *Cut*: partition of *V* into non-empty parts V_1 , V_2 such that $V_1 \cap V_2 = \emptyset$ and $V_1 \cup V_2 = V$.
- *Cut-set*: set of edges with an endpoints in V_1 and V_2
- **In Weight of a cut: size of the cut-set** (or sum of weights in a weighted graph)

-
- *Cut*: partition of *V* into non-empty parts V_1 , V_2 such that $V_1 \cap V_2 = \emptyset$ and $V_1 \cup V_2 = V$.
- *Cut-set*: set of edges with an endpoints in V_1 and V_2
- **In Weight of a cut: Size of the cut-set** (or sum of weights in a weighted graph)

Today Goal: Compute a Min-Cut

i.e. a cut of minimum weight or cut-set of minimum size the weight of the min-cut is known as the edge-connectivity of *G*

*V*1

- Known deterministic strategies have worst case running time $\Omega(n^3)$.
- We'll see randomised algorithm with running time $O(n^2 \cdot \log^3(n))$.

**55 Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms

5** Maximilian Katzmann, Stefan Walzer – Probability & Computing
 5 Maxi $n-1$ − 1 cuts in a graph with *n* nodes.

■ Number of possible assignments of *n* nodes to 2 parts¹

n

Observation: There are $2^{n-1} - 1$ cuts in a graph with *n* nodes.

■ Number of possible assignments of *n* nodes to 2 parts¹

n

: There are $2^{n-1} - 1$ cuts in a graph with *n* nodes.

Number of possible assignments of *n* nodes to 2 parts Partitions with empty parts that do not represent cuts 2 $2^n - 2$
Partitions with empty parts that do not represent cuts —

 $2^n - 2$

Number of possible assignments of *n* nodes to 2 parts Partitions with empty parts that do not represent cuts 2 $2^n - 2$
Partitions with empty parts that do not represent cuts —

 $2^n - 2$

Observation: There are $2^{n-1} - 1$ cuts in a graph with *n* nodes.

- Number of possible assignments of *n* nodes to 2 parts
- (2ⁿ −2)

Number of possible assignments of *n* nodes to 2 parts

Partitions with empty parts that do not represent cuts

Swapping parts does not yield a new partition –
-

- Number of possible assignments of *n* nodes to 2 parts
- (2ⁿ −2)

Number of possible assignments of *n* nodes to 2 parts

Partitions with empty parts that do not represent cuts

Swapping parts does not yield a new partition –
-

- Number of possible assignments of *n* nodes to 2 parts
- (2ⁿ −2)

Number of possible assignments of *n* nodes to 2 parts

Partitions with empty parts that do not represent cuts

Swapping parts does not yield a new partition –
- **Algorithm: Random Cut**

Return a uniformly random cut.

- Number of possible assignments of *n* nodes to 2 parts
- (2ⁿ −2)

Number of possible assignments of *n* nodes to 2 parts

Partitions with empty parts that do not represent cuts

Swapping parts does not yield a new partition –
- **Algorithm: Random Cut**
- Return a uniformly random cut.
- **Minor challenge: How to uniformly sample cuts?**

- Number of possible assignments of *n* nodes to 2 parts
- (2ⁿ −2)

Number of possible assignments of *n* nodes to 2 parts

Partitions with empty parts that do not represent cuts

Swapping parts does not yield a new partition –
-

Algorithm: Random Cut

- **Return a uniformly random cut.**
- **Minor challenge: How to uniformly sample cuts?**
	- **Represent cut using bit-string**

 $n-1$ − 1 cuts in a graph with *n* nodes.

- Number of possible assignments of *n* nodes to 2 parts
- (2ⁿ −2)

Number of possible assignments of *n* nodes to 2 parts

Partitions with empty parts that do not represent cuts

Swapping parts does not yield a new partition –
-

Algorithm: Random Cut

- **Return a uniformly random cut.**
- Minor challenge: How to uniformly sample cuts?
	- **Represent cut using bit-string**
	- Have to uniformly sample bit-string *while avoiding* 11...1 and 00...0?

 $(2^n - 2)/2$

 $n-1$ − 1 cuts in a graph with *n* nodes.

- Number of possible assignments of *n* nodes to 2 parts
- (2ⁿ −2)

Number of possible assignments of *n* nodes to 2 parts

Partitions with empty parts that do not represent cuts

Swapping parts does not yield a new partition –
-

Algorithm: Random Cut

- **Return a uniformly random cut.**
- **Minor challenge: How to uniformly sample cuts?**
	- **Represent cut using bit-string**
	- Have to uniformly sample bit-string *while avoiding* 11...1 and 00...0?
		- intution: sample from $U(\{0,1\}^n)$ and use rejection sampling

 $(2^n - 2)/2$

 $n-1$ − 1 cuts in a graph with *n* nodes.

- Number of possible assignments of *n* nodes to 2 parts
- (2ⁿ −2)

Number of possible assignments of *n* nodes to 2 parts

Partitions with empty parts that do not represent cuts

Swapping parts does not yield a new partition –
-

Algorithm: Random Cut

- Return a uniformly random cut.
- **Minor challenge: How to uniformly sample cuts?**
	- **Represent cut using bit-string**
	- Have to uniformly sample bit-string *while avoiding* 11...1 and 00...0?
		- intution: sample from $U(\{0,1\}^n)$ and use rejection sampling
		- **actually for bounded running time: declare failure rather than sampling again**
		- samples each cut with probability 1/2ⁿ⁻¹

 $(2^n - 2)/2$

Running time: $O(n)$ much better than the $\Omega(n^3)$ in the deterministic setting , but...

Running time: $O(n)$ much better than the $\Omega(n^3)$ in the deterministic setting , but...

Shadimilan Katanam. Sietin Waze – Probabill $3)$ in the deterministic setting, but...

6 Maximilian Katzmann, Stefan Walzer – Probability: $\geq 1/2^{n-1}$ "=" if there is only one min-cut: Analysis $\frac{1}{2}$
 6 Maximilian Katzmann, Stefan Walzer – Probability a Computing $\frac{1}{2}$ method of Theoretical I **Success probability**: $\geq 1/2^{n-1}$ "=" if there is only one min-cut. much better than the $\Omega(n^3)$ in the deterministic setting, but...

6 Maximilian Katzmann, Stefan Walzer – Probability $\geq 1/2^{n-1}$ and \equiv if there is only one min-cut:

→ exponentially small!
 \rightarrow exponentially small!
 \rightarrow exponentially small!
 Engineering Accomputing Accomputi Success probability: $\geq 1/2^{n-1}$ "=" if there is only one min-cut. much better than the $\Omega(n^3)$ in the deterministic setting, but...

 \rightarrow exponentially small!

Running time: $O(n)$ much better than the $\Omega(n^3)$ in the deterministic setting , but...

Success probability: $\geq 1/2^{n-1}$ "=" if there is only one min-cut.

→ exponentially small!
 Amplification

■ Repeat the algo **Success probability**: $\geq 1/2^{n-1}$ "=" if there is only one min-cut. much better than the $\Omega(n^3)$ in the deterministic setting, but...

 \rightarrow exponentially small!

• Repeat the algorithm to obtain t independent random cuts, return the smallest $\Pr[\text{``min cut found''}] \geq 1 - \left(1 - 1/2^{n-1}\right)^t$

Running time: $O(n)$ much better than the $\Omega(n^3)$ in the deterministic setting , but...
 Success probability: $\geq 1/2^{n-1}$ "=" if there is only one min-cut.
 \rightarrow exponentially small!
 Amplification
 Computer Re **Success probability**: $\geq 1/2^{n-1}$ "=" if there is only one min-cut. much better than the Ω(*n*
 \rightarrow 1/2^{*n*-1} "=" if there is o
 \rightarrow exponentially small!

to obtain *t* independent r

"] \geq 1 - (1 - 1/2^{*n*-1})^{*t*}

minimum $3)$ in the deterministic setting, but...

 \rightarrow exponentially small!

■ Repeat the algorithm to obtain *t* independent random cuts, return the smallest

$$
\mathsf{Pr}[\text{``min cut found''}] \ge 1 - \big(1 - \underbrace{1/2^{n-1}}_{\text{minimum}}\big)^t
$$

Running time: $O(n)$ much better than the $\Omega(n^3)$ in the deterministic setting , but...
 Success probability: $\geq 1/2^{n-1}$ "=" if there is only one min-cut.
 \rightarrow exponentially small!
 Amplification
 Computer Re **Success probability**: $\geq 1/2^{n-1}$ "=" if there is only one min-cut. much better than the Ω(*n*
 \rightarrow 1/2^{*n*-1} "=" if there is o
 \rightarrow exponentially small!

to obtain *t* independent r

"] \geq 1 - (1 - 1/2<sup>*n*-1)^{*t*}

not minimum</sup> $3)$ in the deterministic setting, but...

 \rightarrow exponentially small!

• Repeat the algorithm to obtain t independent random cuts, return the smallest

$$
\mathsf{Pr}[\text{``min cut found''}] \geq \underbrace{1 - (1 - 1/2^{n-1})}_{\text{not}}{}^t
$$

Running time: $O(n)$ much better than the $\Omega(n^3)$ in the deterministic setting , but...
 Success probability: $\geq 1/2^{n-1}$ "=" if there is only one min-cut.
 \rightarrow exponentially small!
 Amplification
 Computer Re **Success probability**: $\geq 1/2^{n-1}$ "=" if there is only one min-cut. much better than the Ω(*n*³)
 $\geq 1/2^{n-1}$ "=" if there is onl

→ exponentially small!

to obtain *t* independent rar

"] $\geq 1 - (1 - 1/2^{n-1})^t$

not minimum *t* times $3)$ in the deterministic setting, but...

 \rightarrow exponentially small!

• Repeat the algorithm to obtain t independent random cuts, return the smallest

$$
\Pr[\text{``min cut found''}] \ge \underbrace{1 - \left(1 - \underbrace{1/2^{n-1}}_{\text{not}}\right)^t}_\text{not}\biguparrow^t_\text{time}
$$

Running time: $O(n)$ much better than the $\Omega(n^3)$ in the deterministic setting , but...

Success probability: $\geq 1/2^{n-1}$ "=" if there is only one min-cut.

→ exponentially small!
 Amplification

■ **Repeat the alg Success probability**: $\geq 1/2^{n-1}$ "=" if there is only one min-cut. much better than the $\Omega(n^3)$ in the deterministic setting, but...

 \rightarrow exponentially small!

• Repeat the algorithm to obtain t independent random cuts, return the smallest $\Pr[\text{``min cut found''}] \ge 1 - \left(1 - 1/2^{n-1}\right)^t \ge 1 - e^{-t/2^{n-1}}$ $1 + x \le e^x$ for $x \in \mathbb{R}$

Running time: $O(n)$ much better than the $\Omega(n^3)$ in the deterministic setting, but...
 Success probability: $\geq 1/2^{n-1}$ "=" if there is only one min-cut.
 \rightarrow exponentially small!
 Amplification
 Computer Rep **Success probability**: $\geq 1/2^{n-1}$ "=" if there is only one min-cut. : *O*(*n*) much better than the Ω(*n*³) in the determinis
 ability: $\geq 1/2^{n-1}$ "=" if there is only one min-cut.

→ exponentially small!

Ilgorithm to obtain *t* independent random cuts, return

cut found"] \geq $3)$ in the deterministic setting, but...

 \rightarrow exponentially small!

• Repeat the algorithm to obtain t independent random cuts, return the smallest $\Pr[\text{``min cut found''}] \ge 1 - \left(1 - 1/2^{n-1}\right)^t \ge 1 - e^{-t/2^{n-1}}$ $1 + x \le e^x$ for $x \in \mathbb{R}$

• For $t = 2^{n-1}$ min cut found with constant probability $1 - 1/e \approx 0.63$

Running time: $O(n)$ much better than the $\Omega(n^3)$ in the deterministic setting , but...

Success probability: $\geq 1/2^{n-1}$ "=" if there is only one min-cut.

→ exponentially small!
 Amplification

■ Repeat the algo **Success probability**: $\geq 1/2^{n-1}$ "=" if there is only one min-cut. **:** $O(n)$ much better than the Ω(n^3) in the determ
 ability: $\geq 1/2^{n-1}$ "=" if there is only one min-cu

→ exponentially small!

algorithm to obtain *t* independent random cuts, re

cut found"] $\geq 1 - (1 - 1/2^{n$ $3)$ in the deterministic setting, but...

 \rightarrow exponentially small!

• Repeat the algorithm to obtain t independent random cuts, return the smallest $\Pr[\text{``min cut found''}] \ge 1 - \left(1 - 1/2^{n-1}\right)^t \ge 1 - e^{-t/2^{n-1}}$ $1 + x \le e^x$ for $x \in \mathbb{R}$

For $t = 2^{n-1}$ min cut found with constant probability $1 - 1/e \approx 0.63$

For $t = 2^{n-1} \cdot \ln(n)$ min cut found with high probability $1 - 1/n$

Running time: $O(n)$ much better than the $\Omega(n^3)$ in the deterministic setting , but...

Success probability: $\geq 1/2^{n-1}$ "=" if there is only one min-cut.

→ exponentially small!
 Amplification

■ Repeat the algo **Success probability**: ≥ $1/2^{n-1}$ **:** $O(n)$ much better than the Ω(n^3) in the determ
 ability: $\geq 1/2^{n-1}$ "=" if there is only one min-cu

→ exponentially small!

algorithm to obtain *t* independent random cuts, re

cut found"] $\geq 1 - (1 - 1/2^{n$ $3)$ in the deterministic setting, but...

• Repeat the algorithm to obtain t independent random cuts, return the smallest $\Pr[\text{``min cut found''}] \ge 1 - \left(1 - 1/2^{n-1}\right)^t \ge 1 - e^{-t/2^{n-1}}$ $\geq 1/2^{n-1}$ "=" if there is only one min-cut.

→ exponentially small!

to obtain t independent random cuts, return the smallest
 $\binom{3^n}{2} \geq 1 - \left(1 - 1/2^{n-1}\right)^t \geq 1 - e^{-t/2^{n-1}}$
 $\frac{1 + x \leq e^x$ for $\frac{1}{2}$

cut fo

For $t = 2^{n-1}$ min cut found with constant probability $1 - 1/e \approx 0.63$

For $t = 2^{n-1} \cdot \ln(n)$ min cut found with high probability $1 - 1/n$

 $1 + x \le e^x$ for $x \in \mathbb{R}$

this is terrible

Karger's Algorithm
 Edge Contraction

• Merge two adjacent nodes in a multigraph without self-loops

• Merge two adjacent nodes in a multigraph without self-loops

• Merge two adjacent nodes in a multigraph without se

Karger's Algorithm
 Edge Contraction

• Merge two adjacent nodes in a multigraph without self-loops

• Merge two adjacent nodes in a multigraph without self-loops

• Merge two adjacent nodes in a multigraph without se

Edge Contraction

• Merge two adjacent nodes in a multigraph without self-loops

• A (multi) graph with two nodes has a unique cut-set

• A (multi) graph with two nodes has a unique cut-set

• A the contraction of the con ■ A (multi) graph with two nodes has a unique cut-set

A (multi) graph with two nodes has a unique cut-set

Contraction Algorithm

Karger's Algorithm

Edge Contraction

• Merge two adjacent nodes in a multigraph without self-loops

• A (multi) graph with two nodes has a unique cut-set

• Contraction Algorithm

• Movivalion: clistinguish *Toon-essen* Motivation: distinguish *non-essential* as well as *essential* edges **ontraction Algorithm**
Motivation: distinguish *non-essentia*
as well as *essential* edges} part of a min-cut
& hope there are few essential ones

-
- A (multi) graph with two nodes has a unique cut-set

Contraction Algorithm

Karger's Algorithm

Edge Contraction

• Merge two adjacent nodes in a multigraph without self-loops

• A (multi) graph with two nodes has a unique cut-set

• Contraction Algorithm

• Monte Margingthen *Tonnessential*

• **• Motivation: distinguish** *non-essential* as well as *essential* edges dge Contraction

Merge two adjacent nodes in a multigraph without self-loops

A (multi) graph with two nodes has a unique cut-set

ontraction Algorithm

Motivation: distinguish *non-essential*

as well as *essential* edges

-
- A (multi) graph with two nodes has a unique cut-set

Contraction Algorithm

Motivation: distinguish *non-essential* as well as *essential* edges dge Contraction

Merge two adjacent nodes in a multigraph without self-loops

A (multi) graph with two nodes has a unique cut-set

ontraction Algorithm

Motivation: distinguish *non-essential*

as well as *essential* edges

```
Karger's Algorithm<br>
Edge Contraction<br>
• Merge two adjacent nodes in a multigraph without self-loops<br>
• A (multi) graph with two nodes has a unique cut-set<br>
Contraction Algorithm<br>
• Motivation: distinguish fron-essentia
   Karger(G_0 = (V_0, E_0))for i = 1 to n - 2 do
          e \coloneqq \mathcal{U}(E_{i-1})G_i = G_{i-1}. contract(e)
      return unique cut-set in Gn−2
```


■ A (multi) graph with two nodes has a unique cut-set

Contraction Algorithm

Karger's Algorithm
 Edge Contraction
 Edge Contraction
 Edge Contraction
 Edge two adjacent nodes in a multigraph without self-loops
 Example that Algorithm
 Example in the multiply of the contraction Algorit Motivation: distinguish *non-essential* as well as *essential* edges $\frac{1}{2}$ part of a min-cut & hope there are few essential ones **ontraction Algorithm**
Motivation: distinguish *non-essentia*
as well as *essential* edges} part of a min-cut
& hope there are few essential ones

Karger $(G_0 = (V_0, E_0))$ for $i = 1$ to $n - 2$ do \qquad // $O(n)$ $e := U(E_{i-1})$ // $O(1)$ *Gⁱ* = *Gi*−1*:***contract**(*e*) // *O*(*n*)

return unique cut-set in *Gn*−²

- Running time in $O(n^2)$
- Can be implemented to run in $O(m)$

w x non-essential essential

-
- A (multi) graph with two nodes has a unique cut-set

Contraction Algorithm • Motivation: distinguish *non-essential*

as well as *essential* edges **ontraction Algorithm**
Motivation: distinguish *non-essentia*
as well as *essential* edges} part of a min-cut
& hope there are few essential ones

Karger $(G_0 = (V_0, E_0))$

for $i = 1$ to $n - 2$ do \qquad // $O(n)$ $e \coloneqq \mathcal{U}(E_{i-1})$ $\frac{1}{0}$ $(0, 1)$

Gⁱ = *Gi*−1*:***contract**(*e*) // *O*(*n*)

return unique cut-set in *Gn*−²

- Running time in $O(n^2)$
- Can be implemented to run in $O(m)$

is a cut-set in $\mathit{G}_{0}.$

Let *C* be a cut-set in *Gⁱ* .

Success Probability

- $G_i \setminus C$ is disconnected
- Assume *C* is not a cut-set in *G*₀.
	- $G_0 \setminus C$ is connected.
- $G_i \setminus C$ arises from $G_0 \setminus C$ by *i* edge contractions.
- **E** *f* contractions cannot disconnect a graph

-
- A (multi) graph with two nodes has a unique cut-set

// *O*(*n*)

Contraction Algorithm

Karger's Algorithm

Edge Contraction

• Merge two adjacent nodes in a multigraph without self-loops

• A (multi) graph with two nodes has a unique cut-set

Contraction Algorithm

• Motivation: clistinguish *inner* essen **• Motivation: distinguish** *non-essential* as well as *essential* edges **ontraction Algorithm**
Motivation: distinguish *non-essentia*
as well as *essential* edges} part of a min-cut
& hope there are few essential ones

$$
Karger(G_0 = (V_0, E_0))
$$

for $i = 1$ to $n - 2$ **do**

$$
e := \mathcal{U}(E_{i-1}) \qquad \qquad \textcolor{blue}{\mathcal{U}(0(1))}
$$

$$
G_i = G_{i-1}.\text{contract}(e) \text{ // } O(n)
$$

return unique cut-set in *Gn*−²

- Running time in $O(n^2)$
- Can be implemented to run in $O(m)$

Success Probability

essential

Observation: A cut-set in G_i is a cut-set in G_0 .

n Consider min-cut in G_0 with cut-set C and $|C| = k$

-
- A (multi) graph with two nodes has a unique cut-set

Contraction Algorithm

• Motivation: distinguish *non-essential* as well as *essential* edges **ontraction Algorithm** not part of a min-cut
Motivation: distinguish *non-essentia*
as well as *essential* edges part of a min-cut
& hope there are few essential ones

Karger $(G_0 = (V_0, E_0))$ for $i = 1$ to $n - 2$ do \qquad // $O(n)$ $e := U(E_{i-1})$ // $O(1)$

Gⁱ = *Gi*−1*:***contract**(*e*) // *O*(*n*)

return unique cut-set in *Gn*−²

- Running time in $O(n^2)$
- Can be implemented to run in $O(m)$

Success Probability

essential

Observation: A cut-set in G_i is a cut-set in G_0 .

Karger's Algorithm

Edge Contraction

• Merge two adjacent nodes in a multigraph without self-loops

• A (multi) graph with two nodes has a unique cut-set

Contraction Algorithm

• Motivation: clistinguish *inner* essen **n** Consider min-cut in G_0 with cut-set C and $|C| = k$ \mathcal{E}_i = "C in G_i " $Pr[\mathcal{E}_1]=1-\frac{k}{n}$ *m*

-
- A (multi) graph with two nodes has a unique cut-set

Contraction Algorithm • Motivation: distinguish *non-essential* as well as *essential* edges **ontraction Algorithm**
Motivation: distinguish *non-essentia*
as well as *essential* edges} part of a min-cut
& hope there are few essential ones

for $i = 1$ to $n - 2$ do \qquad // $O(n)$ $e := U(E_{i-1})$ // $O(1)$ *Gⁱ* = *Gi*−1*:***contract**(*e*) // *O*(*n*) **return** unique cut-set in *Gn*−²

Running time in $O(n^2)$

Karger $(G_0 = (V_0, E_0))$

■ Can be implemented to run in $O(m)$

Karger's Algorithm

Edge Contraction

• Merge two adjacent nodes in a multigraph without self-loops

• A (multi) graph with two nodes has a unique cut-set
 Contraction Algorithm

• Motivation: clistinguish *inner* exs *w x* **Success Probability** C onsider min-cut in G_0 with cut-set C and $|C|$ \mathcal{E}_i = "C in G_i " $Pr[\mathcal{E}_1]=1-\frac{k}{n}$ **Observation**: A cut-set in *G_i* is a cut-set in *G*₀. $\Big\{$ **Observation**: min-degree > k essential

1 Consider **m**
n
$$
\mathcal{E}_i
$$
 = "C in G

m

■ A (multi) graph with two nodes has a unique cut-set

Contraction Algorithm • Motivation: distinguish *non-essential* **ontraction Algorithm** not part of a min-cut
Motivation: distinguish *non-essentia*
as well as *essential* edges part of a min-cut
& hope there are few essential ones

as well as *essential* edges

Karger $(G_0 = (V_0, E_0))$ for $i = 1$ to $n - 2$ do \qquad // $O(n)$ $e := U(E_{i-1})$ // $O(1)$ *Gⁱ* = *Gi*−1*:***contract**(*e*) // *O*(*n*)

return unique cut-set in *Gn*−²

- Running time in $O(n^2)$
- Can be implemented to run in $O(m)$

-
- A (multi) graph with two nodes has a unique cut-set
- **Contraction Algorithm** Motivation: distinguish *non-essential* as well as *essential* edges $\frac{1}{2}$ part of a min-cut & hope there are few essential ones **ontraction Algorithm**
Motivation: distinguish *non-essentia*
as well as *essential* edges} part of a min-cut
& hope there are few essential ones

Karger $(G_0 = (V_0, E_0))$ for $i = 1$ to $n - 2$ do \qquad // $O(n)$ $e := U(E_{i-1})$ // $O(1)$ *Gⁱ* = *Gi*−1*:***contract**(*e*) // *O*(*n*) **return** unique cut-set in *Gn*−²

- Running time in $O(n^2)$
- Can be implemented to run in $O(m)$

Karger's Algorithm

Edge Contraction

• Merge two adjacent nodes in a multigraph without self-loops

• A (multi) graph with two nodes has a unique cut-set
 Contraction Algorithm

• Motivation: clistinguish *inner* exp *w x* **Success Probability n** Consider min-cut in G_0 with cut-set C and $|C| = k$ $\dot{m} =$ 1 2 \sum *v*∈*V* deg(*v*) ≥ 1 2 \sum *v*∈*V* $k \geq$ 1 2 *nk* \mathcal{E}_i = "C in G_i " $Pr[\mathcal{E}_1]=1-\frac{k}{n}$ *m* $\underline{\mathsf{U}_0.}$ **Observation**: min-degree > k (holds for all *Gⁱ* on-essential

ique cut-set
 Success Probability
 Observation: A cut-set in *G*_{*i*} is a cut-set in *G*₀
 e
 Observation: A cut-set *C* and $|C|$
 e
 E_{*i*} = "*C* in *G*_{*i*}" **Observation**: min-degree ≥ is a cut-set in $\mathit{G}_{0}.$

Karger's Algorithm

Edge Contraction

• Merge two adjacent nodes in a multigraph without self-loops

• A (multi) graph with two nodes has a unique cut-set
 Contraction Algorithm

• Motivation: distinguish *inner* exec **Karger** $(G_0 = (V_0, E_0))$ for $i = 1$ to $n - 2$ do \qquad // $O(n)$ $e := U(E_{i-1})$ // $O(1)$ *Gⁱ* = *Gi*−1*:***contract**(*e*) // *O*(*n*) **return** unique cut-set in *Gn*−² Running time in $O(n^2)$ **• Motivation: distinguish** *non-essential* as well as *essential* edges **ontraction Algorithm**
Motivation: distinguish *non-essentia*
as well as *essential* edges} part of a min-cut
& hope there are few essential ones ■ Can be implemented to run in $O(m)$ $\dot{m} =$ 1 2 \mathcal{E}_i = "C in G_i " $Pr[\mathcal{E}_1]=1-\frac{k}{n}$ *m* $\geq 1 - \frac{k}{nk}$ *nk=*2 $= 1 - \frac{2}{n}$ *n*

-
- A (multi) graph with two nodes has a unique cut-set

Contraction Algorithm

-
- A (multi) graph with two nodes has a unique cut-set

Contraction Algorithm • Motivation: distinguish *non-essential*

as well as *essential* edges **ontraction Algorithm**
Motivation: distinguish *non-essentia*
as well as *essential* edges} part of a min-cut
& hope there are few essential ones

Karger $(G_0 = (V_0, E_0))$ for $i = 1$ to $n - 2$ do \blacksquare // $O(n)$

 $e := U(E_{i-1})$ // $O(1)$ *Gⁱ* = *Gi*−1*:***contract**(*e*) // *O*(*n*)

return unique cut-set in *Gn*−²

- Running time in $O(n^2)$
- Can be implemented to run in $O(m)$

2

n

(holds for all *Gⁱ*

Karger's Algorithm

Edge Contraction

• Merge two adjacent nodes in a multigraph without self-loops

• A (multi) graph with two nodes has a unique cut-set
 Contraction Algorithm

• Motivation: clistinguish *inno-essen* for $i = 1$ to $n - 2$ do \blacksquare // $O(n)$ $e := U(E_{i-1})$ // $O(1)$ *Gⁱ* = *Gi*−1*:***contract**(*e*) // *O*(*n*) **return** unique cut-set in *Gn*−² *w x* Running time in $O(n^2)$ as well as *essential* edges **ontraction Algorithm**
Motivation: distinguish *non-essentia*
as well as *essential* edges} part of a min-cut
& hope there are few essential ones **Success Probability n** Consider min-cut in G_0 with cut-set C and $|C| = k$ none of the *k* edges of *C* contracted $\mathcal{E}_i = \text{``C in } G_i$ " **Observation**: min-degree ≥ *k*
 $[\mathcal{E}_1] \ge 1 - \frac{2}{n}$ (holds for all *G_i* due to 1st observation
 $[\mathcal{E}_2 | \mathcal{E}_1] \ge 1 - \frac{2}{n-1}$

→ none of the *k* edges of *C* contracted

— do not contract *k* (holds for all *Gⁱ* $\begin{CD} \mathsf{non}\text{-essential}\\ \mathsf{w}\text{-}\mathsf{essential} \ \overbrace{\mathsf{G}_i \text{ is a cut-set in } G_0.} \ \mathsf{th}\text{ cut-set } C \text{ and } |C| = \ \mathsf{tion}\text{: min-degree} \geq k \ \mathsf{is}\text{ for all } G_i \text{ due to 1st observation)} \end{CD}$ $Pr[\mathcal{E}_2 | \mathcal{E}_1] \geq 1 - \frac{2}{n-1}$ *n*−1 $Pr[\mathcal{E}_1] \geq 1 - \frac{2}{n}$ *n* **Observation**: A cut-set in G_i is a cut-set in G_0 .

■ A (multi) graph with two nodes has a unique cut-set

Contraction Algorithm

• Motivation: distinguish *non-essential*

Karger $(G_0 = (V_0, E_0))$

-
- Can be implemented to run in $O(m)$

-
- A (multi) graph with two nodes has a unique cut-set

Contraction Algorithm Motivation: distinguish *non-essential* as well as *essential* edges $\frac{1}{2}$ part of a min-cut & hope there are few essential ones **ontraction Algorithm**
Motivation: distinguish *non-essentia*
as well as *essential* edges} part of a min-cut
& hope there are few essential ones

Karger $(G_0 = (V_0, E_0))$ for $i = 1$ to $n - 2$ do \blacksquare // $O(n)$ $e := U(E_{i-1})$ // $O(1)$

Gⁱ = *Gi*−1*:***contract**(*e*) // *O*(*n*)

return unique cut-set in *Gn*−²

- Running time in $O(n^2)$
- Can be implemented to run in $O(m)$

Karger's Algorithm

Edge Contraction

• Merge two adjacent nodes in a multigraph without self-loops

• A (multi) graph with two nodes has a unique cut-set
 Contraction Algorithm

• Motivation: clistinguish *inner* exs *w x* **Success Probability Consider min-cut in** G_0 **with cut-set** *C* **and** $|C| = k$ $\mathcal{E}_i = "C$ in $G_i" \quad |$ **Observation**: min-degree $\geq k$ $\frac{2}{n}$ (holds for all G_i $\begin{CD} \mathsf{non}\text{-essential}\\ \mathsf{w}\text{-}\mathsf{essential} \ \overbrace{\mathsf{G}_i \text{ is a cut-set in } G_0.} \ \mathsf{th}\text{ cut-set } C \text{ and } |C| = \ \mathsf{tion}\text{: min-degree} \geq k \ \mathsf{is}\text{ for all } G_i \text{ due to 1st observation)} \end{CD}$ $Pr[\mathcal{E}_2 | \mathcal{E}_1] \geq 1 - \frac{2}{n-1}$ $\frac{2}{n-1}$ → Pr $[\mathcal{E}_i \mid \mathcal{E}_1 \cap ... \cap \mathcal{E}_{i-1}] \ge 1 - \frac{2}{n-i}$ $\begin{array}{l} \Pr[\mathcal{E}_1] \geq 1 - \frac{2}{n} \qquad \qquad \hbox{(holds for all G_i due to 1st observation)} \[5pt] \Pr[\mathcal{E}_2 \mid \mathcal{E}_1] \geq 1 - \frac{2}{n-1} \longrightarrow \Pr[\mathcal{E}_i \mid \mathcal{E}_1 \cap \ldots \cap \mathcal{E}_{i-1}] \geq 1 - \frac{2}{n-i+1} \end{array}$ *n* **Observation**: A cut-set in G_i is a cut-set in G_0 .

-
- A (multi) graph with two nodes has a unique cut-set
- **Contraction Algorithm • Motivation: distinguish** *non-essential* as well as *essential* edges **ontraction Algorithm**
Motivation: distinguish *non-essentia*
as well as *essential* edges} part of a min-cut
& hope there are few essential ones

Karger $(G_0 = (V_0, E_0))$ for $i = 1$ to $n - 2$ do \blacksquare // $O(n)$ $e := U(E_{i-1})$ // $O(1)$ *Gⁱ* = *Gi*−1*:***contract**(*e*) // *O*(*n*) **return** unique cut-set in *Gn*−² Running time in $O(n^2)$

■ Can be implemented to run in $O(m)$

Karger's Algorithm

Edge Contraction

• Merge two adjacent nodes in a multigraph without self-loops

• A (multi) graph with two nodes has a unique cut-set
 Contraction Algorithm

• Motivation: clistinguish *inner* exs *w x* **Success Probability Consider min-cut in** G_0 **with cut-set** *C* **and** $|C| = k$ $\mathcal{E}_i = "C$ in $G_i" \quad |$ **Observation**: min-degree $\geq k$ $Pr[\mathcal{E}_1] \geq 1 - \frac{2}{n}$ (holds for all G_i $\begin{CD} \mathsf{non}\text{-essential}\\ \mathsf{w}\text{-}\mathsf{essential} \ \overbrace{\mathsf{G}_i \text{ is a cut-set in } G_0.} \ \mathsf{th}\text{ cut-set } C \text{ and } |C| = \ \mathsf{tion}\text{: min-degree} \geq k \ \mathsf{is}\text{ for all } G_i \text{ due to 1st observation)} \end{CD}$ $Pr[\mathcal{E}_2 | \mathcal{E}_1] \geq 1 - \frac{2}{n-1}$ $\frac{2}{n-1}$ → Pr $[\mathcal{E}_i \mid \mathcal{E}_1 \cap ... \cap \mathcal{E}_{i-1}] \ge 1 - \frac{2}{n-i}$ *n*−*i*+1 $Pr[\mathcal{E}_{n-2}] = Pr[\mathcal{E}_1] \cdot Pr[\mathcal{E}_2 | \mathcal{E}_1] \cdot \ldots \cdot Pr[\mathcal{E}_{n-2} | \mathcal{E}_1 \cap \ldots \cap \mathcal{E}_{n-3}]$ *n* **Observation:** A cut-set in *G_i* is a
 Consider min-cut in *G***₀ with cut-

P**_r $[\mathcal{E}_1] \ge 1 - \frac{2}{n}$ (holds for all *G*)

P_r $[\mathcal{E}_2 | \mathcal{E}_1] \ge 1 - \frac{2}{n-1} \rightarrow Pr[\mathcal{E}_i | \mathcal{E}_1 \cap ... \cap$

Pr $[\mathcal{E}_{n-2}] = Pr[\mathcal{E}_1] \cdot Pr[\mathcal{$ **Observation**: A cut-set in G_i is a cut-set in G_0 .

n−2

Karger's Algorithm

Edge Contraction

• Merge two adjacent nodes in a multigraph without self-loops

• A (multi) graph with two nodes has a unique cut-set
 Contraction Algorithm

• Motivation: distinguish *inner* expe **Karger** $(G_0 = (V_0, E_0))$ for $i = 1$ to $n - 2$ do \blacksquare // $O(n)$ $e := U(E_{i-1})$ // $O(1)$ *Gⁱ* = *Gi*−1*:***contract**(*e*) // *O*(*n*) **ontraction Algorithm**
Motivation: distinguish *non-essentia*
as well as *essential* edges} part of a min-cut
& hope there are few essential ones **Success Probability Consider min-cut in** G_0 **with cut-set** *C* **and** $|C| = k$ $\mathcal{E}_i = "C$ in $G_i" \quad |$ **Observation**: min-degree $\geq k$ $Pr[\mathcal{E}_1] \geq 1 - \frac{2}{n}$ (holds for all G_i $\begin{CD} \mathsf{non}\text{-essential}\\ \mathsf{w}\text{-}\mathsf{essential} \ \overbrace{\mathsf{G}_i \text{ is a cut-set in } G_0.} \ \mathsf{th}\text{ cut-set } C \text{ and } |C| = \ \mathsf{tion}\text{: min-degree} \geq k \ \mathsf{is}\text{ for all } G_i \text{ due to 1st observation)} \end{CD}$ $Pr[\mathcal{E}_2 | \mathcal{E}_1] \geq 1 - \frac{2}{n-1}$ $\frac{2}{n-1}$ → Pr $[\mathcal{E}_i \mid \mathcal{E}_1 \cap ... \cap \mathcal{E}_{i-1}] \ge 1 - \frac{2}{n-i}$ $Pr[\mathcal{E}_{n-2}] = Pr[\mathcal{E}_1] \cdot Pr[\mathcal{E}_2 | \mathcal{E}_1] \cdot \ldots \cdot Pr[\mathcal{E}_{n-2} | \mathcal{E}_1 \cap \ldots \cap \mathcal{E}_{n-3}]$ *n* $\geq (1 - \frac{2}{n})$ 2 2 2 $\left(1-\frac{2}{n}\right)\left(1-\frac{2}{n-1}\right)\left(1-\frac{2}{n-2}\right)\cdots\left(1-\frac{2}{4}\right)\left(1-\frac{2}{3}\right)$ **Observation**: A cut-set in G_i is a cut-set in G_0 .

n

n−1

■ A (multi) graph with two nodes has a unique cut-set

Contraction Algorithm • Motivation: distinguish *non-essential*

as well as *essential* edges

return unique cut-set in *Gn*−²

- Running time in $O(n^2)$
- Can be implemented to run in $O(m)$

w x

n−*i*+1

2 3

4

w x

Karger's Algorithm

Edge Contraction

• Merge two adjacent nodes in a multigraph without self-loops

• A (multi) graph with two nodes has a unique cut-set

• Contraction Algorithm

• Motivation: clistinguish *inner* exs **Karger** $(G_0 = (V_0, E_0))$ for $i = 1$ to $n - 2$ do \blacksquare // $O(n)$ **Success Probability Consider min-cut in** G_0 **with cut-set** *C* **and** $|C| = k$ $\mathcal{E}_i = "C$ in $G_i" \quad |$ **Observation**: min-degree $\geq k$ $Pr[\mathcal{E}_1] \geq 1 - \frac{2}{n}$ (holds for all G_i $\begin{CD} \mathsf{non}\text{-essential}\\ \mathsf{w}\text{-}\mathsf{essential} \ \overbrace{\mathsf{G}_i \text{ is a cut-set in } G_0.} \ \mathsf{th}\text{ cut-set } C \text{ and } |C| = \ \mathsf{tion}\text{: min-degree} \geq k \ \mathsf{is}\text{ for all } G_i \text{ due to 1st observation)} \end{CD}$ $Pr[\mathcal{E}_2 | \mathcal{E}_1] \geq 1 - \frac{2}{n-1}$ $\frac{2}{n-1}$ → Pr $[\mathcal{E}_i \mid \mathcal{E}_1 \cap ... \cap \mathcal{E}_{i-1}] \ge 1 - \frac{2}{n-i}$ *n*−*i*+1 $Pr[\mathcal{E}_{n-2}] = Pr[\mathcal{E}_1] \cdot Pr[\mathcal{E}_2 | \mathcal{E}_1] \cdot \ldots \cdot Pr[\mathcal{E}_{n-2} | \mathcal{E}_1 \cap \ldots \cap \mathcal{E}_{n-3}]$ *n* $1 = \frac{n - i}{n - i}$ $\geq (1 - \frac{2}{n})$ *n* 2 *n*−1 2 *n*−2 2 4 2 3 $\left(1-\frac{2}{n}\right)\left(1-\frac{2}{n-1}\right)\left(1-\frac{2}{n-2}\right)\cdots\left(1-\frac{2}{4}\right)\left(1-\frac{2}{3}\right)$ **Observation**: A cut-set in G_i is a cut-set in G_0 .

-
- A (multi) graph with two nodes has a unique cut-set

Contraction Algorithm • Motivation: distinguish *non-essential* as well as *essential* edges **ontraction Algorithm**
Motivation: distinguish *non-essentia*
as well as *essential* edges} part of a min-cut
& hope there are few essential ones

$e := U(E_{i-1})$ // $O(1)$ *Gⁱ* = *Gi*−1*:***contract**(*e*) // *O*(*n*) **return** unique cut-set in *Gn*−²

- Running time in $O(n^2)$
- Can be implemented to run in $O(m)$

n−2

Karger's Algorithm

Edge Contraction

• Merge two adjacent nodes in a multigraph without self-loops

• A (multi) graph with two nodes has a unique cut-set
 Contraction Algorithm

• Motivation: distinguish *inner* expe **Karger** $(G_0 = (V_0, E_0))$ for $i = 1$ to $n - 2$ do \blacksquare // $O(n)$ **Success Probability Consider min-cut in** G_0 **with cut-set** *C* **and** $|C| = k$ $\mathcal{E}_i = "C$ in $G_i" \quad |$ **Observation**: min-degree $\geq k$ $Pr[\mathcal{E}_1] \geq 1 - \frac{2}{n}$ (holds for all G_i $\begin{CD} \mathsf{non}\text{-essential}\\ \mathsf{w}\text{-}\mathsf{essential} \ \overbrace{\mathsf{G}_i \text{ is a cut-set in } G_0.} \ \mathsf{th}\text{ cut-set } C \text{ and } |C| = \ \mathsf{tion}\text{: min-degree} \geq k \ \mathsf{is}\text{ for all } G_i \text{ due to 1st observation)} \end{CD}$ $Pr[\mathcal{E}_2 | \mathcal{E}_1] \geq 1 - \frac{2}{n-1}$ $\frac{2}{n-1}$ → Pr $[\mathcal{E}_i \mid \mathcal{E}_1 \cap ... \cap \mathcal{E}_{i-1}] \ge 1 - \frac{2}{n-i}$ $Pr[\mathcal{E}_{n-2}] = Pr[\mathcal{E}_1] \cdot Pr[\mathcal{E}_2 | \mathcal{E}_1] \cdot \ldots \cdot Pr[\mathcal{E}_{n-2} | \mathcal{E}_1 \cap \ldots \cap \mathcal{E}_{n-3}]$ *n* ≥ *n* 2 2 2 2 *n*−1 *n*−2 4 $\left(\frac{n}{n}-\frac{2}{n}\right)\left(\frac{n-1}{n-1}-\frac{2}{n-1}\right)\left(\frac{n-2}{n-2}-\frac{2}{n-2}\right)\cdots\left(\frac{4}{n}-\frac{2}{n}\right)\left(\frac{3}{3}-\frac{2}{3}\right)$ **Observation**: A cut-set in G_i is a cut-set in G_0 .

n

n

n−1

n−1

n−2

-
- A (multi) graph with two nodes has a unique cut-set

Contraction Algorithm • Motivation: distinguish *non-essential* as well as *essential* edges **ontraction Algorithm**
Motivation: distinguish *non-essentia*
as well as *essential* edges} part of a min-cut
& hope there are few essential ones

 $e := U(E_{i-1})$ // $O(1)$ *Gⁱ* = *Gi*−1*:***contract**(*e*) // *O*(*n*) **return** unique cut-set in *Gn*−²

- Running time in $O(n^2)$
- Can be implemented to run in $O(m)$

w x

n−*i*+1

3 3 2 3

4

4
n | n−1 *| n−2 | (* 4 *)* (3

Karger's Algorithm

Edge Contraction

• Merge two adjacent nodes in a multigraph without self-loops

• A (multi) graph with two nodes has a unique cut-set
 Contraction Algorithm

• Motivation: distinguish *inner* exse **Karger** $(G_0 = (V_0, E_0))$ **Success Probability Consider min-cut in** G_0 **with cut-set** *C* **and** $|C| = k$ $\mathcal{E}_i = "C$ in $G_i" \quad |$ **Observation**: min-degree $\geq k$ $Pr[\mathcal{E}_1] \geq 1 - \frac{2}{n}$ (holds for all G_i $\begin{CD} \mathsf{non}\text{-essential}\\ \mathsf{w}\text{-}\mathsf{essential} \ \overbrace{\mathsf{G}_i \text{ is a cut-set in } G_0.} \ \mathsf{th}\text{ cut-set } C \text{ and } |C| = \ \mathsf{tion}\text{: min-degree} \geq k \ \mathsf{is}\text{ for all } G_i \text{ due to 1st observation)} \end{CD}$ $Pr[\mathcal{E}_2 | \mathcal{E}_1] \geq 1 - \frac{2}{n-1}$ $\frac{2}{n-1}$ → Pr $[\mathcal{E}_i \mid \mathcal{E}_1 \cap ... \cap \mathcal{E}_{i-1}] \ge 1 - \frac{2}{n-i}$ $Pr[\mathcal{E}_{n-2}] = Pr[\mathcal{E}_1] \cdot Pr[\mathcal{E}_2 | \mathcal{E}_1] \cdot \ldots \cdot Pr[\mathcal{E}_{n-2} | \mathcal{E}_1 \cap \ldots \cap \mathcal{E}_{n-3}]$ *n* $\geq \left(\frac{n-2}{n}\right)\left(\frac{n-1-2}{n-1}\right)\left(\frac{n-2-2}{n-2}\right)\cdots\left(\frac{4-2}{n}\right)\left(\frac{3-2}{2}\right)$

-
- A (multi) graph with two nodes has a unique cut-set

Contraction Algorithm • Motivation: distinguish *non-essential* as well as *essential* edges **ontraction Algorithm**
Motivation: distinguish *non-essentia*
as well as *essential* edges} part of a min-cut
& hope there are few essential ones

for $i = 1$ to $n - 2$ do \qquad // $O(n)$ $e := U(E_{i-1})$ // $O(1)$ *Gⁱ* = *Gi*−1*:***contract**(*e*) // *O*(*n*) **return** unique cut-set in *Gn*−²

Running time in $O(n^2)$ ■ Can be implemented to run in $O(m)$ *w x*

Observation: A cut-set in G_i is a cut-set in G_0 .

$$
\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}))
$$

n−*i*+1

Karger's Algorithm

Edge Contraction
 Edge Contraction

Merge two adjacent nodes in a multigraph without self-loops
 A (multi) graph with two nodes has a unique cut-set

Contraction Algorithm

Mean of a finical summ **Karger** $(G_0 = (V_0, E_0))$ **Success Probability Consider min-cut in** G_0 **with cut-set** *C* **and** $|C| = k$ $\mathcal{E}_i = "C$ in $G_i" \quad |$ **Observation**: min-degree $\geq k$ $Pr[\mathcal{E}_1] \geq 1 - \frac{2}{n}$ (holds for all G_i $Pr[\mathcal{E}_2 | \mathcal{E}_1] \geq 1 - \frac{2}{n-1}$ $\frac{2}{n-1}$ → Pr $[\mathcal{E}_i \mid \mathcal{E}_1 \cap ... \cap \mathcal{E}_{i-1}] \ge 1 - \frac{2}{n-i}$ $Pr[\mathcal{E}_{n-2}] = Pr[\mathcal{E}_1] \cdot Pr[\mathcal{E}_2 | \mathcal{E}_1] \cdot \ldots \cdot Pr[\mathcal{E}_{n-2} | \mathcal{E}_1 \cap \ldots \cap \mathcal{E}_{n-3}]$ *n* $\geq \left(\frac{n-2}{n}\right)\left(\frac{n-3}{n-1}\right)\left(\frac{n-4}{n-2}\right)\cdots\left(\frac{2}{n-4}\right)\left(\frac{1}{n-2}\right)$ *n | n*−1 *| n−2 | (* 4 *)* (3 **Observation**: A cut-set in G_i is a cut-set in G_0 .

■ A (multi) graph with two nodes has a unique cut-set

Contraction Algorithm • Motivation: distinguish *non-essential* as well as *essential* edges **ontraction Algorithm**
Motivation: distinguish *non-essentia*
as well as *essential* edges} part of a min-cut
& hope there are few essential ones

for $i = 1$ to $n - 2$ do \qquad // $O(n)$ $e := U(E_{i-1})$ // $O(1)$ *Gⁱ* = *Gi*−1*:***contract**(*e*) // *O*(*n*) **return** unique cut-set in *Gn*−²

- Running time in $O(n^2)$
- Can be implemented to run in $O(m)$

n ¹ *n*−1 ¹ *n*−2 ² 1 4 ¹ 3

Karger's Algorithm			
Edge Contraction	more essential		
Merge two adjacent nodes in a multigraph without self-loops	uv		
A (multi) graph with two nodes has a unique cut-set	uv		
Contraction Algorithm	and part of a mirror	$success$ Probability	$essential$
Motivation: distinguish $non-essential$	$Quccess$ Probability	$essential$	
as well as essential edges} $real$ and edges	l	$Consolution: A cut-set in G_i is a cut-set in G_0.$	
8 hope there are few essential ones	$Consider min-cut$ in G_0 with cut-set C and $ C = k$		
$Karger(G_0 = (V_0, E_0))$	l $O(n)$	$P_r[\xi_1] \geq 1 - \frac{2}{n}$	$(holds for all G_i due to 1st observation)$
$e := U(E_{i-1})$	l $O(1)$	$Pr[\xi_2 \xi_1] \geq 1 - \frac{2}{n-1}$	$Pr[\xi_1 \xi_1 \cap ... \cap \xi_{i-1}] \geq 1 - \frac{2}{n-i+1}$
$G_i = G_{i-1}$.contract(e) l $O(n)$	$Pr[\xi_{n-2}] = Pr[\xi_1] \cdot Pr[\xi_2 \xi_1] \cdot ... \cdot Pr[\xi_{n-2} \xi_1 \cap ... \cap \xi_{n-3}]$		
return unique cut-set in G_{n-2}	$\geq \frac{(p-2)}{n}$ ($\frac{n-3}{n-1}$) ($\frac{n-4}{n-2}$		

■ A (multi) graph with two nodes has a unique cut-set

Contraction n Motivatic as well as *essential* edges

 $$ $e \coloneqq \mathcal{U}$ ($G_i = G_i$ **return** u

- Running time in $O(n^2)$
- Can be implemented to run in $O(m)$

 \overline{n} $\left|\left(\begin{array}{cc} n-1 \end{array}\right)$ $\left|\left(\begin{array}{cc} n-2 \end{array}\right) \right|$

Karger's Algorithm			
Edge Contraction	more essential		
Merge two adjacent nodes in a multigraph without self-loops	uv		
A (multi) graph with two nodes has a unique cut-set	uv		
Contraction Algorithm	and part of a mirror et		
Notivation: distinguish $non-essential$	Success Probability	essential	
As well as essential edges} $real$ and edges	Constant and one		
the same few essential ones	Consider min-cut in G_0 with cut-set C and $ C = k$		
Range($G_0 = (V_0, E_0)$)	$U(0, E_0)$		
for $i = 1$ to $n - 2$ do	$ O(n) $	$Pr[\mathcal{E}_1] \ge 1 - \frac{2}{n}$	$ O(\log \text{for all } G_i \text{ due to 1st observation})$
for $i = 1$ to $n - 2$ do	$ O(1)$	$Pr[\mathcal{E}_1] \ge 1 - \frac{2}{n}$	$ O(\log \text{for all } G_i \text{ due to 1st observation})$
for $i = 1$ to $n - 2$ do	$ O(1)$	$Pr[\mathcal{E}_1] \ge 1 - \frac{2}{n}$	$ O(\log \text{for all } G_i \text{ due to 1st observation})$
for $i = 1$ to $n - 2$ do	$ O(1)$	$Pr[\mathcal{E}_2 \mathcal{E}_1] \ge 1 - \frac{2}{n-1}$	$Pr[\mathcal{E}_1 \mathcal{E}_1 \cdots $

 \blacksquare A (multi)

Contraction n Motivation as well as *essential* edges

 e := \mathcal{U} ($G_i = G_i$ **return** u

- Running time in $O(n^2)$
- Can be implemented to run in $O(m)$

 \mid \cal{A} \mid \cal{X}

Karger's Algorithm			
Edge Contraction	more essential		
Merge two adjacent nodes in a multigraph without self-loops	uv		
A (multi) graph with two nodes has a unique cut-set	uv		
Contraction Algorithm	and part of a mirror	$success Probability$	$ssential$
Motivation: distinguish $non-essential$	$Quccess Probability$	$ssential$	
as well as essential edges} $real$ and $real$ and $real$	$Conservation: A cut-set in G_i is a cut-set in G_0.$		
8 hope there are few essential ones	$Consider min-cut in G_0 with cut-set C and C = k$		
$Karger(G_0 = (V_0, E_0))$	l $O(n)$	$Pr[\mathcal{E}_1] \geq 1 - \frac{2}{n}$	$(holds for all G_i due to 1st observation)$
$e := U(E_{i-1})$	l $O(1)$	$Pr[\mathcal{E}_1] \geq 1 - \frac{2}{n-1}$	$Pr[\mathcal{E}_1 \mathcal{E}_1 \dots P[\mathcal{E}_1 \mathcal{E}_1 \dots P[\mathcal{E}_{n-2}] \mathcal{E}_1 \dots P[\mathcal{E}_{n-2}] = Pr[\mathcal{E}_1] \cdot Pr[\mathcal{E}_2 \mathcal{E}_1 \dots P[\mathcal{E}_{n-2}] \mathcal{E}_1 \dots \mathcal{E}_{n-2} \mathcal{E}_1 \dots \mathcal{E}_{n-2} \mathcal{E}_1 \dots \mathcal{E}_{n-2} \mathcal{E}_1 \dots \mathcal{E}_{n-2} \mathcal{E}_1 \dots \mathcal{E}_{n-$

A (multi) graph with two nodes has a unique cut-set

Contraction n Motivation

as well as *essential* edges

 $$ $e \coloneqq \mathcal{U}$ $G_i = G_i$ **return u**

- **n** Running
- **n** Can be

w x

8 8 Maximilian Katzmann, Stefan Walzer – Probability at least $\frac{2}{n^2}$.
 8 Maximilian Katzmann, Stefan Walzer – Probability at least $\frac{2}{n^2}$. **Theorem**: On a graph with *n* nodes, Karger's algorithm runs in *O*(*n* 2) time and returns a minimum cut with probability at least $\frac{2}{n^2}$.

Example 18 Algorithm Amplified
 8 Maximum cut with probability at least $\frac{2}{n^2}$.
 8 Maximum cut with probability at least $\frac{2}{n^2}$.
 8 Success probability $\geq p$
 8 Maximum of repetitions *t*
 8 Amplifi **Theorem**: On a graph with *n* nodes, Karger's algorithm runs in *O*(*n* 2) time and returns a minimum cut with probability at least $\frac{2}{n^2}$.

Success probability $\geq p$ Number of repetitions *t* Amplified prob. $\geq 1 - e^{-pt}$

Example 18 Algorithm Amplified
 18 Maximum cut with probability at least $\frac{2}{n^2}$.
 $\Pr[\text{``min-cut found''}] \ge 1 - \exp(-\frac{2}{n^2} \cdot t) = 1 - \frac{1}{n}$
 $\begin{array}{|l|l|} \hline \text{Success probability} > p \\ \hline \text{for } t = \frac{n^2}{2} \ln(n) \end{array}$ Amplified prob. $\ge 1 - e^{-pt}$
 Theorem: On a graph with *n* nodes, Karger's algorithm runs in *O*(*n* 2) time and returns a minimum cut with probability at least $\frac{2}{n^2}$.

$$
\Pr[\text{"min-cut found"}] \ge 1 - \exp(-\frac{2}{n^2} \cdot t) = 1 - \frac{1}{n}
$$
\n
$$
\left[\begin{array}{c}\text{Success probability} \ge \rho \\ \text{Number of repetitions } t \\ \text{for } t = \frac{n^2}{2} \ln(n) \end{array}\right]
$$
\n
$$
\text{Number of repetitions } t
$$
\n
$$
\text{Amplified prob.} \ge 1 - e^{-pt}
$$

Success probability $\geq p$ Number of repetitions *t* Amplified prob. $\geq 1 - e^{-pt}$

Karger's Algorithm Amplified	
Theorem: On a graph with <i>n</i> nodes, Karger's algorithm runs in $O(n^2)$ time and returns a minimum cut with probability at least $\frac{2}{n^2}$.	
$Pr["min-cut found"] \geq 1 - \exp(-\frac{2}{n^2} \cdot t) = 1 - \frac{1}{n}$	$\frac{Success probability \geq p}{Number of repetitions t}$
Corollary: On a graph with <i>n</i> nodes, $O(n^2 \log(n))$ Karger repetitions run in $O(n^4 \log(n))$ total time and return a min-cut with high probability.	
$Waximinian Katzman, Stefan Walzer-Probability & Computing$	Insitute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithm

Corollary: On a graph with *n* nodes, $O(n^2 \log(n))$ Karger repetitions run in $O(n^4 \log(n))$ total time and return a min-cut with high probability.

Karger's Algorithm Amplified	
Theorem: On a graph with <i>n</i> nodes, Karger's algorithm runs in $O(n^2)$ time and returns a minimum cut with probability at least $\frac{2}{n^2}$.	
$Pr[$ "min-cut found"] $\geq 1 - \exp(-\frac{2}{n^2} \cdot t) = 1 - \frac{1}{n}$	$\frac{Success probability \geq p}{Number of repetitions t}$
Corollary: On a graph with <i>n</i> nodes, $O(n^2 \log(n))$ Karger repetitions run in $O(n^4 \log(n))$ total time and return a min-cut with high probability.	$\frac{Much better than exp. time of Randomized Cut!}{Much better than exp. time of Randomized Cut!}$

\n**Maximum Ragian Katzmann, Stefan Walzer – Probability & Computing**

\n**Maximum Ragineering & Scalable Algorithm**

Corollary: On a graph with *n* nodes, $O(n^2 \log(n))$ Karger repetitions run in $O(n^4 \log(n))$ total time and return a min-cut with high probability. Much better than exp. time of Randomized Cut!

Karger's Algorithm Amplified	
Theorem: On a graph with <i>n</i> nodes, Karger's algorithm runs in $O(n^2)$ time and returns a minimum cut with probability at least $\frac{2}{n^2}$.	
$Pr["min-cut found"] \geq 1 - \exp(-\frac{2}{n^2} \cdot t) = 1 - \frac{1}{n}$	Success probability $\geq p$
$Pr["min-cut found"] \geq 1 - \exp(-\frac{2}{n^2} \cdot t) = 1 - \frac{1}{n}$	Success probability $\geq p$
$Corollary: On a graph with n nodes, O(n^2 \log(n)) Karger repetitions run in O(n^4 \log(n))$	
$total time and return a min-cut with high probability.$	Much better than exp. time of Randomized Cut!
$Let C_1, ..., C_\ell$ be all the min-cuts in <i>G</i> and \mathcal{E}_{n-2}^i for $i \in [\ell]$ be the event that C_i is returned by Karger's algorithm	
$log Karger's algorithm$	Just little of Theoretical Informatics, Algorithm Engineering a Scalable Algorithm

Corollary: On a graph with *n* nodes, $O(n^2 \log(n))$ Karger repetitions run in $O(n^4 \log(n))$ total time and return a min-cut with high probability.

Sidenote: Number of minimum cuts

Let C_1, \ldots, C_ℓ be all the min-cuts in *G* and \mathcal{E}_r^i $\sum_{n=2}^{\infty}$ for $i \in [\ell]$ be the event that C_i is returned biand the and return a mini-cut with high probability. Much better than exp. time of Randomized Cut!
 idenote: Number of minimum cuts

Let C_1, \ldots, C_ℓ be all the min-cuts in G and \mathcal{E}'_{n-2} for $i \in [\ell]$ be the eve

Karger's Algorithm Amplified	
Theorem: On a graph with <i>n</i> nodes, Karger's algorithm runs in $O(n^2)$ time and returns a minimum cut with probability at least $\frac{2}{n^2}$.	
$Pr[$ "min-cut found"] $\geq 1 - \exp(-\frac{2}{n^2} \cdot t) = 1 - \frac{1}{n}$	Success probability $\geq p$
$Pr[$ "min-cut found"] $\geq 1 - \exp(-\frac{2}{n^2} \cdot t) = 1 - \frac{1}{n}$	Success probability $\geq p$
$Corollary: On a graph with n nodes, O(n^2 \log(n)) Karger repetitions run in O(n^4 \log(n))$	
$total time and return a min-cut with high probability.$	Much better than exp. time of Randomized Cut!
$Let C_1, \ldots, C_{\ell}$ be all the min-cuts in <i>G</i> and $\mathcal{E}_{n-2}^{\prime}$ for $i \in [\ell]$ be the event that C_i is returned by Karger's algorithm	
$Just seen: Pr[\mathcal{E}_{n-2}^{\prime}] \geq \frac{2}{n^2}$	
Assimilar Katzman, Stefan Walzer – Probability & Computing	

Corollary: On a graph with *n* nodes, $O(n^2 \log(n))$ Karger repetitions run in $O(n^4 \log(n))$ total time and return a min-cut with high probability. Much better than exp. time of Randomized Cut!

Sidenote: Number of minimum cuts

Let C_1, \ldots, C_ℓ be all the min-cuts in *G* and \mathcal{E}_r^i $\sum_{n=2}^{\infty}$ for $i \in [\ell]$ be the event that C_i is returned by Karger's algorithm

Just seen: Pr[E *i* $\binom{n}{n-2} \geq \frac{2}{n^2}$ $\overline{n^2}$

Karger's Algorithm Amplified	
Theorem: On a graph with <i>n</i> nodes, Karger's algorithm runs in $O(n^2)$ time and returns a minimum cut with probability at least $\frac{2}{n^2}$.	
$Pr[$ "min-cut found"] $\geq 1 - \exp(-\frac{2}{n^2} \cdot t) = 1 - \frac{1}{n}$	$\frac{Success probability \geq p}{Number of repetitions t}$
$Corollary: On a graph with n nodes, O(n^2 \log(n)) Karger repetitions run in O(n^4 \log(n))$	
Sidence: Number of minimum cuts	$\frac{1}{1 + e^{-pt}}$
Sidence: Number of minimum cuts	$\frac{1}{1 + e^{-pt}}$
Sidence: Number of minimum cuts	$\frac{1}{1 + e^{-2}}$ for $i \in [\ell]$ be the event that C_i is returned by Karger's algorithm
Just seen: $Pr[\mathcal{E}_{n-2}^{\ell}] \geq \frac{2}{n^2}$	
Matrix	$\frac{1}{1 + e^{-2}}$

Corollary: On a graph with *n* nodes, $O(n^2 \log(n))$ Karger repetitions run in $O(n^4 \log(n))$ total time and return a min-cut with high probability.

Sidenote: Number of minimum cuts

- Let C_1, \ldots, C_ℓ be all the min-cuts in G and \mathcal{E}_r^i $\sum_{n=2}^{i}$ for $i \in [\ell]$ be the event that C_i is returned by Karger's algorithm \mathcal{E}_{n-2}^i for $i \in [\ell]$ be the event that C_i is return
disjoint, since the algorithm returns only one cut
- Just seen: Pr[E *i* $\binom{n}{n-2} \geq \frac{2}{n^2}$ $\overline{n^2}$

Karger's Algorithm Amplified	
Theorem: On a graph with <i>n</i> nodes, Karger's algorithm runs in $O(n^2)$ time and returns a minimum cut with probability at least $\frac{2}{n^2}$.	
$Pr[$ "min-cut found"] $\geq 1 - \exp(-\frac{2}{n^2} \cdot t) = 1 - \frac{1}{n}$	$\frac{Success probability \geq p}{Number of repetitions t}$
$Corollary: On a graph with n nodes, O(n^2 \log(n)) Karger repetitions run in O(n^4 \log(n))$	
Sidence: Number of minimum cuts	$\frac{1}{1 - e^{-pt}}$
Sidence: Number of minimum cuts	$\frac{1}{1 - e^{-pt}}$
Sidence: Number of minimum cuts	$\frac{1}{1 - e^{-pt}}$
Sidence: Number of minimum cuts	$\frac{1}{1 - e^{-pt}}$
Set C_1, \ldots, C_{ℓ} be all the min-cuts in G and $\frac{C_{n-2}^{\ell}}{C_{n-2}^{\ell}}$ for $i \in [\ell]$ be the event that C_i is returned by Karger's algorithm	
Just seen: $\Pr[\hat{C}_{n-2}^{\ell}] \geq \frac{2}{n^2}$	
Pr $\left[\bigcup_{i \in [\ell]} \mathcal{E}_{n-2}^{\ell} \right] = \sum_{i \in [\ell]} \Pr[\hat{\mathcal{E}}_{n-2}^{\ell}] \geq \frac{2\ell}{n^2}$	
Maximilian Katzman, Stefan Water– Probability & Computing	$\frac{1}{1 - e^{-pt}}$

Corollary: On a graph with *n* nodes, $O(n^2 \log(n))$ Karger repetitions run in $O(n^4 \log(n))$ total time and return a min-cut with high probability. Much better than exp. time of Randomized Cut!

Sidenote: Number of minimum cuts

- Let C_1, \ldots, C_ℓ be all the min-cuts in *G* and \mathcal{E}_r^i $\sum_{n=2}^{i}$ for $i \in [\ell]$ be the event that C_i is returned by Karger's algorithm disjoint, since the algorithm returns only one cut
- Just seen: Pr[E *i* $\binom{n}{n-2} \geq \frac{2}{n^2}$ $\overline{n^2}$ $\Pr\left[\bigcup_{i\in[\ell]}\mathcal{E}_r^i\right]$ *n*−2 $\Big] = \sum_{i \in [\ell]} \mathsf{Pr}[\mathcal{E}_r^i]$ $\binom{n}{n-2} \geq \frac{2 \cdot \ell}{n^2}$ *n*2

Karger's Algorithm Amplified	
Theorem: On a graph with <i>n</i> nodes, Karger's algorithm runs in $O(n^2)$ time and returns a minimum cut with probability at least $\frac{2}{n^2}$.	
$Pr[$ "min-cut found"] $\geq 1 - \exp(-\frac{2}{n^2} \cdot t) = 1 - \frac{1}{n}$	$\frac{Success probability \geq p}{Number of repetitions t}$
$Corollary: On a graph with n nodes, O(n^2 \log(n)) Karger repetitions run in O(n^4 \log(n))$	
Sidence: Number of minimum cuts	$\frac{1}{1 - e^{-pt}}$
Sidence: Number of minimum cuts	$\frac{1}{1 - e^{-pt}}$
Sidence: Number of minimum cuts	$\frac{1}{1 - e^{-pt}}$
Sidence: Number of minimum cuts	$\frac{1}{1 - e^{-pt}}$
Solve: Number of minimum cuts	$\frac{1}{1 - e^{-pt}}$
Set C_1, \ldots, C_{ℓ} be all the min-cuts in G and $\frac{1}{C_{n-2}}$ for $i \in [\ell]$ be the event that C_i is returned by Karger's algorithm	
Just seen: $\Pr[\hat{E}_{n-2}^i] \geq \frac{2}{n^2}$	
1 $\geq \Pr[\bigcup_{i \in [\ell]} \mathcal{E}_{n-2}^i] = \sum_{i \in [\ell]} \Pr[\hat{E}_{n-2}^i] \geq \frac{2\frac{2\ell}{n^2}}{2\frac{2\frac{2\ell}{n^2}}$	
Maximum State Markim Ragenering a Scale Map orithms	

Corollary: On a graph with *n* nodes, $O(n^2 \log(n))$ Karger repetitions run in $O(n^4 \log(n))$ total time and return a min-cut with high probability. Much better than exp. time of Randomized Cut!

Sidenote: Number of minimum cuts

- Let C_1, \ldots, C_ℓ be all the min-cuts in *G* and \mathcal{E}_r^i $\sum_{n=2}^{i}$ for $i \in [\ell]$ be the event that C_i is returned by Karger's algorithm disjoint, since the algorithm returns only one cut
- Just seen: Pr[E *i* $\binom{n}{n-2} \geq \frac{2}{n^2}$ $\overline{n^2}$ $\Pr\left[\bigcup_{i\in[\ell]}\mathcal{E}_r^i\right]$ *n*−2 $\Big] = \sum_{i \in [\ell]} \mathsf{Pr}[\mathcal{E}_r^i]$ $\left|\bigcup_{i\in[\ell]}\mathcal{E}_{n-2}^i\right|=\sum_{i\in[\ell]} \mathsf{Pr}[\mathcal{E}_{n-2}^i]\geq \frac{2\cdot \ell}{n^2}$

Karger's Algorithm Amplified	
Theorem: On a graph with <i>n</i> nodes, Karger's algorithm runs in $O(n^2)$ time and returns a minimum cut with probability at least $\frac{2}{n^2}$.	
$Pr[$ "min-cut found"] $\geq 1 - \exp(-\frac{2}{n^2} \cdot t) = 1 - \frac{1}{n}$	Success probability $\geq p$
$Pr[$ "min-cut found"] $\geq 1 - \exp(-\frac{2}{n^2} \cdot t) = 1 - \frac{1}{n}$	Success probability $\geq p$
$Corollary: On a graph with n nodes, O(n^2 \log(n)) Karger repetitions run in O(n^4 \log(n))$	
$total time$ and return a min-cut with high probability. Model: Number of minimum cuts	Let C_1, \ldots, C_ℓ be all the min-cuts in G and \mathcal{E}_{n-2}^i for $i \in [\ell]$ be the event that C_i is returned by Karger's algorithm
$Just seen: Pr[\mathcal{E}_{n-2}^i] \geq \frac{2}{n^2}$	Observation: $\ell \leq \frac{n^2}{2}$
$1 \geq Pr \left[U_{i \in [\ell]} \mathcal{E}_{n-2}^i \right] = \sum_{i \in [\ell]} Pr[\mathcal{E}_{n-2}^i] \geq \frac{2\ell}{n^2}$	Observation: $\ell \leq \frac{n^2}{2}$
$u_{\text{aximinian Katzman, Stefan Wardzer - Probability's Computing}}$	Insert value of Theoretical Inform ratios, Algorithm Engineering a Scalable Algorithm

Corollary: On a graph with *n* nodes, $O(n^2 \log(n))$ Karger repetitions run in $O(n^4 \log(n))$ total time and return a min-cut with high probability. Much better than exp. time of Randomized Cut!

Sidenote: Number of minimum cuts

Let C_1, \ldots, C_ℓ be all the min-cuts in *G* and \mathcal{E}_r^i $\sum_{n=2}^{i}$ for $i \in [\ell]$ be the event that C_i is returned by Karger's algorithm disjoint, since the algorithm returns only one cut

Observation: $\ell \leq \frac{n^2}{2}$

\n- **Just seen:**
$$
\Pr[\mathcal{E}_{n-2}^i] \geq \frac{2}{n^2}
$$
\n- **1** \geq $\Pr\left[\bigcup_{i \in [\ell]} \mathcal{E}_{n-2}^i\right] = \sum_{i \in [\ell]} \Pr[\mathcal{E}_{n-2}^i] \geq \frac{2 \cdot \ell}{n^2}$
\n

 $\frac{2}{2}$.

Motivation

Motivation

Probability that a min-cut survives *i* contractions
 $Pr[\mathcal{E}_1] - Pr[\mathcal{E}_1] \cdot Pr[\mathcal{E}_2 \mid \mathcal{E}_1] \cdot \ldots \cdot Pr[\mathcal{E}_l \mid \mathcal{E}_1 \cap \ldots \cap \mathcal{E}_{l-1}]$
 $\geq \Big(1-\frac{2}{n}\Big)\Big(1-\frac{2}{n-1}\Big)\Big(1-\frac{2}{n-2}\Big) \cdot \Big(1-\frac{2}{n-l+$

$$
\geq \Big(1-\tfrac{2}{n}\Big)\Big(1-\tfrac{2}{n-1}\Big)\Big(1-\tfrac{2}{n-2}\Big)\cdot\cdot\Big(1-\tfrac{2}{n-i+2}\Big)\Big(1-\tfrac{2}{n-i+1}\Big)
$$

Motivation

Motivation

Probability that a min-cut survives *i* contractions
 $Pr[\mathcal{E}_1] - Pr[\mathcal{E}_1] \cdot Pr[\mathcal{E}_2 \mid \mathcal{E}_1] \cdot \ldots \cdot Pr[\mathcal{E}_l \mid \mathcal{E}_1 \cap \ldots \cap \mathcal{E}_{l-1}]$
 $\geq \left(1 - \frac{2}{n}\right)\left(1 - \frac{2}{n-1}\right)\left(1 - \frac{2}{n-2}\right) \cdot \left(1 - \frac{2$ $\geq (1 - \frac{2}{n})$ *n* 2 *n*−1 2 *n*−2 $\left(1-\frac{2}{n}\right)\left(1-\frac{2}{n-1}\right)\left(1-\frac{2}{n-2}\right)\cdots\left(1-\frac{2}{n-i+2}\right)\left(1-\frac{2}{n-i+1}\right)$ $=\left(\frac{n-2}{n}\right)\left(\frac{n-3}{n-1}\right)\left(\frac{n-4}{n-2}\right)\cdots\left(\frac{n-i+2-2}{n-i+2}\right)$ *n* $\left(\frac{1}{n-1}\right)\left(n-2\right)$ $\left(n-i+2\right)$ $(n-i+1-2)$ *n*−*i*+1

Motivation

Motivation

Probability that a min-cut survives *i* contractions
 $Pr[\mathcal{E}_1] - Pr[\mathcal{E}_1] \cdot Pr[\mathcal{E}_2 \mid \mathcal{E}_1] \cdot \ldots \cdot Pr[\mathcal{E}_l \mid \mathcal{E}_1 \cap \ldots \cap \mathcal{E}_{l-1}]$
 $\geq \left(1 - \frac{2}{n}\right)\left(1 - \frac{2}{n-1}\right)\left(1 - \frac{2}{n-2}\right) \cdot \left(1 - \frac{2$ $\geq (1 - \frac{2}{n})$ *n* 2 *n*−1 2 *n*−2 $\left(1-\frac{2}{n}\right)\left(1-\frac{2}{n-1}\right)\left(1-\frac{2}{n-2}\right)\cdots\left(1-\frac{2}{n-i+2}\right)\left(1-\frac{2}{n-i+1}\right)$ $=\left(\frac{n-2}{n}\right)\left(\frac{n-3}{n-1}\right)\left(\frac{n-4}{n-2}\right)\cdots\left(\frac{n-i}{n-i+2}\right)$ *n* $\left(\frac{1}{n-1}\right)\left(n-2\right)$ $\left(n-i+2\right)$ $(n-i-1)$ *n*−*i*+1 *n*−*i* <u>) (*n*−*i*−1</u>

More Amplification: Karger-Stein

Motivation

Pr[\mathcal{E}_i]

Pr[\mathcal{E}_i] Pr[\mathcal{E}_j] Pr[\mathcal{E}_j Pri \mathcal{E}_j Prince is contractions

Pr[\mathcal{E}_i] Pr[\mathcal{E}_j] Pr[\mathcal{E}_j Pri \mathcal{E}_j Prince is contractions
 \mathcal $\geq (1 - \frac{2}{n})$ *n* 2 *n*−1 2 *n*−2 $\left(1-\frac{2}{n}\right)\left(1-\frac{2}{n-1}\right)\left(1-\frac{2}{n-2}\right)\cdots\left(1-\frac{2}{n-i+2}\right)\left(1-\frac{2}{n-i+1}\right)$ $=\left(\frac{p-2}{p-3}\right)\left(\frac{p-3}{p-2}\right)\left(\frac{p-4}{p-3}\right)\cdots\left(\frac{p-1}{p-1}\right)$ *n n*−1 *n*−2 *n*−*i*+2 $(n-i-1)$ *n*−*i*+1 *n*−*i* <u>) (*n*−*i*−1</u> = $(n-i)(n-i-1)$ *n*(*n* − 1) ≥ $(n-i-1)(n-i-1)$ *n* · *n* $= (1$ *i* + 1 *n* $\big)^2$.

More Amplification: Karger-Stein

Motivation

Pr[\mathcal{E}_i]

Pr[\mathcal{E}_i] Pr[\mathcal{E}_j] Pr[\mathcal{E}_j Pri \mathcal{E}_j Prince is contractions

Pr[\mathcal{E}_i] Pri \mathcal{E}_j] Pri \mathcal{E}_j Pri \mathcal{E}_j Pri \mathcal{E}_j Pri \mathcal{E}_j Pr $\geq (1 - \frac{2}{n})$ *n* 2 *n*−1 2 *n*−2 $\left(1-\frac{2}{n}\right)\left(1-\frac{2}{n-1}\right)\left(1-\frac{2}{n-2}\right)\cdots\left(1-\frac{2}{n-i+2}\right)\left(1-\frac{2}{n-i+1}\right)$ $=\left(\frac{p-2}{p-3}\right)\left(\frac{p-3}{p-2}\right)\left(\frac{p-4}{p-3}\right)\cdots\left(\frac{p-1}{p-1}\right)$ *n n*−1 *n*−2 *n*−*i*+2 $(n-i-1)$ *n*−*i*+1 *n*−*i* <u>) (*n*−*i*−1</u> = $(n-i)(n-i-1)$ *n*(*n* − 1) ≥ $(n-i-1)(n-i-1)$ *n* · *n* $= (1$ *i* + 1 *n* $\big)^2$.

Probability becomes very small only towards the 6σ

More Amplification: Karger-Stein

Motivation

Pr[\mathcal{E}_i]

Pr[\mathcal{E}_i] Pr[\mathcal{E}_j] Pr[\mathcal{E}_j Pri \mathcal{E}_i | $\mathcal{E}_1 \cap ... \cap \mathcal{E}_{j-1}$]
 $\geq (1 - \frac{2}{n}) (1 - \frac{2}{n-1}) (1 - \frac{2}{n-2}) \cdot (1 - \frac{2}{n-1+2}) (1 - \frac{2}{n-1+1})$
 $= \left(\frac$ $\geq (1 - \frac{2}{n})$ *n* 2 *n*−1 2 *n*−2 $\left(1-\frac{2}{n}\right)\left(1-\frac{2}{n-1}\right)\left(1-\frac{2}{n-2}\right)\cdots\left(1-\frac{2}{n-i+2}\right)\left(1-\frac{2}{n-i+1}\right)$ $=\left(\frac{p-2}{p-3}\right)\left(\frac{p-3}{p-2}\right)\left(\frac{p-4}{p-3}\right)\cdots\left(\frac{p-1}{p-1}\right)$ *n n*−1 *n*−2 *n*−*i*+2 $(n-i-1)$ *n*−*i*+1 *n*−*i* <u>) (*n*−*i*−1</u> = $(n-i)(n-i-1)$ *n*(*n* − 1) ≥ $(n-i-1)(n-i-1)$ *n* · *n* $= (1$ *i* + 1 *n* $\big)^2$.

• Probability becomes very small only towards the very end. **If Probability becomes very small only towards the**
very end.
Idea: stop when a min-cut is still likely to exist and recurse

More Amplification: Karger-Stein

Motivation

Pr(E_i)

Pr(E_i) Pr(E_i) Pr(E_i) E_i Pr(E_i) (E_i (E_i O..., OE_i, 1]
 $\geq (1-\frac{2}{n}) (1-\frac{2}{n-1})(1-\frac{2}{n-2}) \cdot (1-\frac{2}{n-1+1})$
 $= \frac{(n-2)(1-2)}{(n-1)(n-1)} \geq (n-1)(n-1-1) = (n-1)(n$ $\geq (1 - \frac{2}{n})$ *n* 2 *n*−1 2 *n*−2 $\left(1-\frac{2}{n}\right)\left(1-\frac{2}{n-1}\right)\left(1-\frac{2}{n-2}\right)\cdots\left(1-\frac{2}{n-i+2}\right)\left(1-\frac{2}{n-i+1}\right)$ $=\left(\frac{p-2}{p-3}\right)\left(\frac{p-3}{p-2}\right)\left(\frac{p-4}{p-3}\right)\cdots\left(\frac{p-1}{p-1}\right)$ *n n*−1 *n*−2 *n*−*i*+2 $(n-i-1)$ *n*−*i*+1 *n*−*i* <u>) (*n*−*i*−1</u> = $(n-i)(n-i-1)$ ≥ $(n-i-1)(n-i-1)$ $= (1$ *i* + 1 $\big)^2$.

n(*n* − 1) *n* · *n n* **• Probability becomes very small only towards the** very end.

■ Idea: stop when a min-cut is still likely to exist and recurse

After $s = n - n/\sqrt{2} - 1$ steps we have

$$
Pr[\mathcal{E}_s] \ge \left(1 - \frac{n - n/\sqrt{2}}{n}\right) = \left(1 - (1 - 1/\sqrt{2})\right)^2 = (1/\sqrt{2})^2 = \frac{1}{2}
$$

More Amplification: Karger-Stein

Motivation

Probability that a min-cut survives *i* contractions

Pr[E_i] - Pr[E_i] - Pr[E_i] - Pr[E_i] - E_i [E_i (E_i $\geq (1 - \frac{2}{n})$ *n* 2 *n*−1 2 *n*−2 $\left(1-\frac{2}{n}\right)\left(1-\frac{2}{n-1}\right)\left(1-\frac{2}{n-2}\right)\cdots\left(1-\frac{2}{n-i+2}\right)\left(1-\frac{2}{n-i+1}\right)$ $=\left(\frac{p-2}{p-3}\right)\left(\frac{p-3}{p-2}\right)\left(\frac{p-4}{p-3}\right)\cdots\left(\frac{p-1}{p-1}\right)$ *n n*−1 *n*−2 *n*−*i*+2 $(n-i-1)$ *n*−*i*+1 *n*−*i* <u>) (*n*−*i*−1</u> = $(n-i)(n-i-1)$ *n*(*n* − 1) ≥ $(n-i-1)(n-i-1)$ *n* · *n* $= (1$ *i* + 1 *n* $\big)^2$. **E**_i] = Pr[\mathcal{E}_1] + Pr[\mathcal{E}_2] $\geq \{1-\frac{2}{n}\}$ = $\{1-\frac{2}{n}\}$ = $\{1-\frac{2}{n-1}\}$ = $\$

• Probability becomes very small only towards the very end.

After $s = n - n/\sqrt{2} - 1$ steps we have

$$
\Pr[\mathcal{E}_s] \ge \left(1 - \frac{n - n/\sqrt{2}}{n}\right) = \left(1 - (1 - 1/\sqrt{2})\right)^2 = (1/\sqrt{2})^2 = \frac{1}{2}
$$

KargerStein $(G_0 = (V_0, E_0))$ $G_i = G_{i-1}$. **contract**(*e*) **return** smaller of C_1 , C_2 **for** $i = 1$ to $s = |V_0| - \frac{|V_0|}{\sqrt{2}}$ 2 − 1 **do** C_1 := **KargerStein**(G_s) C_2 := **KargerStein**(G_s) // pendent $e := \mathcal{U}(E_{i-1})$
 $G_i = G_{i-1}$ **contract**(e)
 $:=$ **KargerStein**(G_s) // inde-
 $:=$ **KargerStein**(G_s) // runs $e := \mathcal{U}(E_{i-1})$ **if** $|V_0| = 2$ then return unique cut-set

10 Maximilian Katzmann, Sistin Walzer – Probability & Computing $\frac{1}{\sqrt{2}}$ (a) $\left|\begin{array}{l} \text{H}^1 \text{K}_0 \text{H} \text{H}_0 \text{H} \text{H}_0 \text{H} \text{H}_0 \text{H}_0 \text{H}_0 \text{H}_0 \end{array}\right| = 2 \text{ then return unique cut-} \begin{array}{l} \text{H}^1 \text{K}_0 \text{H}_0 \text{H}_0 \text{H}_0 \text{H}_0 \$ $\left\| \begin{array}{c} O(n) \ O(1) \end{array} \right\|$ for $i=1$ to $s= \mathcal{U}(E_{i-1})$ $\mathsf{KargerStein}(G_0 = (V_0, E_0))$ $\left| \frac{1}{2} \right| \left| \frac{1}{2} \right| \left| \frac{1}{2} \right| = 2$ then return unique cut-set $\left| \begin{array}{c} | & | \end{array} \right|$ $\left| \begin{array}{c} G_i = G_{i-1}$. **contract**(*e*) **return** smaller of C_1 , C_2 **for** $i = 1$ to $s = |V_0| - \frac{|V_0|}{\sqrt{2}}$ 2 − 1 **do** C_1 := **KargerStein**(G_s) C_2 := **KargerStein**(G_s) // pendent // inde-
// pend
// runs

Recursion
 • After $t = n - n/\sqrt{2} - 1$ steps the number

of nodes is $n/\sqrt{2} + 1$
 $\frac{n}{\sqrt{O(n)}}$
 $\frac{n}{\sqrt{O(1)}} = 2T\left(\frac{n}{n} + 1\right) + O(n^2)$
 $\frac{n}{\sqrt{O(1)}}$ ecursion
After *t = n – n/* √2 – 1 steps the number of nodes is $n/\sqrt{2}+1$

$$
T(n) = 2T\left(\frac{n}{\sqrt{2}}+1\right)+O(n^2)
$$

10 Maximilian Katzmann, Sistin Walzer – Probability & computing $\frac{1}{2}$ Maximilian Katzmann, Sistin Walzer – Probability & computing $\frac{1}{2}$ metal or $\frac{1}{2}$ metal $\frac{1}{2}$ metal $\frac{1}{2}$ metal $\frac{1}{2}$ metal $\begin{array}{c|c|c|c|c|c} \hline 2 + 1 & & \end{array}$ // $O(n)$ **for** $i = 1$ to $s = |V_0| - \frac{|V_0|}{\sqrt{2}}$ $\mathsf{KargerStein}(G_0 = (V_0, E_0))$ $\left| \frac{1}{2} \right| \left| \frac{1}{2} \right|$ if $|V_0| = 2$ then return unique cut-set $e \coloneqq \mathcal{U}(E_{i-1})$ $\left| \begin{array}{c} | & | \end{array} \right|$ $\left| \begin{array}{c} G_i = G_{i-1}.$ **contract**(*e*) **return** smaller of C_1 , C_2 2 − 1 **do** C_1 := **KargerStein**(G_s) C_2 := **KargerStein**(G_s) // pendent // inde-
// pend
// runs

Recursion
 • After $t = n - n/\sqrt{2} - 1$ steps the number

of nodes is $n/\sqrt{2} + 1$
 $\frac{n}{\sqrt{O(n)}}$
 $\frac{n}{\sqrt{O(1)}} = 2T\left(\frac{n}{n} + 1\right) + O(n^2)$
 $\frac{n}{\sqrt{O(1)}}$ ecursion
After *t = n – n/* √2 – 1 steps the number of nodes is $n/\sqrt{2}+1$

$$
\mathcal{T}(n) = 2\mathcal{T}\left(\frac{n}{\sqrt{2}}+1\right) + O(n^2)
$$

2 log *n*)

10 Maximilian Katzmann, Sistin Walzer – Probability & computing $\frac{1}{2}$ Maximilian Katzmann, Sistin Walzer – Probability & Computing $\frac{1}{2}$ metal or $\frac{1}{2}$ metal $\frac{1}{2}$ metal $\frac{1}{2}$ metal $\frac{1}{2}$ metal $\begin{array}{c|c|c|c|c|c} \hline 2 + 1 & & \end{array}$ // $O(n)$ **for** $i = 1$ to $s = |V_0| - \frac{|V_0|}{\sqrt{2}}$ $\mathsf{KargerStein}(G_0 = (V_0, E_0))$ $\left| \frac{1}{2} \right| \left| \frac{1}{2} \right|$ if $|V_0| = 2$ then return unique cut-set $e \coloneqq \mathcal{U}(E_{i-1})$ $\left| \begin{array}{c} \left| \begin{array}{c} \left| \right| \end{array} \right| \left| \begin{array}{c} \right| \end{array} \right|$ *G*_{*i*} = *G*_{*i*−1}**.contract**(*e*) **return** smaller of C_1 , C_2 2 − 1 **do** C_1 := **KargerStein**(G_s) C_2 := **KargerStein**(G_s) // pendent **Solution (essentially by Master Theorem)** $C_1 := \text{KargerStein}(G_s)$ // inde-
 $T(n) = O(n^2 \log n)$
 $T(n) = O(n^2 \log n)$

Know: Each call to Karger-Stein breaks the min-cut with probability at most $\frac{1}{2}$.
 \leftarrow before calling itself recursively
 \leftarrow before calling itself recursively
 \leftarrow before calling itself recursively
 \leftarrow Ma $\frac{1}{2}$.

before calling itself recursively

 $\frac{1}{2}$.

Auxiliary Problem

Karger-Stein: Success Probability
 Know: Each call to Karger-Stein breaks the min-cut with probability at most $\frac{1}{2}$.
 Auxiliary Problem

Given complete binary tree of height d where each node is ran-

don't col Given complete binary tree of height *d* where each node is randomly coloured red or green (with probability $\frac{1}{2}$ each). **Auxiliary Problem**
Given complete binary tree of height *d* where each node is randomly coloured red or green (with probability $\frac{1}{2}$ each).
What is the probability p_d that a green root-to-leaf path exists?

Auxiliary Problem

Karger-Stein: Success Probability
 Know: Each call to Karger-Stein breaks the min-cut with probability at most $\frac{1}{2}$.
 Auxiliary Problem

Given complete binary tree of height d where each node is ran-

domly col Given complete binary tree of height *d* where each node is randomly coloured red or green (with probability $\frac{1}{2}$ each). What is the probability p_d that a green root-to-leaf path exists? before calling itself recursively

where each node is ran-

ability $\frac{1}{2}$ each).
 $(\text{oot-to-leaf path exists?})$
 $(\text{bot})^2$ // root green, **not** no path in both left and right subtree

 $p_0 = 1/2$ // root green $p_d = \frac{1}{2}$ $\frac{1}{2}(1-(1-\rho_{d-1})^2$

 $\frac{1}{2}$.

 $\frac{1}{2}$.

Auxiliary Problem

Given complete binary tree of height *d* where each node is randomly coloured red or green (with probability $\frac{1}{2}$ each). What is the probability p_d that a green root-to-leaf path exists? **blem**
 duplem
 eduplem
 edup

Karger-Stein: Success Probability
 Know: Each call to Karger-Stein breaks the min-cut with probability at most $\frac{1}{2}$.
 Auxiliary Problem

Given complete binary tree of height d where each node is ran-

domly col $p_0 = 1/2$ // root green $p_d = \frac{1}{2}$ $\frac{1}{2}(1-(1-p_{d-1})^2)$ // root green, **not** no path in both left and right subtree Claim: $\rho_d \geq \frac{1}{d+1}$

 $\frac{1}{2}$.

Auxiliary Problem

Given complete binary tree of height *d* where each node is randomly coloured red or green (with probability $\frac{1}{2}$ each). What is the probability p_d that a green root-to-leaf path exists?

Karger-Stein: Success Probability
 Know: Each call to Karger-Stein breaks the min-cut with probability at most $\frac{1}{2}$.
 Auxiliary Problem

Given complete binary tree of height d where each node is ran-

domly col $p_0 = 1/2$ // root green $p_d = \frac{1}{2}$ $\frac{1}{2}(1-(1-p_{d-1})^2)$ // root green, **not** no path in both left and right subtree **Claim:** $p_d \ge \frac{1}{d+2}$. Proof by induction. $\rho_0=\frac{1}{2}$ $\frac{1}{2} = \frac{1}{0+2}$ \checkmark $p_d=\frac{1}{2}$ $\frac{1}{2}\big(1-\left(1- p_{d-1}\right)^2\big) \geq \frac{1}{2}$ $\frac{1}{2}\big(1-(1-\frac{1}{d+1})^2\big)=\frac{1}{2}$ $\frac{1}{2} \Big(\frac{2}{d+1} - \frac{1}{(d+1)}$ $\frac{1}{(d+1)^2}$ $=\frac{1}{2}$ $\frac{1}{2} \cdot \frac{2d+2-1}{(d+1)^2} = \frac{1}{2}$ $\frac{1}{2}\cdot\frac{2d+1}{d^2+2d+1}\geq\frac{1}{2}$ $rac{1}{2} \cdot \frac{2d}{d^2 + 2}$ $\frac{2d}{d^2+2d}=\frac{1}{d+1}$ **before calling itself recursively**
 **where each node is ran-

ability** $\frac{1}{2}$ **each).**
 oot-to-leaf path exists?
 p_{d-1})²) // root green, **not** no path in both left
 $\geq \frac{1}{2}(1-(1-\frac{1}{d+1})^2) = \frac{1}{2}(\frac{2}{d+1} \frac{a}{b} \geq \frac{a-1}{b-1}$ *b*−1

 $\frac{1}{2}$. the before calling itself recursively

Auxiliary Problem

Given complete binary tree of height *d* where each node is randomly coloured red or green (with probability $\frac{1}{2}$ each). What is the probability p_d that a green root-to-leaf path exists?

Karger-Stein: Success Probability
 Know: Each call to Karger-Stein breaks the min-cut with probability at most $\frac{1}{2}$.
 Auxiliary Problem

Given complete binary tree of height d where each node is ran-

domly col $p_0 = 1/2$ // root green $p_d = \frac{1}{2}$ $\frac{1}{2}(1-(1-p_{d-1})^2)$ // root green, **not** no path in both left and right subtree **Claim:** $p_d \ge \frac{1}{d+2}$. Proof by induction. $\rho_0=\frac{1}{2}$ $\frac{1}{2} = \frac{1}{0+2}$ \checkmark $p_d=\frac{1}{2}$ $\frac{1}{2}\big(1-\left(1- p_{d-1}\right)^2\big) \geq \frac{1}{2}$ $\frac{1}{2}\big(1-(1-\frac{1}{d+1})^2\big)=\frac{1}{2}$ $\frac{1}{2} \Big(\frac{2}{d+1} - \frac{1}{(d+1)}$ $\frac{1}{(d+1)^2}$ $=\frac{1}{2}$ $\frac{1}{2} \cdot \frac{2d+2-1}{(d+1)^2} = \frac{1}{2}$ $\frac{1}{2}\cdot\frac{2d+1}{d^2+2d+1}\geq\frac{1}{2}$ $rac{1}{2} \cdot \frac{2d}{d^2 + 2}$ $\frac{2d}{d^2+2d}=\frac{1}{d+1}$ $\frac{1}{d+2}$ *W* for $1 \le a \le b$ we have $\frac{a}{b} \ge \frac{a-1}{b-1}$ *b*−1

Corollary: Karger-Stein succeeds with probability at least $p_{\log_{\sqrt{2}}(n)} = \frac{1}{O(\log n)}$ $\frac{1}{O(\log n)}$

¹² Maximilian Katzmann, Stefan Walzer – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithms **Karger-Stein Amplified Theorem**: On a graph with *n* nodes, Karger-Stein runs in *O*(*n* 2 log(*n*)) time and returns a minimum cut with probability at least $1/O(\log(n))$.

12 Maximilian Katzmann, Stefan Walzer – Probability at least $1/O(\log(n))$.
 12 Maximilian Computing Institute of Theoretical Into Institute of Theoretical Information Success probability $\geq p$
 14 Maximilian Katzmann, **Theorem**: On a graph with *n* nodes, Karger-Stein runs in *O*(*n* 2 log(*n*)) time and returns a minimum cut with probability at least $1/O(\log(n))$.

Success probability $\geq p$ Number of repetitions *t* Amplified prob. $> 1 - e^{-pt}$ **Amplification**
 $\begin{array}{c|c} \text{Success probability} \geq \rho \end{array}$
 $\begin{array}{c} \text{Success probability} \geq \rho \end{array}$
 $\begin{array}{c} \text{Number of repetitions } t \end{array}$

Theorem: On a graph with *n* nodes, Karger-Stein runs in *O*(*n* 2 log(*n*)) time and returns a minimum cut with probability at least $1/O(\log(n))$.

Amplification

Karger-Stein Amplified				
Theorem: On a graph with <i>n</i> nodes, Karger-Stein runs in $O(n^2 \log(n))$ time and returns a minimum cut with probability at least $1/O(\log(n))$.				
Amplification	$Pr["min-cut found"]$	$\geq 1 - \exp\left(-\frac{t}{O(\log(n))}\right)$	$= 1 - O\left(\frac{1}{n}\right)$	Success probability $\geq p$
Number of repetitions t				
Amplified prob. $\geq 1 - e^{-pt}$				
Mathilian Katzman, Stefan Walzer – Probability & Computing	Institute of Theoretical Informatics, Algorithm Engineering & Scalable Algorithm			

Success probability $\geq p$ Number of repetitions *t* Amplified prob. $\geq 1 - e^{-pt}$

Theorem: On a graph with *n* nodes, Karger-Stein runs in *O*(*n* 2 log(*n*)) time and returns a minimum cut with probability at least $1/O(\log(n))$.

Karger-Stein Amplified		
Theorem: On a graph with <i>n</i> nodes, Karger-Stein runs in $O(n^2 \log(n))$ time and returns a minimum cut with probability at least $1/O(\log(n))$.		
Amplification	$Pr[$ "min-cut found"] $\geq 1 - \exp\left(-\frac{t}{O(\log(n))}\right) = 1 - O\left(\frac{1}{n}\right)$	Success probability $\geq p$
Corollary: On a graph with <i>n</i> nodes, $O(\log^2(n))$ repetitions of Karger-Stein run in $O(n^2 \log^3(n))$ total time and return a minimum cut with high probability.		
Maximilian Katzman, Stefan Walzer-Probability & Computing		

Success probability $\geq p$ Number of repetitions *t* Amplified prob. $\geq 1 - e^{-pt}$

Corollary: On a graph with *n* nodes, $O(\log^2(n))$ repetitions of Karger-Stein run in

Theorem: On a graph with *n* nodes, Karger-Stein runs in *O*(*n* 2 log(*n*)) time and returns a minimum cut with probability at least $1/O(\log(n))$.

Karger-Stein Amplified		
Theorem: On a graph with <i>n</i> nodes, Karger-Stein runs in $O(n^2 \log(n))$ time and returns a minimum cut with probability at least $1/O(\log(n))$.		
Amplification	$\Pr[$ "min-cut found"] $\geq 1 - \exp\left(-\frac{t}{O(\log(n))}\right) = 1 - O\left(\frac{1}{n}\right)$	Success probability $\geq p$
Corollary: On a graph with <i>n</i> nodes, $O(\log^2(n))$ repetitions of Karger-Stein run in $O(n^2 \log^3(n))$ total time and return a minimum cut with high probability.		
Compared to $O(n^4 \log(n))$ for Karger		
Compared to $O(n^3)$ for deterministic approaches		
Maximilian Katzman, Stefan Walzer – Probability & Computing		
Maximilian Katzman, Stefan Walzer – Probability & Computing		

Success probability $\geq p$ Number of repetitions *t* Amplified prob. $\geq 1 - e^{-pt}$

Corollary: On a graph with *n* nodes, $O(\log^2(n))$ repetitions of Karger-Stein run in $O(n^2 \log^3(n))$ total time and return a minimum cut with high probability.

Compared to $O(n^4 \log(n))$ for Karger

Compared to $\Omega(n^3)$

- **Fundamental graph problem**
- Many deterministic flow-based algorithms ...
- ... with worst-case running times in $\Omega(n^3)$

- **Fundamental graph problem**
- Many deterministic flow-based algorithms ...
- ... with worst-case running times in $\Omega(n^3)$

Randomized Algorithms

■ Karger's edge-contraction algorithm

- **Fundamental graph problem**
- Many deterministic flow-based algorithms ...
- ... with worst-case running times in $\Omega(n^3)$

Randomized Algorithms

■ Karger's edge-contraction algorithm

Probability Amplification

- **Probability Amplification**

 Monte Carlo algorithms with and without biases

 Repetitions amplify success probability
- **Repetitions amplify success probability**
- Karger-Stein: Amplify before failure probability gets large

- **Fundamental graph problem**
- Many deterministic flow-based algorithms ...
- ... with worst-case running times in $\Omega(n^3)$

Randomized Algorithms

Karger's edge-contraction algorithm

Probability Amplification

- **Probability Amplification**

 Monte Carlo algorithms with and without biases

 Repetitions amplify success probability
- **Repetitions amplify success probability**
- **Karger-Stein: Amplify before failure probability gets large**

Outlook

"Minimum cuts in near-linear time", Karger, J.Acm. '00

Success w.h.p. in time $O(m \log^3(n))$

i Faster algorithms for edge connectivity via random 2-out contractions", Ghaffari & Nowicki & Thorup, SODA'20

Success w.h.p. in time $O(m \log(n))$ and $O(m + n \log^3(n))$

- -
-
- -
	-
	-
- **Mögliche Prüfungsfragen

 Was ist ein Monte-Carlo-Algorithmus?

 Welche Varianten gibt es?

 Was versteht man unter Probability Amplification?

 Welche Varianten gibt es?

 Le einsetigem Fehler?

 Le einsetigem Feh**
	- -
		-
		- - Was bedeutet $Pr[\mathcal{E}_t]$ und wie haben wir diese Wahrscheinlichkeit abgeschätzt?
			- Was ergibt sich für die Laufzeit und die Erfolgswahrscheinlichkeit?
		- - Wie haben wir die Erfolgswahrscheinlichkeit und Laufzeit abgeschätzt?
			- *n* ?